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Abstract. The sediment of alluvial riverbeds plays a significant role in river systems both in engineering and
natural processes. However, the sediment composition can show high spatial and temporal heterogeneity, even on
river-reach scale, making it difficult to representatively sample and assess. Conventional sampling methods are
inadequate and time-consuming for effectively capturing the variability of bed surface texture in these situations.
In this study, we overcome this issue by adopting an image-based deep-learning (DL) algorithm. The algorithm
was trained to recognise the main sediment classes in videos that were taken along cross sections underwater
in the Danube. A total of 27 riverbed samples were collected and analysed for validation. The introduced DL-
based method is fast, i.e. the videos of 300–400 m long sections can be analysed within minutes with continuous
spatial sampling distribution (i.e. the whole riverbed along the path is mapped with images in ca. 0.3–1 m2

overlapping windows). The quality of the trained algorithm was evaluated (i) mathematically by dividing the
annotated images into test and validation sets and also via (ii) intercomparison with other direct (sieving of
physical samples) and indirect sampling methods (wavelet-based image processing of the riverbed images),
focusing on the percentages of the detected sediment fractions. For the final evaluation, the sieving analysis of
the collected physical samples were considered the ground truth. After correcting for samples affected by bed
armouring, comparison of the DL approach with 14 physical samples yielded a mean classification error of 4.5 %.
In addition, based upon the visual evaluation of the footage, the spatial trend in the fraction changes was also
well captured along the cross sections. Suggestions for performing proper field measurements are also given;
furthermore, possibilities for combining the algorithm with other techniques are highlighted, briefly showcasing
the multi-purpose nature of underwater videos for hydromorphological assessment.

1 Introduction

The physical composition of a riverbed plays a crucial role
in fluvial hydromorphological processes as a sort of bound-
ary condition in the interaction mechanisms between the flow
and the solid bed. Within these processes, the grains on the
riverbed are responsible for multiple phenomena, such as
flow resistance (Vanoni and Hwang, 1967; Zhou et al., 2021),
stability of the riverbed (Staudt et al., 2018; Obodovskyi et
al., 2020), development of bed armour (Rákóczi, 1987; Fer-
dowsi et al., 2017), sediment clogging (Rákóczi, 1997; Fetzer
et al., 2017), and fish shelter (Scheder et al., 2015). Through
these physical processes, the bed material composition has a

determining effect on numerous river uses, e.g. the possibil-
ity of inland waterway transport (Xiao et al., 2021), the drink-
ing water supply through bank filtration (Cui et al., 2021),
or the quality of riverine habitats (Muñoz-Mas et al., 2019).
Knowledge of riverbed morphology and sediment composi-
tion (sand, gravel, and cobble content) is therefore of ma-
jor importance in river hydromorphology. In order to gain
information about riverbed sediments, in situ field sampling
methodologies are implemented.

Traditionally, bed material sampling methods are intru-
sive (i.e. sediment is physically extracted from the bed for
follow-up analysis) and carried out via collecting the sed-
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iment grains one by one (areal, grid-by-number, and pebble
count methods; e.g. Bunte and Abt, 2001; Guerit et al., 2018)
or in a larger amount by a variety of grab samplers (volu-
metric methods, such as WMO, 1981; Singer, 2008). This
is then followed by measuring their sizes individually on site
or transporting them to a laboratory for mass-sieving analysis
(Fehr, 1987; Diplas, 1988; Bunte and Abt, 2001). These sam-
pling procedures are time- and energy-consuming, especially
in large-gravel and mixed-bed rivers, where characteristic
grain sizes can strongly vary both in time and space (Wolcott
and Church, 1991; USDA, 2007), requiring a dense sampling
point allocation. The same goes for critical river reaches,
where significant human impact led to severe changes in the
morphological state of the rivers (e.g. the upper section of
the Hungarian Danube; Török and Baranya, 2017). When
assessing bed material composition on a river-reach scale,
experts usually try to extrapolate from the samples and de-
scribe larger regions of the bed (even several thousand square
metres) using data gathered from several dozen points (e.g.
USDA, 2007; Haddadchi et al., 2018; Baranya et al., 2018;
Sun et al., 2021). Gaining a representative amount of the sed-
iment samples is also a critical issue. For instance, following
statistical criteria such as those of Kellerhals and Bray (1971)
or Adams (1979), a representative sample should weigh any-
where from tens to hundreds of kilograms. Additionally,
physical bed material sampling methods are unable to di-
rectly quantify important, hydromorphological features such
as roughness or bedforms (Graham et al., 2005). Due to these
constraints, surrogate approaches have recently been tested
to analyse the riverbed. Examples are introduced in the rest
of this section. Unlike the conventional methods, these tech-
niques are non-intrusive and rely on computers and other in-
strumentation to decrease the need for human intervention
and speed up the analyses.

One group of the surrogate approaches includes the acous-
tic methods, where an acoustic wave source (e.g. an Acous-
tic Doppler Current Profiler, ADCP) is pointed towards
the riverbed from a moving vessel, emitting a signal. The
strength and frequency of this signal is measured while it
passes through the water column, reflecting back to the re-
ceiver from the sediment transported by the river and finally
from the riverbed itself. This approach is fast, and larger ar-
eas can be covered relatively quickly (Grams et al., 2013).
While it has already become widely used for describing sed-
iment movement (i.e. suspended sediment, Guerrero et al.,
2016; bedload, Muste et al., 2016; and indirect flow veloc-
ity; Shields and Rigby, 2005) and channel shape (Zhang
et al., 2008), it has not reached a similar breakthrough for
riverbed material analysis. Researchers experimented with
the reflecting signal strength (dB) from the riverbed (e.g.
Shields, 2010) to establish its relationship with the riverbed
material. Their hypothesis was that the absorption (and hence
the reflectance) of the acoustic waves reaching the bed cor-
relates with the type of bed sediment. Following initial suc-
cesses, the method presented several disadvantages and lim-

itations; hence, it could not establish itself as a surrogate
method for riverbed material measurements so far. For ex-
ample, Shields (2010) showed that it was necessary to apply
instrument-specific coefficients to convert the signal strength
into bed hardness, and these coefficients could only be de-
rived by first validating each instrument using collected sedi-
ment samples with corresponding ADCP data. Moreover, the
method was sensitive to the bulk density of the sediment and
to bedforms. Based on his results and observations, the sedi-
ment classification could only extend to differentiate between
cohesive (clay, silt) and non-cohesive (sand, gravel) sedi-
ment patches, but gravel could not be distinguished strongly
from sand as they produced similar backscatter strengths.
Buscombe et al. (2014a, b) further elaborated on the topic
and successfully developed a better, less limited, decision-
tree-based approach. They showed that spectral analysis of
the backscatter is much more effective for differentiating the
sediment types compared to the statistical analysis used by
Shields. With this approach it became possible to classify ho-
mogenous sand, gravel, and cobble patches. However, Bus-
combe et al. (2014a, b) also emphasises that acoustic ap-
proaches are not capable of separating the effects of surface
roughness from the effects of bedforms; therefore, the se-
lection of an appropriate ensemble averaging window size is
of great importance for their introduced method. This size
has to be small enough to not include morphological sig-
nal, for which the a priori analyses of riverbed elevation pro-
files is needed at each site. Furthermore, they suggest their
method is sensitive to and limited by high concentrations of
(especially cohesive) sediment; therefore, its application to
heterogeneous riverbeds would require site-specific calibra-
tions. The above-mentioned studies also note that acoustic
methods in general inherently do not allow the measurement
of individual sediment grains due to their spatial averaging
nature. The detected signal strength correlates with the me-
dian grain size of the covered area; information about other
nominal grain sizes cannot be gained.

