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Abstract. Here I present a comparison between two of the most widely used reduced-complexity models for the
representation of sediment transport and deposition processes, namely the transport-limited (or TL) model and
the under-capacity (or ξ–q) model more recently developed by Davy and Lague (2009). Using both models,
I investigate the behavior of a sedimentary continental system of length L fed by a fixed sedimentary flux
from a catchment of size A0 in a nearby active orogen through which sediments transit to a fixed base level
representing a large river, a lake or an ocean. This comparison shows that the two models share the same steady-
state solution, for which I derive a simple 1D analytical expression that reproduces the major features of such
sedimentary systems: a steep fan that connects to a shallower alluvial plain. The resulting fan geometry obeys
basic observational constraints on fan size and slope with respect to the upstream drainage area, A0. The solution
is strongly dependent on the size of the system, L, in comparison to a distance L0, which is determined by the
size of A0, and gives rise to two fundamentally different types of sedimentary systems: a constrained system
where L < L0 and open systems where L > L0. I derive simple expressions that show the dependence of the
system response time on the system characteristics, such as its length, the size of the upstream catchment area,
the amplitude of the incoming sedimentary flux and the respective rate parameters (diffusivity or erodibility) for
each of the two models. I show that the ξ–q model predicts longer response times. I demonstrate that although
the manner in which signals propagates through the sedimentary system differs greatly between the two models,
they both predict that perturbations that last longer than the response time of the system can be recorded in the
stratigraphy of the sedimentary system and in particular of the fan. Interestingly, the ξ–q model predicts that all
perturbations in the incoming sedimentary flux will be transmitted through the system, whereas the TL model
predicts that rapid perturbations cannot. I finally discuss why and under which conditions these differences are
important and propose observational ways to determine which of the two models is most appropriate to represent
natural systems.

1 Introduction

Sedimentary basins contain the record of Earth’s past tec-
tonic and climatic histories. To untangle this record, scien-
tists often rely on the use of numerical models that simu-
late the physical processes controlling sediment production,
transport and deposition. Models are commonly used to char-
acterize the response of sedimentary systems to external forc-
ing in the source area (change in tectonic uplift rate or in rain-
fall intensity) or in the depositional environment (variations

in sea level). In particular whether perturbations can prop-
agate across so-called “source-to-sink” systems remains an
open question (Romans et al., 2016; Tofelde et al., 2021) that
models have attempted to answer (Castelltort and Van Den
Driessche, 2003; Simpson and Castelltort, 2006; Armitage
et al., 2011, 2013; Mouchené et al., 2017).

Traditionally, sediment transport has been represented us-
ing a nonlinear diffusion equation assuming that the process
is limited by the transport capacity of rivers (the main trans-
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port agents) that is assumed to be proportional to slope and
discharge and to other factors, including grain size (Hen-
derson, 1966). I will name this model the transport-limited
or TL model. Recently Davy and Lague (2009) introduced
a new model (which they named the ξ–q model) to repre-
sent the competition between sediment production (erosion),
transport and deposition in fluvial systems. Improving on
the work from previous authors (Kooi and Beaumont, 1994),
their main purpose was to produce a model that could ac-
count for the transition from detachment-limited to transport-
limited behaviors of mountain channels. In recent years, the
model has also been used to study sedimentary systems out-
side of the orogenic area, i.e., in purely depositional settings
(Carretier et al., 2016; Shobe et al., 2017; Yuan et al., 2019),
and this has led to attempts (Guerit et al., 2019) to quan-
tify the value of the main model parameter, ξ , originally de-
scribed as a characteristic transport length that depends on
discharge but later remapped into the inverse of a rate (Car-
retier et al., 2016) or a dimensionless number (the 2 param-
eter of Davy and Lague, 2009 or the G parameter of Yuan
et al., 2019).

Although Davy and Lague (2009) described the behavior
of their model in great detail, including the conditions that
favor transport-limited over detachment-limited behavior or
the response time of a system obeying their formulation to
both long- and short-term variations in uplift rate, the behav-
ior of the model in a purely depositional environment has not
been studied thoroughly. I believe it is, however, essential
that such an analysis be made in order to validate this model
or, at minimum, to understand its limits of applicability and
ultimately adequately interpret the predictions that might be
made by using it in future work. This is what I propose to
do here, in addition to comparing its predictions to the tradi-
tional nonlinear diffusion approach or TL model.

It is important, however, to keep in mind that the ξ–
q model behavior asymptotically tends towards that of the
TL model for small values of the depositional length ξ or,
more correctly, for large values of the2 dimensionless num-
ber introduced by Davy and Lague (2009) or the G-factor
introduced by Yuan et al. (2019). Even though one of them,
the ξ–q model, “contains” the other, I will compare the two
models as independent of one another rather than comparing
the effect of an infinite value of the2 dimensionless number,
mostly for practical reasons (as we do not know how large a
value of 2 to use for the ξ–q model to behave exactly like
the TL model) but also because the TL model existed before
its generalization was introduced.

Although the purpose of this work is to compare the gen-
eral behavior of two sediment transport models, I will focus
on sedimentary systems that develop at the foot of an oro-
genic area, more precisely the fan and neighboring alluvial
plain. The idea is to study a system that is familiar to sedi-
mentologists but relatively simple in its setting, such that the
intrinsic behaviors of the two models can be efficiently ana-
lyzed and compared to observational constraints.

2 Method

2.1 The two models

Traditionally, the transport of sediment by rivers has been
modeled using the transport-limited (or TL) model (Hender-
son, 1966). In the TL model a river is assumed to trans-
port sediment at its transport capacity. The transport capac-
ity or optimum flux of sediment, q (expressed in m2 yr−1),
is assumed to be proportional to local topographic slope, S
(expressed in m m−1), and specific discharge, qw (expressed
in m2 yr−1), raised to some powers, m+ 1 and n:

q ∝ qm+1
w |S|n. (1)

Specific discharge will be assumed to be the product of up-
stream drainage area, A (expressed in m2), by net precipita-
tion rate ν (dimensionless) relative to some reference value
that is commonly inserted into a rate parameter or trans-
port coefficient,Kd (expressed in m1−m yr−1), divided by the
floodplain width, w (expressed in m) to yield the following
equation:

q =Kd

(
Aν

w

)m+1

|S|n =
Kd

wm+1 (Aν)m+1
|S|n. (2)

Conservation of mass leads to the following evolution equa-
tion for surface elevation, h (expressed in m):

∂h

∂t
=
∂

∂x

Kd

wm+1 (Aν)m+1
|
∂h

∂x
|
n, (3)

where x is the direction of flow in the river (expressed in m)
and t is time (expressed in years), noting that S = ∂h

∂x
. Note

that I have assumed that there is only one material that is
transported, deposited and potentially eroded, such that I do
not need to worry about density differences between what is
transported and eroded or deposited off the riverbed. I will
call Eq. (3) the TL equation.

The ξ–q model (Davy and Lague, 2009) assumes that
the rate of change of topographic height is the sum of two
terms, one representing erosion and the other deposition.
Erosion rate, ė, is assumed to be governed by the stream
power law (SPL) and thus proportional to the product of spe-
cific discharge and slope raised to some power (Howard and
Kirby, 1983; Whipple and Tucker, 1999):

ė ∝ qmw |S|
n, (4)

while deposition rate, ḋ , is assumed to be proportional to the
ratio of upstream-integrated sedimentary flux and a deposi-
tion length that depends on specific discharge, ξ (qw) (Davy
and Lague, 2009):

ḋ ∝
q

ξ (qw)
. (5)

I will follow Davy and Lague (2009) and assume that ξ is
given by

ξ (qw)=
qw

d∗vs
, (6)
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where vs is the net settling velocity of sediment particles (i.e.,
taking into account turbulence) and d∗ a dimensionless pa-
rameter characterizing the distribution of particles in the river
(it is the ratio of the water column height by the thickness of
the actively transporting layer). This leads to the following
evolution equation:

∂h

∂t
=−Kf

(
Aν

w

)m
|S|n+

Gw

Aν
q =−

Kf

wm
(Aν)m|S|n

+
Gw

Aν

q0−

x∫
0

∂h

∂t
dx

 , (7)

where Kf is the erodibility coefficient (that has units
of m1−m yr−1) and G is a dimensionless parameter defined
as follows:

G=
d∗vs

ν0
, (8)

where ν0 is mean precipitation rate. The parameter G was
proposed by Yuan et al. (2019) and is equivalent to the pa-
rameter2 introduced by Davy and Lague (2009). In their im-
plementation of the ξ–q model, Carretier et al. (2016) used
a parameter relating the depositional length to specific dis-
charge that they call ζ and has the dimensions of the inverse
of a velocity [T L−1]. It is related to the dimensionless pa-
rameter, G, used here by the following relationship:

G=
1
ζν0

. (9)

Davy and Lague (2009) estimated that2 (orG) is likely to be
greater than or equal to one, depending on grain size, rainfall
intensity and variability (Guerit et al., 2019). These authors
used the change in channel slope at the orogenic front to es-
timate the value of G. Compiling observations from many
sedimentary systems, they estimated that G must be in the
range [1–2].

