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Abstract. The grain-scale morphology and size distribution of sediments are important factors controlling the
erosion efficiency, sediment transport and the aquatic ecosystem quality. In turn, characterizing the spatial evo-
lution of grain size and shape can help understand the dynamics of erosion and sediment transport in coastal,
hillslope and fluvial environments. However, the size distribution of sediments is generally assessed using insuf-
ficiently representative field measurements, and determining the grain-scale shape of sediments remains a real
challenge in geomorphology. Here we determine the size distribution and grain-scale shape of sediments located
in coastal and river environments with a new methodology based on the segmentation and geometric fitting of
3D point clouds. Point cloud segmentation of individual grains is performed using a watershed algorithm applied
here to 3D point clouds. Once the grains are segmented into several sub-clouds, each grain-scale morphology is
determined by fitting a 3D geometrical model applied to each sub-cloud. If different geometrical models can be
tested, this study focuses mostly on ellipsoids to describe the geometry of grains. G3Point is a semi-automatic
approach that requires a trial-and-error approach to determine the best combination of parameter values. Valida-
tion of the results is performed either by comparing the obtained size distribution to independent measurements
(e.g., hand measurements) or by visually inspecting the quality of the segmented grains. The main benefits of
this semi-automatic and non-destructive method are that it provides access to (1) an un-biased estimate of sur-
face grain-size distribution on a large range of scales, from centimeters to meters; (2) a very large number of
data, mostly limited by the number of grains in the point cloud data set; (3) the 3D morphology of grains, in
turn allowing the development of new metrics that characterize the size and shape of grains; and (4) the in situ
orientation and organization of grains. The main limit of this method is that it is only able to detect grains with
a characteristic size significantly greater than the resolution of the point cloud.

1 Introduction

Rock particles or grains are characterized by a large range
of size, from clays to large boulders, and a diverse variety
of shape and angularity, from spherical or ellipsoidal to cu-
bic or polyhedral (e.g., Blott and Pye, 2008; Domokos et
al., 2014; 2020). Grains form initially by fragmentation or
chemical weathering, transforming a cohesive rock mass into
a granular material. The initial size or shape distributions

are controlled by fragmentation, weathering processes and
structure of the rock mass (e.g., fracture density and ori-
entation, mineral size) (e.g., Molnar et al., 2007; Garzanti
et al., 2008; Sklar et al., 2017; DiBiase et al., 2018; Neely
and DiBiase, 2020; Verdian et al., 2021). These initial dis-
tributions then evolve due to the action of geomorphological
processes, including attrition, chipping, abrasion, fragmenta-
tion, chemical weathering and transport of grains by wind,
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river flow, avalanches along hillslopes, and sea waves and
currents (e.g., Attal and Lavé, 2006; 2009; Domokos et al.,
2014; Miller et al., 2014; Várkonyi et al., 2016; Novák-Szabó
et al., 2018; Marc et al., 2021). Grains are also found at the
surface of other planetary bodies or asteroids (Burke et al.,
2021) and offer unique constraints on their surface condi-
tions. A striking example is the use of the shape of grains
to reconstruct the transport history of pebbles on Mars (Sz-
abo et al., 2015). Moreover, the in situ orientation of grains
found in deposits can also provide information on the paleo-
flow conditions during sediment deposition (e.g., Johansson,
1963; Rust, 1972).

The distributions of grain size, shape and orientation im-
pact the dynamics of fluvial and sedimentary environments.
At the scale of rivers, the size of the sediments strongly con-
trols the mobility of alluvial grains and their incipient thresh-
old of motion (e.g., Shields, 1936), the timescale required
to mobilize landslide-driven sediments (e.g., Croissant et al.,
2017), the rate of river bedrock incision through the tool-and-
cover effect (Sklar and Dietrich, 2004), the width of river
channels (e.g., Finnegan et al., 2007; Baynes et al., 2020),
and the rate of knickpoint propagation (Cook et al., 2013).
At the scale of a sedimentary basin, the size of grains influ-
ences the stratigraphy of the basin together with the chemical
and mechanical properties of the sediment (e.g., Armitage et
al., 2011). Grain size, shape and orientation in riverbeds are
also key factors for aquatic habitats (e.g., Kondolf and Wol-
man, 1993; Riebe et al., 2014), for water and nutrient ex-
change through the hyporheic zone (e.g., Tonina and Buffin-
gton, 2009), and even for river hydraulics by impacting basal
friction (e.g., Hodge et al., 2009).

Despite the ubiquitous role of grain geometry on landscape
properties and dynamics, and its potential to constrain paleo-
conditions on Earth and other planetary bodies, robustly doc-
umenting the 3D geometry of grains and their statistical dis-
tributions in natural environments remains a challenge. Sam-
pling the grain-size distribution of the sediments lying at the
surface of a riverbed is often done by the grid-by-number
method (Wolman, 1954). This method measures the diame-
ter of a pre-defined number of grains, generally greater than
100. The grid-by-number method is simple to implement and
is regarded as directly similar to a volumetric sampling (see
Bunte and Abt, 2001; and references therein). It is therefore
widely used in the field (e.g., D’Arcy et al., 2017; Guerit et
al., 2014; 2018; Chen et al., 2018; Roda-Bodula et al., 2018;
Watkins et al., 2020; Baynes et al., 2020). However, sam-
ples are often taken over a few square meters and thus lead
to inherent representativeness and statistical biases associ-
ated with the operator, the grain sampling strategy, the mea-
surements themselves and with the choice of the diameter to
be measured. Collecting a data set can be extremely time-
consuming, especially when many grains have to be mea-
sured to be statistically significant (Rice and Church, 1996;
Green, 2003; Eaton et al., 2019; Purinton and Bookhagen,
2021). Measurements are also partly destructive (i.e., grains

are moved), which generally leads to information being lost
on grain orientation and exact location.

These issues have led to the development of alternative
methods based on image analysis to characterize large ar-
eas in a manageable amount of time. Object-based and sta-
tistically based approaches have been developed to char-
acterize grain-size distributions from pictures or 3D data.
The first approach (the so-called “photo sieving”) measures
each grain or a number of selected grains on a picture
(e.g., Bunte and Abt, 2001). Several algorithms now exist
to perform these measurements manually on an image (Ro-
duit, 2008). Because this manual procedure can be time-
consuming, (semi-)automatic procedures have been imple-
mented to recognize grains from pictures (Butler et al., 2001;
Graham et al., 2005a, b; Detert and Weitbrecht, 2012; Bus-
combe et al., 2013; Langhammer et al., 2017; Carbonneau
et al., 2018; Purinton and Bookhagen, 2019) Machine learn-
ing approaches are being developed to support grain seg-
mentation for images (Soloy et al., 2020). However, these
methods are still time-consuming as they require the man-
ual labeling of a large number of grains. The second ap-
proach is based on image-texture analyses and aims to corre-
late some statistical properties of images with grain sizes of
the study site (Buscombe and Masselink, 2009; Buscombe et
al., 2010; Rubin, 2004; Carbonneau et al., 2004). Similarly,
3D approaches empirically relating bed roughness measured
on high-resolution topographic data can be implemented to
infer the grain-size distribution from locally calibrated rela-
tionships (e.g., Rychkov et al., 2012; Westoby et al., 2015;
Woodget and Austrums, 2017; Vazquez-Tarrio et al., 2017;
Pearson et al., 2017; Groom et al., 2018; Detert et al., 2018).
These approaches considerably reduce the time spent in the
field, efficiently increase the sampling density and coverage,
and are non-destructive. Yet, post-processing remains time-
consuming, and these methods are inherently limited to the
2D measurement of the apparent axis of individual grains
(Graham et al., 2010) or to empirical local correlations with
little generalization capability and limited potential to fully
explore the 3D geometry of individual grains.