Another group of surrogate approaches is the application
of photography (Adams, 1979; Ibbekken and Schleyer, 1986)
and later computer vision or image-processing techniques.
During the last 2 decades, two major subgroups emerged: one
uses object and edge detection (by finding abrupt changes
in intensity and brightness of the image, segmenting ob-
jects from each other; Sime and Ferguson, 2003; Detert and
Weitbrecht, 2013), while the other uses analyses the textu-
ral properties of the whole image, using autocorrelation and
semi-variance methods to define the empirical relationship
between the image texture and the grain size of the pho-
tographed sediments (Rubin, 2004; Verdú et al., 2005). Both
image-processing approaches were very time-consuming and
required mostly site-specific manual settings; however, a few
transferable and more automated techniques have also been
developed recently (e.g. Graham et al., 2005; Buscombe,
2013). Even though there is a continuous improvement in the
applied image-based bed sediment analysis methods, there

Earth Surf. Dynam., 11, 1061–1095, 2023 https://doi.org/10.5194/esurf-11-1061-2023



A. A. Ermilov et al.: Automated riverbed composition analysis using deep learning on underwater images 1063

are still major limitations the users face. These limitations
include the following problems.

– Most of the studies (all the ones listed above) focus on
gravel-bedded rivers, and only a few exceptions can be
found in the literature where sand is also accounted for
(texture-based methods; e.g. Buscombe, 2013).

– The adaptation environment was typically non-
submerged sediment instead of underwater conditions
(with a few exceptions, e.g. Rubin et al., 2007; Warrick
et al., 2009).

– The computational demand of the image processing is
high (e.g. 1–10 min per image; Detert and Weitbrecht,
2013).

– The analysis requires operator expertise (higher than in
the case of any conventional method).

– There is an inherent pixel and image resolution limit
(Buscombe and Masselink, 2008; Cheng and Liu, 2015;
Purinton and Bookhagen, 2019). The finer the sediment,
the higher the required resolution of the images will be
(higher calculation time). Alternatively, they must be
taken from a closer position (smaller area and sample
per image).

Nowadays, with the rising popularity of artificial intelli-
gence (AI), several machine learning (ML) techniques have
been implemented in image recognition as well. The main
approaches of segmentation contra-textural analysis still re-
main; however, an AI defines the empirical relationship be-
tween the object sizes (Igathinathane et al., 2009; Kim et al.,
2020) or texture types (Buscombe and Ritchie, 2018) in the
images and their real sizes. In the field of river sedimentol-
ogy a few examples can already be found, where ML (e.g.
deep learning, DL) was implemented. For instance, Rozniak
et al. (2019) developed an algorithm for gravel-bed rivers,
performing textural analysis. With this approach, informa-
tion is not gained on individual grains (e.g. their individual
shape and position) but rather the general grain size distri-
bution (GSD) of the whole image. At certain points of the
studied river basins, conventional physical samplings (peb-
ble count) were performed to provide real GSD information.
Using this data, the algorithm was trained (with ∼ 1000 im-
ages) to estimate GSD for the rest of the study site based on
the images. The method worked for areas where grain diame-
ters were larger than 5 mm and the sediment was well sorted.
The developed method showed sensitivity to sand coverage,
blurs, reduced illuminations (e.g. shadows), and white pix-
els. Soloy et al. (2020) presented an algorithm that used ob-
ject detection on gravel- and cobble-covered beaches to cal-
culate individual grain sizes and shapes. A total of 46 im-
ages were used for the model training; however, the num-
ber of images was multiplied with data augmentation (ro-
tating, cropping, blurring the images; see Perez and Wang,

2017) to enhance the learning session and increase the in-
put data. The method was able to reach a limited execution
speed of a few seconds per square metre and adequately mea-
sured the sizes of the gravel. Ren et al. (2020) applied an
ensemble bagging-based machine learning (ML) algorithm
to estimate GSD along the 70 km long region of Hanford
Reach on the Columbia River. Due to its economic impor-
tance, a large amount of measurement data has been accu-
mulated for this study site over the years, making it ideal
for using ML. By the time of the study, 13 372 scaled im-
ages (i.e. their millimetre-to-pixel ratio was known) were
taken both underwater and in the dry zones, covering ap-
prox. 1 m2 each. The distance between the image sampling
points was generally between 50 and 70 m. An expert defined
the GSD (eight sediment classes) of each image by using a
special visual evaluation classification methodology (Delong
and Brusven, 1991; Geist et al., 2000). This dataset was fed
to a ML algorithm along with their corresponding bathymet-
ric attributes and hydrodynamic properties, simulated with a
2D hydrodynamic model. Following this, it was tested to pre-
dict the sediment classes based on the hydrodynamic param-
eters only. The algorithm performed with a mean accuracy of
53 %. Even though this method was not image-based (only
indirectly, via the origin of the GSD data), it highlighted the
possibilities of an AI for a predictive model using a high-
dimensional dataset. Having such a large dataset of grain size
information can be considered exceptional and takes a huge
amount of time to gather, even with the visual classification
approach they adapted. Moreover, this was still considered
spatially sparse information (point-like measurements, 1 m2

covered area, and images dozens of metres away from each
other). Buscombe (2020) used a set of 400 scaled images
to train an AI algorithm on image texture properties using
another image-processing method (Barnard et al., 2007) for
validation. The algorithm reached a good result for not only
gravel but also sand GSD calculation, outperforming an ear-
lier, but promising, texture-based method (wavelet analysis;
Buscombe, 2013). In addition, the method required fewer
calibration parameters than the wavelet image-processing ap-
proach. The study also foresaw the possibility to train an AI
that estimates the real sizes of the grains, without knowing
the scale of one pixel (mm / pixel ratio) if the training is done
properly. The AI might learn unknown relationships between
the texture and sizes if it is provided with a wide variety (im-
ages of several sediment classes) and scale (mm / pixel ratio)
in the dataset (however, it is also prone to learn unwanted
biases). Recently, Takechi et al. (2021) further elaborated
on the importance of shadow detection and removal using
a dataset of 500 pictures for training a texture-based AI with
the help of an object-detecting image-processing technique
(Basegrain; Detert and Weitbrecht, 2013). The previously
presented studies, applying ML and DL techniques, signif-
icantly contributed to the development and improvement of
surrogate sampling methods, incorporating the great poten-
tial of AI. However, there are still several shortcomings to
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these procedures. Firstly, none of the image-based AI studies
used underwater recordings, even though the underwater en-
vironment offers completely different challenges. Secondly,
the training images were always scaled, i.e. the sizes of the
grains could be easily reconstructed, which is again compli-
cated to accomplish in a river. Lastly, they were not adapted
for continuous (i.e. spatially dense) measurement but instead
focused on a sparse grid-like approach.

The goal of this study is to further investigate the appli-
cability of image processing as a surrogate method and at-
tempt to solve the shortcomings of previous AI-based ap-
proaches. Hence, we introduce a riverbed-material-analysing
DL algorithm and field measurement methodology and our
first set of results. The introduced technique can be used
to measure the gravel and sand content of the submerged
riverbed surface. It aims to eventually become a practical
tool for exploratory mapping, by detecting sedimentation
features (e.g. deposition zones of fine sediment, colmation
zones, bed armour) and helping decision-making for river
sedimentation management. In addition, the long-term hy-
pothesis of the authors includes the creation of an image-
based measurement methodology, where underwater videos
of the riverbed could serve multiple sediment-related pur-
poses simultaneously. Part of this is the current approach for
mapping the riverbed material texture and composition. Oth-
ers include measuring the surface roughness of the bed (Er-
milov et al., 2020) and detecting bedload movement (Ermilov
et al., 2022).

