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Abstract. Data on grain sizes of pebbles in gravel-bed rivers are of key importance for the understanding of
river systems. To gather these data efficiently, low-cost UAV (uncrewed aerial vehicle) platforms have been used
to collect images along rivers. Several methods to extract pebble size data from such UAV imagery have been
proposed. Yet, despite the availability of information on the precision and accuracy of UAV surveys as well as
knowledge of errors from image-based grain size measurements, open questions on how uncertainties influence
the resulting grain size distributions still persist.

Here we present the results of three close-range UAV surveys conducted along Swiss gravel-bed rivers with a
consumer-grade UAV. We measure grain sizes on these images by segmenting grains, and we assess the depen-
dency of the results and their uncertainties on the photogrammetric models. We employ a combined bootstrap-
ping and Monte Carlo (MC) modeling approach to model percentile uncertainties while including uncertainty
quantities from the photogrammetric model.

Our results show that uncertainty in the grain size dataset is controlled by counting statistics, the selected
processed image format, and the way the images are segmented. Therefore, our results highlight that grain size
data are more precise and accurate, and largely independent of the quality of the photogrammetric model, if the
data are extracted from single, undistorted nadir images in opposition to orthophoto mosaics. In addition, they
reveal that environmental conditions (e.g., exposure to light), which control the quality of the photogrammetric
model, also influence the detection of grains during image segmentation, which can lead to a higher uncertainty
in the grain size dataset. Generally, these results indicate that even relatively imprecise and inaccurate UAV
imagery can yield acceptable grain size data, under the conditions that the photogrammetric alignment was
successful and that suitable image formats were selected (preferentially single, undistorted nadir images).

1 Introduction

Knowledge of the particle size distribution and the shape of
channel bars in gravel-bed rivers offers a key to both a sci-
entific understanding of fluvial systems and the ecological
management of rivers. In addition, constraints on sediment
caliber are critical to understanding the hydraulic conditions,
the mechanisms of sediment transport, and the grain–grain
interaction during material entrainment, transport and depo-

sition (e.g., Piégay et al., 2020; Tofelde et al., 2021). Infor-
mation on grain size allows us to quantify the thresholds for
material transport (e.g., Shields, 1936; Church et al., 1998),
to understand and model the transport of sediment in rivers
(e.g., Attal et al., 2015; Dunne and Jerolmack, 2018; Lamb
and Venditti, 2016; Whittaker et al., 2010), and to charac-
terize habitats (e.g., Kondolf and Wolman, 1993). It further
allows prediction of the probability of sediment entrainment
(Schlunegger et al., 2020) and assessment of the impact of
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infrastructure on material transport (e.g., Grant, 2012). Stan-
dard methods that have been developed to quantify grain
sizes of gravels in rivers involve time-intensive fieldwork
(e.g., the point counting method of Wolman, 1954), which
bears the risk of introducing biases that are rooted in the way
the measurements in the field are conducted (e.g., Wolcott
and Church, 1991; Bunte and Abt, 2001). To reduce the effort
and time involved in collecting data by hand, and the possi-
ble biases therein, methods for grain size estimation based
on image data have received more attention since the early
2000s (e.g., Carbonneau et al., 2004; Butler et al., 2001).
These tools have developed into established methods for the
quantification of grain sizes in recent years (Carbonneau et
al., 2018; Purinton and Bookhagen, 2019; Detert and Weit-
brecht, 2012). This development was assisted by the techno-
logical improvement in uncrewed aerial vehicles (UAVs) and
low-cost photogrammetric software packages, which allow a
large number of relatively high-resolution topographic data
from images to be collected (e.g., Eltner et al., 2016; Wood-
get et al., 2018). In particular, the use of the structure from
motion technique (SfM; Eltner and Sofia, 2020; Fonstad et
al., 2013; James and Robson, 2012) has yielded various to-
pographic datasets, such as digital elevation models (DEMs),
ortho-images and ortho-image mosaics, and 3D point clouds.
Such data have offered the basis for extracting grain size in-
formation from fluvial gravel bars (Woodget et al., 2018).
Several studies resulted in the development of methods for
the grain size estimation that are tailored to specific UAV
workflows and survey designs (e.g., Carbonneau et al., 2018;
Vázquez-Tarrío et al., 2017; Woodget and Austrums, 2017).
Consequently, over the last few years, significant effort has
been directed toward quantifying and reducing the uncertain-
ties related to SfM models (e.g., James and Robson, 2014;
Smith and Vericat, 2015; James et al., 2017a, b; O’Connor
et al., 2017; Sanz-Ablanedo et al., 2020). In contrast, fewer
studies have investigated the impact of these uncertainties
on grain size results (Pearson et al., 2017; Woodget et al.,
2018). Despite the fact that all data on grain size can only
be as precise and accurate as the underlying image or to-
pographic model, a systematic evaluation of the method of
choice, which particularly considers the related uncertain-
ties, is still scarce for such data (Piégay et al., 2020). Fur-
thermore, recent work demonstrates that widely used survey
strategies and camera systems in UAV platforms might still
introduce systematic biases to SfM data (James et al., 2020;
Sanz-Ablanedo et al., 2020), thereby pointing to the need
to re-evaluate some previous UAV survey recommendations
(i.e., survey geometry, image acquisition format and some
parameters for camera lens modeling).

This paper addresses this challenge. Here we present the
results of three close-range UAV surveys conducted along
Swiss gravel-bed rivers (Fig. 1), for which we developed SfM
topographic models. From these models, we extracted undis-
torted nadir images and ortho-images for grain size analysis
and for estimates of model uncertainties. Our focus is to as-

sess the dependency of the grain size results on the UAV sur-
vey strategy. Consequently, we particularly assess the effect
of (i) different image acquisition formats, (ii) specific sur-
vey designs recommended by previous authors, and (iii) geo-
referencing methods on grain size data. We do so by first
employing existing techniques for assessing the uncertain-
ties in topographic models derived from SfM (James et al.,
2017a, b, 2020). We then model these uncertainties intro-
duced from the UAV survey to the grain size measurements,
which we conduct with an established method (Purinton and
Bookhagen, 2019). In particular, we combine the effect of the
different UAV and SfM models and their uncertainties with
the statistical uncertainties related to the grain size measure-
ments through a combined bootstrap and Monte Carlo (MC)
approach.

1.1 Approaches to collecting grain size data from digital
images

Historically, the collection of grain size data from gravel-bed
rivers has relied on time-consuming and laborious physical
measurements of clasts in the field (Wolman, 1954; Wohl
et al., 1996; Bekaddour et al., 2013; Van den Berg and
Schlunegger, 2012; Pitlick et al., 2021). Early image-based
grain size measurements were conducted with a “photo-
sieving” approach (e.g., Ibekken and Schleyer, 1986), which
relied on the visual identification of clasts in images from
ground-based cameras. The next step in the improvement of
the method was accomplished using two different strategies.
The first strategy encompassed methods where grain sizes are
inferred from statistical properties of image parameters (e.g.,
image texture, image spectral or frequency content, point
cloud roughness; Woodget et al., 2018). The second strat-
egy, on the other hand, uses approaches where the sizes of
individual grains are measured through image segmentation,
which refers in this case to the partitioning of an image into
multiple image segments, each representing a single grain
and thereby belonging to the group of instance segmentation
(e.g., Detert and Weitbrecht, 2012; Purinton and Bookhagen,
2019; and references therein).

