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Abstract. The rate of erosion of a landscape depends largely on local gradient and material fluxes. Since both
quantities are functions of the shape of the catchment surface, this dependence constitutes a mathematical strait-
jacket, in the sense that — subject to simplifying assumptions about the erosion process, and absent variations
in external forcing and erodibility — the rate of change of surface geometry is solely a function of surface ge-
ometry. Here we demonstrate how to use this geometric self-constraint to convert a gradient-dependent erosion
model into its equivalent Hamiltonian, and explore the implications of having a Hamiltonian description of the
erosion process. To achieve this conversion, we recognize that the rate of erosion defines the velocity of surface
motion in its orthogonal direction, and we express this rate in its reciprocal form as the surface-normal slowness.
By rewriting surface tilt in terms of normal slowness components and deploying a substitution developed in
geometric mechanics, we extract what is known as the fundamental metric function of the model phase space;
its square is the Hamiltonian. Such a Hamiltonian provides several new ways to solve for the evolution of an
erosion surface: here we use it to derive Hamilton’s ray-tracing equations, which describe both the velocity of
a surface point and the rate of change of the surface-normal slowness at that point. In this context, gradient-
dependent erosion involves two distinct directions: (i) the surface-normal direction, which points subvertically
downwards, and (ii) the erosion ray direction, which points upstream at a generally small angle to horizontal
with a sign controlled by the scaling of erosion with slope. If the model erosion rate scales faster than linearly
with gradient, the rays point obliquely upwards, but if erosion scales sublinearly with gradient, the rays point
obliquely downwards. This dependence of erosional anisotropy on gradient scaling explains why, as previous
studies have shown, model knickpoints behave in two distinct ways depending on the gradient exponent. Analy-
sis of the Hamiltonian shows that the erosion rays carry boundary-condition information upstream, and that they
are geodesics, meaning that surface evolution takes the path of least erosion time. Correspondingly, the time it
takes for external changes to propagate into and change a landscape is set by the velocity of these rays. The
Hamiltonian also reveals that gradient-dependent erosion surfaces have a critical tilt, given by a simple func-
tion of the gradient scaling exponent, at which ray-propagation behaviour changes. Channel profiles generated
from the non-dimensionalized Hamiltonian have a shape entirely determined by the scaling exponents and by a
dimensionless erosion rate expressed as the surface tilt at the downstream boundary.

1 Introduction value, and the erosion direction in each case is understood
from context, e.g. erosion in a bedrock channel is broadly
considered to take place sub-vertically downwards, hewing

When geomorphologists describe the evolution of a land-  ¢jogely to gravity, except at knickpoints where it occurs sub-
form, a direction of erosion is often invoked: for example, we horizontally upstream and along the channel walls where
speak of a bank cutting laterally, a cliff retreating, a knick- it acts sub-horizontally and roughly orthogonal to stream-
point eroding upstream, or a river channel incising down flow. At the same time, we recognize that the geomorphic

into bedrock. Generally, such statements are taken at face
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processes driving or mediating erosion are associated with
particular directions relative to the geometry of the surface,
which presumably has consequences for the direction in
which that surface erodes: weathering acts roughly normal to
an exposed surface, mechanical abrasion involves obliquely
streamwise impacts that can be resolved into normal and tan-
gential components (as can frictional wear by sliding ice or
debris), and so on. There are obviously many directions in-
volved in driving the evolution of a landscape, so what can
we say about the direction of motion of the erosion surface
itself? Our goal here is to answer this question using some
concepts and tools of differential geometry and classical me-
chanics.

1.1 Tracking points on an erosion surface

Tracking the motion of a solid object is easy if the surface
of the object is not eroded during motion: all that is needed
is to tag the surface with markers and monitor their displace-
ments. This is not possible for a surface undergoing erosion
because all such markers are destroyed by the erosion pro-
cess itself. We can nevertheless describe, in a mathematical
sense, how points on an erosion surface move — if we know
something about the process of erosion. The purpose of this
section is to preview how this task can be achieved and to
provide some conceptual context. The ideas outlined here are
developed in full in the main body of the paper.

A moving erosion surface has only one intrinsic direction
available at each surface point: the local normal to the sur-
face. Describing motion in any other way entails the sup-
ply of extra information through the choice of an additional
direction as a reference. Since gravity acts downwards, the
usual choice is to assign vertical as the reference axis and
to express erosion rate as a vertical velocity. On the other
hand, for problems such as sea cliff retreat or riverbank ero-
sion it can be more convenient to pick horizontal as the refer-
ence. Whatever the choice, basic trigonometry makes it easy
to transform an erosion function between any of these ge-
ometries (but with a complication; see Sect. 3.1).

The minimal approach therefore avoids supplying a refer-
ence direction and treats surface erosion as acting intrinsi-
cally in the local normal direction. In light of this, we may
be tempted to infer that points on an erosion surface move in
the normal direction: in general, however, they do not.

To see why, let us examine a surface evolving by some
unknown mechanism. Let us assume for simplicity that the
surface is an always smooth 1D line in 2D x—z space (Fig. 1).
Mark the surface at time 7, and again at a very small time
interval later T, = T, + AT . Each surface can be considered
as a set of points: T, = {a} and T} = {b}, where a and b are
2D vectors.

In the absence of an equation of motion, we are free to
pair each point a € T, with any otherwise unpaired point b €
T, (Fig. 1, “free” inset). We could enforce a strict order to
the pairings, but we would still have a very large number of
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choices. What matters is that the motion of surface points
from T, to Tp is defined by our choice of mappings, and for
the moment this choice is arbitrary.

Now, there are two ways to assess the rate of surface mo-
tion: one familiar, the other much less so. The familiar quan-
tity is the velocity vector, which we get by measuring the dis-
tance between, and direction defined by, each pair of points
v = (b—a)/AT. The unfamiliar quantity is the normal-
slowness covector p (Sect. 3.1), which get by measuring the
time AT it takes for the surface to move a given distance in
its normal (intrinsic) direction. We visualize P as a series of
small planes emanating from a, parallel to the local tangent
to T, and approaching T,. The term “slowness” is used be-
cause its units are reciprocal speed; it could also be called
the “pace” of erosion, meaning the time needed to erode a
reference distance.

This brings us to our key premise: when we specify an ero-
sion function, we are explicitly defining the behaviour of p
but only indirectly obtain the behaviour of v. That is because
an erosion rate function measures the time it takes for the
surface to move a given distance and not the travel time for
points on the surface. If the process of erosion is isotropic,
this subtle distinction is moot; if, however, the erosion rate
depends on gradient, the distinction is fundamentally impor-
tant (Fig. 1, “isotropic” and “anisotropic” insets).

We can understand why if we realize that by quantify-
ing the elapsed time between successive erosion surfaces, the
erosion rate function actually defines a metric, i.e. a tool for
measuring the “length” of the covector p. If the erosion rate
depends only on location, meaning that it is independent of
surface tilt and thus isotropic, the corresponding metric is Eu-
clidean, which makes p and v point in the same direction and
leads each point on T}, to pair with its nearest neighbour (in a
Euclidean sense of the term) on 7. This is the most intuitive
way of linking points on one surface to another, but is not
correct for erosion in general. That is because if the erosion
rate is also a function of gradient, the resulting metric will be
anisotropic and non-Euclidean, p and v will point in differ-
ent directions, and the way the metric measures the shortest
distance between successive erosion surfaces will no longer
be a simple use of Pythagorean geometry. Metrics of this
kind — that depend on position and orientation — are called
Finsler metrics. They constitute a way to measure travel time
between two points when resistance to motion varies with di-
rection in a non-trivial way. Physical analogues include mea-
suring travel time when walking over hills or navigating a
boat in a wind. In special cases they may reduce to, or at
least incorporate, a Riemannian form.

Transformation of the erosion equation into a metric func-
tion takes a few steps. The first is to reparameterize the direc-
tional parts of the erosion equation using the components of
the slowness covector p = [px, p.] while leaving any spatial
dependence untouched. For example, if the erosion function
depends explicitly on surface gradient tan 8, where B is the
angle of the surface-normal relative to vertical, we can use
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Figure 1. Illustration of how points map from one erosion surface (grey curves) at time t = 7, to the next at time t = Tp = T, + AT. If
the erosion mechanism is not specified (“free” inset), each point a € T, (solid grey circle) can in principle be mapped to any of the points
{b} € T}, (empty grey circles). However, if the erosion process is known, the point mapping is constrained (albeit indirectly) as follows. The
erosion function can be converted into a metric function that tells us how far apart the surfaces are after the time interval AT. We gauge this
spacing using a slowness covector p (blue ladder symbols) oriented normal to T, and at an angle 8 from vertical. If we convert the metric
into a Hamiltonian, we get evolution equations both for p and for point velocity v (red arrows; at angle a clockwise from horizontal). The
point velocity determines the point pairing. If the erosion process is independent of gradient (“isotropic” inset), the metric is Euclidean, the
point velocity is colinear with normal slowness, and the point @ on 7, maps to its nearest neighbour b on Tj,. If instead the erosion process
is gradient-dependent (“anisotropic” inset), the metric it generates is non-Euclidean, P and v are not colinear, and the mapping of point a to

point b is oriented at an angle ¥ = o — 8 4 90° to the surface normal. The angle v is therefore a measure of erosional anisotropy.

the substitution tan 8 = | p, / p;|. The normal erosion speed is
replaced with the reciprocal magnitude of the slowness cov-
ector - =1/p = 1/,/p? —i—p%.

If this reparameterization is possible, we get an equation
that can be rearranged into the form F,(a, p) = 1. This F, is
a fundamental metric function, which measures the shortest
time interval for the surface to erode a unit distance in a given
direction. Among several special properties exhibited by this
function, the crucial one is its order-1 Euler homogeneity in
P, which means that Fy(a, Ap) = A F.(a, p).

Squaring and scaling the metric function defines a
quadratic Hamiltonian H(a, p) := .7-'3 /2 =1/2, which is
the key result of this study. This “geomorphic” Hamiltonian
provides us with equations of surface motion in the form
of Hamilton’s equations, which allow ray tracing and other
methods to be used to solve for landscape evolution. It tells
us not just that surface points move according to a Hamilto-
nian flow but also that they follow geodesic paths, i.e. paths
of shortest erosion time.

Point velocities, and therefore point pairings, {a, b}, are
given by one half of Hamilton’s equations: differentiating
the Hamiltonian by each of the erosion slowness covector
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components p, and p, in turn, we get a vector expressing
the change of point position with time: v = 9H/dp. It fol-
lows from order-1 homogeneity of the metric function F,
that the surface-normal slowness covector and this point ve-
locity vector must always be conjugate, p-v = 1.

Earlier, we asserted that surface points do not, in gen-
eral, move in the surface-normal direction, and now we have
proof. Exploiting conjugacy, we can measure the angle ¥ be-
tween the surface-normal and the point velocity using their
dot product cosy = p-v/(pv). If the rate of erosion de-
pends on surface tilt 8, the corresponding metric function
and Hamiltonian will both depend, in some non-linear fash-
ion, on the normal slowness components p, and p,, and so
9 /9P and point velocity v will not in general be colinear
with the surface normal. A gradient-dependent erosion pro-
cess is therefore anisotropic, and its degree of anisotropy is
measured by the angle .

The practical consequence of erosion driving anisotropic
Hamiltonian flow lies in how it controls the propagation of
information, in the sense of initial and boundary conditions,
into a landscape. Each element of this Hamiltonian flow has
both a point position @ and a normal slowness P, i.e. each
element contains information about the location and orien-
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tation of the surface and its reciprocal rate of erosion. Pro-
gression along the Hamiltonian flow occurs along succes-
sive point pairings; each pairing translates an element in
space while carrying (and to some extent modifying) the
surface information along with it. The angular disparity be-
tween the direction of information transfer (i.e. point veloc-
ity) and the intrinsic direction of surface-normal motion is
the anisotropy .

1.2 Structure of the paper

The paper is organized into eight sections and a set of ap-
pendices. Section 2 summarizes how erosion in three dimen-
sions (3D) can be tracked using implicit surfaces and level
sets, makes a connection with the Hamilton—Jacobi equation,
and demonstrates the natural link with Hamiltonian meth-
ods. Section 3 combines these concepts with those intro-
duced in Sect. 1.1 and formulates a Hamiltonian theory of
gradient-driven erosion (for a 2D slice of 3D space). It ex-
plores this theory using geometric mechanics and differen-
tial geometry and reveals how strong anisotropy lies at the
heart of landscape surface evolution. Section 4 implements
the geomorphic surface Hamiltonian using a particular model
of gradient-driven erosion — an adaptation of the stream
power incision model to handling erosion in the surface-
normal direction — and presents a non-dimensionalization of
the Hamiltonian and Hamilton’s ray-tracing equations and a
simple means of model solution. Section 5 shows how to use
Hamiltonian ray tracing to obtain model surface solutions for
a domain whose boundaries are subject to a constant verti-
cal erosion rate. Section 6 discusses these numerical solu-
tions and examines what they have to tell us about erosional
anisotropy and the notion of two distinct directions of land-
scape erosion. It also relates model scales to real-world land-
scape time, space, and velocity scales. Section 7 looks at the
broader implications of the Hamiltonian approach to erosion,
and Sect. 8 draws some conclusions. Appendices A-F draw
on disparate literature sources linked together here for the
first time and use them to shed light on the theory presented
in this paper.

2 Core principles

2.1 Landscape as an implicit surface

In almost every model treatment of landscape erosion
(Coulthard, 2001; Dietrich et al., 2003; Fowler, 2011; Pazza-
glia, 2003; Tucker and Hancock, 2010; Tucker, 2015; van der
Beek, 2013; Willgoose, 2005), the shape of the land surface
in 3D space is written mathematically as a function of eleva-
tion i parameterized by the 2D horizontal coordinates {x, y}
of points on the surface and by the time ¢ at which the point
elevations are assessed. In other words, the landscape is de-
scribed by an explicit surface function h(x, y; t).
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An explicit surface description has advantages and disad-
vantages. On the plus side, theoretical development is rela-
tively simple because it effectively involves only two spatial
dimensions and because the numerical solution can be car-
ried out on a 2D grid. On the negative side, the rate of erosion
is only tracked in the vertical direction, through the partial
derivative of elevation with time d//d¢: if there is any hori-
zontal component of erosion, it is not tracked directly and has
to be calculated indirectly using the lateral variation in eleva-
tion V. Problems arise when the surface gradient becomes
very steep, for example at knickpoints or channel banks, and
any development of overhangs is obviously impossible.

If we instead describe the landscape using an implicit sur-
face, many of these issues are eliminated. The price is greater
complexity in the mathematics needed to formulate surface
motion and to resolve it numerically. The extra cost is worth
paying if it leads to greater insights into how landscapes
form.

2.2 Landscape as the 2D zero contour of a 3D function

An implicit surface in 3D space is the set of points
{x(1), y(1), z(¢)} that define the 2D “contour” or level-set sur-
face of a function ¢:

¢(x,y,z;...) = ¢o, D

where ¢ is a non-linear function defined at all points across
the 3D domain of interest that varies with time and is non-
local — in the sense that it can be a function of curvature or
of values of itself at a distance. Put more simply, ¢ is a very
flexible function that can be tailored to induce whatever sur-
face motion is desired.