Compared to the studies introduced earlier, the main nov-
elty of our study is that both the training and analysed videos
are recorded underwater, continuously along cross sections
of a large river. Furthermore, the training is unscaled, mean-
ing that the camera–riverbed distance varies while recording
the videos without considering image scale. Moreover, com-
pared to the relatively low number of training images in most
previous studies, we used a very large dataset (∼ 15000) of
sediment images for the texture-based AI, containing mostly
sand, gravel, cobble, and to a smaller extent bedrock, to-
gether with some other, non-sediment-related objects.

2 Methods

2.1 Case studies

The results presented in this study are based on riverbed
videos taken during three measurement campaigns in sec-
tions of the Danube, Hungary. The first campaign was
at Site A, Ercsi settlement (∼ 1606 rkm, river kilometers),
where three transects were recorded; the second one was
at Site B, Gönyű settlement (∼ 1791 rkm), with two tran-
sects; and the third was at Site C, near Göd settlement
(∼ 1667 rkm), with three transects (Fig. 1). Each transect was
recorded separately (one video per transect); therefore, our
dataset included a total of eight videos.

Figure 1. The location of the riverbed videos where the underwater
recordings took place. All sites were located in Hungary in central
Europe. The surveys were carried out on the Danube, which is Hun-
gary’s largest river.

The training of the DL algorithm was done using the video
images of Site C and a portion of Site A (test set; see later in
Sect. 2.3), while Site B and the rest of the images from Site
A served for validation. The measurements were carried out
during daytime at a middle-water regime (Q= 1900 m3 s−1)
in case of Site A and a low-water regime (Q= 1350 m3 s−1)
at Site B and Site C (Q= 700 m3 s−1). This latter site served
only for increasing the training image dataset (i.e. conven-
tional samplings were not carried out at the time of recording
the videos), and thus we do not go into further details with it
for the rest of the study, but the main characteristics are listed
in Table 1.

As underwater visibility conditions are influenced by the
suspended sediment (SSCsurvey – suspended sediment con-
centration), the characteristics of this sediment transport are
also included in Table 1. The highest water depths were
around 6–7 m in all cases. At Site A, measurements included
mapping of the riverbed with a camera along three separate
transects (Fig. 2a). At Site B, two transects were recorded
(Fig. 2b).
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Table 1. Main hydromorphological parameters of the measurement sites. Qsurvey is the discharge during the survey, Bsurvey is the river
width during the survey, Hmean,survey is the mean water depth during the survey, Ssurvey is the riverbed slope during the survey, SSCsurvey is
the mean suspended sediment concentration during the survey, Qannual,mean is the annual mean of the discharge at the site, and Q1 % is for
the flooding discharge with a 1 % annual exceedance probability.

Site A Site B Site C

Qsurvey [m3 s−1] 1900 1350 700
Bsurvey [m] 300–450
Hmean,survey [m] 3.5–4.5
Ssurvey [cm km−1] 15
SSCsurvey [mg L−1] 25 20 14
Characteristic riverbed sediment gravel, sandy gravel gravel, gravelly sand gravel, sandy gravel
Qannual,mean [m3 s−1] 2000 2200 1400
Q1 % [m3 s−1] 5300 5500 4700

2.2 Field data collection

Figure 3 presents a sketch of the measurement process with
the equipment and a close-up of the underwater instrumen-
tation. During the field measurements, the camera was at-
tached to a streamlined weight (originally used as an isoki-
netic suspended sediment sampler) and lowered into the wa-
ter from the vessel by an electric reel. The camera was posi-
tioned perpendicularly to the water and the riverbed in front
of the nose of the weight. Next to the camera, two diving
lights worked as underwater light sources, focusing into the
camera’s field of view (FoV). In addition, four laser pointers
were also equipped in handmade isolation cases to provide
possible scales for secondary measurements. They were also
perpendicular to the bottom, projecting their points onto the
underwater camera field of view. Their purpose was to ensure
a visible scale (mm / pixel ratio) in the video footage for val-
idation. During the measurement procedure, a vessel crossed
the river slowly through river transects, while the position of
the above detailed equipment was constantly adjusted by the
reel. Simultaneously, ADCP and real-time kinematic (RTK)
GPS measurement were carried out by the same vessel, pro-
viding water depth, riverbed geometry, flow velocity, ship
velocity, and position data. Based on this information and
by constantly checking the camera’s live footage on deck,
the camera was lowered or lifted to keep the bed in cam-
era sight and avoid colliding with it. The sufficient camera–
riverbed distance depended on the suspended sediment con-
centration near the bed and the used illumination. The reel
was equipped with a register, with its zero adjusted to the
water surface. This register was showing the length of cable
already released under the water, effectively the rough dis-
tance between the water surface and the camera (i.e. the end
of the cable). Due to the drag force this distance was not ver-
tical, but this value was continuously compared to the water
depth measured by the ADCP. Differencing these two values,
an approximation for the camera–riverbed distance was given
all the time. The sufficient difference could be established by
monitoring the camera footage while lowering the device to-

wards the bed. This value was then to be maintained with
smaller corrections during the survey of the given cross sec-
tion, always supported by observing the camera recording,
and adjusting to environmental changes. The vessel’s speed
was also adjusted based on the video and slowed down if the
video was blurry or the camera got too far away from the
bed (see later in Sect. 3.3). The measurements required three
personnel to (i) drive the vessel; (ii) handle the reel, adjust
the equipment position, and monitor the camera footage; and
(iii) monitor the ADCP data while communicating with the
other personnel (see Fig. 3).

The video recordings were made with a GOPRO Hero
7 and a Hero 4 commercial action cameras. Image resolu-
tions were set to 2704× 2028 (2.7 K) with 60 frames per
second (fps) and 1920× 1080 (1080 p) with 48 fps, respec-
tively. Other parameters were left at their default (see GO-
PRO, 2014, 2018), resulting in slightly different qualities for
the produced images between the two cameras. We found
that a 0.2–0.45 m s−1 vessel speed with 60 fps recording fre-
quency was ideal to retrieve satisfactory images in a range of
0.4–1.6 m camera–bed distances. This meant approximately
15 min long measurements per transects. Further attention
needed to be paid to the reel and its cable during the crossing
when the equipment was on the upstream side of the boat. If
the flow velocities are relatively high (compared to the total
submerged weight of the underwater equipment), the cable
can be pressed against the vessel body due to the force from
the flow itself, causing the reel cable to jump to the side and
leave its guide. This results in the equipment falling to the
riverbed and the measurement must be stopped to re-install
the cable. For illumination, a diving light with 1500 lumen
brightness and 75◦ beam divergence and one with 1800 lu-
men and 8◦ were used. The four lasers for scaling had 450–
520 nm (purple and green) wavelength and 1–5 mW nominal
power. Power supply was ensured with batteries for all in-
struments.

At Site A and Site B, conventional bed material (physical)
samplings were also carried out by a grabbing (bucket) sam-
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Figure 2. Bathymetry of Site A and Site B. The measurement cross sections are also marked. The vessel moved along these lines from one
bank to the other while carrying out ADCP measurement and recording riverbed videos. Physical bed material samples were also collected
in certain points of these sections. The x and y coordinates are given in EOV, which refers to the Hungarian Uniform National Projection
system (The background aerial images were downloaded from © Google Earth Pro).

pler along the analysed transects. At each cross section, 4–5
samples were taken, with one exception where we had 10.
The measured GSDs were used to validate results of the AI
algorithm. Separately, a visual evaluation of the videos was
also carried out, where a person divided the transects into
subsections based on their dominant sediment classes after
watching the footage.