Most grain size datasets that were collected with the first
set of methods were mainly based on a variety of statistical
image parameters, such as semivariance (e.g., Carbonneau
et al., 2005), inertia, entropy, gray-level co-occurrence ma-
trices (e.g., Carbonneau et al., 2004; Woodget et al., 2018;
Woodget and Austrums, 2017), and autocorrelation (e.g., Ru-
bin, 2004; Buscombe, 2008; Buscombe et al., 2010). In this
context, other approaches have exploited the roughness pat-
tern of topographic models from 3D point cloud datasets to
estimate grain sizes (e.g., Brasington et al., 2012; Woodget
and Austrums, 2017). All of these methods require an on-site
metric calibration in the field (e.g., with a differential GPS or
a meter stick) and only deliver a single percentile of a grain
size distribution (Purinton and Bookhagen, 2019). Here, an
exception is offered by the wavelet decomposition approach
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Figure 1. Overview of the surveyed gravel bars along the selected Swiss rivers (see insert) as overview orthophoto mosaic from the most
accurate topographic models (see text for discussion): (a) Entle surveys (S9_5, S9_6), (b) Luetschine survey (L2), and (c) Kander survey
(K1). Regions A and B, which are used for grain size measurements (both orthophoto mosaic and single, undistorted nadir image) are
indicated. GCP: ground control point.

of Buscombe (2013), which is able to determine all the grain
size distributions from images without a field-based calibra-
tion. However, this only works in a reliable way if grains have
nearly the same size and shape. In general, however, the grain
size percentile values that resulted from surveys have been
found to be highly variable, which depends on the sorting,
the shape, and the bedding of the target gravels (Pearson et
al., 2017). Such variability in grain size data thus violates the
condition of nearly equally sized grains, which is required if
one aims to apply the Buscombe (2013) method. Recently,
Buscombe (2020) and Lang et al. (2021) have shown that
the use of deep learning frameworks allows us to avoid the
time-consuming calibration in the field, which facilitates the
remote measurements of grain sizes from scaled or geo-
referenced images. However, these machine-learning models
so far do not allow scales to be readily transferred to new
data, with the consequence that the effort that is needed to
train the model for a new setting is quite large (Lang et al.,
2021).

Methods based on the segmentation and delineation of in-
dividual grains in images constitute the second set of tools.

Common approaches rely on edge detection and watershed
segmentation (e.g., Butler et al., 2001; Graham et al., 2005;
Detert and Weitbrecht, 2012). Most recently edge detection
and k-means clustering (Purinton and Bookhagen, 2019) or
watershed segmentation using deep-learning-assisted seman-
tic segmentation have also been used (Chen et al., 2022).
Grain size measurement through image segmentation is chal-
lenging for images with a high visual complexity, i.e., over-
lapping grains, irregularly shaped, colored or textured grains,
and vegetation or extensive shadows on the images (Purinton
and Bookhagen, 2019). However, the delineation of individ-
ual grains in images has the advantage that the result is a
continuous grain size distribution. This approach addition-
ally allows the analysis of sub-regions and has the potential
to obtain grain size data of individual clast populations, and
it offers the possibility of measuring clast orientations.
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1.2 Uncertainties related to the photogrammetric
structure from motion technique

The rise in widely available and cheap UAV platforms,
equipped with stabilizing gimbals and easy-to-use operating
applications in combination with low-cost and user-friendly
photogrammetric software packages, has resulted in the gen-
eration of high-resolution topographic data for various re-
search applications (e.g., Carbonneau et al., 2003; Fonstad et
al., 2013; Eltner et al., 2016; Eltner and Sofia, 2020). In this
context, the uncertainties and resolution of data processed
through SfM (structure from motion technique) especially
from UAV images can be predicted from photogrammetric
principles. They depend critically on technical (i.e., flight ge-
ometry, camera angles, usage of ground control points, cam-
era parameters) and environmental parameters, the latter of
which are beyond the operator’s control (i.e., lighting con-
ditions, local topography, vegetation, weather, GNSS signal
strength). The uncertainties in topographic SfM models can
be summarized by three components including (i) the exter-
nal accuracy of the reference framework (i.e., scaling, ro-
tation or offset of the entire model), (ii) the expected vari-
ance of model points (i.e., the 3D tie point variance, some-
times called “precision”), and (iii) a systematic uncertainty
component arising from the photogrammetric processing it-
self (i.e., “doming” or “bowling”). We refer the reader to
James et al. (2020), James et al. (2017a, b), and Carbon-
neau and Dietrich (2017) for a detailed discussion of these
uncertainty components. The use of ground control points
(GCPs) or the application of differential onboard RTK GNSS
(real-time kinematic positioning for global navigation satel-
lite systems) techniques for direct geo-referencing effectively
increases the accuracy of the reference framework (James et
al., 2017a; Sanz-Ablanedo et al., 2020). Image quality and
camera calibration parameters control the level of internal
precision (sometimes called “shape” precision; James et al.,
2017a). The use of GCPs together with an improved survey
geometry and a pre-calibrated camera can significantly in-
crease the internal precision (Carbonneau and Dietrich, 2017;
James et al., 2017a, b; O’Connor et al., 2017; Griffiths and
Burningham, 2019). In contrast, the occurrence of a system-
atic uncertainty can only be detected with GCPs and is still
a common problem within SfM processing (e.g., Eltner and
Sofia, 2020). The successful mitigation of such systematic
biases requires a careful choice of the image network geom-
etry, such as the inclusion of oblique camera angles (James
and Robson, 2014) and a successful camera lens modeling
during the subsequent generation of a model (e.g., James et
al., 2020). Finally, it is noteworthy that most uncertainties
in models and data from any SfM workflow are derived from
the photogrammetric alignment of the images during the gen-
eration of the sparse point cloud. Therefore, the uncertainty
in the sparse cloud data already includes these uncertainties
in the SfM model, independent of the type of the final data
model. However, some errors, such as interpolation errors,

missing texture, or incorrect matches, might occur during
densification or raster generation, thereby affecting some for-
mats only, e.g., orthophoto mosaics.

Despite the possible drawbacks and limitations as outlined
above, UAV images have been processed with SfM work-
flows over the last decade for various research purposes in
the fields of fluvial geomorphology and sedimentology (for
an overview, see Carrivick and Smith, 2019), including grain
size measurements in fluvial systems (e.g., Woodget et al.,
2018). Specifically, for automated grain size measurements,
Carbonneau et al. (2018) developed the “robotic photosiev-
ing” concept, which is based on the use of close-range, single
UAV images that have been processed with a specific SfM
pipeline (direct geo-referencing, the use of pre-calibrated
camera lens models, and surveys with a second flight alti-
tude to better estimate the camera positions). Accordingly, in
such an approach, only the image distance is effectively used
for scaling. Other methods use orthophotos and orthophoto
mosaics (Woodget et al., 2018) or 3D point cloud roughness
(Woodget and Austrums, 2017) to measure the sizes of grav-
els. The applications of these methods have shown that sin-
gle images are most accurate for grain size estimations, while
image textures or 3D point clouds yield measurement results
that are less accurate (Woodget et al., 2018). Unfortunately,
no systematic evaluation of uncertainties introduced by the
UAV SfM approach to such grain size estimations exists so
far.

2 Methods

We acquired UAV images (Sect. 2.1) from rivers situated in
the Swiss Alps with a widely used platform following estab-
lished survey strategies, which we processed with an SfM
software package (Sect. 2.2). We then used this output to
measure the sizes of grains and the uncertainty associated
with this (Sect. 2.3). The steps of this workflow (Sect. 2.4)
are described below.

2.1 UAV surveys

We chose study sites along the Luetschine (referred to as
L2 surveys), Entle (S9 surveys), and Kander (K1 surveys)
rivers that are all situated in the Swiss Alps (Fig. 1). We se-
lected river reaches where gravel bars can be readily identi-
fied on satellite images and where the local topography of-
fers the opportunity to operate the UAV in different condi-
tions and with different challenges, i.e., due to vegetation
cover, narrow gorges, and steep lateral valley borders. We
conducted close-range surveys with a flight altitude between
5 and 7 m above ground to ensure a ground-sampling dis-
tance of ∼ 1.5 mm (Table 1). The close-range setup was em-
ployed to study grain size trends on an intra- and inter-bar
scale in small mountainous streams. In general, we targeted
a lateral and frontal overlap between individual images in the
order of 80 %. We distributed GCPs over the target gravel
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Table 1. Summary of the field surveys. QA: quality assessment. Here we removed images that were (i) blurred, (ii) hard to align because of
an insufficient depth of field due to camera angles that were too oblique, or (iii) under- or overexposed. GCP: ground control point.