The term “implicit” is used because surface positions are
not specified directly; instead, a surface is defined by “slic-
ing” the function ¢(x,y,z) at some chosen value ¢y and
finding positions {x, y, z} for which ¢(x, y, z) = ¢9. Think
of how a visualization tool for a 3D scalar field, such as tem-
perature, works: sequential slicing across a range of temper-
atures provides an animated view of its variation through-
out a volume. This variation can be complex, revealing iso-
lated blobs of high (or low) values that connect in topologi-
cally complicated ways as the slicing threshold temperature
is changed. In this way, an implicit description of a surface
can represent complex, multivalued geometry and topology
without extra mathematical work.

Landscape evolution can be modelled with an implicit sur-
face by writing an equation to drive evolution of the function
¢ and watching how its zero level-set ¢ = ¢ = 0 implicitly
prescribes changes in surface positions {x(¢), y(¢), z(¢)} over
time.

2.3 The level-set equation

Implicit surface motion in its most general form is described
by the level-set equation (Gibou et al., 2018; Giga, 2006;
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Osher and Fedkiw, 2001, 2003; Sethian, 1999; Vladimirsky,
2001), in which ¢(x, y, z; ¢) is a 3D function constructed so
as to evolve over time ¢ with a velocity &, a vector function
that in general varies with position and time, is possibly non-
local, and only needs be defined where ¢ = 0:

L4 +&-Vgp=0. 2)
ot

This is equivalent to holding the material derivative of the
scalar field ¢ — driven to move by the vector field & — at zero
along the zero contour of ¢ but otherwise allowing it to vary
unconstrained.

Only the normal component £ of the implicit surface ve-
locity plays any role in driving motion: in the geomorphic
case, this would be the surface-normal erosion rate. So we
can write the following equation:

2 et vgl=o. G)
ot

The notation & is adapted from Osher and Merriman
(1997).

This equation provides a very generic description of how
a 2D surface evolves in 3D space, in the sense that it de-
fers all description of processes into the formulation of the
surface-change rate function £, This function can readily
treat topographic gradient and curvature and substrate erodi-
bility; suitably provided with coupled process equations, it
could also incorporate water flow depth and velocity, inter-
mittent sediment cover, development of a vegetation layer,
spatiotemporal precipitation, tectonic displacement, and so
on. Such flexibility, however, is not our goal here. Instead, we
seek geometric insights into the process of landscape erosion,
which we can achieve if we limit the scope of this equation
and make &1 a simplified function of local gradient and ac-
cumulated flow. A geomorphic level-set equation in this form
makes it easier to tease out its fundamental behaviour.

2.4 Motion described by the Hamilton—Jacobi equation

If we restrict the surface velocity & to be a local function
of position and time, Eq. (3) becomes the Hamilton—Jacobi
equation (HJE):

H(r,Vo; t)= 4)

99
o
where each vector r tracks a point as it moves from one zero
level set of ¢ to another with velocity 7 = dr/d¢, while the
front itself at that point moves in the direction V¢. These
directions are not necessarily the same.

The HIJE is a first-order partial differential equation that
plays a central role in classical mechanics (Arnold, 1989;
Goldstein et al., 2000; Houchmandzadeh, 2020; Small and
Lam, 2011; Whitham, 1999). Its driver is the Hamiltonian
‘H, which combines the surface velocity & with the gradient
V¢ in a way that lends it special properties.
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The Hamiltonian in the HJE is required to be a local func-
tion — in the sense that it can depend on position r and in-
stantaneous time ¢ but cannot depend on the shape of the
propagating surface at some distance away or on any history-
dependent quantities. Diffusive and quasi-diffusive processes
are not allowed either. However, viscosity solutions of the
HJE (Crandall and Lions, 1981), which are the standard
means of resolving profound mathematical challenges with
this equation, ironically involve the addition of a weak, ulti-
mately vanishing, second-order term that can be considered
a diffusive process at the sub-grid scale.

2.5 Landscape as an erosion arrival-time surface

If we wish to use the HJE to treat landscape evolution in
terms of an implicit function, we need to consider how to
write a Hamiltonian form of the erosion function driving
that evolution. If this Hamiltonian is independent of (i.e.
does not change with) time, it simplifies into a static HIE
or eikonal equation H(r, V¢). The implicit surface function
¢ that solves this static HJE is a single-valued, 3D function
that defines the position and shape of arrival time surfaces. In
other words, ¢ can be thought of as a first arrival time func-
tion T'(x, y, z)—t, where T defines the locus of surface points
{x,y, z} that satisfy at each time step ¢ the equation

Tx,y,z)—t=0. 5)

Another way to express this is to say that the contours of T
are 2D isochrone surfaces embedded in 3D space that define
the shape of the landscape as it changes.

In the eikonal equation, the Hamiltonian is a constant func-
tion of surface point position r and the gradient of the arrival
time VT with the simple form:

H(r,VT)=const. 6)

Points on the surface move with velocity vector v = 7, while
the surface itself moves with a slowness covector given by
P = VT). It is important to emphasize that P is not a vector.
Section 3.1 goes into more detail as to what is meant by the
term “covector” and why the distinction is consequential.
Although both v and p are both directional quantities de-
scribing surface motion, they only point in the same direction
if the motion mechanism is isotropic. Measuring their angu-
lar disparity is the key to assessing the anisotropy. One of
the aims of this study is use this measure to reveal the strong
anisotropy of landscape erosion processes (see Sect. 3.18).

3 Theory

In this section, we formalize the ideas presented above into
a Hamiltonian theory of erosion front motion. First, we pro-
vide a gentle introduction to the pivotal concept of a covector
(Sect. 3.1) and show how useful it is for treating the direction
and reciprocal speed of the propagating front. Then we show
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Figure 2. Model context and geometry. Theoretical treatment in the
current study is limited to 2D. The model domain is a vertical tran-
sect following a stream profile, with vertical axis z and horizontal
axis x, spanning a fixed distance from catchment exit at x =0 to
drainage divide at x = L. The locus of points r along the profile at
time t = T, i.e. the surface isochrone, is defined as 7'(r).

that the gradient of the surface arrival time is itself a covec-
tor (Sect. 3.2). Next, we make the case that the geomorphic
processes driving erosional motion of a topographic surface
can be represented by local functions (Sect. 3.3) parameter-
ized by the surface-normal covector, and how they consti-
tute, broadly speaking, a form of geometric self-constraint
(Sect. 3.4). After imposing a gradient-dependent form on the
erosion function (Sect. 3.5), we show how the above ingre-
dients lead, via the fundamental metric function, to a Hamil-
tonian description of erosion (Sects. 3.6-3.9). Next we delve
into the connections between the fundamental function and
erosional wavelets and use them to provide a graphic expla-
nation of Huygens’ principle as applied to erosion surface
propagation (Sect. 3.10). We then express the equivalent Fer-
mat’s principle in terms of the variational path of least ac-
tion (Sect. 3.11) to show that a point on the surface follows
the path of least erosion time. This leads on to derivation
of Hamilton’s ray-tracing equations (Sects. 3.12-3.13) and
a discussion of some of their properties (Sects. 3.14-3.15).
A verification that the Lagrangian is constant (Sect. 3.16)
follows. Then we discuss ray angles, their behaviour rel-
ative to surface tilt, and the existence of a critical tilt at
which ray-propagation behaviour changes (Sect. 3.17). This
leads to an exploration of how the disparity between the two
directions of erosion is a measure of erosional anisotropy
(Sect. 3.18). Finally (Sect. 3.19), we look at the various ways
the evolving surface tilt can be tracked in the model. Non-
dimensionalization is undertaken in Sect. 4.

Note that we use superscripts for contravariant tensor com-
ponents (e.g. r*) and subscripts for covariant tensor com-
ponents (e.g. p;); the Einstein summation convention (sum-
ming over similar tensor components) is adopted for brevity.
Symbol usage is summarized in Table G.

Earth Surf. Dynam., 10, 383—419, 2022
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Figure 3. Tracking surface motion at a point r using a slow-
ness covector p normal to the erosion front 7'(r) that points in
the direction n. Normal slowness here is p = p(n) =4yrmm71
(Eqgs. 13 and 18) for a surface tilted at 8 = 60° corresponding to a
surface-normal erosion rate of £+ = 1/4mmyr~! (Eq. 8). Simple
trigonometry applied to p gives the vertical and horizontal slow-
nesses (Eq. 17), and their reciprocals are the vertical gV and hori-
zontal £ erosion rates (Egs. 9, 10, and 17). The front covector
is also the gradient of the arrival times, or isochrone density, given
by p = VT, which counts the number of isochrones crossed in unit
time in the front-normal direction (Eq. 22).

3.1 Tracking erosion with covectors

Imagine a locally planar surface undergoing constant ero-
sion (Fig. 3), where the surface tilt angle is 8 and the vec-
tor r takes values that lie along the erosion surface at a
given time T'(r). As time passes, erosion moves the sur-
face progressively further into the substrate. Taking snap-
shots at regular intervals AT generates a uniformly spaced
sequence of surfaces which we call erosional isochrones.
These isochrones are level sets or contours of the arrival
time function 7. In Fig. 3, the time interval is chosen to be
AT =1 year, and isochrones have been plotted for 7'(r) =
{0,1,2,3,4,5} years.

Let us fix the point of interest r at the location shown in
Fig. 3. Here the surface-normal rate or speed of erosion is
£+ =0.25mmyr~! and surface tilt is 8 = 60°. Written as a
vector, the erosion rate is as follows:

. i 3/8

g o= [ |t o[V )
& cosp —1/8

with a direction normal to the surface and an angle g = 60°

to the vertical; its length or magnitude is the surface-normal
erosion rate:

1
gi =& = meyr_l. (¥

Ideally, we should only have to compute the sine and co-
sine components to the erosion velocity vector & to get the
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horizontal and vertical rates of erosion. However, the verti-
cal trigonometric component £ does not equal the (negated)
vertical rate of erosion &V (Eq. 10), nor does the horizontal
trigonometric component £ equal the horizontal rate of ero-
sion €7 :

L gt
E'=¢"sinp A ET=—"—, )
sin 8
%-J_
—E=Ftcosp £ EV=——. (10)
cosf

It seems almost too trivial to ask, but why does naive appli-
cation of trigonometry let us down here? The answer lies in
the fact that we have written the erosion rate as a vector: we
should instead express it as a covector.

Consider p in Fig. 3, which can be written as a function
with single-row matrix form:

pPO=[px p: ]O=[2v3 -2 ]0). an

This scalar function takes as input a vector such as n and
returns the number of isochrones crossed by that vector. Here
n is the surface-normal unit vector

[ )-[)

Because we employ units of millimetres and years here, n
has a length of |r#| = 1 mm. Over this distance n crosses four
1-year isochrones, and thus we obtain

wmoa((4)

=[2v3 -2 ][f?; :| =4yrmm~". (13)

Now consider the vertical component of p (which is negative
here) acting on n: counting downwards over a distance n, =
1/2 mm, we find one isochrone crossing:

~ 0
=[2v3 2] A lyrmm™! (14)
—-1/2 ’
The horizontal component of p counts three isochrone cross-

ings by the unit normal vector counting rightwards over a
distance ny = +/3/2 mm:

px<n)=ﬁ([*/g/2 D
V3 -2 ][ff)/z }=3yrmm‘1. (15)

These components can be added together because p is a lin-
ear function; this summation gives

px(m)+ p:(n) =p(n*) + p(n®) =3+ 1=4=pm), (16)
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which is the count of four we found by measuring along n
directly. The count can of course take any real (fractional)
value: for clarity, the example here has been constructed so
as to yield round numbers.

The function p is called a “one-form” in the terminology
of differential geometry, and instances of p are called covec-
tors. In general, a one-form operates on a vector and returns
a scalar. Here, p takes in a unit vector and returns the slow-
ness of erosion in the direction of that vector. In optics and
seismology, P is known as the normal slowness; in classical
mechanics it is called the generalized momentum. In a geo-
morphic context, this normal slowness can be interpreted as
the maximum isochrone density, and p the isochrone density
covector, in that when applied to the unit normal vector n it
calculates the maximum number of isochrones to be found in
any direction from that point.

The slowness covector p is a more convenient measure of
erosion rate because its sine and cosine components are the
horizontal and vertical slownesses, which are (respectively)
the reciprocal rates of erosion horizontally and vertically.

p=1[p p:] (17)
= p[sin,B —cosf ]
= [1/67 —1/8v ]

= [sinB/g+ —cosp/Et |

The magnitude of the covector here is the normal erosion
slowness, i.e. the reciprocal erosion rate, and is given by

1

p=Ipl= p§+p§=$r (18)

and surface slope is

tanf = —&. (19)
24

In other words, by describing the rate of surface motion with
an erosion slowness covector, instead of an erosion velocity
vector, we can assess its variation with direction much more
easily. Fundamentally, a covector is the correct way to repre-
sent motion of a surface at a given point, and a vector is the
appropriate way to represent the position and motion of that
point. See Appendix B for more details.

3.2 Gradient is a covector

The erosion slowness covector p has another facet: it is also
the gradient of the arrival-time function 7'. To see why, con-
sider again Fig. 3 and its level sets of T at discrete inter-
vals. These level sets are isochrones or contour surfaces of
equal arrival time T'(r) = {0, 1,...}, which are represented
schematically as simple straight lines in this figure. They suc-
cessively increase in the direction of the normal vector n.

If we measure (in Fig. 3) the change in 7 in the x direction
over a distance n* = \/§/2, we find that n*dT, = 3. Simi-
larly, if we measure the change in the —z direction over a
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distance n* = 1/2, we get n*dT; = 1. In general terms,

X

dT(l’l) = nxde —{-nZde = [px Dz ] |:ZZ i| = ﬁ(l’l)7 (20)

and in this example we find
dT(n) =4yrmm™', (1)

which is the normal slowness obtained in Eq. (13) written
as a differential one-form. In other words, the rate of change
dT(-) over a unit distance in the isochrone-normal direction
n is given by d7(n), and the isochrone or contour density
dT (n) in the contour-normal direction is the same as the cov-
ector magnitude p. We can now invoke the gradient operator
V and have

VT = [

L Y =[pe p: |=7. 22)

which says that the Euclidean gradient of the arrival time T
of the erosion surface is the normal slowness covector p.

3.3 Modelling erosion in the surface-normal direction

If we wish to frame a model of landscape evolution in terms
of geometric mechanics, we need to employ the following
three elements: (i) an implicit function to track the evolv-
ing landscape surface geometry; (ii) a surface-normal erosion
slowness covector, corresponding to the gradient of the im-
plicit function, that encodes the reciprocal rate of motion of
the surface; and (iii) an erosion model for the surface-normal
speed of erosion that can be parameterized using the slow-
ness covector.

To supply the third element, we can write a generic model
for the surface-normal speed of geomorphic erosion that is a
solely function of local fluxes and gradient:

surface-normal erosion rate ~ func(flow, gradient). (23)

Some erosion phenomena, such as quasi-diffusive processes
like rain splash, cannot be modelled under this local restric-
tion, but this is a minor loss. Henceforth, the only flow we
will consider is kinematic water flow resulting from spatially
uniform rainfall runoff, and we will ignore complexities such
as storm hydrograph cycles and the effects of sediment sup-
ply, transport, and cover.

