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Abstract. Modeling the dynamics of alluvial rivers is theoretically and numerically more challenging than mod-
eling erosion of bedrock channels in active mountain ranges. As a consequence, the majority of the approaches
developed in the context of alluvial rivers are one-dimensional. However, recent advances in the numerics of
fluvial landform evolution models allow for two-dimensional simulations of erosion and sediment transport over
time spans of several million years. This study aims at finding out fundamental properties of rivers in a tec-
tonically inactive foreland of a mountain range by investigating a simple reference scenario theoretically and
numerically. This scenario consists of a mountain range and a foreland in a quasi-steady state wherein the mate-
rial eroded in the mountain range is routed through the foreland. In order to understand the properties of foreland
rivers, a subdivision into two classes – carriers and redistributors – is introduced. Carriers originate in the moun-
tain range and are thus responsible for the large-scale sediment transport to the ocean. In turn, redistributors are
rivers whose entire catchment is located in the foreland. Using the concept of carriers and redistributors, it is
shown that the drainage network in the foreland permanently reorganizes so that a steady state in the strict sense
is impossible. However, the longitudinal profiles of carriers are described well by a steady-state approximation.
Their concavity index is considerably greater than that of rivers in the mountain range. Carriers predominantly
deposit sediment at high rates, while redistributors erode at much lower rates. Despite the low erosion rates, the
sediment flux from redistributors into carriers is a major component of the overall sediment budget and finally
the main driver of the highly dynamic behavior of the carriers.

1 Introduction

Fluvial deposits are among the most important records of
Earth’s tectonic and climatic history. Numerical models de-
scribing the physical processes controlling sediment produc-
tion, transport, and deposition have become essential tools
in this field. Finding out how perturbations in the depo-
sitional environment (e.g., changes in sea level) or in the
source region (e.g., changes in precipitation or tectonic up-
lift) propagate through the system has been one of the most
important applications of such models (e.g., Armitage et al.,
2011, 2013; Mouchené et al., 2017; Yuan et al., 2022).

It seems, however, that our understanding of large-scale
and long-term sediment deposition still lags behind our un-
derstanding of erosion processes in active mountain ranges.

As reviewed by Romans et al. (2016) and Tofelde et al.
(2021), large parts of our knowledge about the source-to-
sink sediment transfer to the oceans are still on a concep-
tual level. However, analytical and numerical models have
become increasingly important for understanding the gen-
eral properties of alluvial rivers. Among the recently devel-
oped approaches, there are one-dimensional models focusing
on individual rivers (e.g., Bolla Pittaluga et al., 2014; Blom
et al., 2016, 2017; Malatesta et al., 2017; Wickert and Schild-
gen, 2019; Braun, 2022) and two-dimensional landform evo-
lution models (e.g., Carretier et al., 2016, 2020; Yuan et al.,
2019, 2022). In particular, the latter may improve our un-
derstanding of sediment dynamics considerably in the near
future. At the moment, however, little is known about the
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self-organization of alluvial rivers and its effects on rates of
erosion and deposition. Even 40 years after Sadler (1981)
quantitatively described the decrease in rates of accumulation
with increasing time spans of observation, our understanding
of this phenomenon is still incomplete.

Modeling sediment transport and deposition seems to be
more challenging than modeling erosion. While all mod-
els reviewed by Coulthard (2001), Willgoose (2005), and
van der Beek (2013) involve a sediment balance, it was al-
ready pointed out by Howard (1994) and Kooi and Beau-
mont (1994) that simulating sediment transport in large rivers
requires small time increments. This leads to high comput-
ing effort and seriously limits the applicability of the models
to large-scale problems with a reasonable spatial resolution.
This problem is less severe in the limit of detachment-limited
erosion (Howard, 1994) whereby it is assumed that all parti-
cles entrained by the river are immediately swept out of the
system. Even a fully implicit scheme is available here, which
in principle allows for arbitrarily large time increments and
thus for large-scale simulations over long time spans (Her-
garten and Neugebauer, 2001; Braun and Willett, 2013). Pre-
sumably owing to its theoretical and numerical simplicity, the
concept of detachment-limited erosion has been applied in
numerous studies of landform evolution. However, the cen-
tral assumption that transported sediment has no effect on
landform evolution limits the applicability of detachment-
limited erosion to mountain streams.

Concerning the numerics of large-scale models including
sediment transport, considerable progress was achieved re-
cently. Yuan et al. (2019) combined the implicit scheme for
erosion with a fixed-point iteration for the sediment fluxes.
Their scheme achieves high efficiency as long as the condi-
tions are not too close to the transport-limited regime. The
concept of transport-limited erosion assumes that the actual
sediment flux of a river is always equal to the so-called trans-
port capacity. This means that the rate of erosion or deposi-
tion instantaneously adjusts in such a way that the sediment
flux equals the transport capacity. In contrast to the iterative
scheme proposed by Yuan et al. (2019), the fully implicit
scheme introduced by Hergarten (2020) even covers the en-
tire range from detachment-limited to transport-limited ero-
sion (and sediment deposition) at a constant numerical effi-
ciency.

The recent numerical developments allow for large-scale
simulations including sediment transport over long time
spans and should thus also be able to improve our under-
standing of sedimentary systems. As a first result, Yuan et al.
(2019) observed a permanent reorganization of the drainage
pattern in a foreland region without uplift and subsidence
over long times even under constant conditions. This reor-
ganization causes an autocyclicity in erosion and deposition
of sediments. From a theoretical point of view, the ques-
tion arises of whether such self-organizing systems are com-
pletely irregular or whether their average behavior can be
described by simple relations or by one-dimensional mod-

els. The central question from a more practical point of view
concerns the suitability of sediment archives for recording
changes in climate and tectonics. In this context, not only the
strength of the autocyclic dynamics compared to allocyclic
influences is relevant, but also the respective spatial and tem-
poral scales.

The present study goes a step toward understanding the
dynamics of a system that is completely dominated by auto-
cyclic sediment dynamics. In the first part, it will be shown
that steady-state topographies in the sense of constant ele-
vation at each point are impossible in absence of uplift and
subsidence so that there must be autocyclic aggradation and
incision. In the next step, properties of hypothetical steady-
state river profiles will be investigated. As a main finding,
such rivers capture the properties of large rivers in a regime
of permanent reorganization quite well on average, although
they cannot be stable over long times. The second part of the
paper provides preliminary estimates for rates of erosion and
deposition as well as for the timescale of network reorgani-
zation.

2 Model setup

This study addresses the simplest scenario of rivers in a
tectonically inactive foreland. A rectangular domain with a
north–south-oriented mountain range at the center and a fore-
land at each side is considered (Fig. 1). While the mountain
range is uniformly uplifted at a constant rate, the foreland
regions are neither uplifted nor subsiding. The northern and
southern boundaries are periodic, while the eastern and west-
ern boundaries are kept at zero elevation and are interpreted
as the coast of an ocean.