River Date Net Flight Camera Number Number Images Image Ground Number
(survey) duration height angle of of after format sampling of used

(minutes) nominal nominal flights images QA, distance GCPs
(m) [number [model (mm)

of images] name]
(◦)

Kander 6 Aug 2021 50 6 nadir 3 401 400 JPEG & 1.6 16
(K1) [271], DNG

20◦

[129]

Luetschine 4 May 2021 32 5 nadir [64], 2 119 95 JPEG & 1.4 13
(L2) 20◦ [20+ 1], [L2_2], DNG

50–65◦ [7] 87
[L2_1]

Entle 28 Feb 2021 23 5, 10 nadir 2 304 241 DNG 1.4 14
(S9_5) [217],

25◦ [24]

Entle 28 Feb 2021 19 6, 14 nadir 1 278 267 JPEG 1.6 10
(S9_6) [251],

25◦ [16]

bars and measured them with a Leica Viva GS14 or a Le-
ica Zeno GG04 plus GNSS antenna, with real-time online
Swipos-GIS/GEO RTK correction. These setups have a hor-
izontal precision of 2 cm and a vertical precision of 4 cm (for
2σ ) under ideal conditions (Swisstopo, 2022). All GCPs and
their uncertainties used in this survey can be found in Ta-
ble S1 in the Supplement.

We diversified the strategy for image acquisition to pro-
duce a large range of models, which is considered to resem-
ble a variety of practical scenarios and strategies (Fig. 2).
These scenarios are based on recommendations to include
oblique angle camera positions (e.g., James and Robson,
2014), images from a second altitude level (e.g., Carbon-
neau and Dietrich, 2017), and referencing strategies with and
without GCPs (e.g., James et al., 2017a, b). All these scenar-
ios and models are summarized in Fig. 2 for the three study
areas. Some scenarios are expected to produce topographic
models with low accuracy and large systematic uncertainty
(e.g., single-level grid with no GCPs as control points). All
images were taken with a DJI Phantom 4 Pro v2 onboard
camera (DJI FC6310), which utilizes a global shutter. For
most flights, images were simultaneously taken in a JPEG
and raw (i.e., the unprocessed DNG) image format using the
VC Technology’s flylitchi application (v2.10.0), except for
the S9 surveys. There we used two UAV flight plans, for
which we acquired the images first as JPEG files and then,
during a second flight, in the DNG format. At the L2 and K1
sites, we first acquired a single grid line map. Subsequently,
images were taken with oblique and convergent cameras with

a pitch of > 20◦ at the same survey altitude. At site S9, both
surveys were done with oblique and convergent camera an-
gles (> 20◦) at a higher flight altitude (∼ 10 m). This higher
altitude included an additional set of nadir images. The im-
ages that were taken at a higher altitude and with an oblique
view were acquired during manual flying at all sites. A sum-
mary of the survey characteristics is provided in Table 1.

The K1 site at the Kander River offers a setting that is ideal
for close-range UAV image acquisition, with little periph-
eral vegetation and little potential GNSS signal obstruction.
In contrast, the L2 site at Luetschine represents challenging
UAV survey conditions, due to vegetation and infrastructure
limiting the flight area and because of the narrow valley po-
tentially inhibiting the receipt of GNSS signals. The two sur-
veys at Entle (S9) specifically allow us to test the inter-survey
comparability and whether a rapid change in the external pa-
rameters such as lighting conditions or moving vegetation
introduce a bias and whether such a bias would contribute to
the uncertainties in the grain size estimation.

2.2 Photogrammetric processing

We generated all topographic SfM models following the
same workflow (Fig. 3). We used the Agisoft Metashape
(v1.6 Pro; formerly PhotoScan) software, licensed to the In-
stitute of Geological Sciences, University of Bern. We fol-
lowed the standard bundle adjustment procedure within this
software package and refer readers to Eltner and Sofia (2020)
and James et al. (2019) for principal descriptions and guide-
lines of such workflows or to Over et al. (2021) for a detailed
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Figure 2. Strategies for UAV surveys and structure from motion (SfM) model setups (upper row: Entle surveys; lower row: Luetschine and
Kander surveys). We used a one-level grid of nadir camera positions as backbone geometry, which we complemented with oblique angle
camera positions (James and Robson, 2014). At the Entle (S9), we took nadir images at a second altitude (e.g., Carbonneau et al., 2018).
We created different models during processing by first including all images and GCPs (i.e., resulting in models with “C1” labels) and then
leaving out the oblique images or the GCPs. For the Entle (S9) models we also tested the option where we used the GCP targets in the images
as reference markers only, resulting in two additional models that are labeled with “C2” and “C5”. Colors indicate similar model strategies.
For flight altitude and nominal camera angles, see Table 1. GCPs: ground control points.

example. Our model generation (Fig. 3a) always included
(i) the manual removal of blurred images, (ii) the selection of
the “highest-quality” settings within Metashape for the ini-
tial alignment, and (iii) the subsequent filtering of tie point
clouds. In general, we used self-referencing and GCPs for the
alignment and standard camera modeling, which included all
standard parameters except the de-centering parameter p2 in
order to avoid introducing an additional systematic bias for
some models (see James et al., 2020). Only when the cam-
era modeling failed did we employ a pre-calibrated camera
model. For these pre-calibrated camera models, we used the
in-built camera calibration routine in Metashape, for which
we took images of the “chessboard” pattern from different
angles with camera distances of 1 to 2 m. For models cali-
brated with GCPs (ground control points), we included 50 %
of the GCPs for the alignment of the images, and we kept the
remaining GCPs as checkpoints. For the “weak GCPs” sce-
nario, we used the GCP targets in an attempt to improve the
image alignment without using the information on the posi-
tion that was independently measured.

We evaluated the accuracy of the SfM model with GCP
residual uncertainty, expressed as root mean square er-
ror (RMSE) between measured and estimated checkpoints.
To assess the model precision, we used the method (and the
Python script) of James et al. (2020) to export and evalu-
ate the sparse point cloud precision from Metashape, which
uses Metashape’s sparse point coordinate variance as esti-
mates for the precision of oriented and scaled point coor-

dinates. Furthermore, we determined the systematic uncer-
tainty (doming) with the method of James et al. (2020). Their
approach is to model the systematic error in the z direction
from GCP errors, expressed as a function with a squared ra-
dial term, tilting along the horizontal distance, relative to the
centroid of the tie points. We report the amplitudes of the
modeled doming in the z direction, which are calculated over
horizontal distances of 20 m (K1), 12 m (L2), 30 m (S9_5),
and 20 m (S9_6), in Sect. 3.

The subsequent orthophoto mosaic generation was accom-
plished using the “hole filling” option and default blending
(“Mosaic”) in Metashape. Orthophoto mosaics were gen-
erated with a pixel resolution of 1 mm and were cut with
the corresponding camera footprint. We also exported single
nadir images, which were undistorted by using the specific
camera model from the photogrammetric alignment. We will
refer to these single, undistorted nadir images throughout the
text as single images. We further estimated the camera height
for these images as distance of the camera center to the hori-
zontally closest 100 tie points using Euclidian distances. All
imageries (both orthophoto mosaics and single images) were
exported from Metashape as a JPEG file, with initial DNG
images that were converted by using the camera white bal-
ance. We note here that we did not employ any further image
processing, such as changing the contrast value for DNG im-
ages, to avoid introducing any bias from such approaches.
For each study site, we selected specific areas in the model
regions (i.e., regions A and B hereafter), for which we then
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Figure 3. Workflow for grain size estimations from UAV-derived images. (a) Structure from motion workflow with PebbleCountsAuto
(Purinton and Bookhagen, 2019) for grain size estimation. (b) Quantities used for estimating the uncertainty in the grain sizes. Quantities
in squares denote image- and/or survey-specific values, while variables in ellipses are represented by a probability density function (pdf).
Dashed arrows indicate quantities only used for uncertainty estimation in orthomosaics. For variable explanation, see Sect. 2.4 in the main
text.

finally determined the grain size distributions. For L2 and
S9 we selected areas with expected relative higher and lower
model quality, with respect to image multiplicity, tie point
precision, and image noise due to water. However, for K1 we
opted for overlapping regions to test for effects related to the
variability between different images and to allow a compari-
son of results to those from field measurements.