A model in this form is not unambiguously local: its de-
pendence on accumulated water flow presupposes a depen-
dence on upstream catchment geometry; any change in catch-
ment geometry, through motion of drainage divides, acts
to change flow at distant points downstream. A fundamen-
tally important assumption here is that divide motion is slow
enough for the erosion equation to be considered effectively
local. The validity of this assumption is discussed at the end
of Sect. 7.1.
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3.4 Erosion imposes a geometric self-constraint

The process of landscape evolution represented by Eq. (23) is
a kind of geometric straitjacket or geometric self-constraint
—in the sense that it essentially says the landscape obeys the
following equation:

changes in geometry ~ geometry. 24)

In other words, the shape of the landscape determines the pat-
terns of surface flow and thereby the fluxes of material over
the surface, and it mediates the effectiveness of these fluxes
through its control of the gradients; these effects combine to
set the rate at which the shape of the landscape changes: in
short, change in landscape geometry is controlled by land-
scape geometry. This conclusion applies even if the erosion
process is not spatially local.

The consequence of this geometric self-constraint is that,
at its heart, geomorphic erosion is driven by a particular kind
of Hamiltonian. This Hamiltonian arises from how points on
an erosion surface “see” (for want of a better term) their
shortest path of erosion to the next set of surface points at
little time later. The sections below explore this assertion in
detail.

3.5 Separable, gradient-dependent erosion rate model

The Hamiltonian approach developed here can in principle
be applied to any erosion rate model, with the proviso that
the bedrock surface can only undergo erosion, meaning that
its motion must always be positive £+ > 0. If transient sedi-
ment deposition and bed cover are to be modelled, meaning
that topographic elevation (in the bedrock reference frame)
can rise as well as fall, alluvial geometry needs to be tracked
as an additional model variable along with bedrock surface
position. The resulting Hamiltonian would not be static, and
the dimensionality of its phase space would be comparatively
large. Such sophistication will eventually be needed, as mod-
els of this kind become the standard (e.g. Dietrich et al.,
2003; Sklar and Dietrich, 2006; Zhang et al., 2015). How-
ever, in this introduction of geometric mechanics to the task
of modelling erosion, we choose to avoid such complexity
and instead settle on an erosion equation that (i) is a non-
linear (power) function of (space—time variable) rock surface
gradient tan B(x, ¢); (ii) has a separable form, with spatial
variables (constant in time) such as flow velocity and depth,
sediment concentration, substrate erodibility, and the abra-
sion process itself aggregated into a separate multiplicative
term ¢(x); and (iii) describes the speed of erosion & (x, t) in
the rock-surface-normal direction:

Ehx,n) = e(x)IsinBx, )", (25)

Note that surface tilt relative to vertical is expressed as sin 8
rather than tan 8 because erosion rate is measured in the nor-
mal rather than the vertical direction. In a further simplifica-
tion, we restrict the model to a 2D transect (Fig. 2).
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3.6 The erosion equation in Hamiltonian coordinates

Covectors are an essential ingredient in the construction of a
Hamiltonian framework for surface erosion. As we will show
in the coming sections, the Hamiltonian endows each point
on the surface at position r with an associated tangent cov-
ector P that represents the normal slowness of the surface at
that point. The components of r and P correspond to the axes
of the phase space inhabited by the Hamiltonian.

Since our model is restricted here to a 2D transect of 3D
Euclidean space, this Hamiltonian phase space is 4D; two of
its four axes are spanned by the two components of the posi-
tion vector, and the remaining two by the slowness covector
components:

r* ~
r = [rzi|, P =

The Hamiltonian parameters (r,p) are coordinates in
what, in mechanics, is usually called momentum phase
space, and in differential geometry is called a cotangent bun-
dle; we henceforth refer to this as the slowness phase space
since momentum has no meaning in the current context.
It has a dual, called the velocity space, or tangent bundle,
where the Lagrangian corresponding to the geomorphic sur-
face Hamiltonian is defined.

Reiterating Eq. (18) and reducing it to express the surface
tilt angle B explicitly, we have

= Jp24p2. sinp=—L_ @)
P+ p?

noting that p, > 0 and p,; < 0O for the half-domain shown in
Fig. 2. Each point in phase space acts entirely independently.

The erosion equation (Eq. 25) is now easy to convert into
a form parameterized by the components of 7 and p:

[ p2 + — 1
PRl = g

This equation defines the surface-normal reciprocal rate of
erosion along a 2D profile, written in a form that neatly ex-
presses the geometric self-constraint inherent to the geomor-
phic erosion process. This self-constraint is parameterized
by vector position (#*,r%) and covector normal-slowness
(px, Pz), wWhich respectively locate a particular point on the
surface and encode the reciprocal speed of erosion orthogo-
nal to the surface at that point.

[px Pz ] (26)

1 ~

§L=p=|p|

n
p2+p?

Px

(28)

3.7 The fundamental function

What we need to do now is reparameterize Eq. (28) to ex-
press the degree to which a coordinate (r, p) satisfies the ge-
ometric self-constraint imposed by this equation. This is eas-
ily achieved using Okubo’s technique (Antonelli et al., 1993;
Bao et al., 2000; Shimada and Sabau, 2005; Yajima and Na-
gahama, 2009; Yajima et al., 2011), in which the covector
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parameter is scaled by a positive function Fy(r, p):
Px Pz
) 29
Pxs Pz FAN A (29)

and substituted back in, rearranging to make F, the subject

Fulr, p) = () p!(p2 + p2) ' "2, (30)

The function F is known as the fundamental (metric) func-
tion (see Appendix C; note that an asterisk in used in F
for reasons that will become clear in Sect. 3.9). It is also a
Hamiltonian, and as such it is associated with a phase space
defined by the four coordinate components (r*,r?, py, p;).
The subset of this 4D space whose locations satisfy the ero-
sion equation given by Eq. (28) must meet the condition:

Fi(r,p)=1. 31)

The power of a Hamiltonian comes from being able to trace a
sequence of (r, P) across phase space for which this criterion
holds continuously — a procedure otherwise known as solv-
ing Hamilton’s equations — which yields the evolution over
time of a single point on an erosion surface. However, for
technical reasons (Sect. 3.8) it is best not to use F, directly
as the geomorphic surface Hamiltonian; a little more work is
needed.

To clarify the behaviour of F,, consider the combined
meaning of Egs. (30) and (31). The value of F, at a location
in phase space with coordinates (r, p) is equal to the normal

slowness ,/ pZ + pg implied by that coordinate, i.e. its recip-
rocal erosion rate, multiplied by the erosion rate determined
by the erosion process ga(rx)px”/(px + pz)”/2 acting at that
coordinate. This product — of speed times slowness — is obvi-
ously equal to one for locations in phase space that represent
geomorphically valid surface points in real space. All other
locations of phase space are unphysical because at these val-
ues of (r, p) the erosion rate is not reciprocal to the erosion
slowness, and this product is not equal to one.

3.8 The geomorphic surface Hamiltonian

The problem with using F, as a Hamiltonian is its order-1
Euler homogeneity: functions of this type generate a metric
tensor whose determinant is singular, meaning that the tensor
cannot be inverted (e.g. Cerveny, 2002). This puts the Leg-
endre transform and the Lagrangian out of reach. Fortunately
there is a simple solution: just use the fundamental function
in its squared form and define the geomorphic surface Hamil-
tonian as follows:

= —.7-' 2

1—
Hr. ) e () @

A prefactor of % is included to make subsequent derivations
tidier.
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This quadratic-form Hamiltonian has the advantage that it
is order-2 Euler homogeneous:

H(r 2p) = Hr,p)  forr >0, (33)

which makes its metric tensor non-singular (if n # 1) and the
Legendre transform feasible.

We know from Eq. (31) that F, = 1 for trajectories across
slowness phase space that correspond to physically viable be-
haviour of surface points. So we can assert that the Hamilto-
nian is static and has the value

~ 1
Hir.p)=7. (34)

for solutions of the erosion equation. In more concrete terms,
we can say that an arbitrary surface point located at r can
only represent a point on an eroding surface if its associated
orientation and slowness P satisfies this equation.

3.9 The geomorphic surface Lagrangian

The quadratic Hamiltonian H(r, p) has a dual quantity called
the Lagrangian L(r, v), which operates in a counterpart space
spanned by coordinates giving the position r and velocity v
of evolving points on the erosion surface. By symmetry, the
Lagrangian is also the quadratic of a fundamental function,
denoted F. This function F is the dual of F, and is similarly
order-1 homogeneous. Its quadratic £ is similarly order-2 ho-
mogeneous:

1
L::Ef? (35)

To make the link between the spaces of H and L, we rec-
ognize that the normal slowness covector can be defined as
the derivative of the Lagrangian with respect to the velocity
coordinate

~ 0L

p 90 Pi

172
= 8_L = M (36)
av! av!
This is known as the “fibre derivative”.
Mapping from the Hamiltonian # to the Lagrangian £
(and vice versa) exploits this property and is achieved with
the Legendre transform:

L=Ppw)—H=piv' —H. (37)

A closed form for £ requires several more pieces of the puz-
zle before it can be derived, and the eventual equation is un-
wieldy. The contrasting simplicity of H (Eq. 32) is why we
prioritize the Hamiltonian over the Lagrangian in this paper.

In due course we will show that the dual fundamental func-
tion and the corresponding Lagrangian have constant val-
ues F =1land £ = %, in symmetry with 7, =1 and H = %
Such constancy means that the Lagrangian does not vary with
time and that the mutual variation of position r and erosion
velocity v is tightly constrained.
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Figure 4. Incremental erosion (for n = %) described by ‘H and L,
with £ visualized as an erosional wavelet (green curve), i.e. a ve-
locity indicatrix, with the point-motion ray vector in red and front-
normal-motion covector in blue.
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Figure 5. Huygens’ principle visualized as the coalescence of ero-
sional wavelets (green curves, for n = %) at their mutual tangent
envelope (pale grey isochrone).

3.10 Erosional wavelets and Huygens’ principle

Geometric optics provides a way to visualize the Lagrangian
and its relationship to the Hamiltonian (Figs. 4 and 5). Mo-
tion of an erosion front obeys Huygens’ principle: we can
imagine each point on the front generating a tiny erosional
wavelet, and the coalescence of these wavelets forming the
next erosion front. The shape of each erosional wavelet is
defined by F. Each shape is a velocity indicatrix giving the
radial variation of ray velocity v at a point r or equivalently
giving the distance that a point on the surface will erode in
an infinitesimal interval.

Figure 4 visualizes a single erosional wavelet, its relation-
ship both to the current erosion front at 7 = ¢ and to the next
at T =t + At, the particular ray increment vector for which
H=L= % and the conjugate relationship of this vector to
the front-normal covector (see Sect. 3.15). Motion of the sur-
face T'(r) =t at point r over the interval At can be viewed
in two mutually consistent ways: (i) the front moves a dis-
tance At¢/p in the surface-normal direction given by p or
(ii) the point moves a distance Ar = v At in the ray direction
r. These directions are quite different because the erosion
process is strongly anisotropic (Sect. 3.18).
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Unconstrained, the point at r could be displaced onto any
of the points along the erosional wavelet {Ar}. However, the
only valid motion is onto the point r + Ar where the tan-
gent to the wavelet curve is orthogonal to the front increment
PAt/p?, ie. the ray and front increments are conjugate to
each other (Sect. 3.15).

When erosional wavelets at points along the surface are
aggregated, moving 7'(r) onto 7T'(r + Ar) as shown in Fig. 5,
the result is anisotropic front motion that obeys Huygens’
principle. The new front can also be found simply by prop-
agating the old front a distance Atz/p in the direction p at
each point r.

3.11 Fermat’s principle as a least action integral

Huygens’ principle emphasizes HJE solution in terms of
propagation of a front. Fermat’s principle, on the other hand,
emphasizes solution in terms of tracing the trajectories of
points along that front. These two principles are equivalent
or dual (Holm, 2011; Houchmandzadeh, 2020; Small and
Lam, 2011). Fermat’s principle says that these trajectories
are paths of stationary travel time: each trajectory obeys a
variational principle which ensures its travel time is extrem-
ized; this extremal is almost always a minimum. The geo-
morphic equivalent is the principle that the path of erosion
through a substrate from one point to another is the shortest
route given the erodibility of the material and its anisotropy
and inhomogeneity.

This principle is expressed mathematically by writing an
action functional S, , in terms of the static Lagrangian £, for
the set of all possible paths {y(#)} that a point on the erosion
surface might take between two fixed points a = p(z;) and

b=y):

b
5, = [Loo.5e (38)

Note that the integrand £ is independent of time 7 and is a
parametric function of positions along y only. The path actu-
ally taken p ) is the path for which the variation of the action
is stationary:

b
Yo=p: 85, = 5/£(y(t), y(@) dt = 0. (39)

For paths traced across the velocity space to which the geo-
morphic surface Lagrangian £ belongs, we can be sure that
the action is minimized. Since £ is independent of z, we can
deduce that y is (locally) the path of the least erosion time.
Such paths are known as geodesics.

In summary, by expressing a local erosion equation as
a geomorphic surface Hamiltonian, converting it into its
dual Lagrangian form, and writing the consequent varia-
tional principle as the minimization of an action functional
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for paths across velocity space, we can conclude that points
on an erosion surface follow the shortest (in terms of erosion
time) possible paths in real space. The next section derives
Hamilton’s ray-tracing equations from the Hamiltonian: in-
tegration of these rays across slowness phase space generates
identical paths of shortest erosion time in real space.

3.12 Derivation of Hamilton’s ray-tracing equations

The fundamental function F, generates a slowness phase
space spanned by r and p on which the geomorphic surface
Hamiltonian H(r, p) operates, and we have a simple expres-
sion for ‘H given by Eq. (32). We inferred the existence of a
dual fundamental function F that generates a velocity space
spanned by r and v on which a Lagrangian L(r, v) operates,
but we have yet to obtain expressions for F and £. We can
nevertheless make use of the Lagrangian to derive equations
of motion for the erosion surface that operate on the slowness
phase space. These are called Hamilton’s equations.

Our starting point is to examine the differentials of H and
L and to compare them. The geomorphic surface Hamilto-
nian defined in Eq. (32) is static, meaning that it is constant
over time, so its differential is

I O

dH = — dr’—i——.dp,'. (40)

The differential of its counterpart Lagrangian L£(r, v) is

oL , 9L
—dr' + —dv'. 41

dL = —
ar! av!

Substituting the “fibre derivative” form of p in Eq. (36) into
this equation, and adapting the terms in p;, gives

L . Y . .
dL = —dr' + pidv' = —dr’ +d(pl~v’) —v'dp;. (42)
ar! ar!

Rearranging, we have an equation that contains the Legendre
transform given in Eq. (37):

. aL ..
d(piv' — L) = ——dri +vidp. (43)

Consequently we have a second expression for the differen-
tial of H:

oL . .
dH = ——dr' +v'dp;. (44)
ort

Equating the terms in d# defined by this equation with those
in Eq. (40), we obtain
oH oL

PR

I _ . (45)
api

The next step is subtle but important. Every coordinate
(r, v) in velocity space is (potentially) an initial position and
velocity for a point on some initial erosion surface. Similarly,
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every coordinate (r, p) in slowness phase space is (poten-
tially) an initial position, surface orientation, and reciprocal
surface-normal erosion rate for a point on that initial erosion
surface. However, most such phase space coordinates do not
correspond to real-world points lying on physically viable
paths {yp} that obey the principle of least erosion time es-
tablished in Eq. (39). Conversely, for the locations in phase
space that do lie on a paths of least action, we can write

drt ; . )

Yoo /Sv’ dr =8r'. (46)
dr

Returning to the variation integral in Eq. (39), we can inte-
grate by parts and simplify using the above result to get

b
AL . AL
88, = / <Far’ + W{Sv') dr (47)
a

b
ac  1° L d oL\ .
= —.5}"1 +/<————)5r’dt=0
ov' a art  dr ov
a

The term in brackets [-] vanishes because a and b are fixed
points associated with limit times ¢, and #, at which sri=0.
The remaining integral gives the Euler—Lagrange equations
for erosional surface motion:

doL dL
=0.