Note that in both Eqs. (3) and (7) I have assumed that
the floodplain width, w, is constant, as has been done, for
example, in Goldberg et al. (2021). As shown by Nardi
et al. (2006), floodplain width varies as a weak function of
drainage area, i.e., w ∝ Aθ , with θ ≈ 0.2–0.3. However, one
could consider w to be an averaged value of the floodplain
width for the system under consideration and that its varia-
tion with drainage area or discharge is factored in the value
of the exponent m, as commonly assumed.

2.2 Experimental setup

To compare the behavior of these two equations, I will use
a very simple setup (Fig. 1) in which an initially flat (h= 0)
surface of length L accumulates sediment brought at a con-
stant flux, q0, across its left-hand-side boundary at x = 0. The
drainage area will be assumed to obey Hack’s law:

A(x)= A0+ kx
p, (10)

Figure 1. Experimental setup.

where A0 is the drainage area of the orogenic area where the
river has its source, outside of the domain defined by x ∈
[0,L]. Assuming that p = 2 leads to k being dimensionless.

The right-hand-side boundary, at x = L, is assumed to cor-
respond to a base level (a large river or an ocean) such that its
elevation remains nil through time. This yields the following
boundary conditions:

∂h

∂x
(x = 0, t)=

(
q0w

Kd(A0ν)m+1

)1/n

and h(x = L,t)= 0, (11)

for the TL equation and

h(x = L,t)= 0, (12)

for the ξ–q equation.

2.3 Numerical method used

I developed simple time-implicit finite-difference schemes to
solve these equations numerically under the simplifying as-
sumption that n= 1 (see Appendix A for details).

3 Results

3.1 Steady-state solution

Both equations share the same steady-state solution. Indeed,
setting ∂h

∂t
= 0 and ν = 1 in Eqs. (3) and (7), one obtains the

following

q(x, t =∞)= q0 =
Kd

wm+1 (A)m+1
|S|n, (13)

for the TL equation and

q(x, t =∞)= q0 =
Kf

Gwm+1 (A)m+1
|S|n, (14)
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for the ξ–q equation, which yields the following expressions
for the topographic elevation:

h(x, t =∞)=

L∫
x

∂h

∂x
dx =

L∫
x

(
q0w

m+1

Kd((A0+ kxp))m+1

)1/n

dx

=

(
q0w

m+1

Kd(A0)m+1

)1/n(
L2F1

(
1
p
;
m+ 1
n
;

1+
1
p
;−
kLp

A0

)
− x2F1

(
1
p
;
m+ 1
n
;

1+
1
p
;−
kxp

A0

))
, (15)

for the TL equation and

h(x, t =∞)=

L∫
x

∂h

∂x
dx =

L∫
x

(
q0Gw

m+1

Kf((A0+ kxp))m+1

)1/n

dx

=

(
q0Gw

m+1

Kf(A0)m+1

)1/n(
L2F1

(
1
p
;
m+ 1
n
;

1+
1
p
;−
kLp

A0

)
− x2F1

(
1
p
;
m+ 1
n
;

1+
1
p
;−
kxp

A0

))
, (16)

for the ξ–q equation. 2F1(a;b;c;x) is the hypergeometric
function.

The two equations have steady-state solutions that have the
same form and are identical if/when GKd =Kf. This solu-
tion is shown in Fig. 2 for parameter values given in the cap-
tion. Its shape is determined by the ratio kLp/A0 or L/L0,
where L0 = (A0/k)1/p is the linear size of the upstream
catchment or orogenic area. In Fig. 3, I show three solutions
corresponding to three different values of L/L0. In systems
where the size of the depositional area is smaller than or
equal to the size of the orogenic area (L≤ L0), the depo-
sitional profile is quasi-linear (Fig. 3a and b). In the more
general case where L > L0, the profile is made of two sepa-
rate sections: in the section near the orogenic area defined by
x < L0, the depositional profile is quasi-linear, while in the
other section defined by x > L0, the profile is upwardly con-
cave and progressively tapers towards base level (Fig. 3c).

This geometry is similar to what is observed in natu-
ral systems (Bull, 1977; Blair and McPherson, 2009; Bow-
man, 2019): in the most common situation where the deposi-
tional system is much longer than the orogenic system, i.e.,
L� L0, the depositional system comprises a steep and con-
stant slope fan, which connects to a much gentler slope allu-
vial plain; in cases where the depositional system is shorter
than the orogenic system, such as next to a mountain neigh-
boring an ocean, the depositional system is limited to a steep,
linear (conic in two dimensions) fan. From here on, I take the
convention to name the systems where L < L0 “constrained”
systems, i.e., their short length relative to the length of the

Figure 2. Steady-state depositional profile obtained by solving
both the ξ–q and TL equations using Kf = 10−5 m1–2 m yr−1;
G= 1 yr m−1; Kd = 10−5 m−2 m yr−1; w = 104 m; m= 0.4, n=
1, L= 100 km; A0 = 108 m2; k = 0.6; p = 2 and q0 = 10 m yr−1.

upstream orogenic area prevents them from building an allu-
vial plain, whereas those whereL > L0 will be called “open”
systems, i.e., as they are able to develop an alluvial plain at
the foot of their fan.

We note that the parameters q0, Kf,G, w, Kd and A0 con-
trol the height of the depositional system but that its shape,
i.e., where it transitions from a linear segment to a curved
segment, only depends on the ratio of the depositional sys-
tem size to the orogenic system size (length or area) A/A0 =

kLp/A0.
The slope of the steady-state solution is given by

S∞ =−

(
wm+1

Kd

q0

((A0+ kxp))m+1

)1/n

, (17)

for the TL equation and

S∞ =−

(
Gwm+1

Kf

q0

((A0+ kxp))m+1

)1/n

, (18)

for the ξ–q equation.
The predicted steady-state slope of the fan system, i.e., at

x = 0, and alluvial plain, i.e., at x = L, are given by

S∞0 =−

(
wm+1

Kd

q0

(A0)m+1

)1/n

and

S∞L =−

(
wm+1

Kd

q0

(A0+ kLp)m+1

)1/n

, (19)

respectively, for the TL equation and

S∞0 =−

(
Gwm+1

Kf

q0

(A0)m+1

)1/n

and

S∞L =−

(
Gwm+1

Kf

q0

(A0+ kLp)m+1

)1/n

, (20)

for the ξ–q equation.
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Figure 3. Steady-state depositional profiles obtained by solving both the ξ–q and TL equations using three different values for the ratio
r = kLp/A0; all other parameters are identical to values used for the profile in Fig. 2. The dashed line represents the position of the length
scale L0 = (A0/k)1/p . Three curves are shown, corresponding to the analytical solution as described by Eqs. (15) or (16) and the two
solutions obtained using the numerical methods described above.

Figure 4. Steady-state depositional profiles of open systems ob-
tained by varying the ratio (m+1)/n. All other parameters have the
same value as in Fig. 2. The profile elevations have been scaled so
that they have the same mean.

