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Abstract. Improving the quantification of soil thermal and physical properties is key to achieving a better under-
standing and prediction of soil hydro-biogeochemical processes and their responses to changes in atmospheric
forcing. Obtaining such information at numerous locations and/or over time with conventional soil sampling is
challenging. The increasing availability of low-cost, vertically resolved temperature sensor arrays offers promise
for improving the estimation of soil thermal properties from temperature time series, and the possible indirect
estimation of physical properties. Still, the reliability and limitations of such an approach need to be assessed.
In the present study, we develop a parameter estimation approach based on a combination of thermal modeling,
sliding time windows, Bayesian inference, and Markov chain Monte Carlo simulation to estimate thermal diffu-
sivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution (i.e.,
down to 5 to 10 cm vertical resolution) from soil temperature time series. We provide the necessary framework
to assess under which environmental conditions (soil temperature gradient, fluctuations, and trend), temperature
sensor characteristics (bias and level of noise), and deployment geometries (sensor number and position) soil
thermal diffusivity can be reliably inferred. We validate the method with synthetic experiments and field stud-
ies. The synthetic experiments show that in the presence of median diurnal fluctuations≥ 1.5 ◦C at 5 cm below
the ground surface, temperature gradients> 2 ◦C m−1, and a sliding time window of at least 4 d the proposed
method provides reliable depth-resolved thermal diffusivity estimates with percentage errors≤ 10 % and poste-
rior relative standard deviations≤ 5 % up to 1 m depth. Reliable thermal diffusivity under such environmental
conditions also requires temperature sensors to be spaced precisely (with accuracy to a few millimeters), with
a level of noise≤ 0.02 ◦C, and with a bias defined by a standard deviation≤ 0.01 ◦C. Finally, the application of
the developed approach to field data indicates significant repeatability in results and similarity with independent
measurements, as well as promise in using a sliding time window to estimate temporal changes in soil thermal
diffusivity, as needed to potentially capture changes in bulk density or water content.

1 Introduction

Knowledge of soil thermal properties (i.e., soil thermal con-
ductivity, thermal diffusivity, and specific heat capacity) is
fundamental to solving problems in many fields, such as in
engineering, agriculture, meteorology, and geology (Farouki,
1981). Thermal properties, which are controlled by the spa-
tial arrangement and fraction of soil components, such as
minerals, organic matter, water, ice, and air, modulate heat
fluxes in soil and at the soil–surface boundary. As a con-

sequence, an improved quantification of soil thermal prop-
erties is a cornerstone for advancing the indirect estima-
tion of fraction of soil components (Al Nakshabandi and
Kohnke, 1965; Ochsner et al., 2001; Abu-Hamdeh, 2003;
Arkhangel’skaya, 2009; Tong et al., 2016; Arkhangel’skaya
and Lukyashchenko, 2018; Xie et al., 2018; Jafarov et al.,
2020) needed to parametrize hydro-biogeochemical models,
as well as for understanding and predicting variability in the
subsurface thermal regime and fluxes of water, carbon, and
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nutrients (Koven et al., 2013; Rasmussen et al., 2018; Nicol-
sky and Romanovsky, 2018; Oliva and Fritz, 2018).

Direct measurement of soil thermal and physical prop-
erties (Ochsner and Baker, 2008; Mengistu et al., 2017)
obtained by sampling and analyzing soil from multiple
depths and locations is highly valuable, but it is also time-
consuming, invasive, difficult to repeat over time, and costly.
In addition, the sampling and analysis are not error free, pri-
marily because of the difficulty in minimizing error in the
bulk density measurement. Similarly, this approach provides
limited vertical and lateral resolution, which in some cases is
insufficient to capture the highly heterogeneous distribution
of soil physical and thermal properties. An assessment of al-
ternative methods is needed that can potentially complement
direct measurements and provide estimates of physical and
thermal properties over space and time with unprecedented
resolution. Soil temperature time series have been proven
to be a valuable source of information for monitoring spa-
tiotemporal changes in subsurface properties, and they have
been used to infer (for instance) heat and water fluxes (e.g.,
Steele-Dunne et al., 2010; An et al., 2016; Irvine et al., 2017;
Tabbagh et al., 2017), organic matter content (Tran et al.,
2017), and thermal properties (e.g., Nicolsky et al., 2009; Ra-
jeev and Kodikara, 2016).

The estimation of thermal properties from soil tempera-
ture time series can be achieved through analytical or in-
verse methods. With analytical methods, thermal diffusivity
is computed from the analytical solution of the heat equation,
under the assumption that soil surface temperature is a sinu-
soidal function. In the literature, thermal diffusivity has been
estimated from the analytical solution of the heat conduction
equation using, for instance, the harmonic (Fourier) method
(Carson, 1963; Beardsmore et al., 2020) and the popular
phase-shift and amplitude-ratio methods (Krzeminska et al.,
2012; Hinkel, 1997; Jong van Lier and Durigon, 2013; Andú-
jar Márquez et al., 2016) or from the analytical solution of
the conduction–convection equation (Gao et al., 2017, 2008).
The main advantage of analytical methods is that they pro-
vide daily or monthly variation in bulk thermal diffusivity
without the need for computational resources. These esti-
mates are important input in physics-based models that sim-
ulate land–atmosphere interactions (Gao et al., 2017). One
limitation of these methods is that they cannot be applied
when the temperature does not vary sinusoidally, such as on
rainy or cloudy days. Moreover, since the amplitude of the
soil temperature wave decreases exponentially with depth,
the phase shift and amplitude methods might be unable to in-
fer thermal diffusivity deeper than 20–30 cm (Farouki, 1981;
Gao et al., 2017) unless very strong diurnal fluctuations are
recorded at the surface of conductive soils. Additionally,
most of the studies that rely on analytical methods are typi-
cally characterized by a low vertical spatial resolution, which
often involves the estimation of thermal properties in a single
layer in the top 20 cm (e.g., Gao et al., 2017), in two layers in
the top 30 cm (e.g., Jong van Lier and Durigon, 2013), or in

three layers in the top 40 cm (Krzeminska et al., 2012; Gao
et al., 2008). A few studies have investigated thermal proper-
ties at greater depths, such as up to 1 m with a resolution of
20 cm (Beardsmore et al., 2020) or with a single layer up to
5 m (Andújar Márquez et al., 2016).

Some of the challenges inherent to the analytical meth-
ods can be overcome by the use of numerical approxima-
tions of the heat equation (which can take in input temper-
ature time series of any form) and by embedding them in
a deterministic or probabilistic inverse method. A determin-
istic inversion relies on optimization techniques to estimate
the value of the unknown parameter(s) of interest (e.g., soil
thermal properties) that minimize the difference between the
simulated and measured data (e.g., soil temperature time se-
ries). Deterministic inversion of thermal properties has been
achieved with the finite difference (Krzeminska et al., 2012)
or the finite element scheme to approximate the heat con-
duction (Kim et al., 2019), the conduction–convection equa-
tion (Tabbagh et al., 2017), or the heat conduction equation
with phase changes (Nicolsky et al., 2009). Comparison of
analytical and numerical methods can be found in Horton
et al. (1983) and Rajeev and Kodikara (2016). Determinis-
tic inversions are computationally inexpensive, but the con-
vergence to the global minimum is not guaranteed. Similar
to the studies based on analytical methods, most of the in-
vestigations done with deterministic inverse approaches in-
fer thermal properties at a low vertical resolution, such as in
a single layer (e.g., Tabbagh et al., 2017) or two to three lay-
ers in the top 40 cm (e.g., Kim et al., 2019; Krzeminska et al.,
2012), or, for instance, five layers up to 50 m (Nicolsky et al.,
2009). Moreover, deterministic inversion, as with analytical
methods, only provides a single solution of the system, with
no means to explicitly model and take into account different
sources of uncertainty.