— = IE 48
dr 9vt  ort “8)

Substituting Egs. (36, and (46) into the two linking equations
in Eq. (45), we obtain Hamilton’s equations:

dri _0H

' _ 9 dpi IR
dt — ap;’ dr

== (49)

3.13 The meaning of Hamilton’s equations

Hamilton’s equations are coupled first-order ordinary differ-
ential equations (ODEs) whose integration gives the motion
of a single point on an erosion surface in terms of a trajectory
across slowness phase space. Each point along the trajectory
has phase space coordinates of position r’ = r (also the po-
sition in real space) and normal slowness covector p; = p
(which encodes both the local tilt of the erosion surface and
its reciprocal rate of erosion p = 1/£1). If we aggregate the
trajectories of a set of points from an initial surface we have
the motion of the whole surface. This method of front track-
ing is called ray tracing.

The differential equations in Eq. (49) define the rates of
change of the coordinates (r, p) in terms of the gradient com-
ponents of the Hamiltonian. Since the Hamiltonian is a con-
stant H = % along a ray or trajectory (Eq. 34), motion across
the phase space must follow coordinates (r, p) that trace a
contour of . This is achieved by moving r in the direction
dH/dp; and P in the direction —dH /dr', which is to say,
orthogonal to the Hamiltonian gradient.

Earth Surf. Dynam., 10, 383—419, 2022

C. P. Stark and G. J. Stark: The direction of landscape erosion

Hamilton’s equations take concrete form if we substitute
the expression for H in Eq. (32) into Eq. (49). Since the
model is limited here to 2D we have four coupled ODE:s:
two for the component rates of change of position,

dr 7r ¥ oH
i -0 -5 °Y
2n—1
YA [ (P +np2) }
(p%—}—p%)n —(m—1Dpxp:

and two for the component rates of change of normal slow-
ness,

dp < . . 4 OH
a—p—[px p: |= o (51)
_ 9
=—p(p2+p?)’ "¢(rx>37i[1 0].

Ray-tracing solutions of Hamilton’s equations are illustrated
in Figs. 6, 12, 13, 14, and 17.

3.14 Constancy of the vertical erosion rate along a ray

The erosion model defined in Eq. (25) is independent of el-
evation. This makes the Hamiltonian H independent of the
vertical coordinate r?, which leads to the zero element in ﬁ
in Eq. (51), i.e. the vertical component of erosion slowness is
constant:

5= 3Pz
T

This is a manifestation of Noether’s theorem (Holm, 2011;
Noether, 1971), which states that a continuous symmetry in
the action implies a conservation law for the Euler—Lagrange
equations. Here, we have symmetry with respect to % in H,
and therefore in £, which implies a law of conservation of
vertical slowness for the ray-tracing equations, i.e. that p,
must be conserved along a ray. Inasmuch as normal slowness
can be crudely equated with the concept of momentum in
classical mechanics, we have a “law of conservation of ver-
tical momentum”. Similar conservation laws limited to par-
ticular coordinate directions arise in geometric optics (Holm,
2011).

This property simplifies the task of ray tracing by reduc-
ing the number of coupled ODEs in the numerical integra-
tion from four to three. Moreover, this constancy has the pro-
found implication that the initial rate of vertical erosion &0
of a point is carried unchanged along its ray trajectory as the
surface to which it is attached moves:

1 1

bepy— __
s10= p(t) PZU_EO 43

=0. (52)

As such, each ray propagates information about the initial
surface erosion rate upstream into the landscape until such
time as it is destroyed at a cusp (which includes drainage di-
vides, e.g. Fig. 6). Meanwhile the horizontal erosion rate can
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and does change along the ray because the horizontal com-
ponent of the slowness covector p, evolves as the surface
erodes (Eq. 51).

3.15 Conjugacy of point velocity and front slowness

Hidden in the mathematics in previous sections is a simple
relationship between the tangent velocity vector and cotan-
gent normal-slowness covector pair: they are conjugate to
each other (Figs. 4 and 5), which is to say that their inner
product is one. To prove this, consider the following prop-
erty of an order-2 homogeneous function like H:

M I(3FE
—pi = Mpi = F2. (54)
opi pi

Combining Hamilton’s equation for 9% /dp; (Eq. 49) with
the definition of ray velocity v* = dr'/d¢ and given the con-
stant value of F, = 1 known from Eq. (30), this gives

pv)=piv' =1, (55)

which is the definition of conjugacy.

If the process of erosion were isotropic, conjugacy would
obviously be true. Erosion velocity and normal slowness
would be colinear, and since their magnitudes are mutu-
ally reciprocal, their product would be unity. However, the
erosion process is manifestly not isotropic (see Sect. 3.18),
which means that conjugacy also constrains the angular dis-
parity between the ray and front-normal directions.

3.16 Constancy of the Lagrangian

We can exploit conjugacy to reveal important behaviour of
the fundamental function F and the related Lagrangian L.
Since L is (like H) order-2 homogeneous, it has the property
oL _3G77)

i = i = F2. (56)
av? av’

Using the fibre derivative form of p in Eq. (36) and the defi-
nition of the Lagrangian in Eq. (35), we can deduce for phys-
ically valid ray trajectories that

2 _~ i 1
Fe=pw)=pv'=1 = E(r,v):i. (57)
In other words, the Lagrangian has the constant value of 1/2
— just like the Hamiltonian (Eq. 34) — meaning that it is only
those points with positions 7 and velocities v satisfying this
equation that represent points on a moving erosion surface.

This shows that the geomorphic surface Lagrangian and
Hamiltonian are both static given the model assumptions
made here, such as constant external forcing and domain

symmetry (Fig. 6): a more general theory that relaxes these
restrictions would lead to non-constancy of £ and H.

https://doi.org/10.5194/esurf-10-383-2022

395

3.17 Ray angle

An essential measure of ray direction is the angle o of the
velocity vector v defined relative to horizontal as follows:
Z
tano = U—X (58)
v

This definition, along with that for 8 given in Eq. (27), allows
us to manipulate Hamilton’s equations for the components of
- (see Eq. 50) for which

n 1-2n

2
v? —1
_=_px Px zpz(g )’ (59)
vt np; + Px
into a relationship between the two angles (Fig. 7):
— I)tan
tang = = Dtanf (60)
n +tan28
which inverts to give
+/n? —4ntana —2n+1—1
anp= Vn? —4ntan’a — 20 + ’ 6D

2tana

where the choice of root depends on how far the point is
along the ray trajectory (see below). By comparing « and
B we can measure erosional anisotropy (see Sect. 3.18).

Examination of Eqgs. (58) and (59) reveals an important
property of the vertical motion of erosion rays and its depen-
dence on 7. Since py > 0 and p,; < 0 in the model half-space
and because v, > 0,

a>0 <& rayspoint up forn>1,
a=0 <& rays are horizontal forn=1,
a<0 <& rayspoint down forn < 1.

This switch in ray orientation as a function of slope scaling
exponent 7, which is illustrated in Fig. 12, echoes the ob-
servations in 1+1D of Weissel and Seidl (1998) and Royden
and Perron (2013) of a change in upstream propagation with
their gradient scaling exponent n. As their work has shown,
this switch has important consequences for how and when
knickpoints form (Stark and Stark, 2022).

The ray angle function (Eq. 60) has an extremum whose
value is given by
tanaex = (62)
ext zﬁ .
This extremum represents a bound on permissible values of
ray angle . For n > 1, the extremum is positive oex; > 0 and
rays cannot point up more steeply than o < oex, While for
n < 1, the extremum is negative aex; < 0 and rays point down
at negative angles limited by o > ey The extremum is lo-
cated at a critical value of 8:

tan B. = /1. (63)
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Figure 6. Ray tracing of erosion using Hamilton’s equations (Sects. 3.12 and 4.2), illustrated here for a 2D landscape transect. The geomor-
phic surface Hamiltonian is solved over the left-hand half-domain, ranging from an exit boundary at x = 0 up to a drainage divide at x = L
(see Fig. 2). A fixed divide is enforced by mirroring this profile over the right-hand half-domain (for L. < x < 2L, such that symmetrically
generated rays annihilate each other at a cusp formed at x = L. The boundary condition imposed at x = 0 (and mirrored at x =2L¢) is a
constant vertical erosion rate V0, mimicking the behaviour of a vertical normal fault slipping at a constant rate g0 at the boundary. The
initial value of the front slowness covector p at x =0 is chosen such that the surface tilt By and vertical slowness p;, are consistent with
this rate. The model therefore simulates a horst block undergoing constant uplift and consequent erosion. Model topography is obtained
by constructing surface isochrones {7'(r)} from the rays. Since rays are traced only from the boundary and not from an initial surface, the
isochrones are time-invariant. The standard term for such topography is “steady state”, but the term is somewhat misleading here because the
Hamiltonian dynamical system has no stable point.

121 functions, and the model space is no longer (pseudo)-Finsler.
g 104 What this means in practice is not yet clear; the critical an-
P 5. gle may manifest as a transition in landscape geometric be-
2 haviour, but we can only speculate at this stage: further study
s ] is needed.
i
S 2 3.18 Erosional anisotropy
]
14
0 The difference between the erosion ray angle « and the ero-
sion front-normal angle 8 (rotated by 90° such that both
- 01 angles are measured relative to horizontal) quantifies the
s anisotropy of the erosion process:
Sl
2 o= a—B+90°. (64)
_1 O 4
; Defined in this way, i = 0° for isotropic motion, and v =
g 451 90° when anisotropy is so strong that rays and surface normal
g are orthogonal.
~201 Figure 8 shows how v varies with surface tilt § when com-

0 20 40 60 80

. . ‘ puted along a time-invariant profile for n = % and n = % As
Surface tilt B [° from horiz]

these plots demonstrate, the gradient-dependent erosion pro-
Figure 7. Variation of ray dip « with surface tilt 8 for n = %, % Cess' descrlb.ed by Eq. (25) is strongly anlsotroplc. )

Figure 9 illustrates how anisotropy varies as a function of

gradient-scaling exponent n for a selection of ray angles «.

As predicted in the previous section, the rays all point up-

For n = %, the critical surface tilt is S, = 50.77°, while for
n= % the critical tilt is 8, = 35.26° (see Fig. 7). At this crit-
ical angle the Lagrangian and the metric tensor are singular,
which means that if the surface tilt reaches this angle, the link
between H and L is broken, F, and F are no longer metric

Earth Surf. Dynam., 10, 383—419, 2022

wards (positive «) for n > 1 and downwards (negative «) for
n < 1. Broadly speaking, anisotropy i reaches greater ex-
tremes for larger absolute values of | — 1].

The physical relevance of anisotropy v is revealed by the
following. The surface-normal erosion rate can be computed
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Figure 8. Erosional anisotropy measured using ray vs. normal an-
gular disparity ¥ = o — 8 490°: variation with surface tilt 8 shown
for (a) n = 3 and (b) = % and with 11/ = 3.

from ray velocity by exploiting ray-front conjugacy (Eq. 55),
which is equivalent to a dot product between ray vector and
surface-normal slowness

p(v) = pvcosy = pvcos(a — B+90°) =1, (65)

as well as by using the reciprocal relationship between ero-
sion slowness and erosion speed p = 1/&1 (Eq. 18), to get
1
v= § . (66)
cosyr

While surface erosion takes place at a speed &1, changes
in external boundary conditions propagate much faster into
the landscape along an erosion ray trajectory with a speed
g1 secy. The two are related by projecting the ray vector
v onto the local unit surface-normal vector, which lies at an
relative angle i relative to the ray.
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3.19 Measuring slope along the erosion front

Since the Hamiltonian tracks motion of the erosion front in a
phase space spanned in part by the surface-normal covector,
solutions of front motion have the surface gradient encoded
into them. Therefore, the gradient along the evolving topo-
graphic surface can be tracked in three distinct ways. One
method is to take the ratio of the covector components:

tanfB, := tanﬂ:—&. 67)

Pz

A second method is to compute the topographic gradient:

dz
tan ,Bts = a

for {x, z} € T(x, 2). (68)
In a numerical solution, this entails making a finite-
difference approximation using values at nearest neighbour
points. A third method is to construct a velocity triangle
from the ray velocity components and the reciprocal covec-
tor slowness in the vertical direction, i.e. the vertical erosion
rate:

vi—1/p, v+t
tan By = e =0

(69)

Ideally, all three measurements of the topographic gradient
should be equal. In practice, B is computed non-locally,
whereas ), and By are strictly local but numerically differ-
ent computations; we therefore expect the three estimates to
be equal to within a precision set by choices such as ray den-
sity, time step, and interpolation method. A comparison of
the methods is given in Fig. 10.

4 Implementation

To keep development of a geomorphic Hamiltonian theory
as simple as possible, the treatment so far (Sect. 3) has em-
ployed a somewhat abstract erosion model: it has assumed
the erosion rate can be written as some combination of a
power function of surface tilt and a spatially variable (but
constant in time) function that encompasses flow rate, flow
geometry, substrate erodibility, and so on. If we want to probe
the behaviour of the geomorphic surface Hamiltonian and
its implications for landscape erosion any further, we need
to choose a particular form for the flow function component
and to parameterize this spatial dependence. However, bear
in mind that more general erosion models could also be trans-
formed into Hamiltonian form and subjected to the analyses
presented below.

4.1 A modified stream power incision model

Previous studies related to our work (Luke, 1972; Royden
and Perron, 2013; Weissel and Seidl, 1998) have focused on
the stream power incision model (SPIM) (e.g. Lague, 2014).
In order maintain a clear conceptual link with these studies,
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Figure 9. Ray anisotropy v (n; o) (coloured curves) as a function of gradient exponent 7 and its value ¥ (black line and solid circles) at the
ray angle extremum ey for a selection of ray angles: o € {£0.1°, £2°, £6.4°, £11.5°, —19.3°}.
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Figure 10. Estimation of the surface-normal angle from vertical

B, i.e. the angle of the surface from horizontal for (a) n = % and

(b) n= % and with u/n = % and Ci = 4°. This angle can be com-

puted in three ways; their mutual consistency shown here provides

a partial validation of the ray-tracing method.

and because SPIM can be adapted to satisfy the simplifying
criteria adopted in Sect. 3.5, we use it here in a modified
form. SPIM asserts that in channels,

vertical erosion rate o< (area)” (slope)”, (70)

where “slope” is the channel gradient tan 8 and upstream
area, suitably scaled, is assumed to be a good composite
proxy for the volumetric flow of water per contour width and
its contributions to channel geometry, boundary flow, sedi-
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ment transport, and rock surface abrasion. We modify this
equation so that it instead tracks

surface-normal erosion rate ~ (area)” (slope)”, (71)

where “slope” is now sin 8. This model and classic SPIM co-
incide if n = 1, since £V = &1/ cos B (Eq. 10), although they
differ somewhat otherwise. Given this similarity, we can treat
the slope and area exponents n < n and < m as roughly
equivalent.

Our model domain is a 2D transect along a channel, which
means we have to parameterize out catchment geometry and
drainage accumulation into a function of distance down-
stream. If we consider upstream area to scale with an offset
distance from the divide L. — (x —¢), where ¢ is a very small
regularization term, we can wrap this scaling into a power
function form for the flow component of the erosion model:

e(x) = @o(Le —x +&)** ~ g@o(upstream area)”. (72)

In the numerical solutions presented in Sect. 6, the regular-
ization term ¢ is given a non-zero value, but in the equations
below it is ignored.