The last decade has seen a steep growth in the use of
high-resolution 3D topographic data in Earth Sciences and
geomorphology, obtained by lidar measurements and pho-
togrammetry (e.g., Schneider et al., 2015; Westoby et al.,
2012; Leduc et al., 2019). The resulting 3D point clouds of-
fer unprecedented access to landscape heterogeneities and to
landscape temporal evolution (e.g., Hodge et al., 2009; Ley-
land et al., 2017; Beer et al., 2017; Bernard et al., 2021).
The accessibility of 3D point clouds, obtained from ter-
restrial, drone and airborne data, and their ability to cap-
ture object geometries robustly and accurately in 3D at
various scales represent a timely opportunity to develop
point-cloud-based methods for the issue of grain-size mea-
surement. Building on this opportunity, Chen et al. (2020)
recently developed a deep-learning workflow to segment
grains based on structure-from-motion (SfM) data. Walicka
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and Pfeifer (2022) also successfully applied a DBSCAN
(density-based spatial clustering of applications with noise,
see Ester et al., 1996) algorithm to segment grains.

In this paper, we develop another efficient and semi-
automatic approach, entitled G3Point (standing for “Granu-
lometry from 3D Point clouds”), to measure grain size, shape
and orientation using 3D point clouds. G3Point is a purely
geometric algorithm, which in turn does not rely on the a pri-
ori training of a neural network on thousands or more grains
which is required in Chen et al. (2020). Indeed, the associ-
ated workflow consists of the 3D segmentation of individual
grains using a type of watershed algorithm, the geometrical
description of individual grains using 3D ellipsoidal models,
and the description of the 3D geometry of the grain popula-
tion using statistical distributions. G3Point can be character-
ized as a semi-automatic approach as it is based on several
parameters which can be optimized by a trial-and-error ap-
proach. Moreover, validation of the obtained results is per-
formed either by comparing the obtained size distribution to
independent measurements (e.g., hand measurements) or by
visually inspecting the quality of the segmented grains. After
describing the new method, we test it against lab and natural
controlled experiments (e.g., riverbeds and beaches), consid-
ering point clouds obtained from SfM, to check its ability to
robustly capture the 3D geometry and size of grains, inde-
pendently constrained by hand measurements.

2 Method

G3Point is a Matlab program which aims at measuring the
size, shape and orientation of a large number of individual
grains as detected from 3D point clouds describing the topog-
raphy of surfaces covered by sediments. The main functions
of G3Point are described in the following and Fig. 1. Com-
pared to 2D digital elevation models (DEMs), where eleva-
tion z is defined as a function of the horizontal coordinates
(x, y), 3D point clouds can include several points located at
the same horizontal position (e.g., the face above and below
a grain), allowing a better description of geomorphological
features such as grains. In the following, we assume that the
considered point cloud is already denoised and cleaned of
any geometrical feature not corresponding to pebbles. These
features include trees, trunks, vegetation, the water surface,
human-made objects and patches of fine grains (i.e., smaller
than the minimal detected grain size). Several efficient al-
gorithms are available to perform the denoising task (e.g.,
Lague and Brodu, 2013). We also assume that the point cloud
surface, over the region of interest (i.e., generally an area of
a few tens of square meters, what we later refer to as the
“patch scale”), is relatively planar with its normal oriented
vertically upward. We provide functions to denoise and re-
orient the point cloud accordingly. We also assume that in
most cases vertically stacked rocks cannot be individually
segmented.

To illustrate the method, we apply it to a point cloud of
an active alluvial riverbed, of an area of ∼ 40 m2, acquired
in 2011 with a terrestrial lidar scanner (Leica ScanStation 2)
along the Otira River in New Zealand (Fig. 2) and already
featured in Brodu and Lague (2012). The subset of this point
cloud that we use in the following is made of ∼ 105 points
with an average point density of ∼ 2.4103 pt m−2 and was
obtained after a single scan (Fig. 2a). Because it was acquired
after a single scan and therefore misses a significant surface
area for each visible grain, this point cloud is not optimal to
obtain robust information on grain size. However, it repre-
sents a valuable test to check the ability of G3Point.

2.1 Initial segmentation: from a global point cloud to
individual grains using a watershed algorithm

The segmentation of the point clouds into sub-point clouds
representing individual grains uses a single flow algorithm
based on the steepest slope criterion (O’Callaghan and Mark,
1984). This algorithm is generally used to route water and
identify watersheds on 2D DEMs. It uses the steepest slope
criterion to route water between neighborhood points until
reaching a local topographic minimum, which corresponds
to the outlet of the watershed. Each watershed is therefore
described by a directed acyclic graph which associates each
point of the point cloud with its outlet node through a sin-
gle flow path (e.g., Schwanghart and Scherler, 2014). To per-
form the watershed segmentation, we use the Fastscape al-
gorithm as it offers a fast solution to order points along the
steepest water flow path (Braun and Willett, 2013). For each
node i, Fastscape defines a receiver node, corresponding to
the neighborhood node leading to the steepest slope (i.e., that
therefore would receive water when defining a flow topol-
ogy), and donor nodes, corresponding to neighborhood nodes
that give water to node i. Starting from each outlet node, a
stack of nodes is built by recursively adding the donor nodes
to the stack until reaching nodes without donors. The list of
nodes in each stack therefore defines a watershed associated
with one outlet node. This algorithm, designed for regular
grids, can be readily adapted to irregular grids, such as 3D
point clouds, as long as the neighborhood nodes of each node
are known. We use here the k-nearest neighbors algorithm,
using 3D Euclidean distances, to identify the neighborhood
nodes. The parameter k controls the “neighborhood scale”,
which varies locally based on the spatial density of points
(Fig. A1a). For the point cloud of the Otira River, k was taken
as equal to 20 as this provides a good solution to grain seg-
mentation. We provide some guidelines on how to choose a
suitable value of k in the Supplement (Fig. S1).

To identify grains instead of watersheds, the single flow
algorithm is modified by using the criterion of the steep-
est slope upward instead of the steepest slope downward to
route water. In other words, water is routed from a point to its
steepest upward neighbor, which is associated with the max-
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Figure 1. Overview of the G3Point algorithm showing the main series of functions (center) and the results (top and bottom figures). Each
main function is described in detail in the Method section.

imum value of 1z
/(
1x2
+1y2)1/2 , with 1x, 1y and 1z

the distance along x, y and z between the considered point
and its k-nearest neighbors. Using this approach, each grain
should be identified by a single watershed, with the outlet
corresponding to the summit of the grain. For the Otira River,
the initial segmentation identifies 772 grains (Fig. 2b), and
their set of points are associated with a unique label. This
segmentation approach is relatively simple to implement, and
the topology of a grain can be simplified to the position of
its summit (red dots in Fig. 2b). Moreover, this segmenta-
tion method is fast as it takes ∼ 0.1 or ∼ 1 s of CPU time
for ∼ 105 or ∼ 106 points, respectively, on a laptop with
32 GB of RAM and an Intel i9 CPU of eight cores with a
clock speed of 2.4 GHz. We emphasize that this algorithm
is not intended to provide an accurate description of hydro-
logical flow over a point cloud as in Rheinwalt et al. (2019)
but simply to provide a fast segmentation of the point cloud.
This algorithm only imposes one spatial scale: the theoret-
ical minimum grain diameter which can be segmented, i.e.,
the local neighborhood scale. This scale can lead to under-
segmentation of small grains, when their number of points is
lower than or of the same order as the k parameter. Except
for the neighborhood scale, no other scale is introduced, and
the algorithm can identify grains of varying size. However,
results show that this watershed segmentation approach also
leads to a global over-segmentation of grains. Indeed, grains
can exhibit several local maxima, due to the geometry of the
grain (i.e., angularity) or to a rough surface or to potential
data noise, leading to a grain being over-segmented (Fig. 2b).
Over-segmentation is a classical issue for algorithms dedi-
cated to grain segmentation in 2D (e.g., Purinton et al., 2019;
Purinton and Bookhagen, 2021) or 3D.

