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Abstract. Vegetation plays a critical role in the modulation of fluvial process and morphological evolution.
However, adequately capturing the spatial and temporal variability and complexity of vegetation characteris-
tics remains a challenge. Currently, most of the research seeking to address these issues takes place at either the
individual plant scale or via larger-scale bulk roughness classifications, with the former typically seeking to char-
acterise vegetation—flow interactions and the latter identifying spatial variation in vegetation types. Herein, we
devise a method which extracts functional vegetation traits using UAV (uncrewed aerial vehicle) laser scanning
and multispectral imagery and upscale these to reach-scale functional group classifications. Simultaneous mon-
itoring of morphological change is undertaken to identify eco-geomorphic links between different functional
groups and the geomorphic response of the system. Identification of four groups from quantitative structural
modelling and two further groups from image analysis was achieved and upscaled to reach-scale group classifi-
cations with an overall accuracy of 80 %. For each functional group, the directions and magnitudes of geomorphic
change were assessed over four time periods, comprising two summers and winters. This research reveals that
remote sensing offers a possible solution to the challenges in scaling trait-based approaches for eco-geomorphic
research and that future work should investigate how these methods may be applied to different functional groups

and to larger areas using airborne laser scanning and satellite imagery datasets.

1 Introduction

Fluvial eco-geomorphic interactions are co-dependent, com-
plex, and variable across space and time, representing a con-
tinued area of interest within river research (Thoms and Par-
sons, 2002). The diversity of eco-geomorphology in river
corridors can be attributed to surrounding land use, existing
morphology, and flood regimes (Naiman et al., 1993), whilst
this same diversity simultaneously influences the flow of wa-
ter and sediment, ultimately affecting morphology (Diehl
et al., 2017a) and floodplain conveyance (Nepf and Vivoni,
2000). The role of vegetation within the river corridor is well
established, benefiting the local ecology (Harvey and Goos-
eff, 2015; Sweeney et al., 2004) alongside playing a role in
natural flood management schemes and reconnecting chan-

nels and floodplains (Lane, 2017; Wilkinson et al., 2019).
This is important when considered against a backdrop of a
rapidly changing climate where flow extremes are more var-
ied, flooding is more likely (Unisdr and Cred, 2015), and ri-
parian vegetation is likely to undergo shifts in composition
(Rivaes et al., 2014; Palmer et al., 2009). Consequently, ade-
quately measuring and monitoring vegetation within the flu-
vial domain are critical to understanding how these systems
will respond to varying climatic and hydraulic conditions.
The characterisation of riparian vegetation distribution
over larger (> 1 km) scales has typically relied upon the use
of coarse classifications such as those identified in the Wa-
ter Framework Directive (e.g. Gilvear et al., 2004) using
techniques such as aerial imagery and satellite remote sens-
ing (see Tomsett and Leyland, 2019). Advances in higher-
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resolution techniques, in particular mobile laser scanning,
have enabled the possibility of capturing vegetation data
in enough detail to establish individual plant structure (e.g.
Brede et al., 2019; Hyyppd et al., 2020; Liang et al., 2014).
Yet any characterisation must be scalable and geographically
transferable to cover the vast range of different fluvial land-
scapes, whilst still accounting for the complexity presented
within individual river corridors. Oversimplified, coarse clas-
sifications may altogether miss the complexity that exists,
whilst conversely, highly detailed models tend to be neces-
sarily localised and less transferable to alternate systems.

Trait-based classifications, developed and used within
ecology, offer a scalable and transferable approach which can
be applicable to the fluvial domain (Diehl et al., 2017a) and
have been shown to be useful for modelling topographic re-
sponse to changing vegetation, sediment, and flow conditions
(Diehl et al., 2018; Butterfield et al., 2020). However, the ap-
plication of trait-based classifications over larger reaches has
yet to be fully realised due to the challenges in collecting ap-
propriately high-resolution data at these scales (e.g. > 1 km).
If such challenges can be overcome, it offers an opportunity
for those analysing vegetation both within the river corridor
and elsewhere in the landscape to obtain spatially explicit
data on vegetation that were previously unattainable.