The open-source landform evolution model OpenLEM
(Hergarten, 2022a) is employed for all numerical simula-
tions. Since the focus is on a minimum scenario, none of the
components of OpenLEM beyond fluvial erosion and sedi-
ment transport, such as lithospheric flexure and orographic
precipitation (Hergarten and Robl, 2022), are used. The flu-
vial model implemented in OpenLEM is presumably the
simplest model of large-scale fluvial erosion and sediment
transport. Several formulations of this model were proposed,
which are all similar in spirit or even partly mathematically
equivalent: the undercapacity model (Kooi and Beaumont,
1994), the linear decline model (Whipple and Tucker, 2002),
the ξ–q model (Davy and Lague, 2009), and the shared
stream-power model (Hergarten, 2020). In this study, the
shared stream-power formulation

E

Kd
+

Q

KtA
= AmSn (1)

is used, where E is the erosion rate, Q the sediment flux
(volume per time), A the upstream catchment size, and S the
channel slope. The model involves four parameters Kd, Kt,
m, and n. The term AmSn is often called the stream-power
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Figure 1. Snapshot of the topography at t = 128 including the 50
largest rivers. Solid blue lines refer to carriers and pale blue lines
to redistributors according to the distinction made in Sect. 4. The
dots mark the five biggest rivers, which are analyzed in more detail
in Fig. 7. The orange-colored river is the largest river with regard
to the catchment size at the edge of the mountain range (Fig. 4).
The additional color bars at the top and bottom define regions of
different distances from the mountain range and are used in several
other figures.

term, and the model implements the idea that this term is
used jointly by erosion and sediment transport.

While the equation for the change in surface elevation H
at a given uplift rate U is straightforward,

∂H

∂t
= U −E, (2)

an additional balance equation for the sediment fluxes is re-
quired in order to obtain a closed system of equations. As-
suming that each node i of a discrete grid delivers its entire
sediment flux Qi to a single neighbor, this sediment balance
equation reads

Ei =
Qi −

∑
jQj

si
, (3)

where si is the size (area) of the respective grid cell. The
right-hand side of Eq. (3) is a discrete representation of the
divergence operator; the sum extends over all neighbors that
deliver their sediment flux to the cell i. This sum is empty for
nodes that do not receive sediment, which may be seen as in-
ternal boundaries. For consistency, the same routing scheme

should be used for water (catchment size A and direction
of channel slope S) and sediment flux. The implementation
in OpenLEM uses the D8 routing scheme (O’Callaghan and
Mark, 1984) on a regular grid.

In the absence of transported sediment (Q= 0), the shared
stream-power model reduces to

E =KdA
mSn, (4)

which is the stream-power incision model widely used in the
context of detachment-limited erosion. The parameter Kd is
called erodibility; the subscript emphasizes the relation to
detachment-limited erosion. In turn, neither erosion nor de-
position takes place (E = 0) if the sediment flux is

Q=KtA
m+1Sn. (5)

So this term defines the transport capacity, wherein the trans-
port coefficient Kt describes the ability to transport sediment
at given A and S. The shared stream-power model turns into
the stream-power incision model for Kt→∞ and into a
transport-limited model for Kd→∞. In the latter limit, the
sediment flux is always equal to the transport capacity de-
fined by Eq. (5). As discussed by Hergarten (2020), the sys-
tem of equations reduces to a single diffusion equation then.

For spatially uniform erosion, the sediment flux is Q=
EA, and Eq. (1) collapses to a form analogous to the stream-
power incision model (Eq. 4) with an effective erodibility K
according to

1
K
=

1
Kd
+

1
Kt
. (6)

River profiles follow the relation

S ∝ A−θ , (7)

with θ = m
n

then. The exponent θ in Eq. (7) is called concav-
ity index in the context of analyzing river profiles. Concav-
ity indexes of real rivers have been investigated in numerous
studies, starting from the seminal work of Hack (1957). Val-
ues θ ≈ 0.5 are typically found for rivers at uniform erosion;
either θ = 0.45 or θ = 0.5 is often used as a reference value
(e.g., Whipple et al., 2013; Lague, 2014). So the ratio of the
exponentsm and n is constrained quite well by the concavity
of real-world rivers.

The absolute values of the exponents m and n are, how-
ever, more uncertain than their ratio since they cannot be
determined from the shape of river profiles under uniform
erosion. Assuming n= 1 simplifies both theoretical consid-
erations and the numerical implementation since the model is
linear with regard to the topography then. In turn, the results
compiled by Lague (2014) as well as some recent studies
(Harel et al., 2016; Hilley et al., 2019; Adams et al., 2020)
rather suggest n > 1.

In this study, the linear version of the shared stream-power
model (n= 1) is used for numerical reasons. The fully im-
plicit scheme introduced by Hergarten (2020) is not only sta-
ble at arbitrary time increments, but also avoids oscillations

https://doi.org/10.5194/esurf-10-671-2022 Earth Surf. Dynam., 10, 671–686, 2022



674 S. Hergarten: Rivers in a tectonically inactive foreland

in elevation or rates of erosion and deposition, e.g., if a river
is suddenly exposed to a large sediment flux after an avulsion
event. It is, however, restricted to n= 1. The implementation
in OpenLEM contains a semi-implicit extension for n > 1,
which is still stable at large time increments but not able
to avoid oscillations completely. While these oscillations are
not a problem in many applications, they affect the short-
term rates of erosion investigated in Sect. 8 and may even
cause an artificially increased frequency of avulsion events.
While some simulations were also performed for n= 2, the
results are not included in this paper.

Since the foreland region will be covered by alluvial de-
posits, different lithologies are assumed in the two domains,
in contrast to the recent study of Yuan et al. (2022). As the
simplest approach, it is assumed that Kt is the same in both
domains, while the values of Kd differ. The ratio of Kd and
Kt is mathematically equivalent to the parameter2 orG (de-
pending on the notation) in the ξ–q model. The results ob-
tained by Davy and Lague (2009) and Guerit et al. (2019)
suggest Kd 'Kt for n= 1. For simplicity, Kd =Kt is as-
sumed in the mountain range, which was assumed by Yuan
et al. (2022) for the entire domain.

We will see in Sect. 3 that the choice Kd =Kt for the
mountain range has a minor effect on the rivers in the fore-
land. In turn, the parameter choice for the foreland is more
critical. As discussed by Hergarten (2021), Kd refers to
the properties of the actual riverbed. As a consequence, Kd
should be much larger thanKd of the bedrock if a previously
deposited thick alluvial cover is eroded. In an environment
of deposition (E < 0), Eq. (1) should even be replaced by the
transport-limited version (Kd→∞). Otherwise, assuming a
lower erodibility Kd would reduce the rate of deposition if
all other parameters remain constant, which would not make
much sense. In order to keep the model as simple as possible,
the transport-limited end-member (Kd→∞) is used in the
entire foreland region, no matter whether the rivers are actu-
ally depositing sediments or eroding. An alternative scenario
will be considered in Sect. 10.

The implicit scheme inhibits the formation of lakes in indi-
vidual streams. However, lakes may occur at confluences. If a
large amount of sediment is deposited in a large river, its ele-
vation may exceed that of its tributaries. Then the lowermost
ranges of the tributaries turn into lakes. Formally, this leads
to an upstream sediment flux so that the lowermost ranges
of the tributaries serve as accommodation area for the sedi-
ments. Since this phenomenon is not unrealistic and does not
affect the stability of the scheme, there is no need to inhibit
these backward sediment fluxes. It should, however, be noted
that this effect does not add floodplains to the model in a re-
alistic way since it is only based on the topography of the bed
and does not take into account the water level.