2.3 Grain size measurements

We measured grain sizes automatically on all processed im-
ages with the open-source and Python-based PebbleCounts
(i.e., PebbleCountsAuto) software of Purinton and Bookha-
gen (2019). We employed this software package for two rea-
sons, namely that it yields sizes for individual grain instances
and that it allows measuring large numbers of grains in an
automated way. First, only the measurement of individual
grain instances (which means that each grain is identified, de-
lineated, and recorded) allows modeling specific uncertainty
quantities (see Sect. 2.4 below, Fig. 3) taken from UAV–SfM
surveys to grain size data. This prohibits the use of texture-

based approaches sensu latu, e.g., DGS (Buscombe, 2013),
SediNet (Buscombe, 2020), and GrainNet (Lang et al., 2021)
among others, to measure grain sizes for the purpose of this
study. Second, other segmentation-based approaches, e.g.,
Basegrain (Detert and Weitbrecht, 2012) or manual segmen-
tation (Sulaiman et al., 2014), require manual processing of
each image and are therefore not suitable for the large num-
ber of processed images as is the case in this study. We
acknowledge that there are known shortcomings of Pebble-
Counts, and we refer to Chardon et al. (2022) for a compari-
son with other software results and to Purinton and Bookha-
gen (2021) for mitigation strategies of some shortcomings.

In detail, this program segments images and subsequently
fits ellipsoids around detected instances of grains, thereby
recording the lengths of the a and b axes of these ellipsoids,
of which we report the b-axis values throughout the study for
simplicity purposes. Key software input parameters were an
“otsu_threshold” of 50 and “first_nl_denoise” of 2, and no
sand or vegetation mask was used (for further details we re-
fer to Purinton and Bookhagen, 2019). A detection limit of a
minimum of 12 pixels for a grain and the default of 30 % as
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Figure 4. UAV imagery results illustrated by a selected range of images, for both image acquisition formats (JPEG and DNG) that we used
for grain size estimation. The photos showcase survey-specific image conditions, e.g., shadows, exposure, saturation, and contrast, as well
as site-specific variations, e.g., grain shape, color, or sand content. Please note that all these images, not only orthophoto mosaics (OM),
are results that were achieved after photogrammetric processing, i.e., single images (SI) are undistorted with a camera model. All images in
this figure were extracted from SfM models, which include GCPs and oblique camera angles in the bundle adjustment. Furthermore, these
images only show parts of the corresponding images that were used for grain size estimation. For location reference, see Fig. 1.

a maximum misfit were kept constant for all measurements.
This results in a minimum detection threshold for grains (i.e.,
a cut-off) that is image specific. For the processed images,
this threshold lies around 18 mm given the image pixel reso-
lutions of ca. 1.5 mm px−1. The image resolution, and thus
the scale of single images, was estimated individually. To
do so, we applied the calculate_camera_resolution script of
Purinton and Bookhagen (2019) together with the camera
model parameters and the camera distance estimation from
the corresponding SfM model. For orthophoto mosaics, the
resolution was up-sampled to 1 mm px−1. We cut all grain
size data below 18 mm to achieve comparable datasets.

For the Kander survey (K1) we additionally measured the
b axis of 250 grains with the approach of Wolman (1954),
thereby using a household calliper and a measuring tape.
These data were collected as ground truth to compare grain
size data measured in the UAV imagery. Yellow rulers in
Fig. 4 indicate the area where grain sizes were manually mea-
sured.

2.4 Uncertainty estimation

For uncertainty estimation, we used a combined bootstrap-
ping and Monte Carlo modeling approach. We first statisti-

cally resampled each grain size distribution (GSD) through
random resampling with replacement, i.e., through boot-
strapping. We applied 104 iterations to estimate the effect
of the sample size. We modeled the one-dimensional uncer-
tainty for each b axis within these resampled GSDs by using
uncertainty metrics from the SfM models (Fig. 3b; see also
Sect. 2.2), thereby considering that

bsim =
(
bi ± εlength

)
· εscale. (1)

Here, bi is a randomly resampled b-axis value from the mea-
sured grain size distribution and εlength represents the mea-
surement error along the axis length, which can be positive
or negative. This error depends on the resolution of the final
images that are used for segmentation. We approximate the
εlength term for images with square pixels by taking the pixel
diagonal of 2a

√
2, where a is the average pixel length, mul-

tiplied by 2, thereby assuming that at each end of a measured
axis represents an error of one pixel. To achieve a randomiza-
tion in the single image data, we conservatively parametrized
εlength as a normal distribution centered on 0 and with 2a

√
2

as 1 standard deviation. For the orthophoto mosaics, we em-
ployed the same approach to model the measurement errors.
However, due to the nature of being a mosaic, an additional
error that is sourced in the image alignment might arise since
we cannot assume that each pixel is in its correct position
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in relation to its neighbor. Therefore, we additionally used a
shape error in the model (px) expressed in number of pixels,
estimated from GCP checkpoints (Table S2), which we con-
vert into length units with the average image resolution esti-
mated from the image distance (see below). Thereby, Eq. (1)
changes for values measured in orthophoto mosaics to

bsim = (bi ±px) · εscale+ εlength. (2)

Here a represents the orthomosaic resolution, which might
be up- or down-sampled. Therefore, our parametrization
scales the axis length after adding the uncertainty from the
mosaicking, which itself is based on the native image reso-
lution for length scaling. Therein our reconstruction uncer-
tainty (εlength) is solely governed by the resolution of the fi-
nal orthophoto mosaic. Furthermore, for the randomization
of the shape error, we use a normal distribution centered on
the average pixel error in the model as an approximation,
while we use the rms re-projection error (σrms) as 1 standard
deviation of it.

The εscale factor, which accounts for the SfM model ac-
curacy, precision, and systematic error (doming), consists of
three scaling components. This is parametrized as

εscale = 1+
σd+ σpt. prec.+ σdoming

d
. (3)

Generally, the scale of a nadir image is controlled by the dis-
tance between the camera and the ground (d) and the uncer-
tainty associated with this distance. For single images, we
estimated the individual camera distance by taking the mean
distance in the z direction to the 100 sparse cloud points that
are closest to the camera center point. We used a Python
script (Supporting information Code S1) for this selection.
For randomization, we used this mean as d and its standard
deviation as σd. For orthophoto mosaics, we used the mean
distance of all cameras and the associated standard deviation,
respectively. We did so to be conservative and to account
for differences between the observation distances of several
cameras. We used the mean value of the sparse point cloud
precisions in the z direction over the whole survey. We used
the 3D point coordinate variance of the sparse point cloud
within Metashape, which we exported from the program us-
ing the script of James et al. (2020). We used its average in
the z direction, and we considered the standard deviation of
it to randomize σpt. prec., both for single images and ortho-
mosaics. Finally, we considered the effects related to the sys-
tematic errors through the use of half of the doming ampli-
tude in the z direction, which we fitted with the method of
James et al. (2020). We used this value as a standard devi-
ation for a uniform distribution for σdoming, both for single
images and orthomosaics. We implemented a randomization
of these components through truncated normal distributions
to avoid ending up with grains that are smaller than the de-
tection limit or that have negative length values. We note
here that our one-dimensional approach requires a camera

model to correct image distortion to a level of residuals be-
ing ∼ 1 pixel or less. We thereby consider the condition that
the camera model sufficiently allows for distortion model-
ing. While it is possible to increase quantities, i.e., the shape
error uncertainty for orthophoto mosaics or the εlength un-
certainty to values greater than two pixels for single images,
to mitigate the effect of large doming/bowling or high cam-
era model residuals, we currently refrain from such efforts.
We do so because we argue that (1) it might be more use-
ful to improve the photogrammetric alignment and (2) such
errors show strong variations in space, and therefore our one-
dimensional approach might not be suitable anymore. Here,
a two-dimensional approach (or even 3D if one attempts to
estimate grain size and shape by point cloud segmentation)
which would use spatial discretized uncertainties might be
more useful. Such an approach, in addition to our consid-
ered errors, could also include spatially distributed camera
model errors (e.g., Hastedt et al., 2021). For the time being,
we did not implement such an approach because of the ex-
pected higher computational costs and the expected much
higher contribution of counting statistics and segmentation
performance to grain size uncertainty.

From the randomized GSD, we calculated percentile val-
ues for grain sizes. Accordingly, for each grain size per-
centile such as the D50 and D84, we report the median
percentile along with percentiles 2.5 and 97.5 across the
104 GSDs, which represents the 95 % confidence interval of
the respective percentile.

3 Results

In this section, we first present the results of the UAV field
surveys, before proceeding to the results of the photogram-
metric models. Finally, we present grain size results, both for
full grain size distributions and for key percentile values, and
results of field measurements.