2.2 Correcting from over-segmentation by merging
grains

Correcting over-segmentation is not a trivial task due to the
large range of grain sizes. Mostly because of this issue, clas-
sical clustering approaches such as hierarchical clustering
or DBSCAN (e.g., Esther et al., 1996) proved ineffective
to solving this issue. Moreover, approaches that use all the
points in the point cloud can lead to a longer computational
time, which might become prohibitive for large point clouds.
Here, we develop an approach which makes use of the prop-
erties of the segmented watersheds, which associate grains
(i.e., watersheds) to their unique summit points (i.e., outlets)
and to their border nodes (i.e., crests). We combine three cri-
teria (Fig. A1b) to decide if a pair of grains (ij ) should be
merged into a single grain.

– Criterion 1: the distance dij between two summit points
should be smaller than the sum of the characteristic ra-
dius of the two grains. Using a criterion based on a sin-
gle scale to decide whether two grains should be merged
would be problematic due to the large range of grain
size. We therefore use the drainage area A at the sum-
mit node (i.e., outlet), which receives water from all the
points sharing the same label, to determine a charac-
teristic scale or grain radius li = (Ai /π )1/2. The crite-
rion to merge the pair of grains (ij ) together is therefore
dij<CF(li + lj ), with CF a factor that we take generally
to be equal to 0.5–1. These values were obtained after
several trial-and-error tests.
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Figure 2. Three-dimensional view of the point cloud, its segmentation into individual grains and the fit ellipsoids. (a) Initial point cloud
with the color map indicating the elevation of the points. (b) Initial segmentation of the point cloud into individual grains performed with a
modified watershed algorithm using the steepest upward slope criterion to route water. (c) Segmentation after merging close grains together.
(d) Ellipsoid fit to each individual grain identified in panel (c) is represented by colored lines (same color as in panel c) over the point cloud
(black dots). Color in panels (a), (b) and (c) indicates the label of the grains (i.e., one color per grain). Red dots in panels (a) and (b) indicate
the location of the summit point of each grain. (e) Picture showing the location of the point cloud surface, bounded by a red polygon, relative
to the Otira river.
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– Criterion 2: grains i and j should be neighbors (i.e., at
least one of the points of grain i belongs to the k neigh-
bors of one point of grain j and vice versa).

– Criterion 3: the 3D angle between the normals of the
crest points of grains i and j should be small. Orien-
tation of the normal is computed by taking the normal
of the best-fitting local plane to the k-nearest neighbors
of the considered point. For each of the crest nodes of
grain i, the sum of the 3D angle between its normal and
the normal of its neighbors belonging to grain j is com-
puted. This operation is performed for every crest point
of grains i and j , and then a mean 3D angle is deter-
mined. The criterion to merge the grains is that their
mean 3D angle is lower than a threshold α that we take
as equal to 60◦ for the point cloud of the Otira River.
This last criterion prevents grains that are separated by
a clear change in surface orientation from being merged.

A pair of grains (ij ) is merged if, and only if, these three
criteria are respected. Due to the low number of grains com-
pared to the number of points in the point cloud, this step
is also fast (i.e., ∼ 0.1− 1 or ∼ 1− 10 s of CPU time on a
laptop for ∼ 105 or ∼ 106 points, respectively). The results
show that many labels, suffering from over-segmentation and
describing a single grain, were effectively merged by ap-
plying this test, leaving only 657 labels or grains instead
of 772 (Fig. 2c). Overall, the resulting segmentation looks
qualitatively good, even if some grains still suffer from over-
segmentation while a limited number of labels now suffer
from under-segmentation and include more than one grain.
We provide some guidelines on how to choose suitable val-
ues of CF and α in the Supplement (Fig. S2).

2.3 Segmentation cleaning operations

To increase the quality of the segmentation, we offer op-
tional routines to perform several post-segmentation opera-
tions (Fig. A1c):

– applying Criterion 3 only, which merges a pair of grains
if the 3D angle between their normal, computed on the
common border, is lower than a threshold β. The ob-
jective is mostly to merge small grains, resulting from
the initial over-segmentation due to grain local maxima,
with large ones.

– cleaning the segmentation by removing grains with less
than nmin points. This number of points should be
greater than or equal to k, the number of nearest neigh-
bors, and greater than or equal to 10, regarded as the
strict minimum number of points required to fit an ellip-
soid (i.e., number of parameters of an ellipsoid). How-
ever, larger values of nmin should be favored to reduce
the uncertainty in the resulting ellipsoidal model.

– removing flattish or over-elongated grains, as they gen-
erally do not correspond to individual grains but to clus-
ters of fine grains with a characteristic size much lower
than the typical point spacing of classical point clouds
or to improperly segmented grains. To detect flattish
or over-elongated grains, we perform a singular value
decomposition (SVD) over the 3D coordinates of each
of the sub-point clouds. If a grain has a minimum or
an intermediate singular value divided by its maximum
singular value (i.e., the axis ratio between the interme-
diate or minimum dimension of the 3D labeled point
cloud and its maximum dimension) lower than a thresh-
old, ∅flat or 2∅flat, then this grain is considered flattish
or over-elongated, respectively, and removed from the
segmentation. Values of ∅flat < 0.1 were found to be
suitable in this study, even if natural settings with very
flat (e.g., as found for slate grains) or elongated grains
should probably consider smaller values.

In the example shown in Fig. 2, the segmentation was not
cleaned. We provide some guidelines on how to choose suit-
able values of β, nmin and ∅flat in the Supplement (Fig. S3).

2.4 Geometrical modeling: 3D ellipsoidal fitting of grains

Once the grains are segmented and labeled, the following
phase consists of the 3D geometrical description of each
grain, particularly their size and orientation. A strong con-
straint results from the fact that only an unknown fraction of
the upper surface of the segmented grains (i.e., the visible
part of the grain) is topographically described by the point
cloud. This prevents us from directly using the point cloud
to describe each grain and measure their sizes and orienta-
tions. Instead, we rely on geometrical models to represent
each grain. The simplest 3D geometrical model to describe a
grain is the ellipsoidal model. Two strategies are adopted to
describe the geometry of a grain with an ellipsoidal model:
fitting an ellipsoid or determining its ellipsoid of inertia.

Fitting an ellipsoid to a set of points in 3D is a complex
problem that has received attention from different applied
mathematics communities, including computer vision, pat-
tern recognition, numerical analysis and statistics. Ellipsoids
belong to the family of quadric surfaces that can be defined
as

Ax2
+B y2

+C z2
+ 2F yz+ 2Gxz+ 2H xy

+ 2P x+ 2Qy+ 2Rz+D = 0, (1)

where A, B, C, F , G, H , P , Q, R and D are the param-
eters of the quadric surface. Defining I = A+B +C and
J = AB+BC+AC−F 2

−G2
−H 2, it can be shown that

Eq. (1) must represent an ellipsoid when 4J − I 2 > 0 (Li
and Griffiths, 2004). This condition is respected when the
short radius is at least half the length of the major radius of
an ellipsoid. This represents a sufficient condition, but not
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Figure 3. Size, shape and orientation distribution of 630 ellipsoids correctly fitted to the labeled grains. Histogram distribution of the
diameters of the ellipsoids along their (a) major a, (b) intermediate b and (c) short c axis. Histogram distribution of the (d) 3D axis ratio
(c/a), (e) 2D axis ratio (b/a) and (f) volume of the ellipsoids. Histogram distribution of the (g) azimuth ϕ and (h) dip θ angle. (i) Three-
dimensional view of an arbitrary ellipsoid and representation of the different metrics used to characterize ellipsoid size, shape and orientation.

a necessary one, and ellipsoids can be mathematically de-
fined without respecting 4J − I 2 > 0. We use an efficient
and robust Matlab version (Hunyadi, 2022) of a direct least-
square fitting method (Li and Griffiths, 2004), based on the
condition that 4J − I 2 > 0, to describe the geometry of the
segmented grains by minimizing the square of the distance
between labeled points and the ellipsoidal model. For ellip-
soids fitting grains which do not satisfy this condition, the fit-
ting method might still lead to ellipsoids or to other quadric
surfaces. Grains suffering from fitting issues or leading to
quadric surfaces other than an ellipsoid are filtered out, leav-
ing 630 correctly fit ellipsoids over 657 labeled grains. The
resulting ellipsoids, fitted to each labeled grain, appear qual-
itatively consistent with the shape, size and orientation of the
labeled grains (Fig. 2d). Other ellipsoidal fitting algorithms
exist, but this direct least-square approach was found to lead
to the best solution for the data set we used. In turn, the con-
dition 4J − I 2 > 0 prevents the occurrence of flat or over-
elongated ellipsoids, which could otherwise represent better
mathematical solutions despite being, in some cases, physi-
cally unlikely.