In order not to introduce unnecessary constraints, a nondi-
mensional representation is used in all simulations and the-
oretical considerations. Assuming n= 1, the choice m= 0.5
(so θ = 0.5) is convenient since it avoids odd physical units

ofKd andKt and simplifies the scaling from nondimensional
to real-world properties. For this choice of m and n, the di-
mensions of Kd, Kt, and K (Eq. 6) are inverse time so that
each of them can be used for defining the timescale indepen-
dently of the spatial scales. Since Kt is constant in the en-
tire domain, the nondimensional representation is based on
Kt = 1. Then one nondimensional time unit corresponds to
an absolute time span of T = 1

Kt
(with the real-world value

of Kt). However, real-world estimates are typically obtained
from the steepness of rivers at a given erosion rate and thus
refer to K (Eq. 6) instead of Kd or Kt. Assuming Kd =Kt
leads to

T =
1
Kt
=

1
2K

. (8)

With the value K = 2.5 Myr−1 used by Robl et al. (2017),
this would yield a timescale T = 200000 years. So some
100 000 years should be a realistic magnitude for one nondi-
mensional time unit.

The vertical length scale Lv is defined by the uplift rate U
and the timescale T in the form

Lv = UT. (9)

Using a nondimensional uplift rate U = 1, a convenient ver-
tical length scale of Lv = 100 m would emerge at a real uplift
rate of 0.5 mm yr−1 for T = 200000 years.

The horizontal length scale is arbitrary and independent of
all model parameters and of the other scales for m

n
= 0.5. In

principle, this allows for an arbitrary scaling of the horizon-
tal coordinates. However, the pixel size of the model imposes
two limitations. First, hillslope processes are not taken into
account so that the shared stream-power model is assumed
to hold even for single-pixel catchments. Therefore, the pixel
size should not be too small. More important for this study,
the pixel size also defines the area over which deposited sed-
iments are distributed since the model does not explicitly in-
clude floodplains.

All simulations were performed on a grid with 8192 rows
and 5632 columns (Fig. 1), starting from a flat topography
superimposed by a small random disturbance with a range
of 10−4. The mountain range has a width of 512 cells. So
each side of the foreland is 5 times as wide as the mountain
range. This choice ensures that a large part of the foreland
consists of an alluvial plain that is not affected strongly by
the properties of the mountain range and its alluvial fans. In
turn, the width of the mountain range is large enough to gen-
erate rivers with a wide spectrum of catchment sizes in the
mountain range (up to about 100 000 pixels).

The choice of the time increment δt is not trivial, although
the fully implicit scheme implemented in OpenLEM is un-
conditionally stable for any δt . As discussed by Hergarten
(2020), the limitation arises from changes in flow direction
rather than from the accuracy of the scheme itself. Since each
cell can change its flow direction only once per time step,
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large time increments slow down the dynamics of the sys-
tem. Preliminary tests with a similar setup revealed that this
effect becomes dominant for δ'10−2. In order to stay clearly
below this limit, δt = 2−10

≈ 10−3 is used in this study, al-
though the results are by far not independent of δt then (see
also Sects. 3 and 9). According to the timescale estimated
above, δt is in an order of magnitude of some 100 years. Us-
ing much smaller values of δt would not only increase the
numerical effort, but would also question the applicability of
the model since we would probably have to take into account
the effects of individual flood events on river avulsions. How-
ever, simulating individual events is outside the scope of the
stream-power concept.

3 First results

A strong reorganization of the drainage pattern occurs during
the first phase of the simulation. This reorganization slows
down in the tectonically active region with increasing inci-
sion of the rivers and has almost ceased at t ≈ 10. After-
wards, there is little reorganization in the mountain range,
although the topography is still far from equilibrium. Only
32 changes in flow direction occur at points with a catchment
size between 1000 and 10 000 pixels (the largest catchment
in the mountain range is about 100 000 pixels large) from
t = 10 to the end of the simulation at t = 500, which means
less than 1 change per 15 time units.

In turn, the reorganization of the drainage network con-
tinues in the foreland. On average, 2.5 % of all sites change
their flow direction in each time step, while avulsions of large
rivers take place more frequently. Even 24 % of all sites with
A≥ 100000 change their flow direction in each time step
on average. However, the respective frequencies of avulsion
depend on the time increment δt . Performing a shorter simu-
lation with an 8 times smaller δt = 2−13 yielded percentages
of 0.51 % and 9.9 %, respectively. So the mean rate of avul-
sions taken over all sites increases moderately by a factor of
1.6 if δt is reduced by a factor of 8. For the large rivers, how-
ever, it is a factor of about 3. However, we will see in Sect. 9
that the effect of δt on the long-term reorganization of the
drainage pattern is weaker than it seems here. Nevertheless,
we should keep in mind that the frequency of avulsions of
large rivers in particular depends on the time increment and
that the frequency of large floods may play an important part
in nature.

The highest mean and peak elevations are reached in the
mountain range at t ≈ 80. Afterwards, the topography is
still not constant but decreases very slowly due to the slow
network reorganization. This effect was described for the
stream-power incision model by Robl et al. (2017), but here it
is not relevant since it is much slower than the ongoing net-
work reorganization in the foreland. Finally, the time span
from t = 100 to t = 500 was used in the following analy-

Figure 2. Mean swath profiles of the topography obtained by aver-
aging over the 401 snapshots. Solid lines show the mean elevation
and filled areas the range from minimum to maximum elevation.

ses; most of the results were obtained by averaging over 401
equally spaced snapshots (1t = 1).

Figure 2 shows a swath profile of the mean topography
over the considered time span. Minimum and maximum val-
ues are not taken over x2 and t but only over x2 and then av-
eraged over all snapshots. The foreland topography becomes
increasingly steep close to the mountain range and reaches a
mean value of about 5.6, corresponding to about one-fifth of
the peak elevation and one-third of the mean elevation along
the center of the mountain range.

The topography obtained under transport-limited condi-
tions in the mountain range (Kt = 1 and Kd =∞ as in the
foreland) is also shown in Fig. 2 for comparison (however,
based on only 160 snapshots). This change mainly affects the
topography in the mountain range. While the effective erodi-
bility was K = 0.5 according to Eq. (6) before, it is twice
as high (K = 1) for transport-limited conditions. As a conse-
quence, equilibrium channel slopes and thus relief are 2 times
lower. As discussed by Hergarten (2021), Kd determines the
speed at which knickpoints migrate upstream and thus the
response of the sediment flux from the mountain range to
changes in topography in the foreland. However, the feed-
back on the topography in the foreland appears to be mi-
nor. In this context, we should keep in mind that assuming
transport-limited erosion in the mountain region is an unreal-
istic extreme scenario, although the ratio ofKd andKt is still
not constrained well from real-world data. So these results
suggest that a moderate deviation fromKd =Kt will have an
effect on the height of the mountain range compared to the
topography of the foreland but will not affect the properties
of the foreland seriously.