For open systems, the ratio (m+ 1)/n controls the parti-
tioning of the sediment flux between the fan and the alluvial
plain. It also controls the difference in slope between the fan
and the alluvial plain. For large values of (m+1)/n, the fan is
much steeper than the alluvial plain and traps a greater pro-
portion of the sediment, for small values of (m+ 1)/n, the
fan slope tends towards the alluvial plain slope and a greater
proportion of the sediment is deposited in the alluvial plain,
as shown in Fig. 4.

3.2 Transient behavior

I now use the numerical algorithms described in the appen-
dices to investigate the transient behavior of the solution. I
first tested that the numerical models yield the steady-state
analytical solutions. The results are shown in Fig. 3 where
the numerical solutions have been superimposed on the ana-
lytical solution.

The transient behavior of the solutions to the two equa-
tions is shown in Fig. 5 for the three situations where L=
L0/10< L0 (constrained systems, Fig. 5a), L= L0 (Fig. 5b)
and L= 10L0 > L0 (open systems, Fig. 5c). In Fig. 5, time
has been normalized by the e-folding timescale, τ , deter-
mined by fitting each time–elevation curve by an exponential
function of the form 1− exp(−t/τ ), while height has been
normalized by the maximum height reached at the end of the
numerical experiment. We see that the time evolution of the
solution to the TL equation is always supra-exponential (i.e.,
it increases faster than an exponential) but that its shape is in-
dependent of whether the system is constrained or open. On
the contrary, the shape of the time evolution of the solution
to the ξ–q equation is dependent on L/L0, with a more grad-
ual (linear) increase with time for constrained systems and a
sub-exponential form for open systems.

To further investigate the transient behavior of the two
equations, I show the evolution of the predicted surface el-

https://doi.org/10.5194/esurf-10-301-2022 Earth Surf. Dynam., 10, 301–327, 2022



306 J. Braun: Comparing sediment transport models

Figure 5. Maximum surface elevation as a function of time. Surface elevation is normalized by its maximum value and time by the e-folding
timescale, τ . The three panels correspond to different length of the system compared to L0 (a) L= L0/10 (constrained systems), (b) L= L0
and (c) L= 10L0. (open systems) In each panel the curves correspond to the solutions to the ξ–q and TL equations and are compared to the
third curve representing an exponential increase of the form 1− exp(t/τ ).

evation of the system in Fig. 6. I show the same information
in Fig. 7 but after scaling the computed height by the steady-
state height (h∞) such that one can appreciate the behavior of
the solution equally well along the entire profile, even when
deposited thicknesses are very low. One sees a major differ-
ence between the two equations’ behavior. The solution to
the TL equation evolves by depositing sediments near the fan
apex first until sediments reach the system toe (base level) at
which point the solution evolves with a uniform (relative)
rate of filling all along its length. The ξ–q equation yields a
solution that evolves in the other direction, i.e., from toe to
apex, as the sediment fill progresses first towards its steady-
state solution near the toe of the system and then propagates
backwards to reach a situation where the relative rate of fill-
ing is more uniform over the entire system. This difference in
behavior is most striking for constrained systems (i.e., where
L < L0), but exists for all system lengths, both constrained
or open.

This difference in topographic evolution is accompanied
by major differences in the predicted flux out of the sys-
tem (i.e., at x = L) during the transient phase of fan and
alluvial plain build up as illustrated in Fig. 8 (expressions
used to compute the flux values are given in Appendix D).
In the ξ–q model, the flux out of the system is instantly fi-
nite, i.e., as soon as the sedimentary system starts to grow.
In the TL model, the initial flux out of the system is always

nil and remains so until the propagation of the sedimentary
wedge reaches the toe of the system. In other words, the ξ–q
model predicts an instantaneous flux response, regardless of
the size or character of the system, whereas the TL model
predicts a lagged response, with a phase shift that appears
proportional to the length of the system. At all times (scaled
by the response time of the system), the outgoing flux pre-
dicted by the ξ–q model is much greater than that predicted
by the TL mode. This implies that the ξ–q solution is al-
ways much more “leaky” than the TL solution, as it requires
a much greater amount of material to transit through the sys-
tem before it reaches steady-state.

3.3 Response to a step change in incoming
sedimentary flux and precipitation rate

I performed a series of experiments in which I abruptly
changed the incoming sedimentary flux, q0, or the relative
precipitation rate, ν. The results are shown for an increase
in sediment flux in Fig. 9, and in the Supplement for a de-
crease in sediment flux (Fig. S1), for an increase in relative
precipitation rate (Fig. S2) and for a decrease in relative pre-
cipitation rate (Fig. S3, for both models).

We see that for an increase in sedimentary flux (Fig. 9), the
system moves back towards a new steady-state profile first
near the toe of the system for the ξ–q equation and first near

Earth Surf. Dynam., 10, 301–327, 2022 https://doi.org/10.5194/esurf-10-301-2022



J. Braun: Comparing sediment transport models 307

Figure 6. Surface elevation at a series of logarithmically spaced time steps obtained by solving the ξ–q and TL equation for different system
length, L, smaller than, equal to or greater than L0 = 10 km. Blue to green colors correspond to early to late time steps.
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Figure 7. The same information as in Fig. 6 but using the relative surface topography, i.e., scaled by its steady-state value.
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Figure 8. Evolution of the slope (a–c) and flux (d–f) normalized by their steady-state values at both ends of the system as a function of time.

the apex of the fan for the TL equation. The solution then
evolves from toe to apex for the ξ–q model and from apex
to toe for the TL model. So, even though the two solutions
start at and tend towards the same steady-state solution, they
differ in the way they evolve from one to the other and this is
especially true for the constrained fan systems.

3.4 Response time

I have shown that an e-folding timescale, τ , can be derived
from the shape of the evolution equation of the maximum
surface elevation of the sedimentary system. This timescale
is called the response time of the system as it corresponds
to the time it takes for the system to reach its steady-state
shape but also more generally the time it takes for the system
shape to respond to change in its external forcings (incoming
sediment flux or precipitation rate).

In Fig. 10, I show the results of 24 numerical experiments
in which I solved the TL and ξ–q equations varying the value
of L. For each experiment, I computed the response time by
fitting an exponential curve of the type 1− exp(−t/τ ) to the
computed evolution of maximum elevation with time (upper
panels in Fig. 10). The ξ–q response times are reported in
Fig. 10c and the TL response time are reported in Fig. 10d as
24 circles. We see that for constrained systems (L < L0), the
TL response time varies quadratically withL, whereas the ξ–
q response time varies linearly with L. However, this depen-
dence changes dramatically for open systems, i.e., when L
becomes greater than the size of the orogenic system, L0.

This threshold is marked by a star in both panels of Fig. 10.
For intermediate size systems, i.e., when L0 < L< 100L0,
there is almost no dependence of either response times on L.
For large open systems, i.e., when L� L0, the ξ–q response
time varies as L1−mp while the TL response time varies as
L2−(m+1)p and can thus decrease as system size increases.

To understand this behavior, let us go back to Eqs. (3)
and (7) to derive scaling relationships for the TL and ξ–q
response times, τTL and τξ–q , respectively, for arbitrary val-
ues of m and n. For the TL equation, the scaling gives

h0

τTL
∝
Kd

L

(
A

w

)m+1(
h0

L

)n
. (21)

From the steady-state solution (Eq. 15), we know that

h0 =

(
q0

Kd

)1/n(
w

A0

)(m+1)/n

L, (22)

which gives

τTL ∝ L
2q

1/n−1
0 K

−1/n
d w(m+1)/nA

−(m+1)/n
0 when L≤ L0

τTL ∝ L
2−p(m+1)q

1/n−1
0 K

−1/n
d w(m+1)/nA

(m+1)(n−1)/n
0 k−(m+1)

when L > L0. (23)

For the ξ–q equation, the scaling is as follows:

h0

τξ–q
∝Kf

(
A

w

)m(
h0

L

)n
+
Gw

A

(
q0−

h0

τξ–q
L

)
, (24)

with

h0 =

(
q0G

Kf

)1/n(
w

A0

)(m+1)/n

L. (25)
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Figure 9. Evolution of the surface topography following an increase in incoming sediment flux by a factor of 2. The ξ–q solution is used in
the top six panels, and the TL solution is used in the bottom six panels. Panels (d) to (f) contain the same information as panels (a) to (c) but
using the topographic elevation normalized by its final, steady-state value. The same applies for panels (j) to (l) with respect to panels (g)
to (i).