The second approach considered to characterize the geom-
etry of the grains computes the inertia ellipsoids correspond-
ing to the labeled points of the grains. This is performed
first by computing the mean position of the points, second
by computing the covariance matrix of the points subtracted
from their mean position and third by making an SVD of the
covariance matrix normalized by the number of points.

The approach based on the inertia ellipsoid can be consid-
ered simpler than the direct least-square fitting method and
does not suffer from mathematical constraints of the direct
least-square approach. However, as it is not a fitting method,
its main drawback is that it is unable to guess the “hidden”
geometry of the grains (i.e., by using the curvature of the vis-
ible part of the grain), and the obtained inertia ellipsoids will
tend to be flatter than the grains. We later compare the two
approaches in the Results section. We also compare the ob-
tained ellipsoids to cuboids that are obtained by determining
the minimal 3D bounding box for each grain, with at least
one side oriented along the horizontal plan. More specifi-
cally, the orientation and dimensions (i.e., length, width and
height) of the cuboids are compared to the orientation and
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Figure 4. Influence of the grain surface covered by 3D data on the modeled ellipsoidal geometry of a grain. (a) Point clouds of the four tested
grains, which consist of grains with increasing angularity and elongation from left (grain 1) to right (grain 4). (b) Resulting bounding box
(green) and ellipsoid fit on each grain (black dots), using either the direct least-square fitting algorithm DLSF (red) or the inertia ellipsoid
algorithm IE (blue). (c) Volume V and (d) surface area A of the modeled ellipsoids normalized by the volume and area of the convex hull of
the point clouds of the entire grains, regarded as true estimates. Length of the modeled (e) a axis, (f) b-axis and (g) c axis normalized by the
major, intermediate and minor length of the bounding box around the entire grain. Three-dimensional angle between the 3D vector of the (h)
a axis, (i) b axis and (j) c axis with the orientation of the same vector resulting from the ellipsoid fitting the entire grain. In panel (c) to (j),
results obtained with the direct last-square fitting approach (DLSF) and the inertia ellipsoid approach (IE) are represented in red and blue,
respectively. The error bar, given as a shaded surface around the mean value (solid line), is the standard deviation of the considered metrics
obtained by changing 10 times the random seed.
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dimensions of the major, intermediate and short axes of the
ellipsoids.

2.5 Geometrical and statistical description of grain size,
shape and orientation

Once the grains are fitted by an ellipsoid, it is straightfor-
ward to access their geometrical information. For each el-
lipsoid, we measure the radius (and the diameter, as clas-
sically used for grain-size distributions) of the major a,
intermediate b and short c axes, the orientation (i.e., az-
imuth and dip) of these three axes, the volume of the el-
lipsoid V = 4/3πabc, and the approximate surface area
A of the ellipsoid using Knud Thomsen’s formula A=

4π ((apbp + apcp + bpcp)/3)1/p. Indeed, there is no gen-
eral formula for estimating A and this formula approximates
the ellipsoid area with an error of less than 1.061 % when
p = 1.6705. We can also compute two different axis ratios,
with c/a the 3D axis ratio between the short and major axis
and b/a the 2D axis ratio (or elongation ratio) between the
intermediate and the major axis. We coin this latter the 2D
axis ratio as it generally corresponds to the axis ratio mea-
sured from 2D images, by contrast with the 3D axis ratio that
is generally not measurable from 2D images (i.e., assuming
that the short axis is oriented vertically).

For each grain, we can also compute the distance of each
point of the grain, of coordinates (xyz), to its projection on
the ellipsoid surface, of coordinates (xeyeze). The square of
this distance, corresponding to the residuals in a least-square
sense, characterizes the goodness of the fit through the coef-
ficient of determination:

R2
= 1−

∑(
(x− xe)2

+ (y− ye)2
+ (z− ze)2

)
/∑(

(x− x̄)2
+ (y− ȳ)2

+ (z− z̄)2
)
,

with x̄, ȳ, z̄, and the mean coordinates of the points. R2 pro-
vides information on the quality of the mathematical fit itself
and on the consistency between the ellipsoidal model and the
shape of the grain, which can deviate significantly from an
ellipsoidal geometry.

The statistical description of grain geometrical properties
of a grain population, such as the classical 1D grain-size dis-
tribution (GSD), is then performed based on the geometrical
attributes of each individual grain of the considered popu-
lation (Fig. 3). The range of measured diameters, ∼ 0.01 to
∼ 1 m, spans 2 orders of magnitude (Fig. 3a–c), and the 3D
(c/a) and 2D (b/a) axis ratios unsurprisingly vary between
0 and 1 with mean values of 0.55 and 0.65, respectively
(Fig. 3d–e). The range of volume of the ellipsoids spans al-
most 5 orders of magnitude, from 10−5 to 1 m3 (Fig. 3f).
In addition to this classic description, G3Point also provides
information on the 3D organization of the grains. Here, the
orientation distribution of the grains along this active allu-
vial bed shows that there is no preferential orientation of

grains due to the river flow, as they appear to follow a mostly
uniform distribution of the azimuth ϕ (Fig. 3g), and, as tes-
tified by their dip angle θ , that most grains are lying in a
sub-horizontal position with 0< θ < 30 or 150< θ < 180◦

(Fig. 3h).

3 Results: method validation and application to lab
or natural environments

In addition to its robustness and efficiency, an algorithm dedi-
cated to extract granulometric information from point clouds
must be able to manage various sources of data, including
SfM and lidar. In the following, we therefore test the newly
developed algorithm against “ground truth” data sets of grain
size, obtained in the lab or natural environments. For each
data set, we compare the distribution obtained with G3Point
to the grain-size distribution measured by hand. It is impor-
tant to highlight that the grain sampling approach of G3Point
belongs to the family of areal or area-by-number approaches.
We first start by assessing the pros and cons of the differ-
ent grain fitting approaches by applying them to individual
grains of various shapes.

3.1 The influence of grain shape and surface cover on
the resulting ellipsoid size and orientation

Two strategies are adopted to describe the geometry of a
grain with an ellipsoidal model: fitting an ellipsoid by a di-
rect least-square fitting approach (DLSF) or determining its
ellipsoid of inertia (IE). We here test the influence of using
these two strategies on the quality of the resulting geometri-
cal models, for individual grains, considering a variable sur-
face covered by the point cloud (Fig. 4).