Figure 3 provides a more detailed analysis of the mean
topography (averaged over both sides). The relief (maximum
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Figure 3. Mean elevation, relief (maximum minus minimum eleva-
tion taken in the x2 direction), and Pearson correlation coefficient
of the elevation at the considered position x1 and the topography at
the edge of the mountain range (|x1| = 256). The colors correspond
to the regions defined in Fig. 1.

minus minimum elevation taken in the x2 direction) is greater
than the mean elevation in the mountain range, correspond-
ing to deeply incised valleys and high peaks. This relation is
inverted in the foreland, corresponding to the rapid decline in
maximum elevation visible in Fig. 2. In the orange-colored
region (see Fig. 1), relief is even less than one-third of the
mean elevation. So the topography is quite smooth here. This
decrease in relief goes along with a distinct minimum in the
correlation of the topography with the topography at the edge
of the mountain range (|x1| = 256). Surprisingly, the corre-
lation slightly recovers in the green and turquoise domains,
and a weak positive correlation persists in the entire domain.

Further away from the mountain range, both mean eleva-
tion and relief decrease toward the ocean. The decrease in re-
lief is, however, slower than the decrease in mean elevation.
So the topography becomes smoother toward the ocean on an
absolute scale but rougher in relation to the mean elevation.

Figure 4 gives a first insight into the dynamics of the rivers
in the foreland. The river considered here is not the biggest
river overall (which is not the same at all times) but the
river with the largest catchment at the edge of the foreland
(orange-colored line in Fig. 1). Since network reorganization
in the mountain range is weak, this river remains the same for
all times t ≥ 100 considered here; changes take place only in
the uppermost part of its catchment.

After leaving the mountain range, the area covered by the
river widens moderately. As discussed above, the rivers are
confined in narrow gorges in the mountain range, but their re-
lief rapidly decreases in the foreland, allowing for wider val-
leys. At some point, however, the behavior changes abruptly

Figure 4. Snapshots of the river with the largest catchment at the
edge of the mountain range (orange-colored line in Fig. 1). The
gray-shaded area depicts the mountain range.

to form a large alluvial fan. Directions of flow vary by more
than 90◦ here, while the river itself is more or less straight.

In contrast to typical alluvial fans in real-world topogra-
phies, the alluvial fan observed here is not sharply bounded
downstream but rather dissolves by systematically diverting
the river toward the ocean. This difference is related to the
topography already being in a quasi-steady state wherein the
fan is no longer growing. Systematically analyzing the pre-
dicted sizes of the alluvial fans and comparing them to real-
world data would be interesting. The data reviewed by Blair
and McPherson (2009) suggest a linear relation between the
areas of the fans and the respective upstream catchment sizes.
Braun (2022) reproduced such a linear relation by assuming
a specific relation between catchment size and river length
in the foreland. In turn, the behavior of the numerical model
considered here suggests that the distance of the river to the
nearest river of similar size may be the primary control rather
than the absolute catchment size. While the results may fi-
nally be similar, a thorough analysis could be a starting point
of a subsequent study.

4 The concept of carriers and redistributors

In our scenario of an active mountain range and entirely pas-
sive foreland regions, it makes sense to classify rivers into
two categories. Let us define carriers as rivers that receive
discharge (and thus sediment flux) from the mountain range.
In turn, rivers whose entire catchment is located in the pas-
sive foreland are called redistributors in the following.

The majority of the large rivers are carriers. In Fig. 1, 39
out of the 50 biggest rivers are carriers. However, it is visi-
ble that the sources of large redistributors are either close to
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carriers or to valleys in the mountain range. This observation
suggests that large redistributors were either carriers in the
past and were disconnected by avulsion events or will turn
into carriers in the future.

Carriers and redistributors differ fundamentally in their
properties since carriers not only receive discharge from the
mountain range, but also a sediment flux. In turn, the sedi-
ment flux of redistributors arises solely from erosion in the
tectonically inactive foreland. Since the foreland topography
is typically not very steep, erosion rates and sediment fluxes
of redistributors are rather low. As long as the base level of a
redistributor (either at the ocean or at the confluence with a
carrier) remains constant, the topography of its catchment de-
cays. So redistributors are predominantly erosive with mod-
erate rates.

Conversely, carriers must deposit sediment on average
since the erosion of the redistributors would result in an on-
going decrease in topography in the foreland otherwise. Fur-
thermore, carriers must be steeper than redistributors on av-
erage owing to their higher sediment flux. This difference is
responsible for the more elongated shapes of catchments in
the foreland compared to the mountain range, which is im-
mediately recognized in Fig. 1. In the mountain range, large
rivers are less steep than small rivers so that small rivers tend
to flow into large rivers instead of flowing directly toward the
edge of the mountain range. In contrast, the largest rivers in
the foreland are carriers. Since these are rather steep, the ten-
dency of redistributors to flow toward large carriers instead
of draining into the ocean is much weaker than in the moun-
tain range, which results in strongly elongated catchments.

5 The impossibility of steady-state solutions

Real-world topographies are typically not in a steady state.
The event- or threshold-based characteristics of at least some
involved processes are primary reasons for the absence of
steady states. As an example, an individual big flood may
contribute to landform evolution. As a second aspect, ap-
proaching a steady state may take a long time, while the tec-
tonic and climatic conditions are typically not constant over
sufficiently long time spans.

Using the ξ–q model, Yuan et al. (2019) already observed
a permanent reorganization of the rivers in a passive fore-
land, although all conditions (including the uplift rate in the
mountain range) were constant. In contrast, constant uplift
rates typically result in steady-state topographies. So there
seems to be a fundamental difference in the properties of the
model between active and passive regions. This difference is
not only relevant for our understanding of landform evolu-
tion, but also for the question of whether a record that sug-
gests non-steady conditions is necessarily related to changes
in tectonic or climatic conditions or whether it may be the
result of self-organization.

Figure 5. Steady-state topography based on the flow pattern of the
topography shown in Fig. 1. All markers are the same as in Fig. 1
and were just included for completeness.

Using the properties of carriers and redistributors de-
scribed in the previous section, it can easily be shown that
steady-state topographies are indeed impossible in a passive
foreland for models of the type considered here. If the to-
pography was in a steady state, the topography of all redis-
tributors would be flat. This would imply that the catchments
of all redistributors that drain directly into the ocean would
be at sea level, while those that drain into a carrier would
be exactly at the elevation of the point of confluence. This
situation is illustrated in Fig. 5 for the drainage pattern from
Fig. 1. It would immediately result in inconsistent flow direc-
tions at drainage divides. This inconsistency is obvious at the
borders of the catchments of redistributors that drain directly
into the ocean (dark green areas). These drainage divides
would move into the adjacent higher-elevation catchments.
However, even the catchments of redistributors draining into
the same carrier would be inconsistent since the catchments
that drain into the carrier more downstream are lower in ele-
vation. So there would be a shift in the drainage divides, with
the redistributors playing an essential part. These arguments
are not restricted to the specific model considered here but
only rely on the property that the catchments of redistribu-
tors become flat through time.
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6 Properties of carriers in a steady state

In the previous section, we have seen that the drainage net-
work and thus also the topography cannot reach a steady state
in the foreland even under constant conditions. Nevertheless,
it is useful to investigate the properties of the rivers in a hy-
pothetical steady state in order to find out whether they have
anything in common with the rivers in a state of permanent
reorganization. So let us assume that the drainage network
was frozen and consider the properties of the carriers for
a steady-state topography like the one shown in Fig. 5, al-
though the flow directions are not consistent with the topog-
raphy at the drainage divides.