3.1 UAV surveys and imagery

The field surveys were successfully completed under sunny
and calm (Kander), overcast and turbulent (Luetschine), and
rapidly changing weather conditions (Entle). Difficult flying
conditions (changing light and wind) decreased the image
quality, which contributed to the need to exclude a signifi-
cant number of images for the Luetschine (up to 27 %) and
Entle (up to 20 %) surveys (Table 1). For the Entle site we
removed nadir images taken from a higher altitude, and for
the Luetschine reach we excluded images that were acquired
with strongly oblique view angles (> 50◦). It is noteworthy
that most of them were taken during manual flight and, for
the Entle case, from the higher altitude level. Acquiring im-
ages in the raw format (DNG) required significant reduction
in flight velocity due to the low flying altitude. It also re-
quired a change in acquisition mode that allowed the UAV to
hover for 4 to 5 s at each image position. This was needed to
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Table 2. Summary of topographic model uncertainty (i.e., SfM model quality). An ∗ indicates a model with a pre-calibrated camera model.
We note here that the accuracy values for directly referenced models include systematic GNSS errors of up to 200 m (S9) for the UAV
platform, an issue that has been reported for the UAV platform family used in our study (e.g., Cook and Dietze, 2019).

Model Checkpoint Point Doming/ Model Checkpoint Point Doming/
accuracy precision bowling accuracy precision bowling

RMSE x, y RMSE z z Mean Amplitude RMSE x, y RMSE z z Mean Amplitude
(mm) (mm) (mm) (m) (mm) (mm) (mm) (m)

Raw (DNG) image format JPEG image format

K1_1_C1 13 54 6 0.027 K1_2_C1 9 106 10 0.460
K1_1_C2 15 66 4 −0.081 K1_2_C2 18 186 9 −0.618
K1_1_C3 1035 967 167 −0.020 K1_2_C3 1719 5289 276 0.496
K1_1_C4 2129 4275 170 −0.136 K1_2_C4 2389 5592 402 −0.894
L2_1_C1 24 22 10 −0.047 L2_2_C1 21 18 10 0.083
L2_1_C2 41 51 20 0.152 L2_2_C2∗ 25 82 13 −0.135
L2_1_C3 1854 7× 104 978 −0.106 L2_2_C3 1854 7× 104 650 0.165
L2_1_C4 2033 7× 104 972 0.403 L2_2_C4∗ 2127 7× 104 730 1.050
S9_5_C1 64 39 13 0.050 S9_6_C1 40 143 21 0.033
S9_5_C2 1555 2× 105 205 1.538 S9_6_C2 4565 2× 105 654 3.589
S9_5_C3∗ 57 211 9 −0.780 S9_6_C3∗ 33 214 12 −0.535
S9_5_C4 1700 2× 105 221 −0.256 S9_6_C4∗ 4762 2× 105 197 −0.486
S9_5_C5 1556 2× 105 202 1.528 S9_6_C5 4566 2× 105 640 3.105
S9_5_C6 1699 2× 105 219 0.970 S9_6_C6∗ 4917 2× 105 215 −0.546

enable saving the large image file to memory. This resulted
in net flight times of > 30 min for each of our survey sites
(Table 1), which exceeded two battery charges for our plat-
form.

The obtained UAV images displayed a range of differences
in image content and light conditions (Fig. 4). Sunny situa-
tions result in more interstitial shadows (K1, S9), while over-
cast conditions with changing light led to occasional overex-
posure (L2). Of note here is site S9, which features more
sandy areas then the other sites. Generally, UAV onboard
image corrections tend to yield a higher saturation and con-
trast in the resulting imagery, which was persistent after pho-
togrammetric processing (Fig. 4).

3.2 Topographic models

In total, we produced 28 topographic models with the SfM
approach. For all sites, the resulting models show large vari-
ations (Table 2) in absolute accuracy, sparse point cloud pre-
cision, and systematic error (doming). In general, the un-
certainty is smallest across all metrics for model setups for
surveys that included GCPs and oblique camera angles (C1
suffix for all surveys). The only exceptions are those mod-
els where GCPs and only grid-aligned cameras were used
(C2 suffix for K1, L2 surveys and C3 suffix for S9 surveys),
thereby resulting in a sometimes slightly higher point pre-
cision (Table 2). Overall, models with no GCPs and where
cameras were only oriented in a grid fashion (suffix C4 for
K1 and L2 surveys and suffix C6 for S9 surveys) produce

the highest uncertainties across all metrics. Models that are
based on raw format images (K1_1, L2_1 and S9_5 models)
yield overall smaller uncertainties for all metrics than mod-
els where the UAV onboard pre-processed JPEG images were
used (K1_2, L2_2, S9_6 models). Only for L2 JPEG models
with GCPs (L2_2_C1, _C2) are the RMSE and vertical pre-
cision values slightly smaller than or similar to the related
values of comparable DNG models (L2_1_C1, _C2).

3.3 Grain size distributions

Here we report the results of our grain size measurements
from images as GSDs and the respective modeled uncer-
tainties, which encompass both statistical uncertainties and
errors introduced by topographic models. We successfully
measured grain sizes of pebbles from all 28 SfM models, re-
sulting in 112 complete GSDs (for each topographic model
we measured in two regions, both in single images and or-
thophoto mosaics, respectively) with b axes that range in size
from the cut-off of 18 mm to > 35 cm. The number of iden-
tified grains ranges for the Kander survey (K1) from 902 to
1600 (single images; SI) and 353 to 1142 (orthophoto mo-
saics; OM), for the Luetschine survey (L2) from 130 to 633
(SI) and 136 to 570 (OM), and for the Entle surveys (S9)
from 333 to 1451 (SI) and 160 to 1058 (OM). In all surveys
and in most cases, more grains are recovered after segmenta-
tion in single images compared to the number of grains found
in orthophoto mosaics (Table S4; see also Figs. 5 and 6).
Grain size distributions with uncertainties for each percentile
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Table 3. Key modeled percentile results (i.e., D50, D84, and D96) averaged over all models for each grain size region.

Single images (SI) Orthophoto mosaics (OM)

D grain median mean D mean relative median mean D mean relative
size D (mm) (mm) 95 % CI uncertainty D (mm) (mm) 95 % CI uncertainty
region (mm) (%) (mm) (%)

D50
K1 A 32 31 3 8 33 32 4 11
K1 B 32 31 2 8 32 31 3 11

D84
K1 A 65 66 11 16 67 66 15 22
K1 B 70 69 11 16 68 67 14 21

D96
K1 A 122 121 28 23 121 123 38 31
K1 B 137 138 35 25 122 125 37 30

D50
L2 A 48 47 15 32 47 47 12 26
L2 B 36 37 6 17 39 39 8 20

D84
L2 A 119 120 41 35 115 113 31 27
L2 B 98 95 30 31 93 94 26 28

D96
L2 A 202 197 79 39 179 178 51 29
L2 B 195 184 61 31 171 164 53 31

D50
S9 A 34 33 3 10 34 32 4 13
S9 B 41 40 8 20 36 35 8 22

D84
S9 A 67 66 10 15 64 63 13 20
S9 B 109 107 26 24 83 83 27 32

D96
S9 A 114 114 32 28 103 104 33 32
S9 B 185 183 52 28 138 143 52 37

can successfully be modeled with the bootstrapping and MC
approach for all models (e.g., Figs. 5 and 6). The differ-
ence between the median of all photo-measured and all mod-
eled percentiles ranges from 2.0 % to 3.5 % (SI) and 2.5 %
to 5.7 % (OM) for survey K1, from 0.9 % to 3.6 % (SI) and
1.4 % to 4.1 % (OM) for survey L2, and from 0.9 % to 8.9 %
(SI) and 2.6 % to 9.2 % (OM) for both S9 surveys. These val-
ues are relative to the photo-measured percentile values. We
note that even the maximum difference between the photo-
measured percentiles and the modeled median for the per-
centiles is generally < 10 % for most percentiles. The only
exceptions are some models of K1_2 (SI: 11 % to 17 %),
L2_1 (SI: 25 % to 47 %; OM: 10 % to 16 %), and L2_2 (SI:
31 % to 36 %; OM: 11 % to 20 %; see Table S4 for all re-
sults). Therefore, recovered grain size distributions from im-
agery are internally consistent within the modeled 95 % CI
(confidence interval) for each percentile and for all topo-
graphic models (e.g., Figs. 5 and 6), despite some variations
in magnitude of uncertainty and a varying degree of agree-
ment across models within surveys.