The surface-normal channel erosion rate is then

£+ = @o(Lc —x)*(sinB)". (73)

In a similar manner to steady (constant erosion rate) solutions
of SPIM (e.g. Lague, 2014), this model will generate channel
profiles with the asymptotic slope—area scaling

slope ~ area /", (74)

assuming low-to-moderate slope angles where tan 8 & sin j.
To ensure that our numerical simulations all yield slope—area
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C. P. Stark and G. J. Stark: The direction of landscape erosion

scaling consistent with that typically observed (e.g. Beeson
and McCoy, 2020; Flint, 1974; Lague, 2014; Royden and
Perron, 2013), we fix the exponent ratio (“concavity index”)
ata constant u/n = %

4.2 Non-dimensionalization

Before embarking on numerical solutions of the model, we
non-dimensionalize it. This is helpful in the following two
ways: (i) it requires us to identify the characteristic length,
time, erosion rate and slowness scales, which makes it easier
to relate the model to real-world landscapes, and (ii) it makes
generalization of model behaviour and solution geometries
simpler.

An obvious length scale is the horizontal channel length
L, i.e. the distance from the drainage divide x = L. to the
channel terminus x = 0. The horizontal and vertical erosion
rates at the terminus are

1o PoL(sin By)”

E70 = goL M (sin o), &
cos fo

. (75

where & 70 /&40 = tan 8y and the channel tilt angle at the ter-
minus is

Bo = Bli=o- (76)

We choose £ 70 as the characteristic velocity scale. The hor-
izontal timescale is therefore

LC 1-2u

N _ C

o0 = gy A )

The vertical timescale is given by ¢, =17 cot Bo.
Now we can non-dimensionalize the primary model vari-
ables as follows:

0

~ t r

r o= —, Fo= —, p = £§70p, 78
prey L. p §7%p, (78)

and the coordinate axes

N X N Z

X = —, = —. 79
L. ¢ L. (19)

Using them to rewrite the Hamiltonian we get

(1 — Frybn p2n

) G4 ) w
where we have defined the dimensionless number

1
Ci := arcsin ((p(;l;cj“) . = Bo. 81)

We can think of Ci as both an angle and a dimensionless ero-
sion rate because when we non-dimensionalize the vertical
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rate of erosion imposed at the boundary £V0, we get the fol-
lowing equation:

£V0 /670 = tan By = tanCi. (82)
Note that we can write

E*)O(l _ fx)z,u

) = @oL (1 — ) =
#) = ol (sinCi)’ !

(83)

We can now rewrite Hamilton’s equations in dimension-
less form by rederiving them from Eq. (80). Alternatively,
we can just substitute the non-dimensionalized variables into
Egs. (50) and (51):

dr =0 d 1 d
=TT (84)
dt L. dt  &—o0 dr
dp 0.0 4P dp
= = gm0 X = 2, 85
d § dr ¢ dr (85)
and so we get
dF 9 19
ar_om_ 10 (36)
i~ 9p  E~0dp

_ =y [(ﬁ§+nﬁ§) ]

(sin> Ciyr=1 (p2 + p2)" LA —m) pxpz |’

and
dp ) )
dp _ oM _ ;O (87)
dt or or

2u(l =yt B o]

T in2Ci-l (52 442y ] '
(sin“ Ci) (Px + Pz)

Figure 11 provides a comparison of time-invariant stream
profiles for a selection of values of the dimensionless hori-
zontal erosion rate Ci € {0.1°,1°,4°}. In all other figures il-
lustrating numerical solutions, the value of this dimension-
less number is set at Ci = 4°.

4.3 Direct integration

For the simple scenario of a time-invariant profile, the ero-
sion equation (Eq. 73) can be directly integrated; more com-
plex boundary and initial conditions do not allow it. The first
step is to assume the vertical rate of erosion is constant ev-
erywhere £¥ = £40, and thereby to manipulate Eq. (73) to
expose its straightforward dependence on surface tilt § and
position x (through ¢(x)):

gl £ _ eW)lsinl”

T cosf cosf (88)

We can combine this equation with Eq. (68) to obtain a poly-
nomial in surface gradient tan 8 = dz/dx and constrain it us-
ing the result (Eq. 53) that —p, = 1/£¥ = 1/£%0 along the
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Figure 11. Time-invariant profiles (shown in non-dimensionalized form) obtained by direct integration of the model (Sect. 4.3) for two
choices of n € {%, %} and three choices of Ci € {0.1°,1°,4°}; for each value 7, the flow exponent u is chosen such that u/n = % The
channel incision number Ci sets the overall steepness since it effectively defines the gradient at the exit x = 0. Given a value of Ci, the
profiles for n = % and n = % are approximately the same until x > 0.95Lc.

whole ray and thus everywhere along a time-invariant pro-
file. The resulting polynomial in surface gradient, in non-
dimensionalized form and for rational values of the gradient
exponent such as n = % orn= %, is

dz 4 dz2 | =2 sin (Ci) . %
dx <d£ + ) (1 —x%)81cos# (Ci) (89)
We can use this function to compute the surface elevation
as a 1+1D function Z(x; n, i, Ci) as follows: (i) pick values
of n, u, and Ci; (ii) substitute these numbers into the above
function to generate a polynomial in dZ/dx and x; (iii) define
a set of sample positions 0 < {x} < 1 along the profile; (iv) at
each X, find the positive, real root of this polynomial to infer
the gradient dZ/dX at this position; and (v) use quadrature to
integrate the gradient values along the profile to get z(X).
Figure 11 shows a selection of non-dimensionalized time-
invariant profiles obtained in this way. Notice how th3e pro-

files for the two different gradient exponents n =35 and

n= % are essentially colinear for 0 < X = x/L.; < 0.95. The
practical upshot of this similarity is that it is unreasonable to
expect to infer the scaling exponents n and p from topogra-
phy alone.

Direct integrations like this are also useful as a validation
of the ray-traced solutions: this is illustrated in Fig. 13, in
which some examples of directly integrated time-invariant
profiles are shown to match those obtained by ray tracing.

5 Ray-tracing solutions

The previous sections have shown how the geometric self-
constraint implicit in a broad class of erosion models can
be transformed into a geomorphic surface Hamiltonian H
(Egs. 32 and 80) and how this function can be used to de-
rive Hamilton’s equations of motion for points on an ero-
sion surface (Egs. 50, 51, 86, and 87). In this section we
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solve Hamilton’s equations by numerical integration and use
them to construct “steady-state”, time-invariant surface pro-
files driven by constant-erosion-rate boundary conditions. In
all solutions presented below, the dimensionless horizontal
erosion rate is set at Ci = 4°.

5.1 Model domain and boundary conditions

The domain is a vertical x—z transect (Fig. 2) along a stream
profile that ranges from a drainage divide at x = L. to a
flow—exit boundary at x = 0. Profile evolution is driven by
a constant vertical erosion rate imposed at the exit, and evo-
lution of the profile is tracked relative to the elevation of the
exit. The drainage divide is pinned at a fixed horizontal posi-
tion by mirroring (Fig. 6) the main profile with a symmetrical
“image” profile spanning L. < x < 2L; solution need only
be performed over 0 < x < L.. Although there is no need to
invoke tectonic processes here, note that this model is geo-
metrically equivalent to erosion of a (half) horst block whose
uniform rock uplift is driven by constant-rate vertical slip
along a bounding normal fault, and whose topographic evo-
lution is studied in the reference frame of the hanging wall.

5.2 Ray equations

In this model geometry, rays that initiate at x = 0 (Fig. 12)
and propagate in the positive x direction are annihilated at
x = L. when a paired ray, initiated at the same time at x =
2L, arrives from the opposite direction. As such, the model
induces a cusp to form at x = L, although its formation is
not explicitly modelled here — instead, rays from x =0 are
simply truncated at x = L.

Such ray tracing entails the numerical integration of
Hamilton’s equations in the form of four coupled, first-order
ODEs for 7* and 7* (Eq. 50) and p, and p; (Eq. 51). These
are first-order differential equations in time alone, so for
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Figure 12. Tracing of a reference ray for (a) n = % and (b) n = %, with u/n = % and Ci = 4° obtained by numerically integrating Hamilton’s
equations (Egs. 50 and 51) from a constant-slip boundary at x = 0 across the domain until termination at the divide at x = L.
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Figure 13. Comparison of ray-traced solutions of time-invariant profiles (black curves) for (a) n = % and (b) n = % and with u/n = % and
Ci = 4°. A reference ray solution was obtained (Fig. 12) by numerically integrating Hamilton’s equations (Egs. 86 and 87) from X = 0 across
the domain until termination at the divide at X = x /L. = 1. Successive rays were then generated with initiation times {7} and initial elevations

{2(fo)} consistent with the constant vertical erosion rate imposed at £ = 0: four are shown here (arrowed curves). Each time-invariant profile
T (r) was generated both from the ensemble of rays and by direct integration (Sect. 4.3); the results match in each case.
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each ray we need only supply four initial conditions, i.e.
r*0,r%0, py,, and p;,, one for each ray ODE. An oddity of
ray tracing is that what would be boundary conditions in a
partial differential equation (PDE) treatment become initial
conditions for the rays, and what would be a separate Neu-
mann velocity boundary condition for a PDE gets wrapped
into those initial conditions.

Here we focus on obtaining the time-invariant profile gen-
erated by a constant vertical velocity boundary condition
gV =¢glo at x =0, for which we only need to perform ray
tracing from x = 0. We thus avoid having to generate rays
along an initial topography and having to handle their tran-
sient interaction as the time-invariant profile develops (a
topic to be addressed in Stark and Stark, 2022).

The initial horizontal position for all rays is fixed at the
stream terminus and location of the boundary condition
r*0 = x =0 (Fig. 2). The initial vertical position of a ray ini-
tiated at time ¢t = 1y is given by simple integration of the verti-
cal erosion rate: 7% = —& 0. The initial vertical component
of the ray slowness covector must be consistent with this ver-
tical velocity component, and thus we have p,, = —1/§ Yo,
Since p, = 0, this vertical covector component remains un-
changed throughout ray propagation (see Sect. 3.14), and
thus the number of coupled ODEs that need to be solved is
effectively reduced from four to three.

The initial horizontal component of the slowness covector
can be calculated if we realize that the topographic gradi-
ent at the boundary must be consistent with the orientation
of the normal slowness, i.e. tan o = —py,/ P, As such, the
initial value of the slowness covector p encodes the velocity
boundary condition in both its direction and magnitude.

5.3 Numerical integration method

After some experimentation, the most accurate quadrature or
numerical integration scheme for ray tracing with Egs. (50)
and (51) was found to be an implicit Runge—Kutta method
designed for stiff ODEs: specifically, an implementation of
the Radau ITA family of order 5 (see Hairer and Wanner,
2013, p. 72) provided by the Python package SciPy (Virtanen
et al., 2020). Simpler and lower-order Runge—Kutta quadra-
ture methods also work well for most choices of model pa-
rameters, as does the high-order Runge—Kutta, dense output
DOP853 method (see Hairer et al., 2008, p. 194).

All the numerical solutions presented here are repro-
ducible using the following open-source software (split into
two parts, both of which are needed for full operation): (i) the
GME package, which implements methods of geometric me-
chanics tailored to treating geomorphic erosion (v. 1.0, Stark,
2022a, c); and (2) a utilities library called GMPLib (v. 1.0,
Stark, 2022b, d).
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5.4 Reference ray construction

Computation of the trajectory of a point on an erosion sur-
face (and its normal slowness covector) is carried out by
numerically integrating the coupled set of Hamilton’s equa-
tions (dimensioned: Egs. 50 and 51; non-dimensionalized:
Egs. 86 and 87) with the boundary conditions described in
Sect. 5.1. This constitutes the tracing of a single reference ray
(Fig. 12), which suffices for construction of a time-invariant
topographic profile (see below). More rays need to be traced
if we want to handle time-variable boundary conditions, evo-
Iution from an initial topography, or the transition between an
initial surface and a slip boundary (Stark and Stark, 2022).

5.5 Synthesis of a time-invariant profile

The following steps are required to construct a time-invariant
solution of the erosion equation akin to a fault-driven steady-
state solution (Figs. 6 and 13):

1. choose values for the model parameters (notably the
gradient-scaling exponent 1 and upstream area-scaling
exponent (1);

2. specify the dimensionless vertical erosion rate at the
boundary Ci;

3. generate a reference ray rf(¢) by integrating Egs. (50)
and (51) (or their non-dimensionalized equivalents
Eqs. 86 and 87) from the boundary at (0, r,,) and assign
it an initiation time of #y = 0;

4. define the isochrone time T such that r7,(T) = L¢;

5. generate a kth later ray rpa.(t +kAty) with initiation
time kAty by making a copy of the reference ray, dis-
placing it vertically by —&%0kAto, and pasting it at
(0,7 — EY0k Atp);

6. truncate the copied ray at the point 7. (T — kAt);
7. repeat from step 4 until kArg > T,

8. collate the truncation points to generate a continuous
curve T(r).

Some of these steps also entail interpolation and resampling.

This procedure generates the time-invariant isochrone
T(r) formed by the constant vertical velocity £ bound-
ary condition at x =0 (Figs. 6 and 13). Repetition of the
procedure (or a simple copying of the solution), combined
with a progressive offset of the initial ray location r;, at the
boundary, simulates vertical normal-fault-driven erosion of
a topographic profile at steady state in the reference frame
of the (bedrock) substrate of the footwall bedrock (Fig. 14).
Analysis of these composite results generates solutions for
the along-profile variations in the component erosion rates
(Figs. 15c—e and 16¢c—e) and their anisotropy (Figs. 15a, 16a,
and 17).
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Figure 14. Ray-tracing construction of erosion surfaces or isochrones: (a, b) n = % and (¢, d) n = %, with u/n = % and Ci =4°. Only a

subset of the resolved rays and isochrones is shown.

In all the solutions presented here, the area-scaling expo-
nent p is chosen such that pu/n = % The dimensionless rate
of boundary erosion (Eq. 81) is fixed at Ci =4° in all but
Fig. 11.

6 Results

In this section we present numerical solutions of time-
invariant topographic profiles in dimensionless form. These
solutions help to validate the geomorphic surface Hamil-
tonian (Sects. 1.1-3); to test the inferences drawn from
it (Sects. 3 and 4); to examine its non-dimensionalization
(Sect. 4.2) and the timescales, length scales, and velocity
scales predicted by it (Sect. 6.1); to check how ray tracing
by integrating Hamilton’s equations performs as a means of
modelling surface erosion and the propagation of boundary-
change information (Sect. 5.4; Figs. 12-14), and to explore
how erosional anisotropy i varies across a landscape.

Although the solutions here are limited to a 2D x—z tran-
sect, they provide a pilot test of elements needed to con-
struct a fully 3D landscape evolution model around a geo-
morphic Hamiltonian: one in which (i) the denudation rate is
defined as acting in the surface-normal direction, rather than
purely vertically, and (ii) topographic elevation is tracked as
true geometric surface using an implicit “time-slice” func-
tion T'(x, y, z), instead of being modelled as a field using an
explicit height function h(x, y; t).

https://doi.org/10.5194/esurf-10-383-2022

6.1 Scales

Tables 1 and 2 provide some example values of model param-
eters and their corresponding time, rate and vertical scales.
For each example, the key choice is the dimensionless hor-
izontal erosion rate Ci. This dimensionless number deter-
mines the dimensionless traversal time fz, which is de-
fined as the time it takes for a ray to travel from x =0
to x =0.95L, which is obtained by numerical ray tracing.
Following this, by choosing the domain length L. and the
boundary rate of vertical erosion, dimensioned quantities can
be computed. The parameters grad = tan gy, £7°, and 10
are derived exactly; the horizontal travel time tL_C’ and the
profile height /1 close to the divide (at x = 0.95L.) are ob-
tained by numerical solution. The values shown here are all
rounded to one or two significant figures for clarity.