2.3 Image analysis: artificial intelligence and the
wavelet method

In this study, we built on the former experiences of the au-
thors using Benkő et al. (2020) as a proof of concept, where

the developed algorithm was applied for analysing drone
videos of a dry riverbed. The same architecture was used
in this study, which is based on the widely used Google’s
DeeplabV3+ Mobilnet, in which many novel and state-of-
the-art solutions are implemented (e.g. Atrous Spatial Pyra-
mid Pooling; Chen et al., 2018). The model was implemented
with Pytorch, exploiting its handy API and backward com-
patibility. The main goal was to build a deep neural network
model that can recognise and categorise (via semantic seg-
mentation; Chen et al., 2018) at least three main sediment
size classes, i.e. sand, gravel and cobble, in the images, while
being quickly deployable. The benefit of the introduced
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Figure 3. (a) Sketch of the measurement process. The vessel was moving perpendicular to the riverbank along a cross section (i). A reel
was used to lower a camera close to the riverbed (ii). Simultaneously, the bed topography and water depth were measured by an ADCP (iii).
(b) Close-up sketch of the underwater instrumentation.

method compared to conventional imagery methods lies in
the potential of automation and increased speed. If the anno-
tation and training is carried out thoroughly, analysing fur-
ther videos can run effortlessly, while the computation time
can be scaled down either vertically (using stronger GPUs) or
horizontally (increasing the number of GPUs if parallel anal-
ysis of images is desired). In this study a TESLA K80 24 GB
GDDR5 348 bit GPU and an Intel Skylake Intel® Xeon®

Gold 6144 Processor (24.75 M Cache, 3.50 GHz) CPU with
13 GB RAM were used. In addition, contrary to other novel
image-processing approaches in riverine sediment research
(Buscombe, 2013; Detert and Weitbrecht, 2013), the deep
convolutional neural network is much less limited by im-
age resolution and mm / pixel ratios, because it does not rely
on precise pixel count. This is an important advantage to be
exploited here, as we perform non-scaled training and mea-
surements with the DL, i.e. camera–bed distance constantly
changed, and size references were not used in the images by
the DL.

Figure 4 presents the flowchart of our DL-based image-
processing methodology. The first step after capturing the
videos was to cut them into frames, during which the videos
were exploded into sequential images. Our measurement
setup proved to be slightly nose heavy. Due to this and the
drag force combined, the camera tilted forward during the

measurements. As a result, the lower parts of the raw im-
ages were sometimes too dark, as the camera was looking
over the riverbed and not at the lit part of the bed. In this
study, this problem was handled by simply cutting out the
lower 25 % of the images as this was the region usually con-
taining the dark, unlit areas. Brightening and sharpening fil-
ters were applied on the remaining part of the images to im-
prove their quality. Next, the ones with clearest outlines and
best visibility were chosen. This selection process was nec-
essary because this way the delineation process (learning the
prominent characteristics of each class) can be executed ac-
curately without the presence of misleading or confusing im-
ages, e.g. blurry or dark pictures where the features are hard
to recognise. For training purposes, we chose three videos
from different sections each being ∼ 15 min long with 60
and 48 fps, resulting in 129 600 frames. In fact, such a large
dataset was not needed due to the strong similarity between
the consecutive frames. The number of images to be anno-
tated and augmented was therefore decreased to ∼ 2000. We
also performed a white balance correction on some of the
images to improve visibility, making it even easier to later
define the sediment class boundaries. We used an additional
algorithm to generate more data, with the so-called simplest
colour balance method (Limare et al., 2011). It is a simple
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but powerful histogram equalisation algorithm that helps to
equalise the roughness in pixel distribution.

These steps were followed by the annotation, where we
distinguished 10 classes: silt-clay, sand, gravel, cobble, boul-
der (mainly ripraps), bedrock, clam-upside, clam-downside,
vegetation, and unidentified (e.g. wreckage). Annotation was
carried out by trained personnel, not by the authors, and per-
formed with the help of open-source software called Pixe-
lAnnotationTool (Breheret, 2017), which enables the user to
colour mask large parts of an image based on colour change
derivatives (i.e. colour masking part of the images that be-
longs to the same class, e.g. purple or red for sand, green
for gravel, yellow for cobble). The masks and outlines were
drawn manually, together with the so-called watershed anno-
tation. This means that when a line was drawn, the algorithm
checked for similar pixels in the vicinity and automatically
annotated them with the same class. The annotation was fol-
lowed by a data augmentation step where beside mirroring,
cropping, and rotating the images (to decrease the chance
of overfitting), we also convolved them with different filters.
These filters added normally distributed noise to the photos
to influence the watershed algorithm and applied sharpening,
blurring, darkening, and white balance enhancement. Thus,
at the data level, we tried to ensure that any changes in wa-
ter purity, light, and transparency, as well as colour changes,
were adequately represented during training. Images were
uniformly converted to 960× 540 resolution, scaling them
down to make them more usable to fit in the GPU’s memory.
The next step was to convert all the images from red–green–
blue (RGB)-based colour to greyscale. This is important be-
cause colour images have three channels, meaning that they
contain a red, a green, and a blue layer, while greyscale image
pixels can only take one value between 0 and 255. With this
colour conversion we obtained a 3-fold increase in compu-
tational speed. In total, a dataset of 14 784 human-annotated
images was prepared (from the ∼ 2000 images of the three
training videos). The next step was to separate this dataset
into training and validation sets. In this study, we used 80 %
of it for training the DL algorithm, while 20 % was withheld
and reserved for the validation of the training. It was impor-
tant to mix the images so that the algorithm selects batches in
a pseudorandom manner during training, thus preventing the
model from being overfitted. Finally, after several changes
in the hyperparameters (i.e. tuning), the evaluation and visu-
alisation of the training results were performed. Tuning is a
general task to do when building DL networks, as these hy-
perparameters determine the structure of the network and the
training process itself. Learning rate, for example, describes
how fast the network refreshes and updates itself during the
training. If this parameter is set too high, the training process
finishes quickly, but convergence may not be reached. If it
is too low, the process is going to be slow, but it converges.
For this reason, nowadays the learning rate decay technique
is used, where one starts out with a large learning rate and
then slowly reduces it. The technique generally improves op-

Figure 4. Flowchart of the applied methodology.
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timisation and generalisation of the DL networks (You et al.,
2019). In our case, learning rate was initialised to 0.01, with
30 000 iteration steps, and the learning rate was reset after
every 5000 iterations with a decay of 0.1. Another important
parameter was the batch size, which sets the number of sam-
ples fed to the network before it updates itself. Theoretical
and empirical evidence suggest that learning rate and batch
size are highly important for the generalisation ability of a
network (He et al., 2019). In our study, a batch size of 16
was used (other general values in the literature are 32, 64,
128, 256). We used a cross-entropy loss function.

As previously discussed, the training of the deep learning
(DL) algorithm proceeded without the application of scal-
ing, obviating the need for the laser equipment. Nevertheless,
our original intention was to employ laser pointers to estab-
lish a spatial scale for the recorded videos, serving as a sup-
plementary validation measure. Regrettably, the lasers did
not operate as initially anticipated, rendering their continu-
ous utilisation during the cross-sectional surveys and the pur-
suit of transactional scaling and validation unfeasible. Conse-
quently, we shifted our focus to validation at specific physical
sampling points, where we could utilise the lasers properly.
We adopted a textural image-processing approach to anal-
yse the video images captured at these sampling locations. In
this regard, we opted for the previously mentioned transfer-
able wavelet-based signal- and image-processing technique.
This method allows for the computation of the image-based
grain size distribution from the selected images. The analy-
sis entails examining the greyscale intensity along the pixel
rows and columns within the image, treating them as indi-
vidual signals. This technique utilises the less constrained
wavelet transform, instead of the Fourier transform, to de-
compose these signals. Ultimately, by computing the power
spectra and determining the sizes (first in pixel then chang-
ing to millimetres using the scale) of the wavelet compo-
nents (each corresponding to an individual grain), the user
can derive the grain size distribution for the given image.
Prior to this study, this methodology had demonstrated its ef-
ficiency as a non-DL image-processing technique for mixed
sediments (Buscombe, 2013, 2020) and had previously been
tested by us under underwater conditions as well (Ermilov et
al., 2020).