The magnitude of grain size uncertainty varies for surveys
and the image format used for grain size measurements. Gen-
erally, the modeled percentile uncertainty, i.e., the modeled
95 % confidence interval (CI), is smaller for all GSDs from
imagery of the K1 survey (e.g., Fig. 5a to d) than for GSDs

from the L2 survey (e.g., Fig. 5e to h). A similar trend of
survey-specific grain size uncertainty is also visible when
comparing results from S9_5 (Fig. 6a and b) to data from
S9_6 (Fig. 6c and d). This is also observable in the CI as rel-
ative uncertainty, which varies from 6.5 % to 9.4 % (SI) and
7.7 % to 15 % (OM; Fig. 5b and d) for K1. Similarly, albeit
with a generally larger magnitude, the modeled percentile
uncertainty for L2 ranges from 15.6 % to 41.5 % (SI) and
15.6 % to 37.2 % (OM), whereas it ranges from 7.6 % to 21 %
(SI) and 8.2 % to 28.7 % (OM) for the S9 surveys. However
and importantly, the agreement of data from models within
a survey (i.e., C1 to C6; see Sect. 2.2 for details) is higher
for grains measured in single images (e.g., Figs. 5a, c, e, g
and 6a, c), compared to grains measured in their orthomo-
saic counterparts (e.g., Figs. 5b, d, f, h and 6b, d).

3.4 Key grain size percentiles

Overall, modeled percentile medians for commonly used per-
centile values, i.e.,D50,D84, andD96, are in agreement with
the photo-measured percentile values for all results and av-
eraged across all models (Table 3; see Table S5 for more de-
tails). However, the modeled estimations for the D50, D84,
and D96 and their respective uncertainties, here reported for
a 95 % CI, vary considerably between individual surveys (Ta-
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Figure 5. Selected grain size (i.e., b-axis length) distributions measured in different images (SI: single image; OM: orthophoto mosaic)
from various UAV models (see Fig. 2 for model characteristics and color legend) with the modeled 95 % confidence interval (CI) for each
percentile. All Kander (K1) data (a–d) in this figure refer to region A, while all Luetschine (L2) data (e–h) correspond to the respective
region A (see Fig. 1 for location). DNG: raw image acquisition format; JPEG: JPEG image acquisition format; D50, D84: percentiles 50
and 84, respectively; ngrains: number of segmented grains.

ble 3), regions within surveys (Fig. 7), and the format of the
images that are used for measuring the grain sizes (Fig. 8).

For all grain sizes measured in the K1 survey the
mean D50 with [3.1–3.2]± [0.1–0.2] cm, the mean D84 with
[6.6–6.9]± [0.6–0.8] cm, and the mean D96 with [12.1–
13.8]± [1.4–1.9] cm are consistent and in close agreement
(Table 3). This is true irrespective of the image region

(Fig. 7a and b), the image format used for grain size measure-
ment, or the UAV image acquisition format (Fig. 8a and b).
Percentiles from the L2 survey, e.g., theD50 with 4.7± [0.6–
0.8] cm for region A and with [3.7–3.9]± [0.3–0.4] cm for
region B, are consistent within regions (Table 3). However,
the modeled uncertainties are too large to establish differ-
ences in percentiles between regions (e.g., Fig. 7c and d),
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Figure 6. Grain size distributions and percentile uncertainty (modeled 95 % confidence interval; CI) for the Entle surveys (S9) for different
UAV imagery (SI: single image; OM: orthophoto mosaic; see Fig. 2 for model characteristics and color legend). All data refer to region A
(see Fig. 1 for location). D50, D84: percentiles 50 and 84, respectively; ngrains: number of segmented grains. Please note that S9_5 (a, b)
was acquired in raw image format (DNG), while S9_6 images (c, d) were acquired as JPEG images.

Figure 7. Modeled median grain size percentile D50 plotted against the D84 for all surveys: Kander (a, b), Luetschine (c, d), Entle (e–h),
and regions of grain size sampling (A and B). For locations of the regions, see Fig. 1. OM: orthophoto mosaics: SI: single images.
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Figure 8. Modeled median values for percentiles D50, D84, and D96 from single images (SI) and orthophoto mosaics (OM) for selected
regions of the survey sites. Different SfM model setups are color-coded; please see Fig. 2 for detailed legend. Displayed uncertainties
represent modeled 95 % confidence intervals. Please note the logarithmic scale.

or between model reference strategies, UAV image acqui-
sition formats or between imagery formats (Fig. 8c and d).
For percentiles from data for the S9 surveys, the situation is
different. Here, key percentile values only agree within re-
gions when extracted from single images (Fig. 7e and g),
e.g., yielding a clearly distinguishable D50 of 3.4± 0.2 cm
for region A and 4.1± 0.4 cm for region B. Thus, the aver-
aged percentile values from orthomosaics (Table 3) would
yield biased information, effectively prohibiting a distinction
of different grain size signals of the regions (Fig. 7f and h).
A closer inspection reveals that within the data from ortho-
mosaics only imagery from SfM models, referenced without
GCPs (i.e., C5 and C6; see also Fig. 2) and for one single
region (B) is responsible for the inconsistent data.

3.5 Field measurements at the Kander site (K1)

The manual measurements of grains sizes> 1.8 cm in the
field with the Wolman method yielded 224 b-axis values
for K1. The resulting key percentile lengths are 2.8 cm
(D50), 5.3 cm (D84), and 10.2 cm (D96). For direct com-
parison, we measured grain sizes in cropped subsections of
all K1 imagery, which returned 162 to 302 (SI) and 189 to
486 (OM) grains. The median of the relative percentile un-
certainty (95 % CI) ranged from 14.4 % to 19.5 % (SI) and
from 12.7 % to 21.9 % (OM). Mean modeled key percentile

values ranged between 3.0± 0.3 cm (SI; rel. 16 %–17 %)
and 3.2± 0.3 cm (OM; rel. 16 %–17 %) for the D50. The
mean modeledD84 ranged between [5.9–6.1]± [1.0–1.1] cm
(SI; rel. 33 %–36 %) and [6.5–6.7]± [1.0–1.1] cm (OM;
rel. 30 %–31 %), while the mean modeled D96 ranged be-
tween [11.6–12.2]± [3.0–3.4] cm (SI; rel. 48 %–57 %) and
[11.5–12.0]± [2.4–2.8] cm (OM; rel. 42 %–45 %). These
values are in good agreement with modeled results for whole
regions (see Sect. 3.4 above and Table 3).

4 Discussion

Measurements of grain sizes in imageries obtained by a UAV
need to be accompanied by photogrammetric processing of
the imageries to correct for camera lens distortion and to
reference the images. Therefore, we begin by discussing the
quality of our models and UAV imagery, as well as the con-
ditions encountered in the field. We emphasize here that the
aim of this study is not to optimize or review UAV strategies
or SfM processing; thus, we restrict ourselves to report only
noteworthy observations and their implications in Sect. 4.1.
For more in depth discussions of UAV and SfM workflows,
we refer to the dedicated literature (e.g., James et al., 2017b,
2020; O’Connor et al., 2017; Carbonneau and Dietrich, 2017;
Eltner and Sofia, 2020). Furthermore, we emphasize that our
survey design is tailored to close-range studies for the scale
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of individual gravel bars, which means that while our find-
ings in many ways are transferable to other scales, our sur-
vey design might not be applicable for larger-scale surveys
(e.g., Marchetti et al., 2022). Next, we focus on the process
for measuring grain sizes and for modeling the uncertainties.
Finally, we compare the results where grains were measured
in images and in the field with the Wolman (1954) method.
We then end with a discussion of how grain size data and
their uncertainty depend on the various processing steps from
UAV image acquisition to estimates of percentile values.