Probabilistic inverse methods provide a set (distribution)
of equally probable values of the unknown parameters by
aiming at “capturing both the average response of the sys-
tem and the variability due to uncertainties of any kind”
(Renard et al., 2013). In the last decades, Bayesian infer-
ence has gained popularity among the probabilistic inverse
approaches. Unlike classical statistical methods to estimate
uncertainty (e.g., Beardsmore et al., 2020), Bayesian infer-
ence allows incorporation of prior knowledge about the pa-
rameter to be estimated as well as taking explicitly into ac-
count different sources of uncertainty, such as measurement
errors. Moreover, a great variety of sampling algorithms are
available to avoid nonconvergence issues. Though promis-
ing, the applications of the Bayesian framework to infer soil
thermal properties are still limited. Huang et al. (2017) have
derived the heat conductivity in the layer between the atmo-
sphere and the soil surface, Choi et al. (2018) have inferred
soil thermal conductivity from a thermal response test, and
Tran et al. (2017) have inferred organic matter content from
soil temperature, liquid water, and apparent resistivity data.
Bayesian inference has been more widely applied in engi-
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neering (Kaipio and Fox, 2011) to estimate thermal proper-
ties of fins (Gnanasekaran and Balaji, 2013; Somasundharam
and Reddy, 2017) and walls (De Simon et al., 2018; Rodler
et al., 2019). While the above studies have shown promise
in estimating thermal properties from time series of tem-
perature, several challenges still remain, including the need
for an approach that can assess the conditions under which
such estimates are reliable. In addition, the recent increasing
availability of dense, vertically resolved arrays of tempera-
ture sensors offers a new opportunity to increase the vertical
and lateral resolution of the estimates and potentially quan-
tify their temporal variability, although such a strategy has
not been assessed yet.

The aim of our study is to evaluate the potential of esti-
mating soil thermal diffusivity and its uncertainty at numer-
ous locations and at an unprecedented vertical spatial res-
olution (i.e., 5–10 cm in the top 1 m), using vertically re-
solved time series of soil temperature. A second objective
is to explore the possibility of estimating changes in ther-
mal diffusivity over time by sequencing the soil temperature
time series with a sliding time window. To this end, we de-
veloped a parameter estimation approach based on Bayesian
inference that also allows us to assess the impact of differ-
ent sources of uncertainty linked to various environmental
conditions (e.g., soil temperature gradient, fluctuations, and
trend), temperature sensor characteristics, and deployment
geometries. In this study, the Bayesian inference approach
is combined with a heat conduction thermal model to esti-
mate thermal diffusivity under the assumption that conduc-
tion dominates advection and that water–ice phase change is
absent. Though these assumptions limit the applicability of
the approach to specific time windows where water fluxes are
limited and temperatures are well above or below the freez-
ing point, they avoid the need of constraining water fluxes
or water content in or around the modeled domain, which
would require measurements that are rarely available at nu-
merous locations. While several studies have successfully ac-
counted for advection and/or freeze–thaw processes when es-
timating soil thermal parameters, they relied on additional
hydrological measurements (e.g., Jafarov et al., 2012; Tran
et al., 2017) or involved fully saturated environments (e.g.,
Nicolsky et al., 2009). In our study, we aim at developing a
method that can be applied at locations where only tempera-
ture data are available. While our approach reduces the num-
ber of parameters to be estimated or constrained (and hence
the likelihood of non-uniqueness of solution), we emphasize
that its applicability is limited to time windows where phase
change is absent and heat advection is limited (i.e., period
with little water infiltration).

Using the abovementioned approach, this study aims at
answering the following research questions: (1) can soil ther-
mal diffusivity be reliably estimated (i.e., with percentage er-
rors≤ 10 % and posterior relative standard deviations≤ 5 %,
which are representative of what can be presumably mea-
sured with a thermal analyzer on soil samples) at multiple

depths and locations from solely vertically resolved soil tem-
perature time series (i.e., without additional data), and if so,
under which environmental conditions and sensor character-
istics? (2) Can we capture temporal changes in thermal diffu-
sivity by estimating diffusivity sequentially for a sliding time
window of soil temperature time series? (3) Can thermal dif-
fusivity, estimated by applying our method to several loca-
tions across a field site, be used to retrieve soil composition
and other soil thermal–physical properties? To address these
questions, we perform synthetic experiments in which we in-
fer soil thermal diffusivity and assess its uncertainty under
different environmental conditions (i.e., soil temperature gra-
dients and fluctuations), length of sliding time window, level
of measurement errors, and temperature sensor geometries
(Sect. 3). In Sect. 4, we further evaluate the reliability and
sensitivity of the proposed method with an in situ study that
compares estimated thermal diffusivities for a silty–clayey
soil in a warm summer Mediterranean climate (Berkeley,
California, USA) with independent measurements obtained
with a thermal-property analyzer. Finally, in Sect. 5, we ap-
ply the method at a field site in a discontinuous permafrost
environment in a tundra climate (Nome, Alaska, USA) dur-
ing a period of low vertical gradient in soil temperature and
compare thermal diffusivity estimates at numerous locations
across the site with soil sample measurements. The synthetic
and in situ experiments enable evaluation and validation of
the developed method and its applicability to numerous envi-
ronmental conditions, including challenging situations such
as the presence of low vertical gradients in soil temperature.
Finally, it can be noted that the evaluation of the method in
an Arctic environment is particularly important to potentially
improve the parameterization of soil thermal parameters and
organic matter content in ecosystem models simulating the
feedback from Arctic ecosystem to climate warming.

2 Theory and method

2.1 Heat equation and thermal diffusivity

Heat is exchanged at the soil surface and within the soil
through different processes, such as radiation, convection,
conduction, and latent heat. However, conduction is the pro-
cess that dominates the transport of heat in soil (Hillel, 1982).
Assuming a purely heat conduction process in a heteroge-
neous medium of length L (m) under unsteady-state condi-
tions over a time window of duration T (s), the heat equation
in one dimension is (Hillel, 1982)

∂u

∂t
=
∂

∂z

(
α
∂u

∂z

)
z ∈ (0.05,L), t ∈ (0,T ], (1)

where temperature, u (◦C), varies with time, t (s), and depth,
z (m), and thermal diffusivity, α (m s−2), changes with z.
Thermal diffusivity characterizes unsteady heat conduction
and defines how quickly a material transfers heat from a
hot to a cold area due to a change in temperature (Farouki,
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1981). High thermal diffusivity values indicate that a ma-
terial is capable of a rapid transfer of heat. Thermal dif-
fusivity is defined as the ratio of the thermal conductivity,
κ (W m−1 K−1), to the density, ρ (kg m−3), and specific heat
capacity, cp (J kg−1 K−1) at a constant pressure:

α =
κ

ρ · cp
. (2)

Thermal diffusivity of soil is influenced by (1) soil com-
position, (2) soil water content (through its impact on wet
bulk density, specific heat capacity, and thermal conductiv-
ity), (3) soil bulk density (which depends mainly on the
soil composition and its degree of compaction), and, to a
lesser extent, (4) temperature changes (Al Nakshabandi and
Kohnke, 1965; Ochsner et al., 2001; Abu-Hamdeh, 2003;
Arkhangel’skaya, 2009; Tong et al., 2016; Arkhangel’skaya
and Lukyashchenko, 2018; Xie et al., 2018; Zhu et al., 2019).