3 Results and discussion

3.1 Evaluation of the training

To evaluate the training process, the 2957 images of the val-
idation set were analysed by the developed DL algorithm,
and its results were then compared to their human-annotated
counterparts. Figure 5a–d shows results of original images
(from the validation set), their ground truth (annotation by
the training personnel), and the DL prediction (result of the
model). The overlays of the original and the predicted im-
ages are also shown for better visualisation. Calculating the

overall pixel accuracy (i.e. the percentage of pixels that were
correctly classified during validation) returned a satisfactory
result with an average 96 % match (over the 2957 valida-
tion images, each having 960× 540 resolution, adding up to
a total of 1 532 908 800 pixels as 100 %). As this parame-
ter in object detection and DL is not a standalone parameter
(i.e. it can still be high even if the model performs poorly),
the mean IoU (intersection-over-union or Jaccard index) was
also assessed, indicating the overlap of ground-truth area and
prediction area divided by their union (Rahman and Wang,
2016). This parameter showed a much lower agreement of
41.46 %. Interestingly, there were cases where the trained
model gave better result than the annotating personnel. While
this highlighted the importance of thorough and precise an-
notation work, it also showcased that the number of poor
annotations was relatively low, meaning that the algorithm
could still carry out correct learning processes and later de-
tections, while not being severely affected by the mistake of
the training personnel. Figure 5e showcases an example for
this: the correct appearance of cobble (yellow) in the pre-
diction, even though the user (ground truth) did not define
it during annotation. As a matter of fact, these false errors
also decrease the IoU evaluation parameter despite increas-
ing the performance of the DL algorithm over the long term.
Hence, this shows that pure mathematical evaluation may not
describe the model performance entirely. Considering that
others also reported similar experience with DL (Lu et al.,
2019) and the fact that 40 % and 50 % are generally accepted
IoU threshold values (Yang et al., 2018; Cheng et al., 2018;
Padilla et al., 2020), we considered the 41.46 % acceptable,
while noting that the annotation and thus the model can fur-
ther be improved. The general quality of our underwater im-
ages may have also played a role in lowering the IoU result.

One of these quality issues for the DL algorithm was as-
sociated with the illumination. Using a diving light with
small beam divergence proved counterproductive. The high-
intensity focused light occasionally caused overexposed
zones (white pixels) in the raw bed image, misleading the
DL algorithm and resulting in detection of incorrect classes
there (Fig. 6a). In darker zones, where the suspended sedi-
ment concentration was higher and at the same time, the ef-
fect of camera tilting was not completely removed by prepro-
cessing, the focused light sometimes reflected from the sus-
pended sediment itself and resulted in brighter patches in the
images (Fig. 6b). This also caused false positive detections.

3.2 Comparison of methods

In each masked image, the occurring percentage of the given
class (i.e. the percentage of the pixels belonging to that
class/colour mask, compared to the total number of pixels
in the image) was calculated and used as the fraction per-
centage in that given sampling point. These sediment classes
reconstructed by the DL algorithm were then compared to
three alternative results: (i) visual estimation, (ii) GSD result-
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Figure 5. (a–d) Example comparisons of ground-truth (drawn by
the annotating personnel, third column) and DL-predicted (result
of analysing the raw image by the previously trained DL model,
fourth column) results during the validation process. The first col-
umn shows raw images, while the second column overlays the re-
sult of the DL detection on the raw image for better visual con-
text. (e) Example of training personnel mistake during the annota-
tion (i.e. lack of cobble or yellow annotations in the ground truth)
and how the DL performed better by hinting at the presence of the
cobble fraction, leading to a false negative result during validation.

ing from conventional grab sampling, and (iii) wavelet-based
image-processing. In the following, results from two cross
sections will be highlighted, one from Site A, the video used
for the training, and one from Site B, being new for the DL.
An averaging window of 15 m was applied on each cross-
sectional DL result to smoothen and de-spike the dataset.
The interval of physical sample collection in wider rivers can
range anywhere between 20 and 200 m within a cross sec-
tion, depending on the river width and the homogeneity of
riverbed composition. The averaging window size was cho-
sen to be somewhat lower than our average applied physical
sampling intervals in this study, but still in the same order
of magnitude. The scope of the present study did not include
further sensitivity analysis of the window size. In the follow-
ings, the reader is led through the comparison process via the
example of two transects and is given the overall evaluation
of the accuracy of the method.

Figure 6. The effect of strong diving light on the DL algorithm.
(a) Purely sand-covered zone. (b) Darker zone with higher SSC.
The original images are on the left, while the DL detections can be
found on the right.

3.2.1 Visual evaluation and physical samples

In Fig. 7a, we depict the vessel’s trajectory within Section A-
II at Site A. The path is colour coded based on our visual
assessment of the riverbed images, with distinct colours rep-
resenting the prevalent sediment type at each specific loca-
tion on the riverbed. Additionally, we have marked the posi-
tions of physical bed material samples with yellow markers
for reference. Figure A1 presents the unprocessed results of
the DL detection for each analysed image along Section A-
II prior to any moving-average smoothing. It is important to
note that our current approach is highly sensitive, occasion-
ally resulting in substantial fluctuations in DL detection be-
tween successive, slightly displaced video frames. Owing to
this sensitivity and the inherent uncertainty in the coordinates
of the underwater photos and their corresponding physical
samples, we discourage making direct comparisons by se-
lecting a specific image and its DL detection. Instead, we
have implemented a moving-average-based smoothing tech-
nique for each raw, cross-sectional DL detection, using a
window size of 15 m at each site. These moving averages
serve as the basis for comparisons with the physical sampling
data and the wavelet method. For the sake of clarity, we have
included the raw DL detections of all sampling point im-
ages in the Appendices, although these results may not pre-
cisely reflect their corresponding moving-average values. In
Fig. 7b, we present a comparison between the cross-sectional
visual classification and the DL-detected sediment fractions
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in percentage after applying the moving-average smoothing
(i.e. the smoothed version of Appendix Fig. A1). Any noise
observed in these results is primarily attributable to abrupt
changes in lighting conditions, which can occur either when
visual contact with the riverbed is momentarily lost due to
sudden bathymetrical changes or as a result of increased sus-
pended sediment concentration. Overall, our DL results ex-
hibit a commendable concordance with human evaluations.
For instance, in the vicinity of 100 m from the left bank, be-
tween sampling points AII-1 and AII-2, the DL algorithm
correctly identifies a peak with approximately 70 % sand and
30 % gravel. Moreover, on either side of this peak, a steep
transition to gravel and a decline in sand content are ob-
served, consistent with visual observations, which we have
labelled as “sandy gravel” and “gravelly sand”. The DL al-
gorithm also accurately identifies mixed sediment zones on
both riverbanks.

At site B (Fig. 8a) the river morphology is more complex
compared to Site A as a groyne field is located along the left
bank (see Fig. 2b). As such, the low-flow regions between
the groynes yield the deposition of fine sediments, and much
coarser bed composition in the narrowed main stream. As
can be seen, the DL algorithm managed to successfully dis-
tinguish these zones: the extension of fine sediments in the
deposition zone at the left bank were adequately estimated
and showed a good match with the visual evaluation for the
whole cross section (see Fig. 8b).

Results of the other measurements can be found in the Ap-
pendix Figs. C2, D2, and E2. These figrues show that the
trend of riverbed composition from the visual evaluation is
well captured by the DL algorithm in the other cross sections
of the study as well.