These tables demonstrate that boosting the imposed ver-
tical erosion rate £V0 linearly increases the consequent hor-
izontal erosion rate £7° and symmetrically decreases 0
and tL_C’ but has no effect on the profile height /7. The most
important result here is that by calculating the dimension-
less traversal time fz we can estimate how long it takes for
boundary change information to propagate into a landscape.

6.2 Time-invariant solutions

Figures 13 and 14 illustrate ray-traced time-invariant so-

lutions for two choices of the slope exponent 1 € {%, %}
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Figure 15. Ray and front behaviour along a time-invariant pro-
file for n = % and Ci = 4°: (a) anisotropy ¥, i.e. ray-front angular
disparity (@ — 8 +90°), (b) horizontal (red) and vertical (blue) ray
speeds v* and v, (¢) surface-normal erosion rate & 1, (d) horizontal
erosion rate £, and (e) vertical erosion rate Si. All rates are nor-
malized by the reference horizontal erosion rate £ 70, i.e. the rate
imposed at the boundary x = 0.

in the model equation (Eq. 73) for surface-normal erosion
rate £1. Each ray-traced isochrone 7'(r) is compared with
an isochrone obtained by direct integration (Sect. 4.3), and
in each case the match is excellent. Sequences of erosion
surfaces resulting from similar time-invariant solutions are
shown in Fig. 14.

These solutions illustrate an important behaviour of the
rays: for values of the slope exponent 1 > 1 the ray velocities
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Figure 16. Ray and front behaviour along a time-invariant pro-
file for n = % and Ci = 4°: (a) anisotropy ¥, i.e. ray-front angular
disparity (o — 8 + 90°), (b) horizontal (red) and vertical (blue) ray
speeds v¥ and v?, (¢) surface-normal erosion rate & 4 (d) horizontal
erosion rate £, and (e) vertical erosion rate fi. All rates are nor-
malized by the reference horizontal erosion rate £ 0, i.e. the rate
imposed at the boundary x = 0.

always have a positive vertical component 7* > 0, whereas
for n < 1, the vertical component 7* always has a negative
vertical component 7* < 0.

6.3 Erosion rates

Figures 15 (for n = %) and 16 (for n = %) provide a side-
by-side comparison of surface erosion rate components (£,
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Table 1. Example model parameters and predicted timescales for
n= % and pu = %, and for selected values of dimensionless erosion
rate Ci and domain length scale L.

405

Table 2. Example model parameters and predicted timescales for
n= % and pu = % and for selected values of dimensionless erosion
rate Ci and domain length scale L.

Ci gad i | Le glojg~o =0 o hi, Ci gad i | Le glojg~o =0 0 hr
° % — | km mmyr! Myr Myr m ° % — | km mmyr! Myr | Myr m
4 7 2 10 1/14 0.7 1.5 2000 4 7 5 10 1/14 0.7 34 1900
4 7 2 5 1/14 035 0.7 1000 4 7 5 5 1/14 035 1.7 940
1 2 2 | 100 1/60 2 3 4800 1 2 6 | 100 1/60 2 10 5000
1 2 2 10 1/60 0.2 03 480 1 2 6 10 1/60 0.2 1 500
0.1 0.2 2 | 100 1 /600 0.2 03 480 0.1 0.2 6 | 100 1/600 0.2 1 500
0.1 0.2 2 10 1/600 002 | 0.03 48 0.1 0.2 6 10 1/600 002 | 0.1 50
4 7 2 10 10/ 140 0.07 0.15 2000 4 7 5 10 10/ 140 0.07 | 0.34 1900
4 7 2 5 10/140 0.035 0.07 1000 4 7 5 5 10/140 0.035 | 0.17 940
1 2 2 | 100 10 /600 0.2 0.3 4800 1 2 6 | 100 10 / 600 0.2 1 5000
1 2 2 10 10/600 0.02 | 0.03 480 1 2 6 10 10/600 0.02 | 0.1 500
0.1 0.2 2 | 100 10/6000 0.02 0.03 480 0.1 0.2 6 | 100 10/6000 0.02 0.1 500
0.1 0.2 2 10 10/6000 0.002 | 0.003 48 0.1 0.2 6 10 10/6000 0.002 | 0.01 50

£, £V) along ray-traced time-invariant profiles, together
with some of the variables that contribute to their variation
(anisotropy ¥ and ray velocity components v*, v?). All plot-
ted quantities are dimensionless.

As Figs. 15a—c and 16a—c show, the progressive upstream
decrease in anisotropy v is reflected in upstream decreases in
ray velocity (particularly the vertical component v*) and the
surface-normal erosion rate £+. The horizontal rate of ero-
sion £ decreases upstream in an apparently linear fashion,
correlating with a similar behaviour in the horizontal compo-
nent of the ray velocity v*. The vertical rate of erosion £V is
constant (to within the precision of the numerical solution),
as expected for time-invariant (“steady-state”) profiles.

Surface-normal erosion rate is computed in two ways from
the ray-tracing results (Figs. 15c and 16¢). One way is to sim-
ply use the fact (Eq. 18) that normal speed is the reciprocal
of normal slowness £ = 1/p. The other is to project the ray
velocity onto the surface normal (unit) vector using Eq. (66).
The horizontal £~ and vertical £V erosion rate components
are computed with Egs. (9) and (10) using either of the es-
timates of €. Since ray tracing involves discrete sampling,
values of £ computed in these two ways are not numerically
identical. The discrete sampling also entails having to gener-
ate interpolating functions so that erosion rate values can be
calculated at arbitrary positions along the profile.

6.4 Anisotropy

Figure 17 provides a striking visualization of erosional
anisotropy ¥ (x) by plotting its variation with x along time-
invariant topographic profiles. The direction and magnitude
of normal slowness covectors are represented with “fish-
bone” symbols (where the number of cross-tick “bones” ap-
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proximates slowness p), while arrows represent the ray ve-
locity vectors. The colour attribute of each symbol visual-
izes the magnitude of the angular disparity . The degree
of anisotropy is evident in the strong angular disparity of
r and p for the same choices of 7 € {%, %} The strongest
anisotropy is found downstream in the channels, where the
channel tilt 8 is small, the normal covector points almost ver-
tically downwards, and the ray velocity vector points almost
horizontally upstream. Anisotropy decreases monotonically
upstream as the normal covector rotates towards horizontal
more rapidly than the ray vector angle. At the divide, the
model erosion process is approximately isotropic; this lim-
iting behaviour is moot, however, because the erosion model
used here (Eq. 25) does not apply to steep channels.

7 Discussion

7.1  Geometry controls (almost) everything

The main aspiration of this paper is to clarify what we mean
when, in the context of landscape evolution, we speak of the
direction of erosion. Our central mathematical tenet has been
that while gradient-driven surface erosion takes place in the
surface-normal direction (Sect. 1.1; Eq. 3), points on suc-
cessive erosion surfaces do not necessarily map in the same
direction. Working from this premise and with the help of
geometric mechanics, we have found unexpected complexity
hidden in simple erosion models.

The concept of a covector is pivotal to our theory
(Sect. 3.1). Once we realize that the surface-normal erosion
rate (imposed by the gradient-dependent erosion model) can
be written in terms of the normal-slowness covector (which
is the consequent motion of the surface), it takes only a

Earth Surf. Dynam., 10, 383—419, 2022
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Figure 17. Anisotropy of erosion ¥ = o — 8 4 90° for time-invariant profiles with n = % and n = % and with u/n = % and Ci = 4°. Ray
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in the divergence of the r and p directions and in the colour attribute used to visualize their angular disparity. Anisotropy v progressively

decreases upstream.

few short steps to reach the geomorphic surface Hamilto-
nian. Hamilton’s ray-tracing equations, the geomorphic sur-
face Lagrangian, and the adherence to Huygens’ and Fer-
mat’s principles all logically follow.

The essential ingredient of the theory is the realization
that, at its core, the process of erosion is a geometric self-
constraint. If we disregard complexities such as sediment
cover factors and external variations in forcing, a generic
model of erosion is a statement about how a surface geome-
try (through its gradient and flow accumulation) determines
the rate of change of that surface geometry. Reparameteriz-
ing this statement generates a fundamental function (and thus
a Hamiltonian) that describes how to measure distance in the
phase space of the erosion equation. The properties of this
function reveal that landscape erosion is best described us-
ing Finsler geometry. This is important because it provides
a fundamental explanation for why geomorphic erosion is
anisotropic. As Fig. 17 demonstrates, this anisotropy is very
strong.

Earth Surf. Dynam., 10, 383—419, 2022

Counter-intuitively, the erosion rays point (obliquely) up-
wards if the scaling behaviour of slope in the erosion model
has an exponent 1 > 1: we might have expected points on an
erosion surface to always move downwards since erosion is,
after all, driving the surface downwards; this is indeed the
case if n < 1. Remember that the topographic profiles ob-
tained by numerical solution here are time-invariant solutions
without an uplift term, as visualized as time slices in Fig. 14;
upward motion of rays is therefore driven only by erosion
and is not influenced by any tectonic motion.

The idea that surface erosion simultaneously drives two
distinct motions — subvertically in the surface-normal di-
rection and subhorizontally in the ray direction — is an un-
comfortable and apparently very abstract notion, but it has
physical consequences. It means erosion drives information
about boundary conditions upstream subhorizontally while
also driving motion of the whole profile downwards subver-
tically. The timescale on which boundary-condition informa-
tion propagates into the interior is the time it takes for a point
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to travel along a ray (the ray velocity is sometimes known
as the signal velocity, which conveys the sense of informa-
tion propagation well). This information may be the rate of
erosion at the stream terminus, the equivalent slip rate on a
boundary fault, or the erosion rate at a point on an initial pro-
file.

For these time-invariant solutions, all rays are identical
and the boundary condition does not change. If the boundary
erosion rate (or equivalent fault slip rate) were to change (e.g.
Reinhardt et al., 2007), we would anticipate the ray paths to
change, and we might expect them to intersect (depending on
the value of 7): this is one way that knickpoints form. Explo-
ration of this topic is left for another paper (Stark and Stark,
2022). The only ray intersections presented here are those
that implicitly take place at the drainage divide, as rays are
imagined to approach symmetrically from a right-hand half-
domain (Fig. 6). The crucial difference is that intersection at
divides occurs when rays approach from opposite directions;
knickpoints form where rays move in the same direction at
different speeds, one overtaking the other.

Previous studies have considered knickpoint formation as
the propagation and intersection of ray-like characteristics
(Luke, 1972; Royden and Perron, 2013; Weissel and Seidl,
1998) but always in terms of an explicit surface function and
a one-dimensional Hamilton—Jacobi equation describing el-
evation as a function of distance upstream and time. The pa-
rameter space traversed by these characteristics has no con-
cept of the surface-normal or of erosion slowness covectors,
which prevents a direct comparison of the results of these
studies with those presented here. However, they are broadly
in agreement.

Perhaps the oddest outcome of the Hamiltonian theory,
but one that is not surprising in retrospect, is that the ver-
tical component of the erosion slowness covector is constant
(Sect. 3.14; Egs. 52-53). To be precise: as a surface point
initiates at the boundary and moves along a ray into the in-
terior, its vertical component of surface slowness is invari-
ant, p, =0, and thus the vertical component of the surface
erosion rate is constant, £V (1) = —1/p.(1) = —1/pz = glo,
For a time-invariant (steady-state) profile, all rays are iden-
tical, meaning that there is only one ray solution; therefore,
the surface at every point along the ray must be moving ver-
tically at the same speed; all rays are independent; therefore,
all rays must maintain constancy of the vertical component
of the surface erosion rate 1/p;. In this sense, a ray carries
information of the boundary condition — the vertical slip rate
— into the landscape until it is destroyed at a cusp.

The timescale of this information transfer is of crucial im-
portance. If it is small relative to the timescale on which
drainage divides move laterally and significantly changes ac-
cumulation areas and flows, then the assumption made in
Sect. 3.5 is valid: namely, that the flow — at every point on
the surface where flow influences erosion — can be param-
eterized by its surface geometry, i.e. its upstream area, in a
manner constant with time (for the lifetime of a ray). This re-
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quirement can be weakened to allow for slow variation of the
parameterization with time, in which case the Hamiltonian
field would need to be recalculated periodically. This is not
to say that the geomorphic surface Hamiltonian theory is in-
validated if the timescale requirement is not met; rather, the
theory would become nonlocal and more complicated. The
degree to which such a step is necessary is a topic for future
research.

On a side note, bear in mind that the following are all dif-
ferent ways of saying the same thing: (i) the directional pace
(reciprocal rate) of erosion-driven surface motion, (ii) the
surface-normal slowness covector, (iii) the gradient of the
erosion-front arrival-time function, (iv) the directional den-
sity of erosion surface isochrones, and (5) the gradient of the
geomorphic Hamilton action.

7.2 A geomorphic surface Hamiltonian in 3D

While the geomorphic surface Hamiltonian developed here
is limited to erosion-driven motion of a linear front in 2D
space, the goal is to construct a theory for surface evolution
in 3D space. Several conceptual and computational hurdles
will need to be overcome if this goal is to be met.

The main challenge for a 3D theory will be to find a way to
treat channel formation that is consistent with the Hamilto-
nian methodology. It is tempting to want to resolve the chan-
nel shape itself, but this would entail having to add hydro-
dynamics, sediment transport, and abrasion processes to the
mix; such a change would not only make the theory inordi-
nately complex, it would run counter to our core premise that
what matters is the geometric self-constraint imposed by ge-
omorphic processes, not the details of those processes. A pa-
rameterization of flow focusing in channels will be required:
one that encapsulates channel cross-sectional geometry with-
out describing it explicitly.

Another challenge hinges on the assumption of locality. A
first-cut 3D model can probably be framed with fixed catch-
ment perimeters and static drainage divides; however, there
will be a pressing need to generalize and allow for divide
motion so that catchment shapes can self-form. The ques-
tion of timescales raised in Sect. 7.1 will still apply in 3D:
if the timescale of divide motion and catchment area change
is large relative to the time it takes for erosion rays to tra-
verse the catchment, we will probably be able to treat the
flow component of the geomorphic surface Hamiltonian as
approximately static, which will make it possible to derive
Hamilton’s equations for 3D ray tracing.