4.1 UAV imagery and SfM model quality

We successfully created topographic models from the image
sets collected at the three survey sites. The topographic mod-
els are generally better for the Kander (K1) survey compared
to the Luetschine (L2) and Entle (S9) surveys (Table 1). We
attribute this to the better light and flight conditions (i.e., con-
stantly sunny and weak wind), to lower RTK GNSS (real-
time kinematic positioning for global navigation satellite sys-
tems) uncertainties, and the more favorable angle and distri-
bution of oblique camera positions (i.e., oblique cameras at
the same altitude as the nadir positions and with an angle of
20◦). In our specific case, vegetation seemed to have a lower
impact on the precision of the SfM model quality, since the
site K1 was characterized by the highest vegetation density
on the bar (Fig. 1), yet the resulting models had the overall
highest quality for all metrics. However, our different refer-
encing strategies (Fig. 2) allowed us to create topographic
models with varying precision, accuracy, and systematic er-
rors for all surveys (Table 2), in which we find some note-
worthy SfM characteristics.

First, some SfM models (see Table 2) failed to success-
fully reference the images; i.e., they specifically failed to
model the camera lens, thereby yielding completely wrong
focal length estimations (> 50 % rel. difference), which then
resulted in camera altitudes that were > 50 % lower than the
actual flight altitude. Interestingly, significantly more cam-
era models failed for those surveys where the images were
acquired in the JPEG format than compared to those models
that are based on images in the DNG format (five compared
to one). We suspect that this is a consequence of the UAV on-
board pre-processing of images with a generic camera model,
which results in camera modeling failure during the bundle
adjustment (for a detailed discussion, see James et al., 2020).

Second, surveys where images were referenced with GCPs
and where images taken with oblique camera positions were
included produced the most accurate and most precise mod-
els (see Fig. 2 and Table 2). These results fit with our current
understanding of SfM uncertainty (e.g., James et al., 2020;
Sanz-Ablanedo et al., 2020). Furthermore, we can confirm
that the selection of two flight altitudes, as proposed in some
workflows for direct georeferencing (e.g., Carbonneau et al.,
2018), seems not to improve the quality of the SfM model
(see also Sanz-Ablanedo et al., 2020).

Finally, we highlight that for the K1 survey, models that
are based on images taken in the JPEG format have a signifi-
cantly larger systematic error, which is in stark contrast to the
models where the images were taken in the DNG image for-
mat (Table 2). We note that we cannot use the S9 models for
such a comparison, since for these models separated flights
were used to acquire the JPEG and DNG images (Table 1).
Nevertheless, the aforementioned results suggest that the im-
age acquisition format affects the quality of the SfM model,
as already found by James et al. (2020), and even inhibit an
alignment for weak image network geometries. Accordingly,
the format of image acquisition might be considered during
survey planning, as the raw format can indeed yield better
results than images in the JPEG format.

4.2 Precision and consistency of grain size
measurements

The approach where we automatically segmented the images
and where we fitted the ellipsoids with PebbleCounts (Pur-
inton and Bookhagen, 2019) yielded consistent results when
measuring grain sizes, both within surveys and between sur-
veys (Figs. 5 and 6; Tables S4 and S5). The combined boot-
strapping and Monte Carlo (MC) approach allowed us to es-
timate the difference between the modeled and the photo-
measured median percentile value, which is less than 5 % for
single images and 10 % for orthophoto mosaics for all per-
centiles (Table S5). Thus, both the modeled median and 95 %
confidence intervals are representative of the grain size dis-
tributions measured in the photos. The median of the mod-
eled percentile uncertainty (95 % CI) relative to the photo-
measured percentile varied between survey sites (∼ 7 % to
15 % for K1, ∼ 16 % to 42 % for L2, and ∼ 8 % to 29 %
for S9; Table S4). Similarly, the mean relative uncertainties
(95 % CI) for individual percentiles, such as the D50, var-
ied from ∼ 8 % to 11 % for K1, ∼ 17 % to 32 % for L2, and
∼ 10 % to 22 % for S9 (Table 3). Relative uncertainty values
for theD84 andD96 increased, compared to theD50, but fol-
lowed the same trends with up to a 39 % relative uncertainty
for the D96 in L2. These results allow us to identify two dif-
ferent grain size populations for regions A and B in the S9
surveys (Table 3 and Fig. 7e–h). For K1 where the sampling
regions were almost identical (Fig. 1), all grain size results
were consistent (Table 3 and Fig. 7a, b; see also Table S5).
For L2, the large uncertainties prevent us from drawing such
inferences (Fig. 7c and d). At a closer inspection, these find-
ings have some interesting implications.

In particular, because the modeled percentile uncertainty
depends on the number of grains that could be identified, i.e.,
on the counting statistics, the percentile precision improves
with a larger number of measured grains (Table S4). This is
what we observed, and such results are in good agreement
with reported statistical uncertainties that resulted from the
application of comparable methods (Eaton et al., 2019). We
note here that in general fewer grains were found in images
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that were acquired in the DNG format. This might be a re-
sult of lower image contrast in these images, which we did
not attempt to correct. While the smaller number of grains
might reduce the percentile precision for images with very
few grains in them, we could not find any further systematic
effect thereof. In contrast, our data showed systematic dif-
ferences if grain sizes were measured in single images (SI)
or on orthophoto mosaics (OM). Grain size percentiles de-
rived from orthophoto mosaics showed higher uncertainties
than grain sizes measured in single images, both for the entire
range of percentiles (Figs. 5 and 6) and for selected percentile
values (Figs. 7 and 8). L2 is an exception, where the uncer-
tainty in the median grain size percentile was generally high
(up to ∼ 42 %). Compared to the grain size data collected
from orthophoto mosaics, the relative percentile uncertainty
in the single image data was between 3 % to 6 % lower for K1
and between 0.6 % to 8 % lower for S9 surveys. Likewise,
for individual key percentile values, i.e., the D50, D84, and
D96, the uncertainties in the data retrieved from orthophoto
mosaics were between 2 % and 9 % higher across all models
of K1 and S9. However, we acknowledge that for some L2
models, the uncertainties in the grain size data were higher if
the data were collected from single images than if the mea-
surements were accomplished on orthophoto mosaics. We at-
tribute this to a combination of imagery and segmentation
traits (see Sect. 4.4).

4.3 Grain size accuracy compared to field
measurements

Grain sizes in close-range UAV imagery through image seg-
mentation are measured in a 2D approximation of a 3D sur-
face of particles, which might be affected by the sedimen-
tary structure, e.g., imbrication or armoring, and projection
effects. Additionally, a bias could be introduced during the
segmentation of the images. Therefore, we compare the sizes
of grains measured in a subset of the K1 imagery with a
dataset where the grains were manually measured in the field
to test how our grain size estimations hold up against field-
measured data (Fig. 9).

First, imagery-based grain size measurements result in an
overestimation of the percentile values compared to field-
based surveys (Sect. 3.5), independent of the SfM model ref-
erencing strategy (Fig. 9). Such a systematic overestimation
of grain sizes can even be found for models where the bundle
adjustment was accomplished with ground control points and
from single images (i.e., C1 and C2 curves in Fig. 9). This is
most likely a result of an under-segmentation of grains in im-
ages; potential biases inherent in image-based approaches,
i.e., a 2D projection effect or partial overlapping of grains
(Carbonneau et al., 2005); and/or a combination thereof. We
note here that this systematic overestimation might have also
have a survey-specific component. We base this inference on
the results of other analyses, which were accomplished with
the same segmentation software and which documented a

Figure 9. Relative difference between grain size percentiles esti-
mated from UAV imagery to grain sizes, which were measured in
the field for region A of the Kander survey (K1). (a, b) Results
for data from single images (SI). (c, d) Results for orthophoto mo-
saics (OM). DNG and JPEG indicate the image acquisition format.
Key percentiles, i.e.,D50,D84, andD96, are highlighted. The num-
ber of detected grains (ngrains) and the data are color-coded for SfM
model setup (see Fig. 2 for detailed legend).

systematic underestimation of related percentile values, thus
hinting at an effect related to over-segmentation (Chardon et
al., 2022). This issue might be addressed if (i) images are
segmented semi-automatically where manual measurements
are accomplished occasionally to set a benchmark (Purinton
and Bookhagen, 2021), (ii) reference measurements are con-
ducted for calibration purposes (Chardon et al., 2022), or if
(iii) the automated segmentation is improved. However, more
research is needed to improve our understanding of system-
atic traits of segmentation-based grain sizes and the related
dependency on survey-specific characteristics. We note that
our K1 site where we did find this bias is not suited for such
an endeavor.