According to Eq. (5), the channel slope in a steady state at
zero uplift (E = 0) follows the relation

Sn =
Q

KtAm+1 . (10)

If Q was constant along the river (the sediment flux from
the mountain range), the concavity of the river profile would
arise from the downstream increase in discharge alone ac-
cording to

S ∝ A−θ , (11)

with θ = m+1
n

. Then the concavity index θ would be by 1
n

greater than the concavity index at uniform erosion (θ = m
n

).
This would, however, only be true if all tributaries were re-
distributors, which would not contribute sediment in a steady
state. Confluences with other carriers lead to a downstream
increase in sediment flux and thus to a weaker concavity.

Let us consider a cross section in the x2 direction (paral-
lel to the mountain range). If d is the mean spacing of the
carriers crossing this line, each carrier has to accommodate a
sediment flux of

Q= U
w

2
d (12)

on average, where w is the width of the mountain range (so
w
2 d is half of the area of the mountain range) and U the uplift
rate.

In order to relate the equilibrium sediment flux Q to the
catchment size A, the relation between d and A was inves-
tigated numerically. For this purpose, the number of carriers
and their mean catchment size were measured for each line
of the grid over the 401 snapshots. Note that the mean catch-
ment size cannot be estimated from the total area upstream
of the line and the respective number of carriers alone since
a part of the domain is directly drained into the ocean by re-
distributors.

The results shown in Fig. 6 suggest that there are two
regimes with simple scaling relations between d and A. A
linear relation d ∝ A is found close to the mountain range.
More important, the relation turns into a power law d ∝ Aγ

with γ = 0.53 at greater distances, starting from about half

Figure 6. Relation between the mean spacing d of the carriers and
the mean catchment size A. Averaging was performed along lines
in the x2 direction over 401 snapshots of the topography.

the width of the mountain range, so for mean catchment sizes
A'50000. The question of whether it is a fractal relation
with γ > 0.5 or γ = 0.5 (d ∝

√
A) is not important here.

Inserting this result into Eq. (12) yields

Q∝ Aγ . (13)

This relation can be reconciled with the analysis of real-
world drainage networks by Prasicek et al. (2020), although
that study refers to mountain catchments. It was found there
that confluences of rivers of the same stream order (so of
similar sizes) and capture of smaller tributaries contribute al-
most equally to the downstream increase in catchment size.
Since the largest rivers are typically carriers, while redistrib-
utors are smaller, this means that confluence with other carri-
ers and capture of redistributors contribute almost equally to
the downstream increase in catchment size. As redistributors
do not deliver sediments in a hypothetical steady state, this
implies

δQ

Q
≈

1
2
δA

A
(14)

for the downstream increases δQ and δA, which is equivalent
to Eq. (13) for γ ≈ 0.5. This agreement with the findings of
Prasicek et al. (2020) suggests that Eq. (13) is not specific to
the linear version (n= 1) of the model used here but reflects
a general property of drainage networks. So Eq. (13) may
also be helpful for developing one-dimensional versions of
more complex models.

It should, however, be kept in mind that water and sedi-
ments are routed toward a single neighbor in the model used
here. So Eq. (13) and the following considerations are only
valid for dendritic channel networks. Finding out whether bi-
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Figure 7. Channel slopes of the five biggest rivers shown in Fig. 1
(t = 128, solid lines) and Fig. 5 (steady state, dashed lines).

furcations in the network only affect the factor of proportion-
ality or also the exponent γ and thus also the concavity index
would require further research.

Inserting Eq. (13) into Eq. (10) yields

Sn ∝ Aγ−m−1. (15)

So the fundamental relation for the concavity of rivers
(Eq. 11) also holds for carriers in a steady state but with a
concavity index

θ =
m+ 1− γ

n
≈
m

n
+

1
2n
. (16)

So the concavity index of carriers in a steady state is by about
1

2n higher than at uniform erosion. For the parameter values
considered here (m= 0.5, n= 1), the concavity index is θ ≈
1.

Since it was shown in the previous section that steady
states cannot exist in the foreland, the question arises of
whether the properties of steady-state carriers obtained above
are relevant at all. Figure 7 shows an example of the five
biggest rivers from Fig. 1 (t = 128, solid lines) and Fig. 5
(steady state, dashed lines).

Since the uppermost parts of the rivers are located in
the mountain range, they follow straight lines with a nega-
tive slope of θ = m

n
= 0.5 in the double-logarithmic plot in

equilibrium (dashed lines). The respective curves from the
snapshot (solid lines) show the same overall behavior in the
mountain range but with distinct local deviations in channel
slope. These are disturbances propagating upstream, so they
are mobile knickpoints. While these mobile knickpoints orig-
inate from changes in foreland topography, their feedback on
the rivers in the foreland by means of changes in sediment
flux is small.

Figure 8. Mean equilibrium elevation vs. mean actual elevation for
carriers (solid lines) and all rivers (dashed lines). The curves were
obtained from averaging over lines in the x2 direction and over 401
snapshots. The colors refer to the regions defined in Fig. 1.

In the foreland region, steady-state river segments with a
concavity index θ = m+1

n
= 1.5 are found, as predicted for

carriers that do not receive sediment flux from their tribu-
taries. These segments are displaced horizontally and verti-
cally at confluences with other carriers. As illustrated by the
line S ∝ A−1, the overall decrease in S with A follows the
prediction (Eq. 16) quite well not only for the steady-state
profiles, but also for the carriers obtained from the snapshot.
As a main difference, non-steady river segments between
confluences of carriers do not follow the steady-state rela-
tion S ∝ A−1.5 exactly. However, this difference apparently
has no effect on the overall decline in steepness, S ∝ A−1;
it even seems that the rivers from the snapshot are slightly
closer to this relation than the steady-state carriers.

Actual and steady-state elevations are compared in Fig. 8.
The results were again obtained from the 401 snapshots. In
order to quantify the average behavior, mean elevations along
lines in the x2 direction are considered instead of individual
data points.

If the average over the entire area is considered, which
means over all carriers and redistributors at a given x1 value,
the equilibrium elevations are much lower than the actual el-
evations. This finding is not surprising since almost the en-
tire foreland area is covered by redistributors and their catch-
ments. These are flat in equilibrium, wherein the catchments
of redistributors draining directly into the ocean are even at
zero elevation.