2.2 Forward modeling: finite differences and sliding time
windows

The differential equation in Eq. (1) can be solved numeri-
cally by discretizing the space-time domain via finite differ-
ence or finite element methods such that an approximation
of the exact solution at the grid nodes can be computed. We
apply herein the most common and easy-to-implement ex-
plicit finite difference method based on the forward time and
centered space scheme (Petter Langtangen and Linge, 2017;
Praprotnik et al., 2004):

u
j+1
i = u

j
i +

1t

1z2

[
α
i+ 1

2

(
u
j

i+1− u
j
i

)
−α

i− 1
2

(
u
j
i − u

j

i−1

)]
, (3)

where i and j identify the grid node in space and time, re-
spectively; 1t (s) is the length of the time step; 1z (m) is
the distance in space between grid nodes; and uji represents
a discrete approximation to u(z, t). Note that the thermal dif-
fusivity is computed on a staggered grid. Both1t and1z are
chosen so as to avoid numerical instabilities and to ensure the
convergence of the explicit finite difference scheme:

1t ≤
1z2

2 ·max(α)
, (4)

which is known as the Courant–Friedrichs–Lewy condition
(Courant et al., 1928). According to the literature (e.g.,
Farouki, 1981; Andújar Márquez et al., 2016), we con-
sider soil thermal diffusivity values as large as α = 3×
10−6 m2 s−1 and 1z= 0.05 m; therefore, we set 1t = 300 s.
While a uniform spacing of 0.05 m is used in the finite differ-
ence scheme, the actual spatial resolution at which soil ther-
mal diffusivity is resolved by our method corresponds to the
spacing between the temperature sensors. Similarly to Tab-
bagh et al. (2017) and Rodler et al. (2019), we sequence the
soil temperature time series with a sliding time window of
length T that moves every 24 h over the entire time period

for which data are available. Thermal diffusivity is assumed
to be constant in time within each time window. The optimal
time window length T is investigated in detail later in this
study, as it needs to be sufficiently small to limit the influence
of hydrological processes (e.g., advection not represented in
the heat conduction model), but long enough to contain suffi-
cient information to reliably infer thermal diffusivity at mul-
tiple depths. Based on the measurement geometry assumed
in this study, the soil temperature values at multiple depths at
the beginning of each time window are used as initial condi-
tions, whereas the soil temperature time series recorded over
the time window by the shallowest and deepest sensors are
employed as top and bottom boundary conditions (i.e., time-
varying Dirichlet boundary conditions), respectively.

2.3 Inverse modeling: Bayesian inference with MCMC

Bayesian inference provides a probabilistic framework that
enables us to derive from n data, Ỹ = {ỹ1, . . . , ỹn}, the d-
dimensional vector of the parameters of interest, θ , that
are not directly measured or known while fully quantifying
the associated uncertainty. This process is performed by the
Bayes theorem:

p(θ |Ỹ )=
p(θ )p(Ỹ |θ )
p(Ỹ )

, (5)

which defines how the prior state of knowledge about the
quantities of interest, p(θ ), is updated by the information
contained in the data through the likelihood function, p(Ỹ |θ ).
The denominator in Eq. (5) is a normalization factor called
“evidence” that can be neglected if a single conceptual model
is considered, as in this study. The Bayes theorem provides
as output the posterior probability density function (pdf),
p(θ |Ỹ ), of the parameters of interest θ . Bayesian inference
can be performed with likelihood functions of any form.
However, we assume here, as it is often the case, uncorre-
lated and normally distributed measurement errors with con-
stant standard deviation, σỸ , that define a Gaussian likeli-
hood function as

p(Ỹ |θ )=
(√

2πσ 2
Ỹ

)−n
exp

[
−

1
2

n∑
h=1

(
Fh(θ )− ỹh

σỸ

)2
]
. (6)

The term Fh(θ ) is the forward model (e.g., Eq. 3, Sect. 2.2)
used to simulate the observed data, Ỹ . Larger likelihood
values indicate that Fh(θ ) better predicts the data at hand.
The posterior pdf in Eq. (5) is multidimensional and ana-
lytically intractable. Sampling schemes such as the popu-
lar Markov chain Monte Carlo (MCMC) (Gilks et al., 1995;
Robert and Casella, 2013) algorithm are, therefore, applied
to find an approximation of the posterior pdf. In particular, in
this work, we make use of the DiffeRential Evolution Adap-
tive Metropolis, DREAM(ZS), algorithm (Laloy and Vrugt,
2012; Vrugt, 2016), which is a multi-chain MCMC sampling
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scheme based on the Metropolis acceptance ratio (Metropo-
lis et al., 1953) but with an improved sampling efficiency.
This algorithm allows us to avoid nonconvergence issues that
might arise when inferring for more than one unknown pa-
rameter (i.e., thermal diffusivity at multiple depths). The con-
vergence of the multiple Markov chains to the posterior pdf
is assessed quantitatively with the Gelman–Rubin statistic
(Gelman and Rubin, 1992). In this paper, we aim at infer-
ring about 12 unknown parameters; therefore, following the
guidelines provided by Vrugt (2016), we set the number of
Markov chains to three and a total of 5× 104 iterations were
found to be enough to reach convergence and get acceptable
acceptance rates (i.e., between 15 % and 40 %, according to
Gelman et al., 1996). The unknown parameters to be inferred
from the soil temperature time series are thermal diffusivity
values at multiple depths that are drawn from the uniform
prior distribution U [0.01, 3] mm2 s−1. The upper and lower
limits of the thermal diffusivity prior range have been chosen
based on typical values found in the literature (e.g., Farouki,
1981; Andújar Márquez et al., 2016). In the case of the in
situ experiment (Sect. 4) and field case study (Sect. 5), we
also infer the standard deviation of the measurement errors,
σỸ , by drawing it from the uniform distribution U [0, 1] ◦C.

The uncertainty over the MCMC thermal diffusivity esti-
mates is quantified with the percentage error and the poste-
rior relative standard deviation. The percentage error (PE) is
the distance of the MCMC posterior mean of thermal diffu-
sivity, α, from the synthetic true value, αtrue (in the case of
synthetic experiments):

PE=
|α−αtrue|

αtrue
· 100%, (7)

whereas the posterior relative standard deviation (RSD) mea-
sures the dispersion of the MCMC posterior distribution
around the MCMC posterior mean of thermal diffusivity:

RSD=
σα

αmcmc
· 100 %, (8)

where σα is the standard deviation of the posterior MCMC
distribution of thermal diffusivity.

The uncertainty regarding the inferred thermal diffusivity
at multiple depths is influenced by a combination of many
factors, including the temperature gradient at each depth, the
length of the sliding time window used in the MCMC in-
version, the amount of information contained in temperature
trend and fluctuations, the level of noise and bias in the tem-
perature time series, and the geometry of temperature sen-
sors.

2.4 Data and field site description

2.4.1 Vertically resolved time series of temperature

Synthetic and field experiments performed in this study use
an acquisition geometry in which temperature measurements

are collected autonomously at numerous depths, with a ver-
tical resolution of 0.05 to 0.1 m. This geometry corresponds
to measurements obtained with vertically resolved temper-
ature devices such as, for example, a distributed temper-
ature profiling (DTP) system (Dafflon et al., 2022b). In
this study, each DTP system has at least 13 digital tem-
perature sensors (TMP117AIDRVR, http://www.ti.com/lit/
ds/symlink/tmp117.pdf, last access: 23 June 2022) that are
mounted on an interconnected printed circuit board and in-
serted in a ∼ 10 mm outer diameter plastic tube filled with
epoxy. The DTP system configuration used in this study in-
volves a spatial resolution of 0.05 m between the top five sen-
sors and of 0.10 m between the bottom eight sensors, result-
ing in the acquisition of temperature time series at 0.05, 0.10,
0.15, 0.20, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, and
1.05 m below the ground surface. The sensors record the soil
temperature every 15 min, with a resolution of 0.0078 ◦C
and an accuracy (corresponding to 3 standard deviations) of
±0.1 or ±0.015 ◦C when relying on the manufacturer cal-
ibration or an additional in-house calibration, respectively
(Dafflon et al., 2022b).