Indeed, in natural environments, grains have a significant
proportion of their surface that is not topographically de-
scribed, as it is hidden under the grain itself, by other grains
or features (e.g., vegetation, water), or due to a lack of visibil-
ity with respect to the sensor (e.g., lidar station). The tested
grains consist of a spherical ball (grain 1), a low-angularity
grain (grain 2), an angular grain (grain 3), and an angular,
flattish and elongated grain (grain 4). The point clouds rep-
resenting the surface of these four grains were obtained by
SfM using Agisoft Metashape. Each grain was put on a 1 cm
radius plastic plate attached to the top of a tripod and about
50 pictures were acquired all around the grain. For each of
these point clouds, we generated ellipsoidal models consid-
ering only a prescribed percentage of their surface covered
by the point cloud, from 10 % to 100 %. Practically, surface
cover is varied by first choosing a random seed among the
points of the point cloud and then sampling a number of
nearest neighbors leading to the sought surface cover of the
grain. Ellipsoidal modeling by DLSF and IE is then applied
only to this sampled part of the total point cloud. The mod-
eled ellipsoidal volume Vmodel and surface area Amodel are
then compared to the volume Vtrue and surface area Atrue of
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the convex hull of the point cloud. The modeled diameters
dmodel of the three axes are compared to the dimensions dtrue
of the bounding box of the point cloud. Last, the 3D angle
1α, between the modeled orientation of the ellipsoid axes
and axes of the “true” ellipsoid obtained by considering the
entire grain, is computed. For each surface cover, 10 sam-
ples are tested, leading to 10 models obtained by the DLSF
and IE approaches, allowing us to define a mean value and a
standard deviation for each metric.

For the two low angular grains (grains 1 and 2), metrics
obtained with DLSF or IE are consistent with the true geom-
etry of the grain even for relatively low surface cover, down
to 20 %–30 %. DLSF gives significantly better results than
IE, in particular for a surface cover between 20 % and 80 %,
which likely represents a common range for most labeled
grains. Thanks to grain curvature, the DLSF fitting algorithm
also converges towards value for V , A and d which are close
to the true values. For the orientation, both approaches are
unable to converge towards the true one for the spherical
grain (i.e., grain 1), which is not surprising as the orientation
of a sphere is not defined. For grain 2, both approaches con-
verge slowly towards the true orientation for a surface cover
greater than 50 %–75 %.

For the angular grain (grain 3), the DLSF and IE ap-
proaches give similar results. The dimensions are well cap-
tured for a surface cover greater than 60 %–70 %. The ori-
entation, in particular of the c axis, converges more rapidly
than for low-angularity or spherical grains. For the angular,
elongated and flattish grain (grain 4), the IE approach gives
better results than the DLSF for the length of the c axis and
the volume, while other metrics are relatively similar. Indeed,
the algorithm of the DLSF imposes some constraints on the
minimum size of the c axis compared to the a axis, which
makes it unable to properly capture the 3D dimensions of
flattish grains.

These results show that the dimensions of spherical or low-
angularity grains are well captured by the IE and DLSF ap-
proaches, with this latter giving good results even for a sur-
face cover lower than 50 %, while their orientation is poorly
captured for a surface cover lower than ∼ 75 %. On the other
hand, grains that clearly depart from the spherical model, in
particular due to their high angularity, need a greater sur-
face cover, around 60 %–70 %, to be properly captured for
their dimensions by ellipsoidal models, while their orienta-
tions converge more rapidly towards their true value. Flattish
grains are better modeled by the IE approach, as the DLSF
leads to a large value of the c axis. Last, we note that the
orientation of the c axis is generally better captured than the
one of the a and b axis, which suggests that the azimuthal ori-
entation of grains is less well resolved than their inclination
(assuming that the c axis of grains is sub-vertical).

3.2 Lab experiment: the test of the pebbles on a flat
surface

Here, we apply G3Point to a lab experiment, consisting of
39 black pebbles, bought in a hardware store, lying in a hori-
zontal position over a planar surface of 0.5×0.5 m (Fig. 5a).
This lab experiment was photographed using a Nikon D3500
in a 4000× 6000 pixel format with about 50 pictures, taken
with different angles, to generate a 3D point cloud by SfM.
Data were processed with Agisoft Metashape and the re-
sulting point cloud, made of ∼ 2× 105 points, has a native
point density of ∼ 1 point per mm−1. To segment grains,
and only grains, the planar surface is removed from the point
cloud by removing all the points below a threshold eleva-
tion over the vertical coordinate. G3Point is then applied to
this point cloud using the couple of parameters k = 100 and
CF = 0.8, after a trial-and-error series of tests. Indeed, the
39 pebbles are perfectly detected and labeled as individual
grains. Each grain is then described by a cuboid (Fig. 5b)
and ellipsoidal models using the direct least-square fitting
method (DLSF) (Fig. 5c), as previously done, and the inertia
ellipsoid (IE) approach (Fig. 5d). We force the vertical di-
mension of the cuboids to start at the elevation of the planar
surface for their lower face, to correctly capture the height
of the grains. As the grains are lying flat, the length and the
width of the cuboids correspond to the long and intermedi-
ate axes of the grains, respectively. The major a, interme-
diate b and short c axes of the modeled ellipsoids are then
compared to the true diameters of the pebbles, which are as-
sumed to be characterized by the length, width and height of
the cuboids, respectively. We emphasize here that most of the
pebbles used for this test are strongly elongated (b/a ∼ 0.5)
and flat (c/a ∼ 0.25), which can represent real challenges for
most ellipsoidal fitting algorithms. This test should therefore
be regarded as an end-member scenario, testing the ability
of the approach to properly describe the geometry of grains
using ellipsoidal models.

Despite this, the obtained diameters for the a, b and c
axes are roughly consistent between the three approaches
(Fig. 5e), even if the diameters obtained with the DLSF and
IE approaches are systematically higher or lower, respec-
tively, than the cuboid dimensions. The ratios between the el-
lipsoid diameters and the cuboid lengths for the a and b axis
range between 0.8 and 1 for the IE and between 0.8 and 2
for the DLSF (see Fig. S4 in the Supplement). For the c axis,
the consistency is less good and the ratio range between 0.4–
0.9 and 1.1–9 for the IE and DLSF approaches, respectively.
These results reflect the pros and cons of each approach: the
DLSF approach leads to larger than expected ellipsoids, due
to the geometrical constraint of the fitting algorithm for the c
axis, while the IE approach leads to smaller than expected el-
lipsoids, as only the upper face of the grains is accounted for.
This is well illustrated by the difference in the resulting 3D
(c/a) and 2D (b/a) axis ratio. If the 2D axis ratio is relatively
consistent between the three approaches (Fig. 5f), the 3D axis
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Figure 5. Results from the lab experiment considering 39 pebbles on a flat surface. (a) Point cloud (gray dots) of the experiment overlaid
by the label (color) of each identified grain and their summit node (red dot). The resulting (b) cuboid (red) and ellipsoids obtained with (c)
a direct least square (DLSF, blue) and (d) the inertia ellipsoid (IR, green) approaches. Diameters measured along the (e) a axis (left), b axis
(center) and c axis (right) using the direct least square (DLSF, blue dots) and the inertia ellipsoid (IE, green dots) approaches for the 39
grains as a function of the cuboid lengths (see Fig. S4). The red dots show the dimensions of the average ellipsoid between the IE and DLSF
ellipsoids. (f) Axis ratios of the ellipsoids as a function of the axis ratios of the cuboids. (g) Volume, area and azimuthal angle of the a axis
(0–180◦) of the ellipsoids as a function of the azimuthal angle of the cuboids. The black dashed lines show the 1 : 1 line on all the panels.

ratio of the DLSF ellipsoids (0.4–0.65) is significantly higher
than the one of the cuboids (0.1–0.4), except for one grain.
By contrast, the 3D axis ratio of the IE ellipsoids is always
lower than the one of the cuboids. These discrepancies also
lead to a larger or lower volume and area for the DLSF or
IE ellipsoids, respectively, compared to the cuboid volume
and area (Fig. 5g). We note that the consistency of the DLSF
ellipsoids with the cuboids is greatly improved when increas-
ing the 3D axis ratio (i.e., when considering more spherical
grains), which limits the role of the geometrical constrain on
the quality of the fit ellipsoid. Last, the horizontal orientation
of the DLSF or IE ellipsoids, given by the azimuthal angle of
the a axis, is relatively consistent with the orientation of the
cuboids (Fig. 5g).