Second, for all our K1 models, only grain sizes taken from
single images (Fig. 9a and b) can be regarded as acceptable,
i.e., agreeing within uncertainties, despite a systematic over-
estimation of the percentile values. Contrarily, grain size data
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from orthophoto mosaics are less accurate than from single
images when compared to field-measured data and addition-
ally show some dependency on the SfM model strategy or,
more likely, on the SfM model uncertainty (Fig. 9c and d).
This reflects a general trend where only grain sizes from or-
thophoto mosaics systematically varied with the UAV model
geometry within surveys (e.g., Figs. 5b, 6b, and 8). This im-
plies that the measurement results depend on whether grain
sizes were collected on orthomosaics or on single images and
additionally on how the UAV survey was conducted if ortho-
mosaics were used.

4.4 Potential problems associated with orthophoto
mosaics

Our results show that in some cases grain size data extracted
from orthomosaics are less precise and less consistent (see
Sect. 4.2) and less accurate when compared to field data (see
Sect. 4.3). Similar inaccuracies were also reported by Wood-
get et al. (2018) upon measuring grain sizes on orthomo-
saics, albeit on the basis of statistical image properties. At
this stage, we consider the following reasons for the low ac-
curacy and the lower precision in some grain size datasets
that were collected on orthomosaics.

First, we used fixed locations to measure grain sizes,
which means that an inaccurate SfM model might result in
the situation where different areas of a bar will be mea-
sured, particularly if grains are segmented in orthophoto mo-
saics (Fig. 10a and b). Such a bias will not be introduced if
grains are measured in single images. Furthermore, for or-
thomosaics, if the sizes of the grains on the selected bars
vary between the different views, then the grain size dis-
tributions will be different. This was actually the case for
the Entle (S9) surveys (Figs. 6 and 7). Second, local distur-
bances and image warping (Fig. 10c and d) that may result
upon generating the orthomosaic may also affect the seg-
mentation of the images. Indeed, we could find small image
artifacts in all our generated orthomosaics. They were par-
ticularly prominent in imageries created from the L2 mod-
els, i.e., the overall lowest-quality models. Finally, these fac-
tors can influence the segmentation performance of Pebble-
Counts, which in turn might amplify the bias as potentially
some size fractions of pebbles might preferentially be found.
In this context, segmentation errors, which are introduced in
response to an over- or under-segmentation of the images
(i.e., more or fewer pebbles identified of a certain size), might
increase the bias, particularly for datasets where few peb-
bles are measured (Fig. 10e and f). In all our results, some
under-segmentation did occur, but interestingly this process
was most prominent if orthophoto mosaics were used and
if grains were measured in low-quality images (i.e., L2 and
partly S9). Accordingly, we use these conditions, and prob-
ably a combination of them, to explain the larger uncertain-
ties in those grain size datasets that were collected from or-

thophoto mosaics compared to the results where grains were
measured in single images.

4.5 Implications for workflows on grain size estimation

Our results have general implications for the estimation of
grain sizes from UAV-acquired imagery. We will present
these in the order of a typical workflow that is generally em-
ployed upon measuring grain size datasets with a UAV–SfM
workflow (e.g., Fig. 3). For UAV surveys with a subsequent
SfM processing, best practice to achieve the highest quality
in SfM models (e.g., James et al., 2020; Eltner and Sofia,
2020; Sanz-Ablanedo et al., 2020) includes GCP referenc-
ing and in theory storage of the images in the raw format.
However, in the field raw image acquisition is seldom real-
ized because of its technical cost, such as lower survey ve-
locity and the larger file size. Such conditions need signifi-
cantly longer time for file storage and cause a multiplication
of photogrammetric processing time and file size. Therefore,
and in light of the possibility of reducing the systematic er-
ror through modeling from a suitable set of GCPs (see James
et al., 2020), the use of pre-processed JPEG images might be
sufficient for most applications targeting grain sizes. Further-
more, survey designs without GCPs might be acceptable for
grain size estimation in cases where (i) a high-precision spa-
tial allocation of the grains is not needed; and (ii) a correct
image referencing and undistorting is possible, potentially by
using a pre-calibrated camera model (see also Carbonneau et
al., 2018). In such cases, we recommend measurements on
single, undistorted nadir images, especially when grain size
distributions are expected to vary and sampling is done only
locally. All these recommendations are valid independent of
the method for grain size estimation.

In principle, using a segmentation approach for grain size
estimation allows for rigorous error and uncertainty model-
ing. Specifically, SfM model uncertainties can be used for
a statistically robust estimation of errors on grain datasets
by combining a bootstrapping and Monte Carlo approach, as
accomplished in this work. Even more, an error estimation
can be accomplished for models without GCPs, for the case
where a simple parametrization that is only based on a length
and scale error is considered (see supporting Code S1). We
emphasize that this is only possible when the image dis-
tance can be estimated. We also note that this approach al-
lows the estimation of uncertainties for datasets where grains
were measured in other imagery, e.g., images acquired with
a handheld camera. Generally, this approach returns uncer-
tainty values for both measurement results and statistical pro-
cessing, which includes effects related to counting statistics.
To our knowledge, no such possibility for the estimation of
uncertainties exists for grain size estimations that are based
on statistical image parameters. However, current segmenta-
tion techniques are prone to biases that result from under-
or over-segmentation and 2D projection effects of 3D struc-
tures. Therefore, in such cases, reduction in inaccuracies
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Figure 10. Systematic factors that influence grain size estimation from UAV imagery, especially from orthophoto mosaics (OM). (a, b) Effect
of varying accuracy of SfM (structure from motion) used for referencing for orthophoto mosaics, which should display the same extent.
(c, d) Comparison of undistorted single, nadir images (SI) with orthophoto mosaics, which highlight small-scale image warping and artifacts:
(1) duplication from incorrect image stitching, (2) blurring of pebble boundaries, and (3) irregular grain shapes. (e, f) Selected results
highlighting the varying image segmentation performance. Examples of systematic under-segmentation marked with white arrows.

might be achieved through manual filtering of grains dur-
ing segmentation (e.g., Purinton and Bookhagen, 2019; De-
tert and Weitbrecht, 2012) and/or through a calibration of the
measurements with a reference dataset (e.g., Chardon et al.,
2022), where data were collected in the field, as exemplified
in this work. Such a strategy is likely to improve the accu-
racy of grain size data and yields in an estimate of the related
uncertainty.

5 Conclusions

Our field-based approach in combination with the simple
uncertainty modeling can be used to model all relevant un-
certainties in SfM models onto grain size data that are ex-
tracted from segmented UAV imagery. The workflow pro-
posed in this paper is applicable to any tasks that aim at
measuring grain size data from images, and it allows us to
assess the sensitivity of such grain size data on the UAV sur-
vey strategy. This includes selection of the image acquisition
format, for which the use of the raw image format during
image acquisition instead of the JPEG format might reduce
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the systematic uncertainty in topographic models. For our
setup, the image format used for grain size estimation was a
key variable, where an overall higher precision and accuracy
were achieved if grain sizes were measured in single, undis-
torted nadir images rather than on orthophoto mosaics. Fur-
thermore, general UAV survey conditions, e.g., light, wind,
or vegetation exert a control on the precision and accuracy
of grain size data estimated from images, even if the topo-
graphic models used for referencing are of high quality. Con-
trarily, our grain size data are not very sensitive to the qual-
ity of the topographic model, as long as single, undistorted
nadir images are used where distortions were corrected with
a camera lens model during the photogrammetric processing.

Code availability. The code used for image processing and un-
certainty estimation of grain size distributions is provided at
https://doi.org/10.5281/zenodo.6415047 (Mair et al., 2022) as
Python files and executable Jupyter notebooks, where the latter also
serve as documentation. Additionally, we also provide the Python
script there used for estimating the camera distance.

Data availability. Photo-measured grain size data are provided
along with field-measured b-axis values for K1 in a csv format,
and all UAV images used for SfM model generation and all refer-
enced images (both SI and OM), in which we measured grain sizes,
can be found at https://doi.org/10.5281/zenodo.6415047 (Mair et
al., 2022).
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