To address these gaps, we utilise remote sensing meth-
ods to collect data from which vegetation traits are extracted
and assess how well these can be used to establish eco-
geomorphic relationships. We use a UK-based temperate
river as an example site to demonstrate the effectiveness of
novel remote sensing techniques for characterising vegeta-
tion, investigating the limits of trait detection and the scales
at which they are most appropriately used to enhance eco-
geomorphic understanding.

1.1 The importance of vegetation

It is well understood that vegetation plays a key role within
the river corridor and that how vegetation is represented in
models (e.g. constant and varying roughness values, rigid
cylinders) can affect the outcomes of hydrodynamic simu-
lations. Channels with in-stream vegetation may experience
roughness values an order of magnitude higher than non-
vegetated channels (De Doncker et al., 2009), capable of re-
ducing velocities by up to 90 % (Sand-Jensen and Pedersen,
1999), with stem shape, foliage, and deformation all influ-
encing flow (James et al., 2008). The challenges posed by
quantifying in-stream vegetation means that it is often diffi-
cult to make estimations of in-stream roughness (O’Hare et
al., 2011). Conversely, terrestrial vegetation that influences
flow during periods of flooding is easier to measure and mon-
itor depending on the scales of analysis. Vegetation can re-
duce stream power, increase soil cohesion, and influence soil
moisture levels, all of which can help to limit bank erosion
(Simon et al., 2000; Fox et al., 2007; Kang, 2012). Bank col-
lapse is influenced by three dominant factors, the extra mass
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of the vegetation, the shear strength provided by root rein-
forcement, and changes to bank pore water pressure (Wiel
and Darby, 2007), with aboveground biomass therefore di-
rectly influencing the mechanical and hydraulic properties
of the substrate (Gurnell, 2014). The aboveground biomass
also has a direct influence on river flow and sediment trans-
port when submerged (Gurnell, 2014), acting as a sediment
trap and stabilising bars (Hortobagyi et al., 2018; Sharpe and
James, 2006), although this is stage-dependent and varies
with plant volume and structure. Therefore, being adequately
able to capture such data over reach scales is critical for un-
derstanding the feedback loops between vegetation, flow, and
morphology.

A functional-trait-based approach offers a way to represent
vegetation data at reach scale and beyond. Functional traits
originate from ecological research and are morphological,
physiological, and phenological attributes that can be mea-
sured at the individual plant level (Violle et al., 2007; Kattge
et al., 2011; Savage et al., 2007). These measured traits can
either be an effect or response trait, whereby they either have
an influence on or are influenced by their surrounding en-
vironment, respectively (Violle et al., 2007; Kattge et al.,
2020). One of the benefits of collecting trait-based data is the
ability to group plants that display similar functional traits
into functional groups (Blondel, 2003). Herein we specifi-
cally use the term “functional group” (sensu Blondel, 2003)
because we explore how aggregated ecosystem processes ul-
timately affect geomorphological response. This approach
allows for increased applicability to different reaches that
contain similar functional groups (Mcgill et al., 2006; De
Bello et al., 2006; Garnier et al., 2006) and accounts for vari-
ation in local and regional conditions better than purely tax-
onomic approaches (Tabacchi et al., 2019).

Trait-based approaches are well suited for eco-geomorphic
research due to the strong environmental gradients within flu-
vial systems (Naiman et al., 2005). Vegetation responds to
hydrological variables, such as water availability and distur-
bance events (Hupp and Osterkamp, 1996), whilst also influ-
encing flow, sediment transport, and morphological stability
(Gurnell, 2014), meaning that the bi-directional nature of this
relationship maps well onto a trait-based framework. Both
plant form and distribution have been linked to stream power
within the UK (O’Hare et al., 2011), with fluvial conditions
also being shown to have a greater influence on trait compo-
sition than species composition (Gothe et al., 2017; Corenblit
etal., 2015).