2.4.2 Synthetic experiment

The synthetic experiments (Sect. 3) are implemented to in-
vestigate the impact of different environmental conditions
and sensor characteristics on the uncertainty of thermal dif-
fusivity estimates. We generate synthetic soil temperature
fields that mimic various types of plausible temperature gra-
dients and fluctuations through forward modeling (Sect. 2.2).
This is achieved by setting the initial, top, and bottom bound-
ary conditions equal to in situ temperature time series, here
specifically from two monitoring sites on the Seward Penin-
sula, Alaska. One site is used to evaluate summer condi-
tions (Romanovsky et al., 2020) and the other (Brunetti et al.,
2022) autumn conditions. Both sites are locations character-
ized by the absence of permafrost, the presence of tall shrubs,
and decreasing organic matter content and porosity with
depth. We then assume a soil column composed of three lay-
ers (i.e., top layer at 0.05–0.1 m, middle layer at 0.1–0.42 m,
and bottom layer at 0.42–1.05 m) in each of which thermal
diffusivity values are considered constant over time and as-
signed based on soil sample analysis performed at the same
sites under similar environmental conditions, i.e., 0.16, 0.27,
and 0.43 mm2 s−1 for the case of summer temperatures and
0.25, 0.75, and 0.6 mm2 s−1 for autumn. The summer case
is characterized by median diurnal fluctuations (maximum
minus minimum temperature over 1 d measured by the top
sensor at 0.05 m below the ground surface) of 1.6 ◦C over the
time period considered and temperature gradients all larger
than 2 ◦C m−1 at each depth. The case for autumn has lower
median diurnal fluctuations (i.e., 0.13 ◦C) and lower temper-
ature gradients (mostly within−1 and 2 ◦C m−1). We perturb
the synthetic temperature fields using a Gaussian noise with
a standard deviation of σỸ = 0.02 ◦C.
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2.4.3 Assessment of repeatability and temporal
changes of in situ thermal diffusivity estimates

One of the two field experiments presented in this study is
aimed at evaluating the repeatability of the estimated diffu-
sivity and the method’s ability to detect changes over time
(Sect. 4). To this end, measurements from four co-located
(in a 25 cm radius area) DTP systems installed from 23 De-
cember 2020 to 17 February 2021, in a silt-dominated soil in
Berkeley (CA, USA), were used to estimate thermal diffusiv-
ity. In this winter period, the median [min, max] temperature
gradient among all the probes recorded between the two top
sensors is 5.98 ◦C m−1 [−25.59, 37.07 ◦C m−1]; between the
two bottom sensors it is 2.16 ◦C m−1 [1.16, 2.91 ◦C m−1].
The median [min, max] diurnal temperature variation mea-
sured by the top sensor at 0.05 m below the ground surface is
1.59 ◦C [0.52, 3.67 ◦C]. Accumulated precipitation every 15
min recorded from the Lawrence Berkeley National Labora-
tory meteorological station (lat: 37.8771, long: −122.2486)
was obtained from https://mesowest.utah.edu (last access:
23 June 2022). Independent measurements of thermal diffu-
sivity were collected on 24 December 2020, after a long dry
period that lasted about 30 d, using a thermal-property ana-
lyzer (TEMPOS instrument with the SH-3 dual needle; ME-
TER Group), which measures conductivity, diffusivity, and
volumetric heat capacity with an accuracy of ±10 %. Five
measurements were recorded at each 0.10, 0.20, 0.30, 0.40,
0.50, and 0.55 m depth, by repetitively inserting the SH-3
dual needle along the walls of a hand-augured 8 cm diameter
hole.

2.4.4 Field study in a cold, unfrozen soil with limited
vertical temperature gradient

The second field experiment presented in this study involves
the measurement and estimation of soil thermal diffusivity at
numerous locations in a discontinuous permafrost environ-
ment, and the evaluation of the links between the estimated
soil thermal diffusivity values and soil physical properties
(Sect. 5). The study site is located along Teller Road about
40 km northwest of Nome, Alaska (64.72◦ N, 165.94◦W).
This site, referred to here as the “Teller site”, is characterized
by discontinuous permafrost and a great variety of vegetation
types (e.g., tall shrub, dwarf shrub, moss, graminoids; Léger
et al., 2019; Uhlemann et al., 2021). Soil thermal diffusivity
was inferred from temperature time series recorded in the dry
period 7–27 October 2019 from 27 locations distributed over
the 2.3 km2 area of the Teller site where during that period
soil was entirely unfrozen along the temperature probes (i.e.,
temperature time series at all depths above 0.5 ◦C). At this
time of the year, the median [min, max] temperature gradient
among all the probes recorded between the two top sensors
was 10.47 ◦C m−1 [−9.22, 35.78 ◦C m−1], and between the
two bottom sensors it was as low as 0.63 ◦C m−1 [−0.94,
2.19 ◦C m−1]. The median [min, max] diurnal temperature

variation measured by the top sensor at 0.05 m below the
ground surface was 0.23 ◦C [0.03, 1.41 ◦C].

Moreover, 92 soil samples at 50 locations were retrieved
during the first week of August 2019 and analyzed in the
laboratory in order to measure thermal and physical prop-
erties (Dafflon et al., 2022a). Thermal conductivity, thermal
diffusivity, volumetric heat capacity, and wet bulk density of
the soil samples were measured the same day they were col-
lected, using a weighing scale and the thermal-property ana-
lyzer (TEMPOS instrument with the SH-3 dual needle; ME-
TER Group). Later analyses in the lab involved drying the
soil samples at 65 ◦C, recording dry weight, grinding soil to
pass a 2 mm sieve, recording weight of the > 2 and < 2 mm
portion, and measuring carbon concentration by combustion.
These analyses were used to infer dry bulk density, water
content, and carbon density. A total of 20 of these soil sam-
ples, retrieved at about 0.075, 0.20, and 0.80 m depth, were
collocated with 13 out of the 27 locations monitored with the
DTP systems.

3 Method assessment through synthetic
experiments

Synthetic experiments were performed to investigate how
the uncertainty of the inferred thermal diffusivity at multi-
ple depths is affected by various factors, including (1) the
amount of temperature gradient at each depth (Sect. 3.1
and 3.3), (2) the length of the sliding time window used in the
MCMC inversion (Sect. 3.1), (3) the amount of information
contained in temperature trends and fluctuations (Sect. 3.2),
(4) the level of noise and bias in the temperature time series
(Sect. 3.3), and (5) the geometry of the temperature sensors
(Sect. 3.4).

3.1 Impact of time window length

In this section, we assess how the uncertainty of thermal dif-
fusivity estimates is affected by the length of the sliding time
window used in the MCMC inversion under two very differ-
ent types of temperature fields. One temperature field has a
strong gradient and diurnal fluctuations that generally occur
in summer (Fig. 1a), whereas the other has much more lim-
ited gradient and fluctuations that are more typical for the au-
tumn season (Fig. 1h). The diurnal signal in the top boundary
condition in summer allows us to get PE≤ 10 % and poste-
rior RSD at maximum±5 % on thermal diffusivity estimates
in the top 0.25 m, even for very short time windows of 1 d
(Fig. 1b, f, and g). Using a time window of 4 or more days
allows us to infer thermal diffusivity with a PE≤ 10 % and
a RSD of ±2 % at all depths up to 1 m (Fig. 1c, f and g). A
lower diurnal signal in the top boundary condition (between
−1 and 2 ◦C m−1), as observed in autumn (Fig. 1h), implies
much larger error. Indeed, in this case a time window of at
least 21 d is required in order to infer thermal diffusivity at
all depths with a PE≤ 10 % and a RSD of ±5 % (Fig. 1k, m,
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Figure 1. Synthetic temperature field for (a) summer and (h) autumn and corresponding MCMC inversion results for (b–g) summer and (i–
n) autumn. (b–e, i–l) Median (black dots) and range (black shaded areas) of the posterior means of thermal diffusivity at each depth derived
from MCMC simulation for various sliding time window lengths. Red lines show the “true” thermal diffusivity profile. (f–g, m–n) Percentage
error (Eq. (7)) and posterior relative standard deviation (Eq. 8) at each depth for sliding time windows of different lengths (x axis). Note that
the time window length in the x axis is nonlinear.

and n). Moreover, thermal diffusivity estimates in the bottom
part of the soil column, where temperature gradients and di-
urnal fluctuations are smaller than in the upper part, are char-
acterized by higher uncertainty. In general, the optimal length
of the time window depends on the information content (e.g.,
diurnal fluctuations and vertical gradient) in the temperature
time series such that the less information content there is the
longer the time window needs to be to reliably infer thermal
properties.