Despite a good first-order accuracy of the considered ellip-
soidal models to represent the 3D dimensions of grains, none
of these approaches is deemed systematically suitable by it-
self. The consistency of the ellipsoidal models with the true
geometry of the grains depends on the considered geometri-
cal model, on the surface coverage of the grain by the point
cloud and on the shape of the grain itself (Fig. 4). In the fol-
lowing, instead of relying on a single ellipsoidal model, we
rather assess the geometry and dimensions of grains by using
both the DLSF and IE ellipsoidal models. Indeed, consider-
ing the size (or size distribution) obtained with the DLSF
and IE ellipsoidal models offers an upper and lower bound
on the true size (or size distribution) of the grain (or grain
population). We also provide a mean size (or size distribu-
tion) obtained with these two ellipsoidal models to offer an
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approximate solution to the true size of the grain (or grain
population).

3.3 Field experiments with SfM 3D point clouds

The second experiment consists of pebbles from three nat-
ural field sites in France: the beach of Pointe du Château
Renard (Brittany) with coarse and angular grains at Site 1
and smaller rounded grains at Site 2 (Fig. 6a–b) and the
Hérault River near Saint-André-de-Majencoules (Cévennes)
with rounded, fluvially transported pebbles (Fig. 6c). At each
site, we sampled the grain-size distribution by the Wolman
grid-by-number method (Wolman, 1954). At Site 1 of Pointe
du Château Renard, we defined a grid of about 2.5×3 m with
nodes every 0.3 m, we measured the three axes of each grain
lying under a node, and a total of 76 grains were measured.
At Site 2, we stretched two parallel decameters and two op-
erators walked along these lines, picked the two grains ly-
ing under each of their hands (random selection) about every
meter and measured the three axes of the grains. In total, 529
grains were measured. For the Hérault River, we defined a
grid of 2.5× 13 m with nodes every 0.4 m and we measured
the intermediate axis of 197 grains. The others diameters
were not measured due to time constraints. Measurements
were performed with a calliper and rounded toward the near-
est millimeter or with a decameter and rounded toward the
nearest 5 mm, for small or large grains, respectively. Only
grains larger than 4 mm were measured.

In addition to operator errors, related to the measurement
itself and to the choice of the diameter to measure, the re-
sulting distribution is associated with uncertainties related to
the size of the sample. We used a bootstrap approach with re-
placement to evaluate the confidence interval of each distri-
bution (Rice and Church, 1996; Bunte and Abt, 2001; Green,
2003). For each sample, we randomly sampled 10 000 repli-
cates of the distribution, and the scatter defines the confi-
dence interval. The pebbles at Site 1 of the beach of Pointe du
Château Renard have a median a axis of 170±48 mm, a me-
dian b axis of 110±40 mm and a median c axis of 60±20 mm
(Fig. 6a, Table S1 in the Supplement). At Site 2, the peb-
bles have a median a axis of 117± 15 mm, a median b axis
of 80± 9 mm and a median c axis of 50± 6 mm (Fig. 6b,
Table S1). The fluvial pebbles along the Hérault River are
smaller, with a median b axis of 75± 18 mm (Fig. 6c, Ta-
ble S1).

At Château Renard, we used a Nikon D3500 in a 4000×
6000 pixel format, and for the Hérault River, we used a
Nikon D7500 in a 4176× 2784 pixel format. At each site,
we took about 100 pictures covering a few square meters to
build a 3D point cloud by SfM. Data were processed with
Agisoft Metashape and the resulting point clouds have a na-
tive point density of ∼ 1 point per mm−1. We subsampled
the point clouds with CloudCompare to ∼ one point per 2 to
3 mm to reduce calculation duration. G3Point is then applied
to the resulting point clouds with parameters defined after a

trial-and-error series of tests so that the segmentation of the
grains is visually satisfying (Table 1, Fig. 6).

A large number of grains are detected (428, 1077 and 678
for Château Renard Site 1, Site 2 and the Hérault River, re-
spectively, Table 1). Yet, to compare the distributions ob-
tained by G3Point to the distributions obtained by Wolman
counts in the field, we must perform virtual Wolman sam-
plings on the fitted grains. We apply a virtual grid to the 3D
point cloud and automatically extract the three axes of the
grains lying under the nodes, with grid spacing defined as
half the maximum b axis (this roughly corresponds to the
D90). Because we can easily resample the point cloud, we
repeat this operation 25 times and define the grain-size dis-
tribution as the average of these 25 samples, for each fitting
method. The DLSF and IE distributions are used as the con-
fidence interval of the average distribution (see Method sec-
tion). We now have 77, 332 and 183 grains for Château Re-
nard Site 1, Site 2 and the Hérault River, respectively (Ta-
ble 1). The confidence intervals of the a and b axis are up
to ±14 %, but we observe intervals close to ±50 % for the c
axis due to the assumptions made by the fitting methods for
the c axis (Table S1, and see the Method section for details).

To better compare the two approaches, we compare the
key percentiles (10th, 16th, 25th, 50th, 75th, 84th, 90th) of
the grain-size distributions obtained by manual counts and
by virtual Wolman on the segmented point cloud (Fig. 7). For
each diameter at each study site, points align along a 1 : 1 line
in a quantile–quantile diagram, indicating that the average
distributions obtained with G3Point are similar to the ones
obtained by manual counts (Fig. 7). In particular, the 50th
percentiles (i.e., the D50s of the distributions) fall very close
on the 1 : 1 line of the Q–Q plots, implying that G3Point
leads to similar median diameters for any grain axis. As ob-
served with the previous examples, the DLSF and the IE ap-
proaches perform similarly well on the a and b axis but they
tend to overestimate and underestimate the c axis, respec-
tively (Fig. S5). Other diameters are within uncertainties but
must be considered with more care (Fig. 7, Table S1). In fact,
at Site 1, G3Point tends to underestimates the smallest per-
centiles of the distributions and to overestimate the coarsest
ones (Fig. 7a–c). Yet, this discrepancy is limited and always
within the error bars of manual counts. For example, for the
a axis, the D90 measured on the field is 304±135 mm, while
it is 334± 46 mm with G3Point (overestimation by ∼ 10 %,
Fig. 7a). We observe the opposite trend at Site 2 and for the
Hérault River, with an overestimation of the smallest per-
centiles and an overestimation of the coarsest ones (Fig. 7d–
f). Here again, this trend is quite limited as, for example, the
D10 of the b axis at Site 2 is 38± 6 mm from manual counts
and 43±3 mm with G3Point (overestimation of∼ 13 %). The
algorithm is unable to recover small grains because they are
described by a limited number of points. As a consequence,
the worst performance of G3Point is observed for the small
percentiles of the c axis. For example, at Site 2, the D10 of
the c axis is overestimated by ∼ 35 % (Fig. 7f, Table S1).
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Figure 6. Field pictures (a–c), initial point clouds colored coded in elevation and segmented point clouds (d–i), and grain-size distributions
(j–l) from (a) Site 1 and (b) Site 2 of the Pointe du Château Renard and (c) the Hérault River. Distributions of the a (red), b (green) and
c (blue) axis result from Wolman counts (dark colors) and G3Point (light color dash lines). Shaded envelopes correspond to uncertainties
defined by bootstrap approach for Wolman counts and by the envelope defined by the two fitting methods for G3Point (see text for details).
Locations of the Wolman lines (white) and SfM covers (black polygons) are indicated in the pictures.

Table 1. Statistics of the grain-size distributions for the three sites surveyed by SfM. The six coefficients (k, CF, α, β, ϕflat, Athres) are the
parameters required for G3Point (see text for details).