Two cases must be considered, depending on the value of
the dimensionless number:

δ =
LGw

A
=

LGw

(A0+ kLp)
. (26)

If the equation is dominated by the erosional term (δ < 1),
the scaling is as follows:

τξ–q ∝ L
1q

1/n−1
0 K

−1/n
f G1/n−1w(m+1)/n−1A

1−(m+1)/n
0

when L≤ L0

τξ–q ∝ L
1−mpq

1/n−1
0 K

−1/n
f G1/n−1w(m+1)/n−1A

−(m+1)(n−1)/n
0

k−m when L > L0, (27)Earth Surf. Dynam., 10, 301–327, 2022 https://doi.org/10.5194/esurf-10-301-2022
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Figure 10. Computed response times for 24 numerical experiments in which the length of the model, L, was varied. (a, b) Time evolution of
the maximum height of the depositional system for all 24 experiments (grey curves) normalized to fit an exponential curve (orange curve).
(c, d) Corresponding response time estimates (blue circles) on which lines describing the asymptotic behaviors discussed in the text have
been superimposed. Note that the absolute values of the response times should be considered with caution as they correspond to a specific
choice of relatively poorly constrained values of the rate parameters, Kf and Kd.

whereas if the equation is dominated by the depositional term
(δ > 1), the scaling goes is follows:

τξ–q ∝ L
2q

1/n−1
0 K

−1/n
f G1/nw(m+1)/nA

−(m+1)/n
0 , (28)

regardless of the value of L with respect to L0, which is the
same scaling as that of the TL equation for L < L0 and n=
1.

Interestingly, δ is a nonlinear function of L that reaches a
maximum value of

δmax =
L

1−p
0 Gw

k

(p− 1)1−1/p

p
, (29)

forL= L0(p−1)−1/p. For p = 2, δ is maximum forL= L0.
We see that for constrained systems, the TL response

timescale follows the n+1st power of length but that for open
systems this scaling is inverted, i.e., the TL response time
decreases with length, almost regardless of the value of n.
For constrained systems, the ξ–q response timescale scales
at most with the length of the system, but for open systems
the scaling drops to a small power. Again this behavior is
relatively independent of the linearity of the system.

Both response times are independent of the incoming
flux, q0, in linear systems and decrease with a small power
of q0 in nonlinear systems. Both timescales vary inversely

with the rate constants (diffusivity or erodibility), and in the
linear case the ξ–q response time is independent of G in
erosion-dominated systems and increases linearly with G in
deposition-dominated systems.

In Appendix B, I show how the response timescales vary
with the various characteristics of the systems for a range of
values of the exponents m and n.

In Appendix C, I present the results of several series of nu-
merical experiments, demonstrating the validity of the scal-
ing I present above.

3.5 Comparison of response timescales

We have seen that the two equations lead to an identical
steady-state solution when the model parameters are judi-
ciously chosen to be in the ratio GKd =Kf. For their tran-
sient behavior to be similar requires (at a minimum) that their
response times be also similar. This implies for constrained
systems that

τTL

τξ–q
=

L2q
1/n−1
0 K ′

−1/n
d w1/nA

−(m+1)/n
0

L1q
1/n−1
0 K

−1/n
f G1/n−1w1/n−1A

1−(m+1)/n
0

,

=
LGw

A0
= 1 (30)
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and for open systems that

τTL

τξ–q
=
L2−p(m+1)q

1/n−1
0 K ′

−1/n
d w1/nA

(m+1)(n−1)/n
0 k−(m+ 1)

L1−mpq
1/n−1
0 K

−1/n
f G1/n−1w1/n−1A

(m+1)(n−1)/n
0 k−m

=
L1−pGw

k
= 1.

(31)

For the solution to the two equations to have the same tran-
sient behavior, regardless of the length of the system, we
must have

L2

A0
=
L1−p

k
or L= L0. (32)

It is therefore impossible for both equations to reproduce the
transient behavior of constrained and open systems with a
unique set of parameters. Only the particular case of L= L0
is an exception to this.

Considering now a system of arbitrary length L, the ratio
of the two timescales is

τTL

τξ–q
=

LGw

max(A0,A)
, (33)

showing that for values of G close to unity and for a choice
of model parameters that lead to the same steady-state so-
lution, the ξ–q model will generate longer timescales than
the TL model in a ratio equal to the ratio of the total up-
stream drainage area to the area of the floodplain (the part of
the drainage area where active sedimentation or erosion and
transport takes place).

3.6 Periodic variations in input flux

I now investigate how the system reacts to a periodic pertur-
bation in incoming sedimentary flux from the source or oro-
genic area. I will consider first how the system shape reacts
and then how it transmits the sedimentary flux signal from
the source (the orogenic system boundary) to the sink (the
base level boundary).

In Fig. 11a and b, I show the gain, 0h, and phase shift,
φh, of the response of the system measured as the variation
of the maximum topography, i.e., at the orogenic front of the
sedimentary system, as a function of the forcing period nor-
malized by the response time. The gain is the ratio of the
relative amplitude of the response (i.e., the amplitude of the
variations in maximum height scaled by the maximum height
at steady state) to the relative amplitude of the forcing (i.e.,
the amplitude of the incoming flux variations scaled by the
mean incoming flux). The phase shift is measured between
the response and the forcing normalized by the forcing pe-
riod. A phase shift of 0.25 corresponds to an angular phase
shift of 90◦.

We see that for both models, the gain decreases from 1
to 0 as the forcing period decreases. For rapid (or short)

forcing periods, i.e., much smaller than the response time,
the gain tends towards 0, while for slow (or long) forcing
periods, the gain tends towards 1. In other words, the sys-
tem shape is less affected by variations in incoming flux that
are smaller (or faster) than the characteristic timescale, re-
gardless of whether the system is constrained or open, while
variations in sedimentary flux are more strongly expressed
as variations in deposited sediment thickness when the vari-
ations in incoming flux are longer than the characteristic
timescales, regardless of whether the system is constrained
or open.

We also see that the phase shift is a strong function of
the forcing period: for large forcing periods, the phase shift
tends toward 0, while for forcing periods that are equal to
or smaller than the characteristic timescale, it grows to reach
values of about 0.125 for the TL model and 0.25 for the ξ–
q model, regardless of whether the system is constrained or
open.

In summary, variations in system topography will be
recorded in the sedimentary record as variations in deposited
(and eroded) sediment thickness. These will be largest near
the orogenic front but will be noticed at all locations within
the sedimentary system. At most (i.e., when 0h = 1) their
amplitude will be directly proportional to the amplitude of
the flux variations. When the system most strongly reacts to
the variations in incoming flux (i.e., when 0h ≈ 1), it does it
in phase with the forcing (φ ≈ 0); phase shifts only appear
when the response is weak. This means that if a system is
responding in a noticeable manner to a change in incoming
sedimentary flux, it does it with a minimal phase shift.

In Fig. 11c and d, I show the gain, 0q , and the phase
shift, φq , between the incoming and outgoing fluxes. These
quantities characterize the ability of the system to transmit
sedimentary flux signals across their length.

Interestingly, the gain functions are radically different for
the ξ–q and the TL models. Regardless of whether the system
is constrained or open, the TL model predicts that the gain
varies from 1 to 0 as the forcing period decreases from val-
ues larger than the characteristic timescales to values smaller
than the characteristic timescales. The TL model predicts that
a sedimentary system can only propagate signals that vary
more slowly than their characteristic timescales. Note also
that as the signal is damped (with decreasing forcing period)
the phase shift increases to become more than a quarter cy-
cle out of phase (φq > 0.25) with the input signal. This is
because the TL model predicts that incoming flux variations
propagate as standing waves across the sedimentary system.