This synthetic experiment further shows that soil hetero-
geneity is defined at a spatial resolution equal to the spac-
ing of the temperature sensors. When an interface is located
between two sensors, such as the one at 0.42 m in our syn-
thetic soil column, the bulk thermal diffusivity inferred be-
tween 0.35 and 0.45 m corresponds to the weighted mean of
the thermal diffusivity above and below the soil interface.

3.2 Impact of temperature trend and fluctuations

In this section, we assess the effect of temperature trend
versus diurnal fluctuations over time (Fig. 2a–d) on the un-
certainty of the estimated thermal diffusivity. For this pur-
pose, we perform the MCMC inversion on various cases,
which include (F0) a summer synthetic temperature field
(Fig. 2a), (F1) a detrended summer synthetic temperature
field (Fig. 2b), (F2) a summer synthetic temperature field
with daily and smaller fluctuations smoothed out (Fig. 2c),
and (F3) a summer synthetic temperature field without any
fluctuations (Fig. 2d). All four cases preserve the same verti-
cal temperature gradient, with a sliding time window of 7 d.

Results indicate that the information contained in the tem-
perature trend has negligible value for estimating soil thermal
diffusivity compared to the information provided by the fluc-
tuations (F0 vs. F1, Fig. 2e and f). Indeed, the uncertainty
of the thermal diffusivity estimates does not worsen when
detrending the time series at each depth. Smoothing out the
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Figure 2. Impact of soil temperature trend and fluctuations on the
MCMC inversion evaluated for various cases, including (a) sum-
mer trend and fluctuations (F0), (b) detrended fluctuations (F1),
(c) smoothed out daily and smaller fluctuations (F2), and (d) with-
out fluctuations (F3). (e) Percentage error (Eq. 7) and (f) posterior
relative standard deviation (Eq. 8) at each depth when using sliding
time windows of 7 d for all four temperature fields (F0–F3) and of
20 d (F2b and F3b) for temperature fields F2 and F3.

diurnal and smaller fluctuations can result in percentage er-
rors higher than 10 % (F2 in Fig. 2e) and higher than 30 %
when completely removing them (F3 in Fig. 2e). However,
we should highlight that we can still get reliable thermal dif-
fusivity estimates (PE≤ 10 %, RSD≤ 1 %) in F2 and F3 by
increasing the time window length from 7 to 20 d (F2b and
F3b in Fig. 2e and f).

3.3 Impact of measurement noise and bias

In this section, we investigate the impact of temperature sen-
sor noise and bias on inferred thermal diffusivity estimates.
We consider two distinct scenarios in which temperature
data are perturbed with uncorrelated and normally distributed
measurement errors, by using different combinations of the
mean, µ, and standard deviation, σỸ . In the first scenario,
soil temperature time series are assumed to be measured
by temperature probes with unbiased sensors, µ= 0 ◦C, that
have different levels of noise σỸ equal to 0.01, 0.02, 0.03,
0.05, and 0.1 ◦C. The second scenario considers low levels
of noise in the temperature time series, σỸ = 0.01 ◦C, and
evaluates sensor bias, so that µ is randomly drawn from a
zero-mean Gaussian distribution with standard deviation, σc,
set equal to 0.005, 0.01, 0.02, and 0.04 ◦C. The MCMC inver-
sion results (Fig. 3a–l) when using the summer temperature
data of Fig. 1a show that thermal diffusivity can be inferred

with PEs≤ 10 % (Fig. 3e) and posterior RSDs≤ 1 % (Fig. 3f)
when the noise σỸ is no larger than 0.02 ◦C. The percent er-
ror may increase up to 20 % with σỸ = 0.05 ◦C. Bias in the
temperature sensors has an overall larger impact on the PE
of thermal diffusivity than a high level of noise in tempera-
ture sensors (Fig. 3g–j vs. Fig. 3a–d). Indeed, even with bi-
ases applied at each depth drawn randomly from a Gaussian
distribution with σc as low as 0.01 ◦C, we can observe bi-
ased thermal diffusivity estimates (Fig. 3h) with PE> 10 %
(Fig. 3k), and this effect worsens when increasing the bias in
the temperature sensors (Fig. 3j).

3.4 Impact of sensor geometry

In this section, we evaluate how thermal diffusivity estimates
are affected by the temperature sensor geometry, including
the number and position of the sensors, and the effect of po-
tential mispositioning of the sensors in soil. The sensor spa-
tial configuration of the temperature probe used in the present
work and described in Sect. 2.4.1 is considered the reference
case and is indicated with P0 in Fig. 4.

When increasing the sensor spacing from 0.05 to 0.1 m
in the top 0.25 m (P1), the PE of thermal diffusivity esti-
mates can be as high as 20 % in the top 0.1 m, which is likely
strengthened by the presence of an interface between the two
top sensors (P0 vs. P1 in Fig. 4a). Moreover, a lower resolu-
tion in the top part of the probe increases the PE of the esti-
mates in the bottom part (P1 in Fig. 4a). Increasing the sen-
sor spacing from 0.1 to 0.2 m in the bottom part of the probe
(i.e., below 0.4 m deep), where the soil is homogenous, does
not significantly affect the PE of the thermal diffusivity es-
timates (P2 in Fig. 4a). A sensor spacing of 0.2 m along the
entire probe yields PE larger than 10 % and ≤ 20 % (P3 in
Fig. 4a). The sensor geometries in P0, P1, P2, and P3 do
not significantly impact the RSDs of the estimates, which are
≤ 2 % (Fig. 4b). Decreasing the number of sensors to three
or four leads to unreliable thermal diffusivity estimates (P4
and P5 in Fig. 4a), and the corresponding posterior RSDs
are higher (Fig. 4b). Indeed, geometries with a significantly
smaller number of sensors, such as probes P4 and P5, rely on
much fewer data to compute the likelihood and constrain the
MCMC inversion.

We further evaluate how an error in positioning a sen-
sor at a specific depth or at a specific distance from other
sensors impacts the estimated thermal diffusivity. Note that
this risk is more strongly present when using discrete tem-
perature sensors placed manually in the subsurface (Fig. 4c
and d) instead of a distributed temperature profiling system.
A downwards shift of 0.02 m at the top sensor leads to un-
reliable thermal diffusivity estimates in the uppermost part
of the soil column and to PEs on thermal diffusivity larger
than 10 % over the entire soil column (case S1 in Fig. 4c).
Shifting the bottom sensor 0.02 m upwards has a smaller im-
pact on the PE of thermal diffusivity estimates (case S2 in
Fig. 4c). The main reasons for this are that the soil is homo-
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Figure 3. MCMC inversion results for the synthetic temperature field in Fig. 1a when perturbed by (a–f) Gaussian noise with different
standard deviations, σỸ , and (g–l) bias applied at each depth, drawn randomly from a Gaussian distribution with different standard deviations,
σc. (a–d, g–j) Median (black dots) and range (black shaded areas) of the posterior means of thermal diffusivity at each depth are derived
from MCMC simulation in each sliding time window of 7 d. Red lines show the “true” thermal diffusivity profile. Percentage error (Eq. 7)
and posterior relative standard deviation (Eq. 8) at each depth when applying (e, f) different level of noise and (k, l) different biases in the
temperature data used in the MCMC inversion.

geneous in the bottom part of the soil column below 0.42 m
and that thermal diffusivity is more sensitive to changes in
the top temperature time series compared to the bottom ones.
Indeed, the top sensors record the temperature time series
with the highest content of information (e.g., diurnal and sea-
sonal fluctuations). Similarly, applying a shift at each sensor
above 0.5 m depth, randomly drawn from the set −0.01, 0,
and 0.01 m, degrades the PE of thermal diffusivity estimates
more strongly than when the shifts are applied to the sensors
below 0.5 m depth (case S3 vs. S4 in Fig. 4c). If the shifts are
applied to all sensors, the PEs are higher than 30 % (case S5
in Fig. 4c). Reducing the number of sensors leads to higher
uncertainty in thermal diffusivity estimates (i.e., increase in
posterior RSDs), because fewer data are used to constrain the
inversion. Instead, a malpositioning of one or more sensors
does not affect the RSD of thermal diffusivity estimates (i.e.,
all ≤ 1 %, Fig. 4d), since the number of sensors and, hence,
data used in the inversion do not change. Moreover, we find
that increasing the sensor spacing from 5 to 10 cm in the top
25 cm of soil (probe P1 in Fig. 4a) has a smaller impact on
the PE of thermal diffusivity estimates than an error of a few

centimeters in positioning these sensors (cases S1 and S3 in
Fig. 4c).