Numerical solution may require a change of approach, be-
cause ray tracing of a surface in 3D is much more cum-
bersome than for a line in 2D, particularly when dealing
with ray intersections and cusp formation. An obvious al-
ternative approach lies in the fact that the theory employs
an implicit surface function to describe landscape geometry
(Sect. 2): we can resolve erosion front motion on a regu-
lar grid and use a level-set method to solve the geomorphic
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HJE (Adalsteinsson and Sethian, 1995a; Mosaliganti et al.,
2013; Sethian and Adalsteinsson, 1997). This will have to
be done with some care, however, because of the Finsler na-
ture of the geomorphic surface Hamiltonian and its inher-
ent anisotropy. One-pass fast marching will not be possible,
because even the most advanced algorithms for fast march-
ing (Mirebeau, 2014b, 2019; Mirebeau and Portegies, 2019)
are currently limited to metrics whose anisotropy is Rieman-
nian (velocity-independent anisotropy) or Randers (velocity-
dependent anisotropy of a different type to that of the ge-
omorphic Hamiltonian) (Mirebeau, 2014a). A further issue
will be the non-convexity of the geomorphic Hamiltonian for
certain ranges of n and 8 (Appendix C): non-convex Hamil-
tonians were addressed in the early literature on the level-set
method (e.g. Adalsteinsson and Sethian, 1995b, ¢, 1997) and
have been encountered in applications to non-geomorphic
erosion (e.g. Radjenovi¢ et al., 2006a, b, 2010; Radjen-
ovi¢ and Radmilovié-Radjenovié, 2009); recent methodolog-
ical developments (Chow et al., 2018, 2019; Evans, 2014;
Pinezich, 2019) may help. Methods developed in the field of
seismology may also prove useful (e.g. Moser, 1991; Qian
et al., 2003; Rawlinson et al., 2008; Wang et al., 2006).

7.3 The variational principle is not energy minimization

There is a substantial body of work founded on the idea that
landscapes self-organize in order to minimize energy dissi-
pation across their flow networks. Most of the literature de-
veloping this idea — broadly known as optimal channel net-
work (OCN) theory — dates from the 1990s (Ijjasz-Vasquez
et al.,, 1993; Rigon et al., 1993; Rinaldo et al., 1992, 1998;
Rodriguez-Iturbe et al., 1992a, b) and is comprehensively re-
viewed in the book by Rodriguez-Iturbe and Rinaldo (2001).
In this section we compare and contrast OCN theory with our
theory of the geometric mechanics of erosion.

OCN theory is framed in terms of the self-optimization
of a cost function. It identifies this cost function as the total
rate of dissipation of mechanical potential energy released
by water flowing down channels across the whole landscape.
Initial development of the theory focused on the planform ge-
ometry and topology of channel networks; it was only later
work that addressed the consequent formation of topography.
Hillslopes were assumed to play no role. The strong geomet-
ric similarity between OCNs and natural stream networks, in
particular their similar scaling behaviour, is often presented
as a vindication of the theory.

Optimality is a commonly used concept in engineering; its
cousin in physics is the notion that system behaviour arises
through a variational principle that guarantees minimization
of a key quantity. The most fundamental difference is that in
engineering the optimization criterion is invoked as a design
choice, whereas the variational principle arises as an expres-
sion of the underlying physics. It is from this difference that
the following criticisms of OCN theory spring.

Earth Surf. Dynam., 10, 383—419, 2022

C. P. Stark and G. J. Stark: The direction of landscape erosion

OCN theory arbitrarily requires minimization of the en-
ergy dissipated across the whole channel network; this stip-
ulation is justified on the basis that many physical systems
exhibit similar behaviour. Such a requirement implies the ex-
istence of a variational principle (Sinclair and Ball, 1996)
guiding landscape evolution towards this optimal state, but
OCN theory does not articulate this principle in words or
mathematics. A corollary issue was the initial omission of a
Hamiltonian, which was remedied to some extent in Rinaldo
et al. (1998). The weakness of their Hamiltonian is that it
cannot be used to derive equations for the time-evolution of
the landscape: it constrains what shape the landscape must
take, but it cannot explain how that shape comes about.

By framing an alternative theory in terms of geometric
mechanics, these issues are avoided. The guiding variational
principle is clearly articulated as follows (Sect. 3.11): topo-
graphic evolution obeys the principle of least erosion time.
Adherence to this principle is not imposed; it arises geometri-
cally from the way that geomorphic erosion propagates a to-
pographic front and modifies the pattern of erosion rates. The
correlative Hamiltonian (Sect. 3.8) generates equations that
describe landscape evolution both in the form of Hamilton’s
equations and in their equivalent form of a Hamilton—Jacobi
equation. Solution of these equations, for appropriate bound-
ary conditions, evolves the topography to a time-invariant
shape, but this shape is the outcome of geometric interaction
rather than a mechanism of energy-dissipation minimization.

Comparison of the two theories is a little premature be-
cause our theory needs further development if we want it to
describe the evolution of a whole channel network. The cur-
rent model also pins the drainage divide at a fixed position: as
a result, the degrees of freedom present in a landscape evolv-
ing in 3D, notably those that permit different flow topolo-
gies and geometries, are absent from our model. It is these
degrees of freedom that lead to the existence of many possi-
ble states of energy dissipation, i.e. many possible drainage
network configurations; in our 2D theory, only one time-
invariant state (a simple linear profile), imposed by the model
erosion (Eq. 25), is possible. Nevertheless, it will be interest-
ing to see if a full 3D theory can throw light on what drives
landscape self-organization and channel network formation:
whether these phenomena arise primarily from the geometric
self-constraint imposed by geomorphic erosion and, if so, the
extent to which the process of energy minimization is com-
plementary.

8 Conclusions

When we say that the rate of erosion of a geomorphic surface
is a function both of its tilt and of the fluxes passing over it,
we are in essence saying that the rate of change of landscape
geometry is a function of that geometry. Here we have shown
how to express this geometric statement as a Hamiltonian and
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how to use this Hamiltonian to understand the meaning of the
phrase “the direction of landscape erosion”.

Our foundational premise is that motion of an erosion sur-
face intrinsically acts in the surface-normal direction. On
this basis, we can convert a gradient-dependent erosion rate
(i.e. speed) model into a model for the normal slowness (i.e.
pace) of surface erosion, parameterized by surface tilt and
upstream area and expressed as a covector. Using a simple
mathematical trick (a scaling substitution), and by writing tilt
in terms of slowness covector components, the model equa-
tion can be rearranged into what is called the fundamental
function of its metric space; the square of this function is the
geomorphic surface Hamiltonian.

This Hamiltonian is parameterized in terms of (i) the posi-
tion of a single point on the surface, and (ii) the correspond-
ing orientation and slowness of the surface at that point. The
Hamiltonian thus occupies a six-dimensional phase space
(which reduces to four if the model domain is restricted to
a 2D slice). Although such extra dimensionality may seem to
be just a mathematical abstraction, it provides real insight.

Study of the Hamiltonian and its phase space reveals that
surface evolution simultaneously involves two distinct direc-
tions of motion: the surface (at a given point) moves in the
surface-normal direction, while the point itself moves in what
may be an entirely different direction. The disparity between
these two directions is a measure of the anisotropy of the pro-
cess governing motion, and for the class of erosion models
studied here such anisotropy is very strong.

This phenomenon is best explored using Hamilton’s ray-
tracing equations — derived from the Hamiltonian by sim-
ple differentiation — which express the motion of a surface
point and its allied surface-normal slowness in terms of or-
dinary differential equations (ODEs). They show that while
changes in the surface erosion rate and direction are encoded
in the normal slowness ODEs, information about boundary
conditions and external changes is carried upstream by the
ray ODEs.

There is an important dependence of ray tracing on surface
tilt: if the model erosion rate scales faster than linearly with
gradient (n > 1), such rays always have a positive vertical
component, i.e. they point upstream and obliquely upwards.
However, if the model erosion rate scales sublinearly with
gradient (n < 1), erosion rays always have a negative verti-
cal component, i.e. they point upstream but obliquely down-
wards along their trajectories.

We have shown how the phase space occupied by the geo-
morphic surface Hamiltonian is a metric space and how this
leads us to deduce that the erosion rays traced by surface
points are geodesics. In other words, they follow paths of the
locally shortest erosion time: this is the variational principle
that guides geomorphic surface erosion. It appears that en-
ergy dissipation need not be invoked and that instead all that
matters is geometry.
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Appendix A: Related studies

A1 Geoscience applications of the HJE

The HJE has seen only sporadic use in the geosciences — ex-
cept in the field of seismology, where its static or eikonal
form has been found to be particularly useful. The eikonal
equation is a good approximation for seismic wave propaga-
tion in the so-called “high-frequency limit” at which seismic
wavelengths are very small compared to the scale of wave
propagation (e.g. Cerveny, 1989, 2005, 2002; Dellinger,
1997; Mensch and Farra, 1999; Rawlinson et al., 2008; Slaw-
inski, 2014; Virieux and Lambaré, 2007; Woodhouse and
Deuss, 2007). From this approximation arises the conve-
nient fiction of seismic rays, which are both the character-
istics of the HJE and solutions of Hamilton’s equations. Al-
though there are disadvantages to its use in treating seismic
wave propagation, e.g. dynamic interactions are not mod-
elled and spectral information is lost, the Hamiltonian ap-
proach has proven insightful, particularly when dealing with
anisotropic media (Antonelli et al., 2003a, b; Bona and Slaw-
inski, 2002, 2003; Bucataru and Slawinski, 2005; éerveny,
2002; Klimes, 2002; Yajima and Nagahama, 2009; Yajima
etal., 2011).

An analogous form of the seismic Hamiltonian approach
has been applied to studying the effects of anisotropy on fluid
flow in porous media (Sieniutycz, 2000, 2007; Yajima and
Nagahama, 2015).

A2 Applications of the HJE to geomorphology

In geomorphology, Luke (1972, 1974, 1976) pioneered appli-
cation of the HJE to the modelling of fluvial knickpoints as
shocks formed by kinematic waves (Lighthill and Whitham,
1955a, b; Whitham, 1999). Weissel and Seidl (1998) and
Royden and Perron (2013) built on this approach to further
understand the conditions under which knickpoints form and
how they propagate. In all these studies, the HIE was de-
ployed in an explicit-surface form, and its ability to model
implicit-surface motion was not considered.

A3 Use of the eikonal equation in geomorphology

To our knowledge, only one previous study has attempted to
model landscape evolution as an implicit surface moving ac-
cording to an eikonal equation. Aronsson and Lindé (1982)
did so in a treatment of weathering-limited denudation of a
rock cliff incised at its base by a river. By integrating the
eikonal equation representing this erosion process, and by
presenting level-set solutions as isochrones of the cliff tran-
sect, they demonstrated how variations in rock erodibility can
lead to highly irregular surface geometry such as overhangs.
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A4 Non-geomorphic erosion modelled with the HJE

There is a literature on erosion driven by non-geomorphic
processes, and much of it is unfamiliar to the geomorphol-
ogy community. The methods employed in some of these pa-
pers provide a partial foundation for our Hamiltonian-based
approach. For example, both implicit surface motion and the
HIJE have been the basis for modelling erosion at microscopic
scales in an engineering context.

Frank (1958) employed the concept of surface-motion
slowness as a means to model the anisotropic dissolution of
crystal surfaces in 2D (although neither the HJE nor the con-
cept of a covector were explicitly invoked). He later extended
this approach to handling dissolution in 3D (Frank and Ives,
1960). His technique is widely cited in the crystallography
literature (e.g. Frank and Ives, 1960; Ives, 1961; Osher and
Merriman, 1997; Shemenski et al., 1965).

In materials science, the Frank (1958) method has been
adapted to treat surface erosion at the micrometre scale
driven by ion beam bombardment. Early work (Barber et al.,
1973; Carter et al., 1971; Nobes et al., 1969) focused on
amorphous substrates and isotropic erosion without men-
tioning the HJE. Subsequent advances introduced the HJE
(Carter et al., 1984; Katardjiev, 1989; Katardjiev et al., 1989;
Nobes et al., 1987; Smith et al., 1986; Witcomb, 1975) and
the eikonal equation (Carter, 2001) and used them to address
the issue of anisotropic erosion. Perhaps most relevant to our
theoretical development is the review article by Smith et al.
(1986), which is also notable for its invocation of an ero-
sional Hamiltonian, and the papers by Carter et al. (1984),
Katardjiev (1989) and Katardjiev et al. (1989), which con-
nect the HJE and its Hamiltonian to Huygens’ principle and
the concept of erosional wavelets (see also Adalsteinsson and
Sethian, 1995b, ¢, 1997; Sethian and Adalsteinsson, 1997).

A5 Front motion obeys Huygens’ principle

Central to the ideas in the previous sections is Huygens’ prin-
ciple, one of the founding contributions to the field of optics.
Using a graphical construction, the principle explains how a
wavefront bends as it passes through media of varying re-
sistance to motion (e.g. Arnold, 1989; Holm, 2011; Miller,
1991). At every instant, it pictures the front peppered with
tiny wavelets. Each wavelet represents how far, if it were
spreading in isolation, a point on the front would expand in
the next instant to form its own micro-front. Since the points
are not isolated, they interfere to form a mutually tangen-
tial envelope, with each point moving to the location of its
wavelet tangent. The set of successive of tangential envelopes
constitutes the progressive motion of the front.

In wave-propagation terms, the wavelet represents the unit
envelope of group velocity at the point of interest: its shape
is called an indicatrix. There is a corresponding structure for
phase velocity, known as the figuratrix, which is typically
used in its reciprocal speed or slowness form. The velocity
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indicatrix and slowness figuratrix are linked through mutual
conjugacy: as such, they contain the same information about
front propagation but in different forms (Carathéodory, 1999;
Perlick, 2000; Rider, 1926; Rund, 1959).

In other words, wavefront propagation can be tracked us-
ing either group information or phase information. For front
propagation in general this equivalence translates into track-
ing using either (i) point velocities and their trajectories (ray
paths) or (ii) point-wise front-normal slownesses and their
ensemble motions.

Huygens’ principle is best known for explaining wave
propagation in inhomogeneous but isotropic media, where
the indicatrices and figuratrices are spherical but vary in
size from place to place; isotropy ensures that the group
and phase-propagation directions are the same. The prin-
ciple is also often used to explain propagation in me-
dia whose anisotropy is symmetric but ellipsoidal (Arnold,
1989), where the group and phase-propagation directions are
different. Recent efforts have further proved that the princi-
ple extends to asymmetric, non-ellipsoidal indicatrices and
figuratrices representing a generalized form of anisotropy
(e.g. Dehkordi and Saa, 2019; Innami, 1995; Javaloyes et al.,
2021; Markvorsen, 2016; Palmer, 2015) expressed in terms
of something called Finsler geometry (see Appendices C
and D).

A6 Wildfire spread and Finsler geometry

Several of the ideas discussed in previous sections have seen
application in a totally different field — that of wildfire predic-
tion — in the envelope model of fire spread. The earliest form
of this 2D model was very simple (Van Wagner, 1969), pos-
tulating that wind-driven fire growth can be approximated as
a burn ellipse elongated and offset in the wind direction. An-
derson et al. (1982) extended the model and deployed Huy-
gens’ principle to propagate a wildfire using elementary burn
ellipses scattered along the fire front, each scaled and shaped
according to the local fuel availability and wind direction.

These early efforts were purely graphical constructions
(Sullivan, 2009). Subsequently, Richards (1990, 1995) for-
malized the fire-front-propagation process as a form of the
HIJE (without explicitly mentioning the equation by name).
The model has subsequently evolved, and its most sophisti-
cated version (Markvorsen, 2016) recognizes the elementary
burn shapes as non-elliptical velocity indicatrices and frames
the anisotropic motion in terms of Finsler structures. Finsler
geometry is useful because it provides a convenient mathe-
matical context in which to express the time it takes for a fire
front to cover a given distance under the directional influ-
ence of wind and terrain. It is for similar reasons that Finsler
geometry is important for understanding the anisotropy of
geomorphic erosion, as Appendix D shows.
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A7 Ray tracing the motion of a front

The rays of seismology and geometric optics are paths of
least time, and they can be traced in two distinct ways: (i) by
integrating Hamilton’s equations, which are derived from the
Hamiltonian contained in the HJE, or (ii) by transforming the
Hamiltonian into (or writing directly) the corresponding La-
grangian, converting into the Euler-Lagrange equations, and
integrating them (see Appendix E). In both cases, the essen-
tial step is to write a Hamiltonian version of the process gov-
erning motion. For simplicity, the derivation presented in this
paper is limited to a 2D vertical slice of a landscape. A fully
3D treatment is the subject of ongoing research.