In turn, the mean elevation along the actual carriers is quite
close to the respective equilibrium elevation. The maximum
relative deviation occurs far away from the mountain range,
where the mean elevation is about 80 % of the equilibrium
elevation (dark blue domain). However, absolute elevations
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Figure 9. Balance of water and transported sediment. Blue arrows
describe discharges equivalent to catchment sizes. The values are
normalized to the total catchment size and expressed in percent so
that 100 corresponds to the total catchment size. Orange-colored
arrows describe sediment fluxes normalized to the sediment flux
from the mountain range (also expressed in percent). The numbers
in parentheses describe the sediment balances of the individual sys-
tem components.

are small here so that the deviation is also small on an abso-
lute scale. The ratio approaches 1 toward the mountain range,
where it is even between about 0.99 and 1.01 in the green,
orange, and yellow regions. This result confirms the obser-
vation that the largest rivers are described reasonably well by
the concept of carriers in equilibrium (Fig. 7).

7 Source-to-sink considerations

The deviation in elevation between the actual carriers and
the respective equilibrium profiles seems to be unimportant
at first. However, it implies that carriers are less steep than
expected close to the ocean and thus deliver less sediment to
the ocean in total than they receive from the mountain range.
This deficit is related to the drainage pattern, with a consid-
erable part of the foreland directly draining into the ocean by
redistributors. So a part of the sediment flux from the moun-
tain range is deposited by the carriers and transported into the
ocean by redistributors after the network has reorganized.

Figure 9 shows the mean sediment budget obtained from
the 401 snapshots, in which all discharges (blue arrows,
equivalent to catchment sizes) are expressed as percentages
of the overall discharge and all sediment fluxes (orange-
colored arrows) as percentages of the sediment flux from the
mountain range. One-third of the total domain (including the
mountain range) is drained directly into the ocean by redis-
tributors. However, the contribution of these rivers to the to-
tal sediment delivery is only 9 % since their catchments are
rather flat. So the carriers deliver more than 90 % of the sed-
iment flux from the mountain range to the ocean.

However, this result does not imply that the carriers are
routing more than 90 % of their sediment flux to the ocean
and depositing less than 10 % to be cleaned up later by redis-
tributors. Here, the sediment flux from the redistributors into
the carriers also plays an important part. This flux amounts
to 33 % of the influx from the mountain range. So the total
sediment input to the carriers is in fact 133 %. Therefore, the

91 % delivered to the ocean is less than 70 % of the total sed-
iment input, while about 30 % (42 out of 133) is deposited.

So the simple concept of depositing sediment by the car-
riers and cleaning up the deposits later by the redistributors
contains an important internal component. In sum, the redis-
tributors erode as much material as deposited by the carriers
on average, equivalent to 42 % of the sediment flux from the
mountain range. Only a quite small fraction of this sediment
flux is delivered to the ocean (here about 9

42 ≈ 21%), while
the majority arrives in the actual carriers. A considerable part
of this material is deposited further downstream and waits
there to be eroded by a new generation of redistributors after
the network has reorganized.

It should, however, be emphasized that these numbers not
only depend on the considered model, but also on the size
of the foreland in relation to the size of the mountain range.
In order to obtain a sufficiently large region far away from
the mountain range, the foreland is in total 10 times as large
as the mountain range. For a smaller foreland region, the
fluxes from the redistributors into the carriers and the respec-
tive balances (±42% of the sediment flux from the mountain
range) would be smaller.

The quite large sediment flux from redistributors into car-
riers also explains the high rates of sediment deposition in
carriers, which will be investigated in the following sec-
tion. As found in Sect. 6, longitudinal profiles of carriers
are described well by equilibrium profiles on average. This
means that they are able to transport almost all of the material
eroded in the mountain range on average. Only in combina-
tion with the additional sediment supply from the redistribu-
tors does the total amount considerably exceed the transport
capacity, which enforces rapid deposition.

8 Rates of erosion and deposition

Figure 10 shows the cumulative distribution of the erosion
rates of all redistributors, with negative rates referring to
deposition. These rates were evaluated in each step of the
simulation from t = 100 to 500 (so not only at the snap-
shots). So the rates are average rates over time intervals of
δt = 2−10

≈ 10−3 (typically some 100 years).
It is immediately recognized from the cumulative proba-

bilities at zero erosion rate that the vast majority of all redis-
tributors is indeed eroding as discussed earlier. The fraction
of eroding redistributor sites is greater than 90 % everywhere
and even greater than 97 % close to the mountain range (yel-
low curve).

The rates are overall rather low compared to the mountain
range (E = U = 1). In the four domains close to the moun-
tain range (yellow to green curves), the net mean erosion
rate (deposition contributes negatively) is about 0.1, which
is about 10 % of the erosion rate in the mountain range. Fur-
ther away from the mountain range (blue curves), the rates
decrease rapidly. The average erosion rate over all redistrib-
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Figure 10. Cumulative distribution of the erosion rates of redistrib-
utors. The curves correspond to the domains defined in Fig. 1. The
dots depict the respective mean net erosion rate.

utors is 0.042. Taking into account that the foreland area is
10 times as large as the mountain range and covered almost
entirely by redistributor sites, this result could also be ob-
tained directly from the balance of the redistributors shown
in Fig. 9 (total erosion amounting to 42 % of the sediment
flux from the mountain range).

The respective rates for the carriers are shown in Fig. 11.
As carriers predominantly deposit sediments, rates of depo-
sition are shown here, with negative rates describing erosion.
The rates are overall high compared to the redistributors and
also compared to the mountain range. The overall mean rate
is 4.8, which is almost 5 times higher than the erosion rate in
the mountain range. Since the carrier sites cover only a small
part of the area, this result cannot be derived directly from
the overall balance (Fig. 9).

In contrast to the redistributors, the lowest mean net rates
occur close to the mountain range. The yellow domain is the
only region where the mean net rate of deposition (≈ 0.7) is
lower than the erosion rate in the mountain range. As shown
in Fig. 4, the lateral mobility is also small in this region, at
least for the largest river.

The rates increase rapidly with increasing distance from
the mountain range and reach a mean net rate greater than
10 in the turquoise domain. This domain extends to a dis-
tance of 512 pixels from the mountain range, which is equal
to the full width of the mountain range. Both deposition and
erosion rates are quite high here. Almost 50 % of the carri-
ers in this domain deposit at rates higher than the erosion
rate in the mountain range, and 30 % of them erode at such
rates. The rate of deposition is even higher than 60 times the
erosion rate in the mountain range at more than 5 % of the
carrier sites here. With regard to these high rates of deposi-
tion, we must keep in mind that the model does not explicitly

Figure 11. Cumulative distribution of the deposition rates of car-
riers. The curves correspond to the domains defined in Fig. 1. The
dots depict the respective mean net deposition rate.

include floodplains. Since sediments are deposited pixel by
pixel, wider floodplains can only be filled by rapid avulsions.
This may result in an overestimation of rates of deposition.

Further away from the mountain range, the rates decrease
(blue domains). However, this decrease is much slower than
for the redistributors, and the mean rates of deposition stay
clearly above the erosion rate in the mountain range. The oc-
currence of a maximum in deposition rate at some distance
from the mountain range is related to the drainage pattern.
Close to the mountain range, almost all rivers are carriers.
So a rather small sediment flux from the redistributors is dis-
tributed among a large number of carriers and thus has lit-
tle effect compared to the sediment flux from the mountain
range.