Next, the physically measured and DL-detected relative
proportion of sand, gravel, and cobble fractions were com-
pared in each of the 27 sampling points. First, however, out-
liers or incomparable data had to be identified. In our case,
this meant the separation of sampling points where the dif-
ferences between the results of the two methods were inde-
pendent from the efficiency and performance of the DL al-
gorithm. This selection was carried out after analysing the
grain size distribution curves of the weight-sieved physical
samples (Fig. F1) and the riverbed images around the sam-
pling points (Figs. A3, B1, C4, D4, E4). Based on our find-
ings, the outliers have been identified and separated into Out-
lier Type A and Outlier Type B categories. The first cat-
egory includes the sampling points where the GSD curves
showcased bimodal (gap-graded) distributions. This type of
riverbed sediment distribution is a typical sign of riverbed
armouring (Rákóczi, 1987; Marion and Fraccarollo, 1997),
where a coarse surface layer protects the underlying finer
subsurface substrate (e.g. Wilcock, 2005). While the cam-
era only sees the upper layer, the bucket sampler can pen-
etrate the surface and gather samples from the subsurface
as well. As a result, the two methods cannot be compared
solely based on the surface distribution. In Fig. A2, support-

ive images of bed armouring are provided, taken during our
surveys in the upper section of the Hungarian Danube. Out
of the 27 sampling points, 11 were affected by armouring
and categorised as Outlier Type A. The category of Outlier
Type B consisted of points from the opposite case, i.e. where
the riverbed image contained fine sediment, but the physi-
cal samples did not. In these cases, a relatively thin layer of
fine sediment covered the underlying gravel particles. Two
sampling points were categorised as Outlier Type B, both of
which were near the borderline between a deposition zone
behind a groyne and the gravel-bedded main channel. In
these cases, the bucket sampler probably either stirred up the
deposited fine sediment and washed it down during its lifting
or was dragged through purely gravel-bedded patch during
sampling, as the surface composition was rapidly changing
on this previously mentioned borderline. It is important to
highlight that the analysis of physical samples involves mea-
suring and weighing various sediment size classes, leading to
weight distribution. In contrast, imaging methods offer sur-
face distributions, and as a consequence the presence of a
thin layer of fine sediments on the surface can significantly
skew the resulting composition (Bunte and Abt, 2001; Sime
and Ferguson, 2003; Rubin et al., 2007).

Overall, the DL-based classification agreed well within the
comparable sampling points, with an average error of 4.5 %
(Fig. 9). It can be seen that even though in outlier points AII-
1 and AI-3 the DL algorithm coincidentally gave good match
with the sieving analysis, in the rest of the outlier points
the DL- and physical-based results systematically differ from
each other, supporting our outlier selection methodology. Ta-
ble 2 summarizes and showcases the final number of samples
in each category after the selection process.

3.2.2 Wavelet analysis

Regarding the wavelet-analysis-based imaging technique, it
is evident that there is a slight overall overestimation of
coarse particles, and the accurate reconstruction of sand
classes is not achieved. This observation aligns with our ear-
lier field experiences reported in Ermilov et al. (2020), where
we highlighted the wavelet technique’s pronounced sensitiv-
ity to image resolution. We demonstrated that to successfully
detect a grain, its diameter must be at least 3 times larger
than a pixel. In the subsequent analysis, we compare the sed-
iment proportions determined by the wavelet-based method
to those obtained earlier through DL and physical-based ap-
proaches, presenting the results in bar plots (Figs. 10, 11).
For instance, when the camera was positioned closer to the
riverbed at sampling points AII-1 and AII-4, resulting in a
more favourable mm / pixel ratio, the wavelet algorithm was
able to detect coarse sand accurately. However, it struggled
to identify finer sand, leading to lower sand percentage esti-
mates (Fig. 10). In other sampling points where sand parti-
cles were below the resolution limit, the wavelet method con-
sistently identified the presence of cobbles instead (Fig. 10),
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Figure 7. (a) The path of the vessel and camera in Section A-II, Site A. The polyline is coloured based on the sediment features seen during
visual evaluation of the video. Yellow markers are the locations of physical bed material samplings (map created with © Google Earth Pro).
(b) The visual evaluation of the dominant sediment features in the video (a) compared to sediment fraction percentage recognised by the DL
algorithm (b). DL result after applying moving averaging. The visual evaluation included four classes: gravel is shown as G, sandy gravel is
shown as sG, gravelly sand is shown as gS, and sand is shown as S). The fractions of the physical samples are shown as verticals.

Table 2. After evaluating the results of the sieving analyses and riverbed surface images, out of the 27 sampling points, 14 were defined as
comparable between the applied sampling methods. A total of 11 points were categorised as Outlier Type A because their GSD curves were
bimodal. Only two points were defined as Outlier Type B, since their images showed the presence of fine sediment, while the sieve analyses
did not.

Comparable data Outlier Type A Outlier Type B
∑

No. sampling points 14 11 2 27

a distinction not made by the other two methods. This pat-
tern broadly characterises the wavelet method’s performance
during our study. For illustrative purposes, we provide an ex-
ample highlighting the differences in the capabilities of these
two methods in Fig. 12. While both methods detect the pres-
ence of two major sediment categories, the wavelet technique
interprets the information as a mixture of gravel and cobbles,
whereas the DL algorithm recognises the presence of sand
coverage and gravel particles.

Overall, the comparison between the two image-based
methods showed greater discrepancies (Fig. 13) due to the
limitations of the wavelet approach discussed earlier. The

same sampling points as earlier were labelled as outliers. As
can be seen, the wavelet significantly differed in the points
where the physical samples and DL detections matched
(green data points), due to its excessive and false cobble de-
tections. However, it showed good agreement with the DL in
most of the outlier points, supporting the earlier observation
that the surface in those points was solely composed of gravel
and that the finer fractions of the physical samples must have
come from the subsurface. Hence, the outlier selection pro-
cess was well grounded.

Based on the results presented in this study, it could be
established that the DL algorithm managed to recognise the
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Figure 8. (a) The path of the vessel and camera in Section B-II, Site B. The polyline is coloured based on the sediment seen during visual
evaluation of the video. Yellow markers are the locations of physical bed material samplings (map created with © Google Earth Pro).
(b) Sediment fraction percentages in Section B-II, recognised by the AI. The visual evaluation included two classes: gravel is shown as G,
and sand is shown as S). The fractions of the physical samples are shown as verticals.

main features of the riverbed material composition from un-
derwater videos with satisfactory accuracy in the compara-
ble sampling points (based on the sieving analysis of phys-
ical samples) and along cross sections (based on the visual
evaluation). The method showed good potential for mapping
heterogenous riverbeds along river cross sections. Further-
more, the wavelet proved to be a limited comparison tool
with the introduced field measurement methodology, as this
latter method did not provide it with the sufficient resolution
most of the time.

3.3 Implementation challenges

The power supply for the entire imaging infrastructure, in-
cluding the camera, diving lights, and lasers, relied on bat-
teries. However, due to the lower temperatures at the river
bottom, the battery depletion rate was significantly acceler-
ated compared to typical conditions. To address this issue, we
explored the option of a direct power supply from the motor-
boat. Ensuring the camera’s optimal positioning posed chal-

lenges as well. Proximity to the riverbed risked damage to the
equipment, while excessive camera–bed distances compro-
mised image quality. To maintain a clear view of the riverbed
while avoiding blurry images, we utilised real-time ADCP
water depth data to adjust the camera’s position, while si-
multaneously optimising the boat’s velocity. Increasing the
recording frequency and reducing exposure time emerged as
potential solutions to mitigate this limitation. Lower vessel
velocities were not feasible, as they would have caused the
vessel to drift out of the desired section. Alternatively, mov-
ing along longitudinal (streamline) paths rather than transects
may present the opportunity for slower vessel speeds, poten-
tially resulting in higher-quality images in the future. How-
ever, the conventional approach for river bathymetry sur-
veys typically involves transversal paths due to lower spa-
tial variations along streamlines compared to the transverse
direction (Benjankar et al., 2015; Kinsman, 2015). There-
fore, implementing longitudinal paths may require a denser
network to obtain sufficient data, thus increasing time de-
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Figure 9. Comparison of relative sediment fractions between the DL detection and physical samples. The three main sediment types (sand,
gravel, and cobble) are marked with different colours and symbols. The name of the sampling points where the given relative proportion was
measured was detected is also written for gravel and sand (cobble was negligible). The proportions of outlier sampling points are marked
with white and grey, while the symbol represents the sediment type, respectively. The comparable points have their proportions with green
(gravel) and red (sand) symbols.