This is illustrated in Fig. 12, where I show the computed
sedimentary flux across the entire system for 10 equally
spaced time steps within a forcing period (see Appendix D
for the expressions used to compute the fluxes for both mod-
els). We see for the TL model that the slow signals are trans-
mitted through the entire system, whereas rapid signals are
not. In the situation where the forcing period is similar to the
characteristic response time (in Fig. 12g), one sees a standing
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Figure 11. Computed (a) gain, 0h, and (b) phase shift, φh, of the response of the system shape as a function of the period of the imposed
periodic incoming flux normalized by the system’s response time for constrained (L < L0), intermediary (L= L0), and open (L > L0)
systems using the ξ–q and TL models. Computed (c) gain, 0q , and (d) phase shift, φq , of the outgoing sedimentary flux.

wave pattern developing across the system. This is because
in the TL model, any signal must be transmitted by changes
in slope, and such a change can only occur over a time equal
to the characteristic timescale.

In contrast, we see in Figs.11c, d and 12 that using the ξ–q
model the sedimentary system is predicted to transmit infor-
mation along its entire length without much change in slope
or shape. As stated by Davy and Lague (2009), and contrary
to previous under-capacity formulations such as that of Kooi
and Beaumont (1994), the ξ–q model predicts that the sys-
tem is uniformly under-capacity along its entire length. It
does not display a transition from being a detachment-limited
model near the source to being a transport-limited model near
the base level. Thus, it is able to transmit signals nearly in-
stantaneously and with much less sensitivity to the forcing
period. This is seen in Fig. 11c where the flux gain function
never reaches 0 even for very rapid forcing periods. This is
further illustrated in Fig. 12a to d, where the incoming flux
variations are transmitted throughout the entire length of the
system even if the forcing period is much shorter than the
characteristic time of the system (Fig. 12a).

3.7 Periodic variations in precipitation rate

I performed a series of numerical experiments in which I
varied the precipitation rate, ν, in a sinusoidal fashion, for
a range of periods encompassing the response time of the

sedimentary system. The results are shown in Fig. 13 and are
relatively similar for the ξ–q and TL models.

These experiments show that variations in precipitation
rate cause variations in deposited thickness in the sedimen-
tary system that vary in amplitude as a function of the forcing
period, similarly to variations in shape/thickness predicted
for a incoming sedimentary flux forcing: for forcing periods
that are smaller than the response time of the system, the am-
plitude tends towards zero and increases with the length of
the forcing period. However, predicted gain values for very
long forcing periods (> 10 to 100× τ ) tend towards 1.6> 1.
This is because the relative precipitation rate comes to the
power 1+m= 1.4 in the amplitude of the analytical solu-
tions (Eqs. 15 and 16).

Another major difference is that the shape response is in
complete phase opposition (φ = 0.5) for the largest gain val-
ues (corresponding to long forcing periods) and increases to
even greater phase shift values for forcing periods smaller
than the response time. This is because the relative precip-
itation rate appears in the denominator of the amplitude of
the analytical solutions; in other words, the thickness of the
sedimentary deposit is inversely proportional to the relative
precipitation rate (to the power m+ 1).

The outgoing flux gain and phase shift are shown in
Fig. 13c and d. Interestingly, the gain values decrease with
increasing periods. This is because for precipitation rate forc-
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Figure 12. Computed flux profiles across the sedimentary system at 10 time steps within one of the imposed incoming flux cycles (a–
d) using the ξ–q model and (e–h) using the TL model. Going from top to bottom, the forcing period is equal to τ/100, τ/10, τ , and 10× τ ,
respectively. In all cases shown, L= 10L0.

ing periods that are larger than the characteristic timescale,
the depositional system is able to adapt its shape to trans-
port the incoming flux at all times, regardless of its trans-
port capacity (determined by the precipitation rate). As for
the topographic gain, values can be larger than one (up to
m+ 1= 1.6). The phase shift is nil for large values of the

gain and reaches a quarter period for small values of the gain
(corresponding to long periods).

In Fig. 14 I further illustrate this point by showing val-
ues of the flux across the entire system at 10 different times
during one of the precipitation rate cycles. The pattern is
inverted compared to that observed for a cyclic forcing in
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Figure 13. Computed (a) gain and (b) phase shift of the response of the system shape as a function of the period of the imposed periodic
precipitation rate normalized by the system’s response time for constrained (L < L0), intermediary (L= L0), and open (L > L0) systems
using the ξ–q and TL models. Computed (c) gain and (d) phase shift of the outgoing sedimentary flux.

incoming sedimentary flux (i.e., compared to results shown
in Fig. 12): fast varying perturbations are transmitted or
even amplified, whereas slow varying perturbations are com-
pletely damped for both the ξ–q and TL models.

4 Discussion

4.1 New analytical solution

I have derived a new analytical solution for the shape of a
sedimentary system comprising a fan or piedmont deposit
and the adjacent alluvial plain. This analytical solution shows
that both model formulations can reproduce these first-order
features and that in both models the transition between fan
and plain deposits corresponds to the point where the con-
tribution to runoff from the sedimentary system equals that
of the upstream orogenic area. The fan is steeper and more
linear, and its size is controlled by the size of the upstream
catchment and the along-stream rate of increase of discharge
in the sedimentary system (the exponent of the assumed
Hack’s law). The alluvial plain is characterized by a smaller
gradient and has a concave profile. The analytical solution
also implies that the change in surface gradient between the
fan and the plain is a strong function of the ratio (m+ 1)/n,
which must be of the order of unity to reproduce the observed
range of 10 : 1, with fan slopes ranging from 1 to 10◦, while

adjacent alluvial plain have slopes that are typically smaller
than 0.5◦ (Bowman, 2019).

This new analytical solution explains the globally ob-
served linear relationship between fan area, Afan and up-
stream or orogenic drainage area, A0 (Fig. 14.23 in Blair and
McPherson, 2009, for example) as

Afan ∝ L
2
0 =

(
A

k

)2/p

≈
A0

k
, (34)

and the inverse relationship (with a log–log slope of −0.5)
between the slope of the fan, Sfan, and the upstream drainage
area (see Fig. 9 in Mouchené et al., 2017, for example) as

Sfan ∝

(
q0

Am+1
0

)1/n

∝ A
−m/n

0 . (35)

It also explains the relationship between fan slope and sed-
iment flux scaled by upstream water discharge observed in
experimental settings (Whipple et al., 1998) as

Sfan ∝

(
q0

(Aν)m+1

)1/n

. (36)

Experimental work suggests that the break in slope at the
foot of a sedimentary fan is a result of grain size control on
transport efficiency (Parker et al., 1998). Interestingly, I show
here that the break in slope can be produced with a model
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Figure 14. Computed flux profiles across the sedimentary system at 10 time steps within one of the imposed precipitation rate cycle (a–
d) using the ξ–q model and (e–h) using the TL model. Going from top to bottom, the forcing period is equal to τ/10, τ , 10τ and 100× τ ,
respectively. In all cases shown, L= 10L0.

that does not include a grain size control on transport coeffi-
cient (Kd) or depositional parameter (G). Because the model
produces the observed area and slope scalings with upstream
catchment area (something that cannot be derived from the
grain size dependence on transport efficiency alone), I would
like to suggest that the observed transition in grain size at the

foot of sedimentary fans may be a consequence of the change
in transport efficiency rather than the cause of it. But this
remains to be tested, potentially by performing experiments
that consider rainfall accumulation and the contribution to
discharge within the sedimentary system.
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As observed in nature, the analytical solution also shows
why sedimentary systems are constrained in their size and
shape by the location of or distance to their base level (Blair
and McPherson, 2009). If that distance is small, such as in
situations where a large river, a lake or an ocean is situated
in the vicinity of the orogenic front, the fan is steep, almost
perfectly linear and connects directly to the base level. This
morphology is observed in many small systems, such as the
Death Valley fans (Bull, 1977; Blair and McPherson, 2009).
On the contrary, if that distance is large, the system is open
and the fan can develop into its natural size and connects
to a lower gradient alluvial plain where a concave-up long
profile develops to connect the fan to the base level. I wish to
stress here that the qualifiers “small” and “large” do not refer
to the absolute size of the system but must be considered in
comparison to the size of the upstream catchment area.