There is a connection between the Hamiltonian ray-tracing
method developed here and the work of Luke (1972), Roy-
den and Perron (2013), and Weissel and Seidl (1998). These
previous approaches deployed the method of characteristics
to solve a 1+1D form of HJE in which a 2D topographic pro-
file is represented in an explicit fashion, and their results have
some resemblance to those we obtain by full ray tracing (see
Sect. 3.12). The main difference is the explicitly 1+1D form
of the governing equation in these studies, which forces ele-
vation to be a single-valued function, and which coerces ray
tracing into resolving horizontal motion only. If one were to
write the Hamiltonian phase space covector coordinate (the
direction and reciprocal speed of the surface at a point on the
front) for these problems, it would take the reduced form of
the slope patch variable of Royden and Perron (2013); this
variable contains explicit information about horizontal mo-
tion of a surface patch (through its position), but vertical mo-
tion is implicit (see Royden and Perron, 2013, Eq. 15). As a
result, the inherent anisotropy of the erosion process is hid-
den.

Appendix B: Phase spaces and tensors

Slowness covectors and velocity vectors are different math-
ematical objects, and they live on different spaces, where
“space” is meant in the abstract sense used in differential ge-
ometry. For each point r in the physical, Euclidean world we
can create an allied tangent space that contains all the possi-
ble tangent velocity vectors (like &) at that point; we can also
envisage a corresponding cotangent space to contain all the
possible slowness covectors (like P) at that point. Bundled
together, the tangent spaces for all points in real space con-
stitute a tangent bundle or velocity space, while the union of
cotangent spaces forms a cotangent bundle or slowness (clas-
sically called “momentum”) phase space. These two spaces
are indispensable tools of geometric mechanics.

One way to see that vectors and covectors are different is
to look at their tensor form: vectors are rank (1,0) contravari-
ant tensors, whereas covectors are rank (0,1) covariant ten-
sors (which is where the “co-" prefix comes from). Tensors
of different rank cannot be combined arithmetically; instead,
operations such as contraction are needed to combine them.
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For example, in Eq. (13), the action of covector p on the unit
vector n is a tensor contraction:

Pmy=pin' = Y pin' = pn* + pn®. (B1)

ie{x,z}

The expression p;n’ here employs the Einstein summation
convention: when an index (such as i) is shared by several
terms, summation is automatically performed for those terms
over all index elements (in this case, over i € {x, z}). Upper
indexes are used for contravariant tensor components; lower
indexes are used for covariant tensor components.

Appendix C: F, is a metric function

The fundamental function F, has three key properties that
are valid for a domain D of {r*,r?, p., p.} phase space cor-
responding to physically reasonable values of surface tilt and
erosion rate:

1. positive, order-1 Euler homogeneity in the parameter p,
i.e. if the covector p in F is scaled by a positive scalar
A > 0, the reparameterized function equals the original
function scaled by A,

Fiu(r, AP) = AFu(r,p) for A > 0, €D

where the 1 in “order-1" refers to the exponent in A on
the right-hand side of this equation;

2. regularity, i.e. F is smooth, in that it can be differen-
tiated infinitely many times without encountering a dis-
continuity or undefined value;

3. the Hessian of ]-'f, i.e. the Hessian of the Hamiltonian
H,is

5 1 3F?
g:;] = = - s (C2)
2 dpxdp;

where for n>1 and —py/p; =tanB. # ,/5, both

eigenvalues of gij are real and positive, making g/ pos-
itive definite and F strongly convex.

Given these properties, J constitutes a type of Finsler met-
ric (Bao et al., 2000; Shimada and Sabau, 2000). This means
that F, provides a means of measuring distance and travel
time between points in slowness phase space that is depen-
dent on both position and direction of motion (Sect. A7 and
Appendix D; see Bao, 2007). In other words, the shortest
time path between two points in the corresponding real space
may not be a straight line.

Strictly speaking, F is a co-Finsler metric on the cotan-
gent space, and thus we are dealing with a co-Finsler or Car-
tan geometric space (e.g. Miron et al., 2002; Yajima et al.,
2011). The term “Finsler” is reserved for the counterpart tan-
gent space and for the fundamental function F, the dual of
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Fx. Nevertheless, for brevity we use the term “Finsler” to
apply to both spaces and metrics.

We also need to be cautious in generalizing about Finsler
properties of F, and the geomorphic surface Hamiltonian.
For n < 1 and B < B, the Hessian of # is not regular, g is
indefinite with mixed signature (the eigenvalues are both pos-
itive and negative), F is not convex (Beem, 1971; Cerveny,
2002; Giaquinta and Hildebrandt, 2004), and the Hamilto-
nian H is non-convex. For n > 1 but 8 > B., the Hamiltonian
is similarly non-convex. Under these conditions, it is more
appropriate to use the term pseudo-Finsler for the metric and
its phase space (see Asanov, 1985, pp. 21, 44, 266)

Having a Finsler, or at least pseudo-Finsler, geometry
is important for several reasons. The most immediate is
the need to adopt a quadratic form of F, as a Hamil-
tonian (Sect. 3.8) because F, cannot be Legendre trans-
formed directly (e.g. Cerveny, 2002; Giaquinta and Hilde-
brandt, 2004, p. 16). It also means that if we wish to solve
erosion front motion as an HJE, we need to find an al-
ternative to the fast-marching method because this algo-
rithm is limited to Riemannian anisotropic metrics (Mire-
beau, 2014b, 2019; Mirebeau and Portegies, 2019) and to
a small subset of Finsler metrics whose velocity-dependent,
Randers-type anisotropy (Mirebeau, 2014a) differs from that
of the geomorphic Hamiltonian.

Appendix D: Finsler geometry and curved space

In geomorphology, we are used to dealing with equations
that operate in a flat Euclidean geometry where the space is
spanned by Cartesian {x, y, z} coordinates. In such a space,
distances are measured directly using Pythagoras’ theorem
and the topology of curves across it is straightforward. Work-
ing in a flat space like this is fine for studies at the catchment
scale and is a good approximation even at the orogen scale.

There are scales, however, where use of such a flat space
is inadequate. For example, what if we are interested in pro-
cesses on a global scale and need to account for the spherical
geometry of Earth’s surface? Switching to spheroidal coor-
dinates is only half the battle because transport on a sphere
is topologically different to that on a flat space: particles in
locally straight motion follow looping paths, these paths are
great circles, sets of great circles always converge and inter-
sect, and so on. In this example, we need to understand the
consequences of working in a curved space and its conse-
quences if we want to understand physical phenomena acting
at such scales.

The concept of curved spaces is relevant not just to pro-
cesses on objects with topological curvature; in an abstract
way, it can also apply to the space in which the governing
equations operate. For some types of process, the govern-
ing equations can be mapped from Euclidean space into a
non-flat phase space that both simplifies their solution and
exposes their fundamental properties and behaviour.
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The geomorphic surface Hamiltonian H, which arises
from the transformation of an erosion equation, operates in
such a non-flat space. Distance and travel time are not Eu-
clidean measures on this phase space because the fundamen-
tal metric function F that defines H has the properties de-
scribed in Sect. 3.7.

The curved nature of non-Euclidean spaces lies in how dis-
tance is measured on them. The measurement of distance al-
ways requires a yardstick of some kind (on a metric space,
this is a tensor derived from F or F,, and an associated inner
product), but the yardstick used in Finsler geometry is not the
equivalent of a simple ruler. It is not an isotropic constant as
it would be in a flat Euclidean space (where the metric tensor
is a simple Kronecker delta), nor is it an anisotropic, possibly
spatially variable, but otherwise static quantity as it would be
in a curved Riemannian space (with a metric tensor whose
variable elements are a function of position r alone). Instead,
the yardstick is a function both of position and of the direc-
tion and magnitude of motion at that position, i.e. for F, the
metric tensor elements vary with both r and p, not just with
r. Instead of measuring distance with a single inner product
at each point, there is a family of inner products associated
with each point (e.g. Shen, 2001).

This directional dependence of the “yardstick” or metric
tensor is the defining characteristic of Finsler geometry (Bao
et al., 2000; Chern, 1996; Holm, 2011; Shimada and Sabau,
2000). To be precise, F specifies that the slowness phase
space is a co-Finsler or Cartan space, and its dual F spec-
ifies that the velocity space is a Finsler space. The practi-
cal consequence is that the time taken to travel an infinitesi-
mal distance across the space (Bao, 2007) at unit speed in a
given direction is a function of that travel direction. Adding
up such incremental times allows us to find the shortest path
across the space, but the directional dependence of erosion
time measurement makes this calculation non-trivial.

The fact that the geomorphic surface Hamiltonian oper-
ates in a Finsler geometry has profound consequences for the
construction of erosion-driven equations of motion, the vari-
ational principle that underlies how landscape shape evolves,
and the concept of erosional anisotropy. These consequences
are explored in the next sections.

For further information on Finsler geometry, a good in-
troduction is the non-technical discussion in Gibbons and
Warnick (2011), which also touches on several other topics
important to this paper. A more mathematical but surpris-
ingly approachable introduction can be found in Bao (2007),
while more comprehensive treatments are provided by An-
tonelli et al. (1993); Antonelli (2000); Bao et al. (2000);
Chern (1996); Giaquinta and Hildebrandt (2004); Mo (2006);
Miron et al. (2002); Shen (2001, 2013); Shimada and Sabau
(2000).
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Appendix E: Lagrangian and geodesics

The Lagrangian method of ray tracing the motion of an ero-
sion front is taken up in detail in Stark et al. (2022). This
alternate approach is important because it demonstrates in
practical terms how erosion rays are also geodesics, i.e. that
they are solutions of the geodesic equation (Misner et al.,
1973; Nolte, 2019) corresponding to the geomorphic sur-
face Hamiltonian. Although geodesics have cropped up be-
fore in geomorphology as a means of delineating drainage on
digital elevation models (Passalacqua et al., 2010a, b), their
use in that context was a pragmatic means to an end, rather
than a reflection of any underlying physics. In the our the-
ory, however, the geodesic equation has physical meaning in
that it is synonymous with the Euler-Lagrange equation of
the geomorphic HJE; solutions to the geodesic equation fol-
low the same paths of least time as solutions to Hamilton’s
ray-tracing equations derived from the geomorphic surface
Hamiltonian. This assertion is proved in Stark et al. (2022).

Appendix F: HJE and Hamilton action

Ray tracing through integration of Hamilton’s equations is
not the only way to solve for surface motion. In principle,
we could instead use the geomorphic surface Hamiltonian
H(r,p) in its HIE form and solve erosion front propaga-
tion using grid-based methods. In practice, numerical solu-
tion of this kind of eikonal equation is not straightforward
(see Sect. 7.2 and Appendix C). The HJE is nevertheless in-
structive if we examine it in the context of some important
concepts of classical mechanics. For example, Hamilton’s
principal function S(r,?), which is the Hamilton action S,
(see Eq. 38) plus a constant, is

ds
S=1] Ld — =L F1
/ re S (F1)

Use of the Legendre transform (Eq. 37) yields

ds -
pr pivt —H. (F2)

The total derivative of S(r, t) with respect to time ¢ has

ds aSor’ S

—_—=——t —. F3
dt ort 8t+8t (F3)

Assuming the points {r} all lie on a path y; of least erosion
time, we can write

ds _as ;oS

LBy % F4
oot T (F4)

Comparing this equation with Eq. (F2) leads to

N aS
= —, _H = (FS)
ar!

Pi a7
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such that the Hamiltonian H(r, p) can be written as
0S aS
H\r,— )=——, F6
<r or ) a1 F6)

which is the standard form for the HJE. Now consider the ar-
rival time function 7'(r), whose total time derivative is, given
Egs. (22), (55), and 0T /9t = 0, as follows:

dT 9T ar' T ;
& o —aat =e =l *n

Integration here gives the abbreviated action; by choosing to
integrate along a path of least action y, we obtain the shortest
erosion time 7'(r):

/pivi dt:/p,»dr" =/dt=T(r). (F8)

Use of Egs. (34) and (F2) connects S(r, t) with T (r), H(r, p)
and time ¢:

1
S=T—’Ht=T—§t. (F9)

Differentiation gives

aS_E)T_
ar ~ or

N 1
=—= (F10)

vr, —= .
dt 2

Substitution into the standard HJE in Eq. (F6) leads to

1
’H(r,VT):z. (F11)
In this form, the HJE prescribes how the erosion front 7'(r)
has a locus (a set of points {r}) that propagates such that the
gradient VT (the directional density of T isochrones) satis-

fies the static Hamiltonian H = %
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Appendix G: Notation
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time

distance from stream terminus to the drainage divide
horizontal coordinate 0 < x < L. measured from stream
terminus

out-of-section horizontal coordinate

vertical coordinate: distance above the terminus

sets of points defining successive erosion front surfaces
corresponding loci of erosion surfaces at successive times
isochrone of erosion surface at point r < surface locus at
T=t

point vector on erosion front surface, i.e. point on erosion
ray

tangent velocity vector of point moving along erosion ray
covector of normal slowness of erosion front

horizontal, vertical components of ray point vector r
boundary values of components of r

horizontal, vertical components of tangent ray velocity vec-
tor v

horizontal, vertical components of p

surface normal slowness, i.e. reciprocal erosion rate
boundary values of components of p

ray angle, i.e. angle of v from horizontal

limit ray angle (maximum for n < 1, minimum for n > 1)
angle of p from vertical, also surface slope angle from hor-
izontal

critical surface slope angle

boundary value of surface slope angle

1-homogeneous Finsler fundamental function
1-homogeneous co-Finsler (Cartan) fundamental function
2-homogeneous Hamiltonian

erosional anisotropy = o — 8 4+ 90°

elevation as a 1+1D function of horizontal distance up-
stream

level-set function

erosion velocity vector; generic velocity function in level-
set equation

horizontal, vertical components of erosion velocity vector
3

surface-normal erosion rate (speed)

horizontal (positive right) erosion rate

vertical (positive down) erosion rate

boundary value of vertical (positive down) erosion rate
surface-normal unit vector

horizontal, vertical components of surface-normal unit vec-
tor n

gradient-scaling exponent in surface-normal erosion model
upstream area-scaling exponent in surface-normal erosion
model

a real scalar

2-homogeneous Lagrangian

covariant (lower) or contravariant (upper) indices

potential erosion ray path (parameterized by time ¢
erosion ray path of least time

action functional for erosion ray paths

least action <> (half) least erosion time

gradient-scaling exponent in vertical erosion model (SPIM)
upstream area-scaling exponent in vertical erosion model
(SPIM)

spatial component of rate of erosion at distance x upstream
base rate in flow component of erosion model

relative flow component rate at zero upstream area
horizontal erosion timescale for (computed from boundary
rates)

non-dimensionalized coordinates

non-dimensionalized position variables
non-dimensionalized slowness variables

dimensionless boundary erosion rate

ray index

timescale for erosion to traverse the domain

height scale of time-invariant topographic profile
co-metric tensor

Hamilton’s principal function
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