mands. Hence, careful consideration of path selection and in-
terpolation methods becomes critical for this alternative ap-
proach. Another challenge pertained to the impact of drag
force on the measurement setup. Although the main body
had a streamlined design, the addition of other tools dis-
rupted the setup’s geometry. Additionally, we encountered a
slight imbalance in weight distribution. Long-term solutions
could involve constructing a streamlined container (e.g. a
3D-printed body or a body resembling uncrewed underwater
vehicles) with designated slots for each device and improving
weight distribution. Furthermore, we hypothesised that using
lasers (as originally planned in this study) during measure-
ments could assist in orthorectifying the images, leveraging
the known structure and positioning of laser points’ projec-
tions when the setup is perpendicular to the riverbed. This
could reduce the impact of occasional tilting, which may af-
fect size analysis if scaling is included. In our specific case,
we demonstrated that the wavelet method had inherent lim-
itations (e.g. image resolution limits) when applied within
our methodology, issues not attributable to camera tilting, as
these would have had a significantly lower error magnitude.

As for the training of the DL algorithm with the under-
water images, the illumination is indeed a more crucial as-
pect compared to normal imagery methods. In many cases
only the centre areas of the images were clearly visible,
whereas the remaining parts were rather dark and shady. De-

termining the boundaries between distinct sediment classes
for these images was challenging even for experienced eyes.
This quality issue generated incorrect annotations at first. To
overcome this issue, manually varying the white balance and
thus enhancing the visibility of the sediment could improve
the results of the training. It is known that when DL meth-
ods are used, most of the problems arise from the data side
(Yu et al., 2007), whereas issues related to the applied algo-
rithms and hardware are rare. This is because data are more
important from an accuracy perspective than the actual tech-
nical infrastructure (Chen et al., 2020). The time demand of
image annotation (data preparation) is relatively high; i.e. a
trained person could analyse roughly 10 images per hour. On
the other hand, as introduced earlier, a great advantage of us-
ing DL is the capability of improving the quality of training
itself, often yielding better agreement with reality compared
to the manual annotation. Similar results have been reported
by Lu et al. (2019). At the same time, this proves that there is
no need for very precise manual training with the introduced
approach, thus a fast and effective training process can even-
tually be achieved.

The validation of the DL algorithm is far from straightfor-
ward. In this study, four approaches were adopted: a mathe-
matical approach and comparison with three other measure-
ment methods. The mathematical approach was based on cal-
culating pixel accuracy and the intersection-over-union pa-
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Figure 10. Comparison of relative sediment fraction proportions (%) at the sampling locations from the moving-averaged DL detection,
conventional sieving, and wavelet-based image-processing method. Section A-II.

rameter, as is usually done in case of DL methods to describe
their efficiency (e.g. Rahman and Wang, 2016). However,
the DL model in some cases over-performed and provided
more accurate results for the sediment composition than the
human annotator did. This meant the calculated difference
between the annotated validation images and their respond-
ing DL-generated result did not solely originate from the
underperformance of the DL model but from human error
as well. Consequently, using only the mathematical evalua-
tion in this study could not adequately describe the model
performance. Hence, the results were compared to those of
three other methods: (i) visual evaluation of the image se-
ries, (ii) a wavelet-based image-processing method (using the
method of Buscombe, 2013), and (iii) riverbed composition
data from physical samples. Considering the features of the
applied methods, the first one, i.e. the visual observation, is
expected to be the most suitable for the model validation. In-
deed, when assessing the bed surface composition by eye, the
same patterns are sought, i.e. both methods focus on the up-
permost sediment layer. On the other hand, the physical sam-
pling procedure inherently represents subsurface sediment
layers, leading to different grain size distributions in many
cases. For instance, as shown earlier, if bed armour devel-
ops in the riverbed and the sampler breaks up this layer, the
resulting sample can contain the finer particles from the sub-

surface. On the contrary, in zones where a fine-sediment layer
is deposited on coarse grains, i.e. a sand layer on the top of a
gravel bed, the physical samples represent the coarse material
too; moreover, considering that the sieving provides weight
distribution, this sort of bias will even enhance the propor-
tion of the coarse particles. Attempts were made to involve
a third, wavelet-based method for model validation. How-
ever, this method failed when finer particles, i.e. sand, char-
acterised the bed. This is an inherent limitation of these type
of methods, as discussed earlier, i.e. when the pixel size is
simply not fine enough to reconstruct the small grain diame-
ters in the range below fine gravel. Lastly, the most compara-
ble sample points were selected to quantify the performance
of the DL. Holding the sieved physical samples as ground
truth, the DL algorithm showed promising results. The av-
erage error (difference) between DL-detected and physically
measured relative sediment fraction portion percentages was
4.5 %. Furthermore, the DL algorithm successfully detected
the trend of changing bed composition along complete river
cross sections.

As previously shown, the ML and DL models can learn un-
known relationships in datasets but can also learn unwanted
biases as well. With our current dataset, these biases would
be the darker tones of visible grain texture and the lack of
larger grain sizes. This way our model in its current state is
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Figure 11. Comparison of relative sediment fraction proportions (%) at the sampling locations from the moving-averaged DL detection,
conventional sieving, and wavelet-based image-processing method. Section B-II.
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Figure 12. (a) Wavelet analysis result of the underwater image in BII-2. Section B-II. (b) DL detection result of the same image.

only effectively applicable in the chosen study site until the
dataset is expanded with additional images from other rivers
or regions. However, the purpose of the study was to intro-
duce the methodology itself and its potential in general and
not to create a universal algorithm.

3.4 Novelty and future work

The introduced image-based DL algorithm offers novel fea-
tures in the field of sedimentation engineering. First, to
the authors’ knowledge, underwater images of the bed of a
large river have not yet been analysed by AI. Second, the
herein-introduced method enables extensive mapping of the
riverbed composition, in contrast to most of the earlier ap-
proaches, where only several points or shorter sections were
assessed with imagery methods. Third, the method is much
faster compared to conventional samplings or non-DL-based
image-processing techniques. The field survey of a 400 m
long transect took ∼ 15 min, while the DL analysis took

4 min (approx. seven images per second). The speed range
of 0.2–0.45 m s−1 of the measurement vessel and the 15 min
per transect setting complies with the operating protocol of
general ADCP surveys on rivers (e.g. RD Instruments, 1999;
Simpson, 2002; Mueller et al., 2009). Hence, the developed
image-based measurement can be carried out together with
the conventional boat-mounted ADCP measurements, fur-
ther highlighting its time efficiency. Therefore, the method
offers an alternative approach for assessing riverbed material
on the go in underwater circumstances. As an extensive and
quick mapping tool, it can support other types of bed mate-
rial samplings in choosing the sampling locations and their
optimal number. Furthermore, it can be used for quickly de-
tecting areas of sedimentation and their extent, as we showed
in Sect. 3.2. (e.g. Fig. 12b). This way, it can support decision-
making regarding the maintenance of the channel or the
bank-infiltrated drinking water production (detecting colma-
tion zones). Fourth, a novel approach was used for the imag-
ing and model training. As the camera–bed distance was con-
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Figure 13. Comparison of sediment fractions between the DL detection and the wavelet approach for the selected sampling points. The three
main sediment types (sand, gravel, and cobble) are marked with different colours (red, green, and yellow) and symbols (diamonds, circles,
and squares), respectively. The name of the sampling points where the given relative proportion was measured or detected is also written
for gravel. The proportions of outlier sampling points are marked with white or grey, while the symbol represents the sediment type. The
comparable points have their proportions with green (gravel) and red (sand) symbols.

stantly changing, the mm / pixel ratio also varied. Hence, no
scale was defined for the algorithm beforehand. As we dis-
cussed in Sect. 1., earlier DL methods for sediment analy-
sis (e.g. Soloy et al., 2020) all applied fixed camera heights
and/or provided scaling for the AI. Furthermore, these stud-
ies were based on airborne measurements, mapping the dry
zone of the rivers. In an underwater environment, it is ex-
tremely challenging to keep a fixed, constant camera height
due to the spatially varying riverbed elevations. By avoid-
ing the need for a scale, our method is faster and simpler to
use. As a drawback, our method does not reconstruct detailed
grain size distributions but instead measures the relative por-
tions of the main sediment classes: sand, gravel, and cobble.
In short, this study showcased a fast bed material mapping
tool with a much denser spatial resolution than the conven-
tional methods that saves significant resources.