Finally, the analytical solution also demonstrates that the
shape and size of a fan can reach steady-state values even if
the fan does not extend to its base level and can therefore be
seen as a simple solution to the so-called “alluvial fan prob-
lem” described by Lecce (1990), i.e., whether fans achieve a
dynamic equilibrium. This solution also demonstrates why
this debate about whether fans reach steady-state sizes or
shapes could not be resolved by laboratory-scale experiments
as most do not include a contribution to runoff from the de-
positional area.

4.2 What do the two models have in common?

The ξ–q and TL models share their steady-state solution.
With an appropriate choice of rate parameters, i.e., Kd and
Kf, and dimensionless constant G, the two solutions can be
made identical. Acknowledging that we do not know the
value of either of these three parameters leads to the con-
clusion that the two models cannot, in practical terms, be
differentiated based on the shape of their long-term, steady-
state solution. As noted above, both models can reproduce
the first-order features of natural sedimentary systems, which
implies that they should not be discriminated on that basis.

Both models share a similar behavior under a wide range
of situations in that their transient response is (in all cases)
controlled by the ratio of the period of the forcing to their re-
sponse timescale. This is however true of most systems con-
trolled by diffusion- or advection-type differential equations
and is therefore not surprising.

In particular, regardless of which model is used, only
slow incoming sedimentary flux variations (i.e., with a pe-
riod greater than the response time of the system) will re-
sult in variations in deposited or eroded sediment thickness
in the sedimentary system that are more likely to be mea-
sured, whereas only fast variations in precipitation rate will
result in easily measurable variations in sediment thickness.

4.3 Where do the two models differ?

The ξ–q and TL models differ in their transient behavior in
three ways. Firstly, they differ by the value of their response
time with the ξ–q model characterized by longer response
times than the TL model under the assumption that model
parameters are such that the two models predict the same
steady-state solution. The ratio of the ξ–q to TL model re-
sponse times is a function of the ratio of the area under active
sedimentation, transport or erosion and the drainage area.
The reason for greater response times for the ξ–q model is
that the model predicts a transient response that is uniformly
distributed along its length, whereas the TL model responds
by progressively changing its surface slope across the model.
This implies that the ξ–q model predicts that any perturba-
tion is instantaneously propagated to the system base level
and affects the outgoing flux through base level making the
system more “leaky” than the TL model. One can show (see
Appendix E) that the TL response time for a constrained fan
system (i.e., where L� L0) is approximately equal to twice
the volume of the fan divided by the incoming flux, which
indicates that during the transient build-up of the fan, most
of the material introduced into the fan from the orogenic area
has been stored into the fan. The ξ–q response time is greater
by a factor LGw

A0
.

Secondly, they differ in the dependence of their response
timescale on the length of the system and, to a lesser degree,
on the size of the upstream area and the width of the flood-
plain. Constrained systems (or systems that are not able to
develop a plain in front of their fan) have a response time
that varies as the square of the length of the system in the
TL model and as the length of the system only in the ξ–
q model. Both models predict a response time that shows
a very weak dependence on the length of the system for
intermediate-sized systems (L≤ L0), but for very long sys-
tems (L� L0) the TL model response time varies inversely
with the length of the system (the longer the system, the
shorter the timescale), whereas the ξ–q model response time
increases with the system length.

Thirdly, the models differ in the way that they are able
to transmit sedimentary signals. According to the TL model,
only slow perturbations in incoming sedimentary flux will
be transmitted through the system and may therefore be
recorded in the adjacent basin. If one uses the ξ–q model
to represent a sedimentary system, all flux perturbations will
be transmitted to the offshore basin, regardless of the rate at
which they take place. The higher-frequency signals will be
slightly damped compared to the low-frequency signals, but
all of them are transmitted in a potentially measurable man-
ner.

4.4 Are the differences meaningful?

An important question to address is whether these differences
are relevant and/or important and in which context. Consid-
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ering that both models are reduced-complexity models that
should only be used to investigate the large-scale and long-
term behavior of a sedimentary system, I suggest that great
care should be taken in deciding which of the two models to
use to investigate the transient behavior of sedimentary sys-
tems and their response to external forcing of tectonic or cli-
matic origin in particular. This is particularly true in so-called
source-to-sink studies that aim to invert the marine sedimen-
tary record to infer the timing and amplitude of tectonic or
climatic changes in the source area. I have shown that the
so-called “transfer area” that consists of the onshore sedi-
mentary system that builds up at the base of the mountain
(the fan and the adjacent alluvial plain) would appear to have
very different transient behaviors whether one uses the ξ–q
or TL model to represent it. Most worrying is the fact that
according to the TL model some sedimentary signals can-
not be transmitted across the transfer zone, while the ξ–q
model does not predict such a behavior. More fundamentally,
that the response timescales predicted by the two models are
different and show a different scaling and dependence with
regard to system length should also be noted and could lead
to diametrically opposite conclusions regarding the existence
and/or nature of orogenic processes and their preservation in
sedimentary systems.

4.5 What observations could be used to tell the models
apart?

To differentiate between the two models or representations
of sedimentary processes, one obviously needs to search into
observational constraints during transient periods either in
the early stages of development of a sedimentary system or
during its response to external perturbations. The first type of
observations are not easily made as the early stages of devel-
opment of a fan are often buried beneath large sedimentary
sections. The second type of observations require accurate
dating or correlation across opposite parts of the sedimentary
system, i.e., near the orogenic front and either at the base of
the fan or near the base level of the sedimentary system.

Another test comes from the prediction that according
to the ξ–q model some signals should propagate and be
stored into a nearby sedimentary basin record even if they
are shorter than the response time of the system, regardless of
whether or not such signals leave a stratigraphic record in the
continental sedimentary system. In view of the wide range of
periods (down to the shortest of Milankovitch periods) that
are routinely observed in the marine sedimentary record, one
would tend to favor the ξ–q model over the TL model. How-
ever, one must exercise caution in drawing such a conclusion
as such signals might be the product of variations in sea level
rather than variations in sediment flux from the source or oro-
genic area.

The distribution of grain size in continental sedimentary
systems has been used to constrain their transient behavior
(Armitage et al., 2011; Duller et al., 2010), but most stud-

ies have been based on the approximation that deposition is
equal to basin subsidence (Duller et al., 2010) or have used
a nonlinear diffusion (TL) approach (Armitage et al., 2011).
It would be potentially very informative to perform similar
studies using the ξ–q model and note if noticeable differ-
ences emerge between the two approaches and whether they
are of sufficient amplitude to be discerned in field observa-
tions.

Laboratory experiments could be used but one must re-
member that they only reflect the behavior of scaled-down
materials and conditions and not the natural world. Further-
more, looking at the results of several published experiments
tends to demonstrate that both behaviors are observed. In
Fig. 15a–c, I show the results of three experiments under rel-
atively similar conditions: the first and third ones from Guerit
et al. (2014) and Rhohais et al. (2012) show a sedimentary
fan developing by propagation of a self-similar system un-
der constant slope, as predicted by the TL model (Fig. 6d),
whereas the second one from Whipple et al. (1998) shows a
response to varying conditions (flux) that resembles the pre-
dictions of the ξ–q model (Fig. 6a). Note, however, that none
of these experiments take into account the discharge being
contributed from rainfall or runoff in the sedimentary system,
i.e., the discharge is set at the left boundary. Differences be-
tween the two experimental setups include the dimensional-
ity (1D for the experiments of Guerit et al., 2014, and 2D for
those of Rhohais et al., 2012 and Whipple et al., 1998) and
the nature of the flow (laminar in the Guerit et al., 2014, ex-
periments and turbulent in the other two).