To date, most trait-based research has focused on eco-
logical responses to environmental conditions. For example,
greater inundation likelihood has been shown to increase the
presence of plants with longer and younger leaves which are
less woody, whereas plants in lower-stress environments tend
to be taller with longer life cycles (Kyle and Leishman, 2009;
Stromberg and Merritt, 2016; Mccoy-Sulentic et al., 2017).
Furthermore, individual species have been shown to demon-
strate differing traits depending on external stresses. Populus
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nigra trees were found to be smaller, have greater flexibil-
ity, and had a higher number of structural roots at a bar head
when compared to a bar tail (Hortobagyi et al., 2017). Further
work demonstrated that the trees located at the bar head were
less effective at trapping sediment when compared to those
at the bar tail (Hortobagyi et al., 2018). This highlights that
the morphological response to vegetation may be harder to
identify from taxonomic rather than trait-based approaches.
Research into effect traits and their geomorphic influence
has received relatively less attention as trait concepts have
only recently started to be explored within fluvial research.
Temporally, changes in the dominant traits can lead to chang-
ing morphology (Manners et al., 2015), whilst spatially the
location of dominant traits has been shown to alter morpho-
logical response, with combinations of different functional
groups adding to the complexity (Hortobagyi et al., 2018).
However, functional groups alone cannot explain all the vari-
ation in topographic response, with different groups in differ-
ent locations under different hydraulic conditions exhibiting
different topographic responses (Butterfield et al., 2020).

1.2 Hydraulically relevant traits

Not all vegetation traits are equally relevant when consider-
ing direct relationships between vegetation, river flow, and
morphology. Moreover, not all traits can be obtained directly
from remote sensing techniques, a necessary requirement
when upscaling to larger domains. Below we briefly sum-
marise vegetation traits that are highly relevant to fluvial en-
vironments and which have the potential to be captured via
remote sensing techniques. These are based on Table 2 in
Diehl et al. (2017a), which highlights the morphological ef-
fect of vegetation traits on geomorphic form.

Both plant height and frontal area are key traits which in-
fluence momentum exchange in river flows. The height of
a plant will alter the extent of interaction it has with flow
at various stages, whilst the submerged frontal area will im-
pact the drag exerted on the water column (Nepf and Vivoni,
2000; Jarveld, 2004; Wilson et al., 2006). The frontal area of
a plant will vary under different hydraulic conditions, making
flexibility an important trait when investigating morpholog-
ical response. Differences in foliated and non-foliated veg-
etation as well as woody and non-woody stems alter the
thresholds in velocity at which deformation occurs (Wilson et
al., 2003; Jarveld, 2002a; O’Hare et al., 2016; Sand-Jensen,
2003), modifying a plant’s effective frontal area. However,
the ability to obtain vegetation stem flexure directly from re-
mote sensing is currently not possible, yet leaf area from re-
mote sensing does show potential, and taxonomic approaches
may better identify the “woodiness” of a species. Likewise,
the vertical distribution of vegetation is important in deter-
mining the interaction between foliage and flow stage (Light-
body and Nepf, 2006; Jalonen et al., 2012), which can be
obtained from remotely sensed data.
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At patch scales, the density and configuration of plants can
impact the resultant drag. The non-equivalence between the
drag induced by individual plants compared to those in bulk
vegetation requires the inclusion of bulk factors in vegeta-
tion analysis (James et al., 2008). Higher densities of plants
will lead to an increase in drag, with differences in the ar-
rangement and density of patches causing variation in the
resultant reduction in water velocities (Jarveld, 2002b; Kim
and Stoesser, 2011; Sand-Jensen, 2008), highlighting the
need to account for plant spacing when examining changes
in morphology, which remote sensing is capable of achiev-
ing. At the reach scale, functional groups have an aggre-
gated response in modulating scour or deposition and resul-
tant planform morphology. Vegetation dynamics have been
previously described using trait-based frameworks in fluvial
systems (Diehl et al., 2017a, 2018; Butterfield et al., 2020),
with a wealth of studies showing the wider impact that veg-
etation has on planform morphology and erosion in flumes
(Van Dijk et al., 2013; Coulthard, 2005; Bertoldi et al., 2015),
modelling studies (Oorschot et al., 2016; Crosato and Saleh,
2011), and field-based research (Bywater-Reyes et al., 2017;
Diehl et al., 2017b).