4 Assessment of repeatability and temporal
changes of in situ thermal diffusivity estimates

The estimation of soil thermal diffusivity from temperature
time series was assessed by comparing MCMC inversion
results from multiple depth profiles of temperature located
close to each other, with independent measurements obtained
using the thermal-property analyzer (Sect. 2.4.3). The poten-
tial of the MCMC method to infer thermal diffusivity over
time was also further evaluated using the sliding time win-
dow approach over a 2-month period.

First, we compared the thermal diffusivity estimated with
the developed method to those measured with the thermal-
property analyzer. The replicated measurements from the
thermal-property analyzer, while showing a high variability
(large black error bars in Fig. 5a), suggest a fairly homoge-
nous clayey–silty soil, which is in agreement with visual ob-
servations from the soil pit dug at the site and values found
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Figure 4. MCMC inversion results with a 7 d sliding time win-
dow to evaluate the impact of different temperature sensor geome-
tries. (a) Percentage error (Eq. 7) and (b) relative standard deviation
(Eq. 8) at each depth when using different numbers and positions of
the temperature sensors (white dots). (c) Percentage error (Eq. 7)
and (d) relative standard deviation (Eq. 8) at each depth when con-
sidering different potential mispositioning of the temperature sen-
sors (white dots). The black bold horizontal lines depict the position
of soil interfaces in the “true” synthetic thermal diffusivity profile.

in the literature (e.g., Andújar Márquez et al., 2016). The
thermal diffusivity inferred from the temperature time se-
ries shows very similar values, although one of the probes
(probe 4) provides slightly higher values than the others at
depth greater than 30 cm. Both the measurements from the
thermal-property analyzer and the MCMC-inferred thermal
diffusivity estimates show similar values and trends in the
top 30 cm. Deeper, the measurements from the thermal ana-
lyzer suggest a slight decrease in thermal diffusivity that is
not visible in the MCMC estimates. The thermal diffusivity
values are still comparable, considering that their variabil-
ity is within the range of typical clay–silt soils and that both
methods tend to show the presence of spatial variability in
soil thermal properties.

Further, we evaluated the variation in thermal diffusiv-
ity over time using the sliding time window approach. The
MCMC inversion results from temperature data recorded by
the four temperature probes are very similar and show that
the estimated thermal diffusivity values in the top 30 cm of
soil remain consistently lower than at deeper depths over
the entire 2-month period. While the top soil does not show
much temporal variability in the soil diffusivity over time,
the deeper part shows larger changes, particularly at the time
of precipitation events occurring between 22 January and
5 February 2021. These precipitations events are associated
with a decrease in temperature (Fig. 5b) and an increase in
thermal diffusivity, mainly in the bottom part of the soil col-
umn (Fig. 5c). Thermal diffusivities inferred from the sliding
time window associated with the large precipitation events

show posterior RSDs that are more than double those ob-
tained from the MCMC inversion in the other time windows
(Fig. 5d). Moreover, the MCMC inversion provides a worse
fit to the temperature data in the time window correspond-
ing to large precipitation events (Fig. 5e). Indeed, we find
that the inferred standard deviation of the temperature mea-
surement errors, σỸ (Sect. 2.4.3), is typically within 0.01 and
0.02 ◦C, but increases to 0.06 ◦C between 22 January and
5 February 2021 (Fig. 5e). Despite this increase in uncer-
tainty in the bottom part of the soil column during the pre-
cipitation events, the observed changes in thermal diffusivity
at these depths are consistent with the expected impact of
an increase in water content in an initially relatively dry soil
(e.g., Farouki, 1981; Arkhangel’skaya and Lukyashchenko,
2018). Unfortunately, we do not have soil moisture data and
water level measurements to further investigate the controls
on these changes in thermal diffusivity.

5 Estimation of soil thermal diffusivity in a cold,
unfrozen soil with limited vertical temperature
gradient

The MCMC method is used to estimate unfrozen soil ther-
mal diffusivity at multiple depths and locations across a dis-
continuous permafrost environment along Teller Road (AK).
Improving the estimation of thermal diffusivity in such an en-
vironment is critical to potentially improving the estimation
of soil physical properties, including organic matter concen-
tration and bulk density, that critically influence carbon cycle
dynamics. A particular goal of this study is to infer soil ther-
mal diffusivity at numerous locations and compare it with in-
dependent measurements of thermal and physical properties
from soil samples, in order to evaluate the strength of these
relationships for potential future estimation of soil physical
properties from time series of temperature.

MCMC-based estimation of thermal diffusivity every 5
to 10 cm of depth is applied at 27 locations. The 1-month
datasets in October (dry period) show very limited median
diurnal fluctuations (i.e., less than 0.3 ◦C at 0.05 m below
the ground surface), and temperature gradients are low, with
values as small as 0.63 ◦C m−1 at 1 m deep (more details in
Sect. 2.4). Based on the results from the synthetic experi-
ments (Sect. 3), the use of longer time windows can coun-
terbalance the negative impact of low temperature gradients
on the reliability of thermal-property estimates. Hence, for
the analysis at the Teller site, we increased the sliding time
window from 7 to 10 d and inferred thermal diffusivity up
to 0.85 m instead of 1 m depth. The level of fit achieved by
the MCMC inversion reflects the accuracy of the temperature
probes, since more than 94 % of inferred data errors among
all probes and all time windows are ≤ 0.03 ◦C.

The distribution of estimated thermal diffusivity at each
depth from the 27 temperature fields recorded at the Teller
site (thin boxplots in Fig. 6) is consistent with the distribu-
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Figure 5. (a) Comparison of mean and standard deviation of thermal diffusivity measurements obtained with the TEMPOS thermal analyzer
on 24 December 2020 (black bold line), and posterior mean and standard deviation of thermal diffusivity inferred from MCMC inversion on
the temperature fields recorded from four probes (colored lines) from 25 December 2020 to 1 January 2021. (b) Temperature field recorded
by probe 1 from 25 December 2020 to 17 February 2021 and rain precipitation (green vertical bars). (c) Mean field and (d) relative standard
deviation (Eq. 8) of the MCMC-derived posterior thermal diffusivity distribution for the 7 d sliding time windows and (e) corresponding
posterior mean of the standard deviation of the measurement errors, σỸ .

tion of the thermal diffusivity measured from the 92 soil sam-
ples collected across the site and analyzed using the thermal
analyzer (bold boxplots in Fig. 6). Estimated and measured
thermal diffusivities suggest overall higher values and higher
variability at depth larger than about 0.2 m. The thermal dif-
fusivity values in the top 0.2 m are consistent with values
observed for the peat layer in the literature (Farouki, 1981;
Andújar Márquez et al., 2016). The transition from peat to
a more mineral soil occurring at a depth between 0.10 and
0.20 m is also in agreement with the soil visual observations
performed during the field campaign. Below 0.15–0.20 m,
the soil is mainly composed of clay and silt (yellow shaded
area in Fig. 6). The correlation coefficient between measured
and inferred thermal diffusivity at 20 co-located locations
is 0.79. This correlation is strong, considering that (i) we
are comparing thermal diffusivities measured in August 2019
with those inferred from temperature fields recorded in Oc-
tober 2019, (ii) thermal diffusivity from soil samples can

be influenced by changes in bulk density occurring during
the sampling, and (iii) the scale of the two measurements
is different, with soil samples being very local, sparse, and
imperfectly co-located with the temperature measurements.
Moreover, we note that the temporal variability (i.e., MCMC
inference from each sliding time window over the time pe-
riod of October 2019) in posterior mean thermal diffusivi-
ties from the deepest layers (not shown) is characterized by
larger variability than those in the shallowest layers. This is
in agreement with the results from the synthetic experiments
for which smaller temperature gradients are found at deeper
depths, causing larger uncertainties in the MCMC-inferred
thermal diffusivities.