4.6 Value of G

All the experiments I have performed with the ξ–q model
used a value of G= 1. As shown by Guerit et al. (2019), ob-
servations from natural sedimentary systems suggest a range
between 1 and 2 for G. It is also in this range that the ξ–
q model shows the most interesting behavior. For values of
G� 1, the model tends to behave exactly like the TL model
with, for example, an identical dependence of the response
time on system length and a geometrical evolution that is
identical to that of the TL model as shown in Fig. 16. For val-
ues ofG� 1, the ξ–q model predicts that the transfer system
is very small, i.e., the volume of sediment that it can store is
negligible. This would lead to fan slopes that are much lower
than observed in nature.

4.7 Hack’s law in a depositional system and optimum
values of m and n

In setting up the experiments, I have assumed for both mod-
els that Hack’s law applies to depositional systems. Edmonds
et al. (2011) showed that even low-slope depositional en-
vironments such as deltas obey Hack’s law with an expo-
nent (p) very close to 2. We can also check that this holds us-
ing a 2D landscape evolution model that solves the ξ–q equa-
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Figure 15. Stratigraphy observed in three laboratory experiments displaying a behavior similar to that predicted by (a, c) the TL model (from
Guerit et al., 2014; Rhohais et al., 2012) and (b) the ξ–q model (from Whipple et al., 1998). Note that none of these experiments included
rainfall in the fan area. Panel (a) is reproduced from Guerit et al. (2014), (b) is from Whipple et al. (1998) and (c) is from Rhohais et al.
(2012).

Figure 16. Evolution of the sedimentary system for L > L0 using the ξ–q model but a value of G= 10. The solution looks very similar to
that obtained by using the TL model (Fig. 7f).

tion based on the algorithm developed by Yuan et al. (2019).
The model geometry is of a sediment–water point source
feeding material over a flat area of 100× 100 km. Three ex-
periments were performed assuming upstream drainage ar-
eas, A0, of 107, 108 and 109 m2, respectively. In Fig. 17 I
show the geometry of the 10 longest channels originating
from the center of the model where the sediment–water flux
is imposed (Fig. 17a), as well as the relationship between dis-
tance to the source (center of the model) and drainage area
(Fig. 17b). We see that in all three experiments, the most ac-
tive channel has a distance–drainage area relationship that
smoothly transitions from A0 to a relationship described by

Hack’s law with an exponent of 2. Most other channels that
form along the sides of the fan and flow unto the edges of the
model follow Hack’s law with an exponent of 2.

If this interpretation is correct, it implies that to reproduce
the observed linear relationship between upstream drainage
area and fan size, the value of p must be close to 2 even
in the fan where the system by definition traverses the tran-
sition between confined and unconfined water flow. I have
shown (Fig. 4) that the partitioning of sediment between the
fan and the alluvial plain is determined by the value of the
ratio m+1/n. To obtain a significant break in slope between
the fan and the alluvial plain, i.e., as is observed in many nat-
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Figure 17. Results of three two-dimensional landscape evolution models where sediment and water are provided at a rate proportional to the
surface area, A0, of an assumed upstream catchment at the center of the model leading to the formation of a conic sedimentary system. The
three models correspond to three different values of A0. (a) Geometry of the 10 major rivers for each of the three models and (b) computed
relationship between drainage area and distance to source for those 10 major rivers; the dashed red line has a slope corresponding to an
exponent of p = 2 in Hack’s law.

ural systems (Blair and McPherson, 2009), the ratiom+1/n
must be in the range [1 to 2] (see Fig. 4). This in turn implies
that the most likely values of m and n are in the range [1
to 1/3] and [2 to 2/3], respectively, as the concavity of river
channels implies that m/n≈ 0.5. Of course this is only valid
if we wish to have a representation of both the orogenic and
depositional parts of the system with a unique set of expo-
nents, an objective that may only be realistic in the context
of a reduced-complexity model that is designed to reproduce
the long-term and system-scale features of the source-to-sink
system and not the details of the physical processes at play.

To further illustrate this last point, I computed the effect of
varying both Hack Law’s parameters (k and p) on the shape
of the steady-state solution. The results are shown in Fig. 18
and show that varying the rainfall rate (or changing the value
of k) in the basin area (compared to the orogenic area) re-
sults in a wider fan for greater values of k and vice-versa.
Changing p also affects the fan steepness. Lower p values
(compared to 2) lead to a much reduced slope contrast be-
tween the fan and alluvial plain areas.

4.8 Residence time

Both equations used here to model sediment transport are ex-
pressed in an Eulerian framework, i.e., using a frame of ref-
erence that is fixed with respect to the system’s boundaries.
Such an approach does not easily permit tracking sediment
particles and estimating their residence time inside the fan or
alluvial plain system as done by Carretier et al. (2020). An
alternative approach consists of approximating the residence
time, τR, using the turnover time that is defined as the ra-
tio between the volume of the active part of the transporting
system, Va, and the imposed sediment flux, q0:

Figure 18. Effect of varying Hack’s Law (A= kxp) parameters
(p in a and k in b) on the depositional system steady-state profile.
The vertical dashed line represents the position of L0 = A0/k

1/p).
Because k has units that depend on p in (a), k has been adjusted to
yield the same value of L0 for all values of p.

τR =
Va

q0
. (37)

At steady state, Va is the integral over the sedimentary do-
main of the thickness of the active layer, ha(x,y), that can
be approximated by the standard deviation of the surface to-
pography over many time steps. This can only be computed
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Table 1. Comparison between the two models.

Model ξ–q TL

Steady-state solution Slope change between fan and alluvial plains Identical

Growth style From toe to apex From apex to toe

Flux evolution Instantly finite and equal to q0 at apex Grows from 0 to q0

Response time, τ Longer Shorter

τ dependency on model parameters L1 for L≤ L0 L2 for L≤ L0
L1−mp for L > L0 L2−p(m+1) for L > L0

q
1/n−1
0 Identical

K
−1/n
f –

G1/n−1 –
– K

−1/n
d

A
1−(m+1)/n
0 for L≤ L0 A

−(m+1)/n
0 for L≤ L0

A
−(m+1)(n−1)/n
0 for L > L0 A

(m+1)(n−1)/n
0 for L > L0

Periodic variations in input Signals with periods shorter than response time are Signals with periods shorter than response time are not
flux dampened but transmitted transmitted

Flux signals are transmitted without major changes in Flux signals are transmitted through local topographic
topography changes

Periodic variations in Signals with periods longer than response time are not Identical
precipitation rate transmitted

using the 2D model where avulsions affect the upper layers
of the model. I show in Fig. 19 computed values of this resi-
dence time as a function of the main model parameters, A0.
q0, G and Kf for a 2D model setup similar to the one used
in the previous section, i.e., for model parameters and sizes
identical to those used for the model run shown in Fig. 17. We
see that the residence time varies between 105 and 106 years.
More importantly, the model predicts that the residence time
varies as q−1

0 and K−1
f over at least 1 order of magnitude

variation in these parameters. It also increases quasi-linearly
with G for values of G> 10−1 and varies with the upstream
catchment area as A−m0 , as expected.

4.9 Effect of basin subsidence on fan size and shape

All results shown so far assume that there is no subsidence
in the depositional area. However, most regions adjacent to a
mountain belt (or sediment source) experience synorogenic
subsidence likely driven by flexural isostasy. It has been sug-
gested that the pattern of this subsidence exerts a strong in-
fluence on the shape of the resulting alluvial fan (Paola et al.,
1992; Parker et al., 1998). I tested the influence of basin sub-
sidence on the shape of the depositional system by running
numerical experiments similar to the reference model pre-
sented in Fig. 3 but adding a subsidence term of the following
form to both Eqs. (3) and (7):

s =−s0e
−αx/L, (38)

where s0 is the maximum subsidence rate at the mountain
front and α controls the rate of change of the subsidence with
distance away from the mountain front, x. Large values of α

Figure 19. Residence time computed using Eq. 37 for the fol-
lowing range of model parameters: A0 ∈ [107–109

]m2, q0 ∈ [104–
106
]m3 yr−1, G ∈ [0.02–2] and Kf ∈ [10−6–10−4

], while using
the mean value of the range for the model parameters as a refer-
ence.

correspond to a large rate of change in subsidence and thus
a narrow area of concentrated subsidence near the mountain
front, whereas small values of α correspond to a broad area
of subsidence.