Whilst we have focused on hydraulically relevant traits
that can be measured using remote sensing techniques, Diehl
et al. (2017a) present others which cannot be easily obtained
from the remote sensing techniques outlined below. Factors
such as plant biomass, buoyancy, and root architecture are all
outlined as having a role in affecting subsequent morphol-
ogy (Sand-Jensen, 2008; Abernethy and Rutherfurd, 2001;
De Baets et al., 2007). This highlights the potential role of
taxonomic approaches alongside the measurement of struc-
tural data to both capture the variability where possible and
enhance this with wider datasets for traits that cannot be re-
motely sensed but are still relevant to morphology.

1.3 Remote sensing for trait data collection

Although some traits are inherently measurable in the field,
many of them are not obtainable from current remote sens-
ing methods. Direct trait extraction for riparian vegetation
from airborne (i.e. large-scale) remote sensing has not yet
been used within eco-geomorphic studies. Currently, the col-
lection of trait data relies on ground-based field surveys using
quadrat or transect sampling as well as lab analysis or species
being identified in the field and traits inferred from lookup
tables, such as the TRY database (Kattge et al., 2020). This
technique is effective for establishing traits but is limited by
the spatial extent of ground coverage. Within fluvial research,
multispectral imagery has been collected to determine plant
species which are then used to identify dominant traits via su-
pervised and unsupervised classifications (Butterfield et al.,
2020). Outside the fluvial domain, several efforts have been
made to utilise remote sensing methods for trait extraction
using a mix of terrestrial, airborne, and satellite platforms
(Anderson et al., 2018; Valbuena et al., 2020; Zhao et al.,
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2022; Aguirre-Gutiérrez et al., 2021; Abelleira Martinez et
al., 2016). However, limitations still remain despite these ef-
forts due to the uncertainty in relating spectral and physical
properties to functional traits (Houborg et al., 2015).

Yet, considerable advances continue to be made in us-
ing remote sensing to monitor riparian vegetation at a range
of scales. Advances in UAV (uncrewed aerial vehicle) re-
mote sensing can offer a way of bridging the scales from
ground surveys to larger extents. UAV data collection allows
high-resolution imagery and active remote sensing methods
such as laser scanning to be conducted on large reaches rel-
atively easily (Tomsett and Leyland, 2019), increasing cov-
erage and providing a middle ground for relating local- to
large-scale data. Multispectral cameras have already helped
to improve the classification of vegetation from UAVs (Al-
Ali et al., 2020), with active UAV-LS (UAV laser scan-
ning) being shown to be comparable in estimating tree struc-
tures to terrestrial laser scanning (TLS) methods (Brede et
al., 2019; Hillman et al., 2021) and a combination of both
techniques helping to improve tree crown delineation and
biomass estimates (Dersch et al., 2023; Lian et al., 2022;
Dash et al., 2019). TLS has become the benchmark tech-
nique from which to obtain highly accurate vegetation data
(Bywater-Reyes et al., 2017; Jalonen et al., 2015; Lague,
2020) yet still suffers from issues of occlusion and limited
spatial extent in comparison to mobile techniques. Airborne
laser scanning (ALS) can be used to classify different vege-
tation regimes, classifying different woodland types (Stack-
house et al., 2023) and identifying differences in species us-
ing intensity data (Donoghue et al., 2007), but obtaining tem-
porally relevant data at adequate point densities is challeng-
ing.

The survey techniques outlined above present an opportu-
nity to not only classify vegetation by type and assign them to
functional groups, but also to define these very groups based
on characteristics acquired directly from remote sensing be-
fore upscaling them to reach-scale classifications. Moreover,
a key advance in using UAV-based methods for collecting
vegetation data is the spatial resolution at which functional
groups can be discretised and the temporal resolution which
can be achieved by undertaking multiple repeat surveys.
Such surveys can allow for both leaf-on and leaf-off condi-
tions as well as the emergence of perennial vegetation, avoid-
ing the need to make any assumptions about the phenological
cycle. Consequently, identifying whether it is possible to ob-
tain trait data from various remote sensing sources, upscale
these to reach-scale metrics, and examine links to geomor-
phic activity is underexplored.