Site Method Number of grains k CF α β ϕflat Athres Min point

Château Renard Site 1
Wolman 76 – – – – – – –
G3Point 77 30 0.7 35 5 0.2 10 150

Château Renard Site 2
Wolman 529 – – – – – – –
G3Point 332 40 0.5 40 10 0.2 20 100

Hérault
Wolman 197 – – – – – – –
G3Point 183 50 0.3 35 10 0.1 20 100
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Figure 7. Comparison of the key percentiles (10th, 16th, 25th, 50th, 75th, 84th, 90th) obtained by manual counts and by G3Point at the
three study sites and for the three diameters. Distributions from G3Point are derived from the virtual Wolman sampling and uncertainties
correspond to the envelopes defined by the DLSF and IE models. For manual counts, uncertainties are derived from a bootstrap approach
with replacements. The dash lines indicate a 1 : 1 ratio (points under/above the line indicate that G3point under/overestimates the percentile
with respect to field measurements).

This second experiment based on natural grains thus con-
firms that G3Point is efficient at recovering Wolman-like
grain-size distributions for pebble and cobble populations in
different environments and for various grain angularity, with
a limited temporal cost in the field and in the lab.

4 Discussions

4.1 Practical considerations for using G3Point

As already demonstrated, G3Point is designed to perform
semi-automatic 3D granulometric measurements on point
clouds over surface area 1: 100 m2 (hereinafter referred to
the patch scale) with a typical point density of ∼ 0.1− 1 cm
per point and a total number of points around 106. The point
density should be high enough so that each grain is described
by at least several dozen points. This scale enables us (1)
to perform efficient and fast measurements (i.e., several sec-
onds), (2) to visually check the quality of the resulting seg-
mentation of the grains, and (3), if needed, to compare the
resulting grain-size distribution with the one obtained with
manual counting. We therefore suggest using G3Point mostly

for patch-scale studies. In terms of computational time, there
is a tradeoff between the total surface area and point den-
sity. G3Point can also perform grain size, shape and orienta-
tion analysis over larger study areas (>100 m2). In this case,
the best practice consists either (1) in decreasing point den-
sity and in turn losing the ability to detect smaller grains
or (2) in segmenting the initial point cloud into several sub-
point clouds, at the patch-scale and with the initial point den-
sity, which can then be successively processed by G3Point.
We generally recommend validating the results against some
field measurements (e.g., grain-size distribution obtained by
a Wolman count), at least on some parts of the studied area.
When no classical grain-size data are available, we recom-
mend carefully checking the results of the grain segmentation
phase and testing its sensitivity to the different parameters of
G3Point. For instance, this could be the case for the measure-
ment of grain size and shape on other planetary bodies (Sz-
abo et al., 2015; Lauretta et al., 2019; Burke et al., 2021) or in
inaccessible and remote areas. The outcomes of G3Point are
tightly linked to the choice of the local neighborhood scale
through the parameter k. This parameter should therefore be
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taken as small as possible to enable the segmentation of small
grains but not too small to prevent the over-segmentation of
large grains due to local topographic minima associated with
surface roughness or noise. Suitable values of k are generally
determined by a trial-and-error series of tests (Fig. S1).

4.2 SfM- or lidar-derived point clouds?

As demonstrated in this paper, G3Point can be applied to
point clouds obtained with a terrestrial lidar or by SfM. Point
clouds obtained with terrestrial lidar data provide better ac-
curacy than SfM but can be associated with varying point
density, while the ones obtained by SfM provide uniform
point density but can lead to some inaccuracies. In partic-
ular, point clouds obtained with SfM were observed to gen-
erate smooth or inaccurate topographic transitions between
grains, as these correspond to “shadow” areas difficult to cap-
ture with pictures. This might be related to the quality of
the photos (lighting, blurring, resolution), as with any SfM
study. These smooth transitions are not too problematic for
G3Point, as it is based on the steepest slope, but they pre-
vent efficiently using a criterion based on topographic cur-
vature to segment grains or to correct the segmentation ob-
tained with G3Point. In that case, we recommend removing
points located at local topographic minima to ease segmen-
tation (this is an option provide by G3point). For lidar data,
the issue of spatially varying point density can lead to a non-
optimal set of parameters, in particular k, the number of near-
est neighbors considered, over the entire surface of the con-
sidered point cloud. In this case, we recommend working on
sub-point clouds of rather homogeneous spatial point den-
sity. The use of point clouds obtained with only one station
does not represent an issue for the watershed segmentation of
G3Point (Fig. 2), even if it limits the number of data points
per grain and their spatial distribution along the surface of
the grains, which is not optimal for shape fitting algorithms.

4.3 Comparison of G3Point with previous methods

In terms of total working time, using G3Point over a surface
area of about 1–100 m2 captured by SfM involves collect-
ing field pictures (∼ 5–10 min), processing the pictures by
SfM to obtain a point cloud (10 min to several hours) and
running G3Point several times to find a good parametriza-
tion (∼ 10 min). Interestingly, G3Point itself is not the lim-
iting factor, as field data acquisition (i.e., pictures or lidar
data) and data processing (i.e., SfM) appear to be more time-
consuming. The total working time is roughly equivalent to
a typical manual pebble count, which takes about 60 min to
measure the three axes of 100 grains. However, data sam-
pling for G3Point is not destructive; it can be done by a sin-
gle operator, and G3Point will result in the measurement of
a much larger number of grains for the same sample exten-
sion (>102 grains) including their size, location and orienta-
tion in 3D. It offers a real benefit in terms of representative-

ness and opens new avenues to quantitatively characterize
populations of grains (e.g., not only their size distribution),
based on the geometry on their upper surface. Moreover, be-
cause point cloud data acquisition in the field is fast, large
areas or multiple locations along a fluvial system can be doc-
umented in a limited amount of time. In addition, pictures
for SfM can be acquired with drones so that remote locations
or very coarse-grained environments can be safely charac-
terized. Together with the large number of grains being con-
sidered, G3Point represents a real improvement in terms of
spatial representativeness with respect to Wolman or photo-
graphic approaches which are usually limited to a few square
meters and a few hundreds of grains (Bunte and Abt, 2001).
Last, while most methods based on 3D data use texture or
any other morphological index to estimate the grain sizes
(Vazquez-Tarrio et al., 2017; Woodget et al., 2018; Chardon
et al., 2020), G3Point works directly on the grains and does
not require a calibration phase. Once again, this limits bias
and time spent in the field and allows remote areas to be char-
acterized. G3Point shares some common objectives with the
automatic method developed by Walicka and Pfeifer (2022),
which directly segments grains from 3D point clouds. It uses
a random forest algorithm to classify grains and then a DB-
SCAN algorithm to segment each grain individually. Com-
pared to Chen et al. (2020), who developed a deep learn-
ing approach to segment grains based on 3D point clouds,
G3Point does not rely on the a priori training of a neural net-
work on thousands or more grains, which can be highly time-
consuming. Yet, G3Point could represent a good alternative
to train deep learning algorithms, as it can provide thousands
of grains in a few minutes that otherwise take weeks of work
when manually labeled.