In Fig. 20a, I show the results of three numerical experi-
ments in which I vary the subsidence rate by 2 orders of mag-
nitude for a value of α of 7 for an open system (i.e., where
L� L0). In Fig. 20b, I show the results of another set of
three experiments in which α is varied between 3 and 10.
We see that for all values of the subsidence rate and ex-
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Figure 20. Numerical model experiments comparing the steady-state solutions of modified versions of Eq. (3) (TL model) and Eq. (7) (ξ–q
model) in which subsidence is imposed at a rate s0 and over an extent controlled by α (see text for details) to the solution without subsidence.
In each panel, the dashed line corresponds to x = L0.

tent, the shape of the fan and alluvial plain system is only
mildly affected by the imposed subsidence. The sharp transi-
tion in slope between the fan and the alluvial plain at the loca-
tion x = L0 is preserved. For constrained systems (Fig. 20c
and d), the shape of the system is more strongly impacted
by the subsidence. The extent of the fan is reduced when
the subsidence is fast, but the extent of the subsidence func-
tion does not seem to matter much. Interestingly, in all cases
the slope of the fan is not affected by the subsidence. This
demonstrates that in a sedimentary system that sees discharge
increase with distance from the mountain front, the size and
extent of the fan, or where it connects to the alluvial plain,
are only marginally controlled by the subsidence rate or ex-
tent of the underlying basement. This results applies equally
to both the TL and ξ–q models.

5 Conclusions and perspectives

The work I have presented here, while focused on deter-
mining the similarities and differences between the ξ–q and
TL models, led me to present a new analytical solution for
the steady-state shape of depositional systems fed by an oro-
genic system. I have shown that both models yield the same
steady-state solution and that the resulting 1D profile pre-
dicts the first-order morphology of depositional systems and
explains key observations made about the size and slope of
alluvial fans.

From the two basic evolution equations I have also ex-
tracted expressions for the response time of sedimentary sys-
tems and shown that for model parameter values that lead to
the same steady-state solution, the two models predict dif-
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ferent response times and, most importantly, different depen-
dencies on system length. The ξ–q model is in general char-
acterized by longer response times than the TL model by a
factor that depends on the ratio of the system drainage area
to the area in active sediment transport.

I have also shown how the two different models respond
to periodic variations in the imposed sediment flux from the
orogenic area or in precipitation rate. These and other impor-
tant findings are summarized in Table 1.

This implies that a proper understanding and parameteri-
zation of floodplain width is essential to better quantify the
differences between the two models. A potential avenue for
this is to use 2D versions of the two models that incorpo-
rate a proper dynamic prediction of floodplain width, which
in turn requires at minimum the use of the shallow-water
equation. Such models exist (Simpson and Castelltort, 2006;
Davy et al., 2017, for example) but have not been used to
perform this scaling analysis yet.

Using multi-direction flow-routing algorithms in land-
scape evolution models that do not use the shallow-water
approximation and therefore imply a simple relationship be-
tween floodplain width and discharge could be useful as fi-
nite width (i.e., larger than the unit spatial discretization)
seems to emerge from these models. However, more work
is necessary to better characterize the transient behavior of
such models and, more specifically, how channel (or flood-
plain) width is set (it is definitely greater than the unit spatial
discretization but does not scale linearly with spatial resolu-
tion) and what determines the frequency of avulsions.

Appendix A: Numerical method to solve the two
equations assuming n= 1

For the TL equation, I used a second-order-accurate cen-
tered scheme to approximate the spatial derivatives and a
first-order-accurate implicit scheme to approximate the time
derivative. For the ξ–q equation, I used a first-order-accurate
scheme to approximate the spatial derivative, a first-order-
accurate implicit scheme to approximate the time derivative,
and the rectangle rule to estimate the integral. This yields the
following discretized forms:

Kdν
m+11t

1x2

[
Am+1
i− hi−1+

(
1+Am+1

i+ +A
m+1
i−

)
hi

+Am+1
i+ hi+1

]
= hi,0 for i = 2, · · ·, nx − 1, (A1)

for the TL equation, where Ai+ = (Ai+Ai+1)/2 and Ai− =
(Ai +Ai−1)/2, hi is current topographic elevation at node i
and hi,0 is the topographic elevation at the same node at the
previous time step, 1x is the distance between two nodes,
1t is the time between two time steps, and nx is the number
of nodes used to discretized the river, and

(
1+

Kfν
m1t

1x
Ami

)
hi −

Kfν
m1t

1x
Ami hi+1+

1
ξAiν

i−1∑
j=1

hj

= hi,0+

i−1∑
j=1

hj,0+
1t

ξAiν
q0 for

i = 1, · · ·, nx − 1,

(A2)

for the ξ–q equation, where q0 is the incoming sediment flux
(expressed in m yr−1).

These systems of equations can be written in matrix form:

AdH = Bd and AaH = Ba, (A3)

where Ad and Aa are the square matrix of dimension nx ×
nx and Bd and Ba are vectors of dimension nx . H is the
solution vector containing the topographic elevation of the
nodes. For simplicity, I use a simple general direct solver for
these two systems of algebraic equations even though Ad is
a tridiagonal matrix and Aa is a Hessian matrix.
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Appendix B: Response time scaling for various
values of m and n

In Table B1, I illustrate this scaling for commonly assumed
values of p, m and n. I consider a linear case (n= 1) and a
nonlinear case (n= 2).

Table B1. Scaling of the TL and ξ–q response times, τTL and τξ–q , with the various parameters for two sets of values of m and n. I consider
a linear case (n= 1) and a nonlinear case (n= 2) but keep the ratio between m and n at 0.5. For both cases, I use p = 2.

L q0 Kd or Kf w A0 G

τTL m= 0.5 L≤ L0 2 0 −1 1.5 −1.5 –
and n= 1 L > L0 −1 0 −1 1.5 0 –

τTL m= 1 L≤ L0 2 −0.5 −0.5 1 −1 –
and n= 2 L > L0 −2 −0.5 −0.5 1 1 –

τξ -q m= 0.5 L≤ L0 1 0 −1 0.5 −0.5 0
and n= 1 L > L0 0 0 −1 0.5 0 0

τξ -q m= 1 L≤ L0 1 −0.5 −0.5 0 0 −0.5
and n= 2 L > L0 −1 −0.5 −0.5 0 −1 −0.5

Appendix C: Validation of response timescale
relationship

In the first set of experiments, I varied the erodibility, Kf,
in the ξ–q equation and the transport coefficient, Kd, in the
TL equation. The results are shown in Fig. C1 and demon-
strate that both response times vary as the inverse of the dif-
fusivity or erodibility, as predicted by Eqs. (23) and (27).

In a second set of experiments, I varied G, which yielded
the expected scaling in the ξ–q model, as shown in Fig. C2.
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Figure C1. Computed response times for 24 numerical experiments in which the erodibility, Kf, or the diffusivity, Kd, of the model were
varied.

Figure C2. Computed response times for 24 numerical experiments in which the deposition constant, G, of the ξ–q model was varied.
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Appendix D: Expressions for the flux

For the TL equation

qTL =
Kd

w
(Aν)m+1

|S|n, (D1)

and for the TL equation

qξ–q =
Kf

Gw
(Aν)m+1

|S|n+
Aν

Gw

∂h

∂t
. (D2)

Appendix E: Geometrical interpretation of the
response time

The time to fill a triangle of height h0 and length L with an
incoming sedimentary flux q0 is

τfill =
h0L

2q0
= q1/n−1K

−1/n
d w(m+1)/nA

−(m+1)/n
0 L2/2= τTL/2. (E1)
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