The strong autocyclicity in the sediment deposition by car-
riers raises the question of whether it may even obscure ef-
fects of climatic variations. Recently, Yuan et al. (2022) in-
vestigated the effect of periodic oscillations in precipitation
with a similar model and found a clear link between modeled
climate oscillations and sediment signals. While a variation
of some tens of meters in the mean elevation of the riverbed
was found at the edge of the mountain range, the respective
rates of aggradation are rather low. Assuming a relative vari-
ation in precipitation by ±50%, the maximum rate of aggra-
dation is about 0.25 mmyr−1 at an uplift rate of 1 mmyr−1

(independent of the period, estimated from their Fig. 2). This
rate is already lower than the mean rate found here for the
very proximal region of the alluvial fans and more than a
decade lower than the mean rates in the more distal regions.
So autocyclicity will probably dominate the record at short
timescales and small spatial scales except for the very prox-
imal region of the alluvial fans. However, finding out which
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Figure 12. Time span since the previous flooding by a carrier for
t = 128.

scales are needed to overcome the dominance of autocyclic
aggradation requires further investigations.

9 The timescale of network reorganization

While the interplay of carriers and redistributors is the key to
understanding the long-term reorganization of the drainage
network, the respective timescale cannot be determined di-
rectly from the rates of erosion and deposition. In this sec-
tion, a simple concept is used for quantifying the reorgani-
zation of the drainage network and its potential fingerprint
in the deposits. Knowing that carriers predominantly deposit
sediment and redistributors predominantly erode, the time
span since the previous flooding by a carrier is investigated.
Figure 12 shows a map of this time span for the snapshot
from Fig. 1. The spatial pattern is irregular. While dark blue
areas depict the mountain range and the actual carriers, there
are more or less continuous blueish areas depicting large re-
gions that were recently flooded by carriers. In turn, there
are also yellow areas indicating that some regions were not
flooded by carriers for more than 3 time units. Some of these
yellow areas are intersected by darker lines, which means
that individual carriers crossed the area later without affect-
ing the area as a whole.

The cumulative statistical distribution of the time span
since the previous flooding by a carrier is shown in Fig. 13.
The distributions were derived from the 401 snapshots. If
flooding by carriers was a random process wherein the prob-

Figure 13. Cumulative distribution of the time span since the pre-
vious flooding by a carrier. The colors correspond to the regions
defined in Fig. 1, and the dots depict the mean time span.

ability is independent of the time span since the previous
event, the time spans would follow an exponential distribu-
tion (a straight line in the plot). The results suggest an expo-
nential distribution at large time spans.

The time spans since the previous flooding by a carrier
increase from the mountain range toward the ocean. While
the mean time span is about 0.2 in the yellow domain, it in-
creases to about 1.25 in the two outermost domains. So we
can expect older deposits at the surface further away from the
mountain range.

As it was found in Sect. 3 that the frequency of avulsions
of large rivers depends strongly on the time increment δt
used in the simulation, the timescales of network reorganiza-
tion also depend on δt . However, this dependence is weaker
than expected from the frequency of avulsions. While reduc-
ing δt from 2−10 to 2−13 increases the frequency of avul-
sions of large rivers by a factor of almost 3, the mean time
spans since the previous flooding by a carrier decrease only
by about 20 % to 30 %. So a large fraction of the observed
avulsions seem to be related to either back-and-forth oscil-
lations in flow direction owing to the single-neighbor (D8)
flow-routing scheme or to filling floodplains pixel by pixel.
In particular, the increase in the time span since the previous
flooding by a carrier toward the ocean appears to be robust.

The increase in the time span since the previous flooding
by a carrier might be interpreted as a decreasing rate of river
avulsion toward the ocean, similarly to the decreasing rates
of deposition. However, we also have to take into account
the spacing of the carriers here, which also increases toward
the ocean as recognized Fig. 6. The increase in spacing is
even stronger than the increase in the time span since the
previous flooding. So the individual rivers do not become less
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active toward the ocean, and the longer time spans arise from
a smaller number of carriers sweeping over the area.

The distributions shown in Fig. 13 deviate from exponen-
tial distributions at short time spans. The rapid decline of the
distribution in the yellow domain indicates a clustering of
events in the sense that there is an increased probability that
the river will return to a location where it was recently. A ran-
dom walk is the simplest process with this property, which
here could be diverting the river randomly in the regime of
the alluvial fans close to the mountain range. Far away from
the mountain range, the behavior is opposite. Here, the prob-
ability of flooding by a carrier increases if the previous flood-
ing was long ago. This effect is presumably related to the
topography. Since carriers predominantly deposit sediment
and redistributors erode, large channels that have not been
carriers for a long time are rather flat and are thus favored
candidates for becoming carriers in the future.

Using cosmogenic Ne isotopes, Sinclair et al. (2019) ob-
tained a strong variation in the residence times of pebbles
about 1000 km downstream of the source region located in
the Rocky Mountains. It was found that some of the investi-
gated clasts had even spent some million years in the river. In
the same study, a conceptual model for the recycling of peb-
bles by tributaries was proposed. In principle, this concept
already implicitly contains the idea of carriers and redistrib-
utors.

Concerning the order of magnitude, the timescale of net-
work reorganization obtained in this study aligns well with
the transit times obtained by Sinclair et al. (2019). However,
we should keep in mind that the time span since the previous
flooding by a carrier is not equivalent to transit times of sed-
iment clasts. The generic form of the shared stream-power
model (Eq. 1) predicts only a net rate but not the exchange
of particles between the river and an alluvial cover. There-
fore, tracking sediment clasts in OpenLEM would not only
require some technical effort, but also an extension of the
shared stream-power model itself.

Carretier et al. (2016) already added a component for
tracking clasts to the model CIDRE, which explicitly defines
erosion and deposition rates. Simulating the distribution of
clasts in a smaller region (equivalent to the yellow, orange,
and green domains in this study), a variation of transit times
over several decades was found (Carretier et al., 2020). The
obtained distribution may even be heavy-tailed with a power-
law tail, consistent with results obtained from a canyon in the
central Andes (Carretier et al., 2019). In turn, the exponen-
tial distribution of the time span since the previous flooding
by a carrier suggests that the reorganization of the drainage
network alone would not produce heavy-tailed distributions.
So finding out whether transit-time distributions of sediment
clasts are indeed heavy-tailed and, if so, explaining their ori-
gin requires further research.

10 The effect of consolidation

So far, a transport-limited model has been used for the fore-
land region. However, we have seen in the previous section
that a considerable part of the area may be covered by de-
posits older than some 100 000 years; the question arises
of whether eroding such deposits is described well by a
transport-limited model.

In order to investigate the effect of a finite erodibility Kd
in the erosive regime, an extension of the numerical scheme
proposed by Hergarten (2020) was developed and imple-
mented in OpenLEM. This extension switches between the
shared stream-power model with a finite erodibility Kd and
the transport-limited end-member (Kd→∞) at each node.
By integrating the decision into the scheme, the fully implicit
character of the scheme can be almost completely preserved.
Only the base level of each node (the elevation of the flow
target) has to be adopted from the beginning of the respec-
tive time step, while the actual values of all other properties
can be included in the decision.