4.4 In situ results on the granulometric conversion
factors

Because G3Point samples virtually all the grains at the sur-
face, it belongs to the family of areal or area-by-number
grain sampling approaches. To compare this distribution to
the Wolman field counts, it must be converted to a grid-
by-number distribution, which is considered equivalent to a
volumetric grain-size distribution. Conversion factors have
been proposed to convert grain-size data acquired with one
approach to another one, based on geometrical arguments
(Kellerhals and Bray, 1971; Church et al., 1987; Diplas and
Fripp, 1992). For example, converting an area-by-number (or
areal) distribution to a grid-by-number (or volumetric; e.g.,
Wolman) distribution requires multiplying the frequency of
all the particle classes by the factor D2. However, this ex-
ponent of 2 is theoretically valid only for spherical sedi-
ments with the same density and without porosity. The use
of such a conversion factor thus requires a calibration phase
and should, in any case, only be regarded as an approximate
conversion method (Bunte and Abt, 2001).
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Figure 8. Illustration of conversion from a G3Point grain-size dis-
tribution to a Wolman-like distribution. Data are from Site 2 of
Château Renard. The initial G3point distribution is an area-by-
number one (large dashed line) that can be converted to a grid-by-
number (e.g., Wolman) one with a conversion factor of 2 (small
dashed line). Alternatively, a virtual Wolman count can be per-
formed directly on the segmented and fitted grains (black line). The
shaded envelope indicates the variability observed with 50 realiza-
tions.

With our new approach, we work on 3D point clouds
covering large areas, and a large number of grains can be
identified. Therefore, instead of converting from an area-by-
number to a grid-by-number distribution, we can apply a vir-
tual grid over the point cloud and perform a Wolman count
on the fitted grains. To account for the spatial variability of
the grains, we repeat this operation 25 times to define an
uncertainty envelope and use the average distribution as the
grain-size distribution of the sample. For our field examples,
we observe that the geometrical conversion is always coarser
than the virtual Wolman distribution, yet within uncertainties
(Figs. 8, S6, S7, S8). The only exception is for the c axis of
the grains with the IE fit. Because this fit leads to very flat
ellipsoids, the geometrical conversion factor largely overes-
timates the size of the grains (Figs. S6, S7, S8). In agreement
with previous work (Graham et al., 2010), this suggests that
the geometrical factors are a correct approximation that tend
to maximize the size of the grains, so that Wolman counts
should be favored when possible. We emphasize that the field
examples presented above were acquired in order to test our
approach and the extent of the point clouds are thus similar
to the extent of the Wolman counts performed in the field.
Therefore, we sampled approximately the same number of
grains in the field and virtually (Table 1). Yet, G3Point is
designed to operate on larger point clouds so that a few hun-
dreds of grains will be sampled with the virtual Wolman sam-

pling, allowing for an even more accurate description of the
grain-size distribution from point clouds.

4.5 Opportunities to explore and measure uncharted
metrics: grain 3D orientation

Here, we briefly present some results on the orientation of
grains that we obtain with G3Point. The idea is not to dedi-
cate a detailed study of this metric but to illustrate the ability
of G3Point to automatically measure it with no additional
efforts. This represents a real benefit of G3Point as most
field or picture measurements of grain orientation are either
cumbersome or approximate (e.g., using qualitative classifi-
cation), with the exception of the azimuth angle that can be
accessed with approaches based on 2D pictures (e.g., Purin-
ton and Bookhagen, 2019).

The azimuth and dip angles of a grain may give some in-
formation about the flow that transported and deposited a
population of grains. G3Point offers a very simple way to
access the orientation of a large population of grains as the
azimuth and dip angles can easily be determined from the fit
ellipsoids (Fig. 3). On average, the two fitting methods are
efficient at recovering orientation, but they do not lead to the
exact same results (Fig. 5g). Therefore, if grain orientation
is a key element of a study, preliminary tests may be useful
to determine the best-fitting approach in terms of orientation
(which may depend for example on the geometry of stud-
ied grains). Here, we show the results of both approaches to
illustrate their similarity and differences. Azimuth is given
with respect to the y axis defined as parallel to the main wa-
ter flow. At Site 1, the grains show no preferential azimuth
(Fig. 9a), and most grains rest flat on the beach, with a dip
angle smaller than to 30◦ or larger than 150◦ (Fig. 9b). How-
ever, 40 % to 50 % of the grains exhibit a dip angle between
30 and 150◦. We propose that their orientation results from
their fall from the nearby cliffs rather than from transport
by the sea. At Site 2, a slightly preferential orientation can
be inferred from the DLSF fit, with more grains showing an
angle with the main flow than grains aligned with the flow
(Fig. 9c). Here again, most grains rest flat and 30 %–40 %
of them exhibit a dip angle comprised between 30 and 150◦

(Fig. 9d). We propose that this is due to a stronger control of
the sea on this site with respect to Site 1. Along the Hérault
River, grains tend to orient themselves perpendicular to the
main flow (Fig. 9e) and to rest flat, with 27 %–38 % of them
with a dip angle comprised between 30 and 150◦ (Fig. 9f).

5 Conclusion

The G3Point algorithm presented here makes progress on
the issue of grain segmentation and shape analysis from 3D
point cloud data. G3Point represents a methodological alter-
native to previous granulometric approaches, including hand
measurements or 2D image analysis. Its main advantages are
(1) its computational efficiency and speed that rely on the
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Figure 9. Azimuth and dip angles of the grains fitted to the two approaches (DLSF and IE) at (a–b) Site 1, (c–d) Site 2 and (e–f) the Hérault
River. N is the number of grains of a given angle in degree.

use of a state-of-the-art watershed algorithm (e.g., Braun and
Willett, 2013) to segment grains, (2) its scale-free approach
which enables the segmentation of grains with a large range
of sizes above the neighborhood scale (i.e., typically a few
centimeters), (3) its 3D nature which enables the calculation
of metrics (e.g., sphericity, orientation) which are seldom ob-
tained in the field, and (4) its ability to perform a large num-
ber of measurements, which favors a good representativeness
of the results.

The G3Point algorithm was able to properly describe the
size and orientation of grains in a lab experiment. It was
also qualitatively successful compared to hand measure-
ments (e.g., Wolman count) in segmenting and quantitatively
capturing the size distribution of hundreds to thousands of
grains in fluvial and coastal environments. The modeling of
grain geometry was performed using ellipsoidal models ob-
tained either with a direct least-square fitting approach or by
taking the inertia ellipsoid. Both ellipsoid models accurately
infer the major and intermediate axes, but the inertia ellip-
soids and the direct least-square ellipsoids tend to underesti-
mate or overestimate the minor axis, respectively. This in turn
impacts the ability of G3Point to infer the volume and surface
area of grains. For the minor axis, the mean value of the iner-
tia and direct least-square ellipsoids provides estimates that
are consistent with hand measurements. Other geometrical
models were tested, including bounding boxes. We acknowl-
edge that future work could focus on providing better geo-
metrical models or a better fitting approach to describe the
geometry of grains. Alternatively, future efforts could inves-
tigate the surface geometry of segmented grains by G3Point,
without relying on fitted geometrical models (e.g., ellipsoidal
model) but by exploring the topology of the segmented point
clouds. An inherent limit remains that, in natural environ-
ments, only a fraction of the grain surface is visible and can
be topographically described using lidar or SfM.

Fascinating and first-order issues remain for understanding
the shape and size of grains and interpreting them in terms of
abrasion and fragmentation processes (Domokos et al., 2014,
2015, 2020; Novák-Szabó et al., 2018). This is pivotal for
better exploiting the unique geological archives contained in

the size, shape and orientation of grains found in natural sys-
tems on Earth and other planetary bodies (e.g., Szabo et al.,
2015). G3Point, by filling a methodological gap, could fos-
ter the development of a more systematic characterization
of grain shape in natural environments and lead to a better
understanding of the physics of geomorphological processes
and of their past dynamics.
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Appendix A

Figure A1. Schematic schemes illustrating the different parameters of G3Point used during (a) the initial watershed segmentation (see
Sect 2.1), (b) the correction of the initial segmentation from over-segmentation by grain merging (see Sect. 2.2) and (c) the cleaning of the
segmentation by various operations (see Sect. 2.3). Black or color circles represents the points of the point cloud. The blue points represent
the k nearest neighbors of the red point in caption (a). Labels in captions (b) and (c) are shown by the color of the points, and the summit (or
outlet) of each grain is represented by a red polygon.
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