We further assessed the MCMC-inferred vertically re-
solved profiles of soil thermal diffusivity by evaluating the
relationship between measured and MCMC-inferred ther-
mal diffusivity with other soil thermal properties (i.e., ther-
mal conductivity and volumetric heat capacity) and phys-
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Figure 6. Boxplots at soil depth ranges of the measured thermal
diffusivity (bold boxes) from 92 soil samples and of the thermal
diffusivity values (thin boxes) inferred from MCMC inversions at
27 locations. The colored shaded areas indicate the range of ther-
mal diffusivity values that characterized different soil types (Andú-
jar Márquez et al., 2016).

ical properties (i.e., bulk density, water content, and car-
bon density) retrieved from laboratory analyses (Fig. 7). For
each pair of soil properties, we compute the distance correla-
tion (dc) coefficient in order to capture linear and nonlinear
dependencies. The strongest distance correlation coefficient
(dc > 0.9) is found between thermal diffusivity (measured
from soil samples and inferred with the MCMC method) and
thermal conductivity, wet bulk density, and dry bulk density
measured from soil samples (Fig. 7a, c, and d). Also, thermal
diffusivities inferred with the MCMC method and measured
from soil samples are both similarly correlated (dc equals
0.78 and 0.76, respectively) to carbon density (Fig. 7f). The
lowest correlation is observed between volumetric heat ca-
pacity and measured (dc = 0.72) and estimated (dc = 0.49)
thermal diffusivity.

A large amount of the variability in each of the thermal
and physical properties is linked to the vertical heterogeneity
of the soil. All the shallow soil samples within the top 0.2 m
are composed of at least 50 % water (Fig. 7e), are rich in
organic carbon, and are characterized by lower thermal dif-
fusivity values (Fig. 7f). Samples from depths between ap-
proximately 0.2 and 0.5 m show a large range of variability
in all the properties. Samples from deeper than 0.5 m tend to
show the highest values in wet and dry bulk density and in
thermal diffusivity.

6 Discussion

In this study, we developed a methodology for estimating soil
thermal diffusivity and its uncertainty at an unprecedented
vertical spatial resolution, at multiple locations, and over
time, using depth-resolved time series of soil temperature,
thermal modeling, and Bayesian inference. Through syn-
thetic and field experiments, we assess how various sources
of uncertainty impact thermal diffusivity estimates, and we
evaluate the method’s performance and its potential.

6.1 Impact of environmental conditions, sensor
characteristics, and deployment geometry on
thermal diffusivity estimates

Results show that environmental conditions (i.e., temperature
gradient, period and amplitude of temperature fluctuations,
temperature trend) as well as measurement strategies affect
the final amount of information contained in the tempera-
ture time series and, therefore, the quality of thermal diffu-
sivity estimates. The outcome from our study is in agreement
with the work of Jafarov et al. (2014), Rodler et al. (2019),
and Jafarov et al. (2020), who concluded that the higher the
temperature gradient, the better the results. In particular, we
found that temperature gradients smaller than ±2 ◦C m−1

(Fig. 1) can be particularly problematic and lead to unreliable
thermal-property estimates (i.e., percentage errors larger than
30 %), if an insufficiently long time window is used. Low in-
formation content in the temperature time series can be partly
compensated for by increasing the size of the time window
used to estimate soil thermal diffusivity. For example, by
lengthening the time window (i.e., from 7 to 20 d in our syn-
thetic experiment), the amount of data used to compute the
likelihood in the MCMC inversion increases, and we can re-
cover reliable thermal diffusivity values up to 1 m deep un-
der temperature gradients smaller than 2 ◦C m−1 (Fig. 1h) or
when diurnal fluctuations are absent (Fig. 2d). However, we
need to keep in mind that in real case studies, the time win-
dow should be short enough to limit the influence of physical
processes not represented in the heat diffusion model (e.g.,
advection, phase change). This is why in the field study at
the Teller site we increased the time window from 7 to 10 d
and investigated thermal diffusivity up to 0.85 m instead of
1 m depth.

Besides environmental conditions, additional sources of
uncertainty for thermal diffusivity estimates are those related
to acquisition strategies, including sensor quality, calibration,
and deployment geometry. In Sect. 3.3, we investigated the
impact of temperature fields perturbed with different levels
of noise and bias. Results have shown that the use of sen-
sors with even a small amount of bias is more detrimental to
thermal diffusivity estimates than having sensors with some
random noise (level of noise≥ 0.05 ◦C), because the former
might ultimately lead to a misleading interpretation of the
soil layering (Fig. 3a–d vs. Fig. 3g–j). Indeed, the availability
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Figure 7. Relationship between soil thermal diffusivity and (a) thermal conductivity, (b) volumetric heat capacity, (c) wet and (d) dry bulk
density, (e) water content, and (f) carbon density for 92 soil samples collected across the Teller site (dots) and additional comparison with
collocated MCMC-inferred (triangles) thermal diffusivity. The distance correlation between measured (green number) or MCMC-inferred
(red number) thermal diffusivity and the other soil thermal–physical properties is also shown.

of high-accuracy sensors, with a bias defined by a standard
deviation of 0.01 ◦C or less, is fundamental to ensure per-
centage errors on thermal diffusivity≤ 10 %. This accuracy
requirement underlines the challenge of this method and the
importance of sensor-calibration approaches to increase sen-
sor accuracy as much as possible.

Furthermore, results show that the deployment geometry is
critical to potentially capturing heterogeneity present in the
soil, and particularly the layer boundaries. The heterogeneity
underlines the importance of inferring soil diffusivity with
high spatial resolution, as done in this study. Note that the
impact of sensor geometry on thermal diffusivity estimates
is expected to be even larger in more heterogenous soils. Fi-
nally, while several environmental factors and measurement
strategies strongly influence the estimate accuracy, the po-
tential error in mispositioning a sensor in soil, which is less
likely using a temperature probe than individual sensors, can
easily lead to percentage errors in thermal diffusivity esti-
mates larger than 30 % (Fig. 4).