Originally, in addition to the three classes of main sedi-
ment types introduced in the study, others were also defined
during annotation (e.g. bedrock, clams), but due to class im-
balance (i.e. dominance of the three sediment classes) these
were not discriminated successfully. In the future, improving
the method through transfer learning (Zamir et al., 2018) us-
ing a broader dataset and involving other sediment types will
be considered. Another option for developing the method is
to counter imbalance with the use of so-called weighted cross

entropy (see Lu et al., 2019) on the current dataset, which
will also be investigated.

Since the introduced method offers a quick way to pro-
vide extensive, spatially dense bed material information of
its composition, it can be used to boost the training dataset of
predictive, ensemble bagging-based machine learning tech-
niques (e.g. Ren et al., 2020) and improve their accuracy.
Furthermore, the method can support the implementation
of other imaging techniques. For instance, using one of the
training videos of this study the authors managed to recon-
struct the grain-scale 3D model of a riverbed section with the
structure-from-motion technique (Ermilov et al., 2020), en-
abling the quantitative estimation of surface roughness. Un-
derwater field cameras can also be used for monitoring and
estimating bedload transport rate (Ermilov et al., 2022) by
adapting large-scale particle image velocimetry and the sta-
tistical background model approach. This latter videography
technique may also be used with moving cameras (e.g. Hay-
man and Eklundh, 2003), which enables its adaptation into
our method, e.g. by detecting bedload movement in the cross
section.

The statistical representativity of the introduced method
as a surface sampling technique also needs to be addressed
in future work. Following and building upon the experience
of conventional, surface sampling procedures (e.g. grid sam-
pling; Diplas, 1988) may prove to be beneficial when they
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provided the exact number of gravel particles needed to be
included (Wolman, 1954) to satisfy the representativity cri-
teria. In addition, using edge and blob detection would en-
able the calculation and comparison of the number of gravel
particles in the images to this value. Furthermore, we intend
to apply two cameras with overlapping FoVs for increasing
the covered area (and the representativity) during surveys.
This would also improve the accuracy of the structure-from-
motion technique mentioned earlier.

4 Conclusion

We introduced a novel, AI-based method for riverbed sed-
iment analysis. The method uses underwater images to re-
construct spatial variations in sediment grain sizes. Trained
and validated with ∼ 15 000 underwater images collected in
a section of the Danube in Hungary, we showed that the
method can map the riverbed along the vessel’s route at a
high spatial density of approximately 60–100 overlapping
sample images per metre. The method does not require a
scale and thus allows the distance between the camera and
the riverbed to vary. In contrast with conventional point sam-
ples of riverbed substrate, our method provides spatially con-
tinuous data that can be further enhanced (e.g. by interpo-
lation) to 2D maps. The method can be applied in studies
where dense information about riverbed composition is re-
quired, such as riverine habitat studies, computational hydro-
and morphodynamic models, or analyses of river restoration
measures.

Appendix A: Site A – Section A-II

Figure A1. The sediment fraction percentage results of every image, analysed by the DL algorithm along Section A-II. While the trends are
apparent, the sensitivity of the method at its current state can be observed. DL result before applying moving averaging.
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Figure A2. Images of bed armouring taken during our surveys in the upper section of the Hungarian Danube. We broke the surface armour
to showcase the presence of the underlying finer fractions.
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Figure A3. (a) Riverbed video images at the sampling points in Section A-II. (b) Riverbed video images overlapped with their raw, DL
detection result at the sampling points in Section A-II.
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Appendix B: Site B – Section B-II

Figure B1. Riverbed video images at the sampling points in Section B-II.
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Figure B2. Riverbed video images overlapped with their raw, DL detection result at the sampling points in Section B-II.
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Appendix C: Site A – Section A-I

Figure C1. The path of the vessel and camera in Section A-I, Site A. The polyline is coloured based on the sediment seen during visual
evaluation of the video. Yellow markers are the locations of physical bed material samplings (map created with © Google Earth Pro).

Figure C2. Sediment fraction percentages in Section A-I recognised by the AI. The visual evaluation included two classes: gravel is shown
as G, and sand is shown as S. The fractions of the physical samples are shown as verticals.
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Figure C3. Comparison of sediment fraction (%) at the sampling locations from the moving-average DL detection, conventional sieving,
and the wavelet-based image-processing method. Section A-I.

Figure C4. Riverbed video images at the sampling points in Section A-I.
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Figure C5. Riverbed video images overlapped with their raw, DL detection result at the sampling points in Section A-I.

Appendix D: Site A – Section A-III

Figure D1. The path of the vessel and camera in Section A-III, Site A. The polyline is coloured based on the sediment seen during visual
evaluation of the video. Yellow markers are the locations of physical bed material samplings (map created with © Google Earth Pro).

Earth Surf. Dynam., 11, 1061–1095, 2023 https://doi.org/10.5194/esurf-11-1061-2023



A. A. Ermilov et al.: Automated riverbed composition analysis using deep learning on underwater images 1087

Figure D2. Sediment fraction percentages in Section A-III recognised by the AI. The visual evaluation included three classes: gravel is
shown as G, sandy gravel is shown as sG, and gravelly sand is shown as gS. The fractions of the physical samples are shown as verticals.

Figure D3. Comparison of sediment fraction (%) at the sampling locations from the moving-average DL detection, conventional sieving,
and the wavelet-based image-processing method. Section A-III.
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Figure D4. Riverbed video images at the sampling points in Section A-III.

Figure D5. Riverbed video images overlapped with their raw, DL detection result at the sampling points in Section A-III.
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Appendix E: Site B – Section B-I

Figure E1. The path of the vessel and camera in Section B-I, Site B. The polyline is coloured based on the sediment seen during visual
evaluation of the video. Yellow markers are the locations of physical bed material samplings (map created with © Google Earth Pro).

Figure E2. Sediment fraction percentages in Section B-I, recognised by the AI. The visual evaluation included two classes: gravel is shown
as G, and sand is shown as S. The fractions of the physical samples are shown as verticals.
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Figure E3. Comparison of sediment fraction (%) at the sampling locations from the moving-averaged DL detection, conventional sieving
and the wavelet-based image-processing method. Section B-I.

Figure E4. Riverbed video images at the sampling points in Section B-I.
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Figure E5. Riverbed video images overlapped with their raw, DL detection result at the sampling points in Section B-I.

Appendix F

Figure F1. Grain size distribution curves of the 27 sieved physical samples; 11 curves categorised as Outlier Type-A are showcased with
dashed lines. The shapes of these curves are representing bimodal (gap-graded) sediment distributions, which typically refers to bed armour-
ing (i.e. excess of a certain particle size, a coarser surface layer protects a finer subsurface layer from being washed away). Hence, analysing
images of the surface layer could not represent these complex distributions inherently.
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