As an extreme scenario, the same parameters as in the
mountain range were assumed for the erosive regime in the
foreland (Kd =Kt = 1). This would be an instantaneous con-
solidation of all deposits to a rock with the same properties
as the bedrock in the mountain range. Although unrealistic,
this extreme scenario is useful for investigating the effect of
not fully transport-limited conditions in the erosive regime.

It was already recognized in Sect. 7 that the sediment
fluxes from the redistributors into the carriers are very impor-
tant for the high rates of sediment deposition in the carriers.
The mean erosion rates of the redistributors indeed decrease
strongly; a more than fivefold decrease was found except for
the two regions closest to the mountain range (yellow and
orange). This may be surprising at first because the effec-
tive erodibility (Eq. 6) is reduced only by a factor of 2 (from
1 to 0.5). However, it was already shown in the context of
knickpoint migration that disturbances propagate upstream at
a velocity defined by Kd, which explains the big difference
between Kd→∞ and Kd = 1 in the transient behavior.

The reduction in mean erosion rate equivalently reduces
the sediment fluxes from the redistributors into the carri-
ers and into the ocean. As shown in Fig. 14, this reduction
strongly affects the sediment balance of the carriers. Now the
total sediment input is only 107 % instead of 133 % (Fig. 9),
while 98 % is delivered to the ocean instead of 91 %. So
92 % of the total sediment input is delivered to the ocean and
only 8 % is deposited. The respective ratio was about 30 %
in the transport-limited model (Fig. 9). So moving from the
transport-limited model to the shared stream-power model
withKd =Kt = 1 also considerably reduces the rates of sed-
iment deposition in the carriers, although the decrease is not
as strong as in the erosion rates of the redistributors. In agree-
ment with the results of the sediment balance, the decrease is
by a factor of 3.5 to 4.8, except for the first and last domain
(yellow and dark blue), for which it is less than 3.

https://doi.org/10.5194/esurf-10-671-2022 Earth Surf. Dynam., 10, 671–686, 2022



684 S. Hergarten: Rivers in a tectonically inactive foreland

Figure 14. Balance of water and transported sediment for the sce-
nario with instantaneous consolidation (Kd =Kt = 1 in the erosive
regime). Blue arrows describe discharges equivalent to catchment
sizes. The values are normalized to the total catchment size and
expressed in percent so that 100 corresponds to the total catchment
size. Orange-colored arrows describe sediment fluxes normalized to
the sediment flux from the mountain range (also expressed in per-
cent). The numbers in parentheses describe the sediment balances
of the individual system components.

The increase in the rates of erosion and deposition also
slows down the dynamics of network reorganization. While
the distributions of the time since the previous flooding by a
carrier were found to be qualitatively similar to the distribu-
tion shown in Fig. 13, the timescale is stretched. The mean
time since the previous flooding by a carrier increases by a
factor of 4.6 to 5.8 for the individual domains. These fac-
tors follow the decrease in erosion rates in the redistributors
rather than the decrease in deposition rates in the carriers.
This finding emphasizes the relevance of the erosion by re-
distributors and the resulting sediment flux to the carriers for
the dynamics of the foreland rivers.

11 Conclusions and outlook

This paper is intended to define some kind of reference sce-
nario for fluvial landform evolution in a tectonically inactive
foreland of a mountain range. Additionally, it can also be
seen as a starting point for further studies.

The considered scenario combines one of the simplest
models of large-scale fluvial erosion and sediment transport
– the shared stream-power model – with a simple geometry
consisting of a mountain range and an inactive foreland. In
order to understand the behavior of the model, the foreland
rivers were subdivided into two classes – carriers and redis-
tributors. Carriers originate in the mountain range and are
thus responsible for the large-scale sediment transport to the
ocean. In turn, redistributors are rivers whose entire catch-
ment is located in the foreland.

Using the concept of carriers and redistributors, it was
shown that a steady-state topography in the strict sense is
impossible in the foreland even under constant conditions.
Although the topography becomes more or less constant on
average over long times, the drainage network in the fore-
land permanently reorganizes. On the other hand, longitu-
dinal profiles of carriers are described well by a hypotheti-

cal steady state on average, with the sediment flux from the
mountain range just routed to the ocean. The concavity in-
dex of carriers is typically greater than the concavity index
θ = m

n
of rivers in a mountain range at uniform erosion but

smaller than the value θ = m+1
n

expected for carriers without
sediment supply by tributaries. By analyzing the topology of
the drainage network, it was found that θ is in the middle be-
tween these two values, so θ ≈ 1 for the linear version of the
shared stream-power model (n= 1).

It was found that redistributors predominantly erode at
rates lower than the erosion rate in the mountain range. In
turn, carriers predominantly deposit sediments, with the rates
typically much higher than the erosion rate in the mountain
range. As a major result, the sediment flux from the redistrib-
utors into the carriers plays a central part for the deposition
of sediments and for the reorganization of the drainage net-
work. While the erosion rates of the redistributors are rather
low, the respective areas are large, generating considerable
sediment input in total. As a consequence, the assumptions
on the erosion in the foreland are more important for the dy-
namics of the rivers than it may seem at first.

While these results might be fundamental, there are two
major limitations, which are related to each other. First, there
is the finite length of the time increment used in the numeri-
cal simulation. Concerning the accuracy, much smaller time
increments than used in this study would be desirable. This
would, however, not only increase the numerical effort, but
would also shift the timescale into a range in which indi-
vidual flood events become relevant in reality. As a second
point, floodplains are not explicitly taken into account. Val-
leys are filled with sediments pixel by pixel in combination
with a high frequency of avulsions. Finding an approach to
extend deposition laterally over floodplains would probably
also help to solve the issue with the time increment.

There are several further aspects for which subsequent
studies should go deeper. This also includes the considera-
tion of transient states and the comparison to real-world to-
pographies. In addition, rates of sediment deposition were
only investigated at a given timescale. Given the numeri-
cal efficiency of the model OpenLEM used here, the scaling
properties could be investigated over a range from some 100
years up to millions of years. As a next step, tracking ages of
deposits in different depths would be interesting and would
allow for a validation by real-world data, although this would
be technically more challenging.

In addition, the nonlinear version of the shared stream-
power model (so with exponents n > 1) should also be in-
vestigated in subsequent studies. From a theoretical point of
view, the still existing uncertainty concerning the exponent n
in the stream-power formulation is still a challenge. The the-
oretical considerations of the concavity index of carriers sug-
gest that the exponent n has an effect in the foreland even un-
der spatially uniform conditions, in contrast to active moun-
tain ranges. So a more thorough investigation of the influence
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of the exponent in combination with real-world river profiles
may considerably contribute to our knowledge of the value
of this exponent.

Code and data availability. All code is available in a Zenodo
repository at https://doi.org/10.5281/zenodo.6770230 (Hergarten,
2022b). This repository also contains a part of the simulated data.
The full set of simulated data will be stored for a limited time and
is available upon request. Users who are interested in using the
landform evolution model OpenLEM in their own research are ad-
vised to download the most recent version from http://hergarten.at/
openlem (Hergarten, 2022a). The author is happy to assist inter-
ested readers in reproducing the results and performing subsequent
research.
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