In summary, we were able to identify five important as-
pects to consider at the design stage of temperature sensors:
(1) having more sensors closer to the soil surface where tem-
perature signal has the highest content of information (e.g.,
diurnal and seasonal fluctuations); (2) using temperature
probes (i.e., sensors anchored on the same support) instead of
discrete temperature sensors placed manually in the subsur-
face, which imply higher uncertainty in the distance between
sensors; (3) ensuring a vertical spatial resolution that cap-
tures the soil layering as much as possible and thus decreases
the sensor spacing in vertically heterogeneous environments;
(4) collecting high-accuracy measurements; and (5) taking
into consideration the environmental conditions at the sites
of interest. Indeed, we concluded that, over a 1-month pe-
riod with median diurnal fluctuations≥ 1.5 ◦C at 5 cm below
the ground surface, temperature gradients> 2 ◦C m−1 at each
depth, and a sliding time window of at least 4 d, the proposed
method provides reliable depth-resolved thermal diffusivity
estimates, with a percentage error≤ 10 % and posterior rela-
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tive standard deviations≤ 5 % up to 1 m depth. Reliable ther-
mal diffusivity under such environmental conditions also re-
quires temperature sensors with a level of noise≤ 0.02 ◦C, a
bias defined by a standard deviation of 0.01 ◦C or less, and a
positioning accuracy of a few millimeters or less (i.e., tem-
perature probe). These results were obtained from challeng-
ing synthetic experiments in which the boundary conditions
used for the thermal modeling are soil temperature time se-
ries recorded in Alaska where temperature gradients and di-
urnal temperature variations are typically lower than in other
regions. Therefore, the proposed method has the potential to
provide reliable depth-resolved thermal diffusivity estimates
at depths deeper than 1 m and over time windows shorter than
4 d.

6.2 Spatial variability of thermal diffusivity and link with
soil physical properties

The reliability of the developed approach has been demon-
strated for in situ estimation of vertically resolved thermal
diffusivity profiles at field scale, including a site in Berke-
ley (CA, USA) and along Teller Road, northwest of Nome
(AK, USA). At both sites, the estimated values compare well
with independent measurements obtained using a thermal-
property analyzer. Still, they do not match perfectly, because
they are measured at different spatial scales. Moreover, soil
temperatures recorded at the Teller site in autumn are char-
acterized by very low temperature gradients and diurnal fluc-
tuations, which make thermal diffusivity estimates extremely
challenging. Overall, the obtained thermal diffusivity values
were consistent with those reported in the literature for the
various soil types encountered at these sites.

The field results underline the value of thermal diffusiv-
ity in quantifying soil physical properties, as well as chal-
lenges associated with interpreting spatial and temporal vari-
ations in thermal diffusivity. For example, the increase in wa-
ter content in a particular dry material (< 15 %) can drive an
increase in thermal diffusivity, while a similar increase in a
wetter material (> 15 %) will barely impact the thermal dif-
fusivity or drive a decrease in it (Farouki, 1981). This com-
plexity explains why we observe a negative correlation be-
tween thermal diffusivity and soil moisture at the site along
Teller Road, AK (Fig. 7e), while the thermal diffusivity of
deep soil at the Berkeley site increases after a rain event
(Fig. 5). In the latter case, the soil was drier in the deep
subsurface as a consequence of a long dry period that lasted
about 1 month.

The importance of estimating thermal diffusivity lies in
the fact that this soil property shows strong correlation (i.e.,
between 0.78 and 0.92) with thermal conductivity, wet and
dry bulk density, water content, and carbon density (Fig. 7).
These results confirm previous laboratory studies (Farouki,
1981; Arkhangel’skaya and Lukyashchenko, 2018; Mengistu
et al., 2017; Ochsner and Baker, 2008) investigating these re-
lationships and offer new datasets to improve the integrated

estimation of these properties. The recent work from Zhu
et al. (2019) highlights the value of temperature measure-
ments in quantifying thermal diffusivity and further evalu-
ating the dominant effect of organic carbon on permafrost
dynamics.

6.3 Temporal variability of thermal diffusivity

Finally, results from this study show promise in using tem-
perature time series to estimate temporal changes in soil dif-
fusivity. This is the first time, to our knowledge, that this con-
cept has been introduced in environmental science at such
a vertical spatial resolution and in a Bayesian framework.
Tabbagh et al. (2017) have used a similar sliding time win-
dow approach to evaluate the temporal variability of ther-
mal diffusivity, but for a single layer and with a deterministic
inverse method. The assumptions of our method, based on
which thermal diffusivity is constant in each time window,
and on purely heat conduction processes taking place, can be
violated if soil wetness changes considerably on timescales
smaller than the length of the time window. However, we can
still detect these time periods by looking at the MCMC out-
puts and at the inferred data errors, as shown in this study:
the precipitation event at the Berkeley site caused at least a 2-
fold increase in the MCMC-inferred thermal diffusivity esti-
mates (Fig. 5c) and corresponding posterior relative standard
deviations (Fig. 5d), as well as a larger inferred data error
(Fig. 5e). These results indicate that the sliding time window
approach can be used to detect when the assumption of a heat
conduction model is not valid due to the presence of advec-
tive heat transfer and/or large change in water content over
the used time windows. The detection of such processes is
important to identify when the thermal diffusivity values es-
timated using a heat conduction model are reliable or not, as
well as to uncover the presence of significant soil hydrologi-
cal fluxes. While incorporating advection and/or freeze–thaw
processes into models is feasible (e.g., Zhang et al., 2016;
Zhao et al., 2016; Tabbagh et al., 2017; Jafarov et al., 2012;
Romanovsky and Osterkamp, 2000; Nicolsky et al., 2009), it
generally requires additional hydrological constraints. Thus
the developed approach is particularly valuable for applica-
tion at locations where hydrological measurements are gen-
erally absent or uncertain.

7 Conclusions

In this work, we have presented a parameter estimation ap-
proach based on the combination of thermal modeling (i.e.,
heat diffusion equation), sliding time windows, Bayesian
inference, and MCMC simulation. The method enables us
to estimate soil thermal diffusivity and its uncertainty from
solely depth-resolved temperature time series at an unprece-
dented vertical spatial resolution (i.e., 5 to 10 cm resolution
up to 1 m deep), at multiple locations, and over time. Re-
sults obtained through synthetic experiments indicate that re-
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liable depth-resolved thermal diffusivity estimates with per-
centage errors≤ 10 % and posterior relative standard devi-
ations≤ 5 % up to 1 m depth can be obtained in the pres-
ence of median diurnal fluctuations≥ 1.5 ◦C at 5 cm below
the ground surface, temperature gradients> 2 ◦C m−1, and a
sliding time window of at least 4 d. Moreover, results indi-
cate that reliable thermal diffusivity estimates in the above
environmental conditions also require sensors to be spaced
precisely (with accuracy to a few millimeters), with a level
of noise≤ 0.02 ◦C, and with a bias defined by a standard de-
viation≤ 0.01 ◦C. These findings represent a critical step to
guide the development of cost-effective and reliable method-
ologies to estimate soil thermal properties from time series
of temperature at numerous locations. Importantly, the appli-
cation of the method to field data shows results consistent
with the synthetic experiments, as well as with independent
measurements performed on soil samples. Finally, the field
studies show promise in the application of a sliding time win-
dow to estimate temporal changes in soil thermal diffusivity
which can be potentially used to capture the corresponding
changes in water content.

The strength of our methodology lies in the fact that ther-
mal diffusivity can be quantified from depth-resolved tem-
perature time series, at numerous locations. This is of great
value, considering that thermal diffusivity is strongly linked
with thermal conductivity, wet and dry bulk density, water
content, and carbon density, as shown by this and previous
works. Hence, our approach opens the way for future re-
search on the development of petrophysical relationships that
can be integrated within the Bayesian inversion framework
and used to derive from soil thermal diffusivity, inferred from
temperature time series, the fraction of soil components, and
in particular carbon density in organic-rich environments.
The carbon density is a key property in the quantification
of soil respiration rate. Similarly, an improved quantification
of soil thermal parameters is needed to better parametrize
ecosystem models, where soil thermal parameters modulate
the effect of weather forcing on subsurface thermal and bio-
geochemical fluxes.

Code availability. The forward model written in MATLAB
that computes the 1D diffusion equation in a heteroge-
neous medium (Eq. 3 in this paper) was deposited in the
NGEE Arctic (Next-Generation Ecosystem Experiments) portal at
https://doi.org/10.5440/1433255 (Brunetti et al., 2022). The com-
plete MATLAB code used for the inverse modeling based on
MCMC is a proprietary software and more details can be found in
Vrugt (2016). A similar implementation has been written in Python
and is freely accessible at Shockley et al. (2021).
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