1.4 Aims

The aim of this research is to use UAV-derived and terres-
trial 3D datasets to develop a workflow and methods which
are able to extract relevant plant traits to explore the spatial
and temporal variation and importance of eco-geomorphic
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interactions on a UK river system. This is achieved using the
following specific objectives:

1. Develop a methodological workflow to identify and se-
lect hydraulically relevant traits extracted from high-
resolution remote sensing data.

2. Establish the presence of functional groups (those with
similar traits) for the river reach using exploratory anal-
ysis and machine learning.

3. Examine links between the spatial variation in func-
tional groups and morphological change across a 2-year
period to identify any eco-geomorphic feedbacks that
may be present.

2 Study site

The study site is located on the upper course of the River
Teme on the English—Welsh border in the UK (Fig. 1a). The
reach consists of two distinct sections: an upstream section
consisting of open grassland with patches of heterogeneous
vegetation and a downstream section which flows through
denser vegetation and woodland. The River Teme is a highly
mobile gravel-bed river within an alluvial floodplain which
exhibits numerous historic avulsions, typical of many UK
rivers. There is active lateral erosion of the channel, depo-
sitional gravel bar features, and woody debris dams across
the study site (Fig. 1b). Since 2002, the reach has typically
had low flows (Fig. Ic), with an average depth of 0.69 m
(£0.15m) throughout the year with slightly higher aver-
age flow depths in the winter months (November—February,
0.79m = 0.15m). A total of 95 % of river depths have been
below 0.99 m and 99 % of the flow depths have been below
1.48 m. The largest recorded river depth was 2.85m on 16
February 2020 during Storm Dennis.

3 Methods

3.1 Field collection of high-resolution 4D data

A series of six high-resolution UAV-LS (UAV laser scan-
ning) and UAV-MS (UAV multispectral) surveys were col-
lected over the entire reach shown in Fig. 1 from February
2020 until June 2021. To complement these flights, a single
terrestrial laser scanning (TLS) survey using a Leica P20 was
undertaken of vegetated and bar sections in July 2020 to gain
a benchmark ultrahigh-resolution dataset for characterising
small herbaceous vegetation, co-registered to an accuracy of
40.007 m with georeferenced scan targets. UAV-RGB (red,
green, blue) surveys were also undertaken in September 2020
for classification validation. Table 1 summarises the survey
dates, extents, data collection methods, and point density for
UAV-LS and GSD (ground sampling distance) for UAV-MS
and UAV-RGB. A detailed outline of the UAV-based sensor
setup, processing routine, and accuracy assessment can be
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Figure 1. (a) Study site location on the River Teme, UK. Inset country outlines provided by EUROSTAT (2020) and UK outlines provided by
the UK Office for National Statistics (2019). (b) Plan view of the reach with inset images showing active bank erosion and a large debris dam
caused by falling trees. The red dashed outline indicates the flood extent modelled within this study. Ortho-imagery collected in February
2020 and background imagery provided by Esri (2021). (c) River gauge level at the Knighton monitoring station ~ 2 km downstream from
the study reach (data available from 2002—present, operated by the UK Environment Agency).

found in Tomsett and Leyland (2021a). All data were pro-
cessed in the WGS UTM Zone 30N coordinate system.

3.2 Vegetation functional trait extraction

The workflow developed to extract plant functional traits
consisted of five steps: (1) separation of individual plant
point clouds from the UAV-LS data from February 2020 and
TLS data from July 2020, (2) analysis of these individual
clouds to extract metrics related to their traits, (3) separa-
tion of plants into functional groups adapted from Diehl et
al. (2017a) based on similar traits, (4) identification of func-
tional group reach-scale properties from UAV-LS and UAV-
MS datasets from 2020, and (5) use of an object-based ran-
dom forest classifier to determine the spatial discretisation of
these functional groups for both 2020 and 2021. These steps
are outlined in the following sections and are shown as a pro-
cessing workflow in Fig. 2 to provide context in relation to
which surveys contributed to each element of the analysis.
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Figure 2 also shows how the resultant functional groups are
used in conjunction with the morphological change detec-
tion.

3.2.1 Point cloud segmentation

A number of automatic methods exist to classify very dense
point cloud scenes into different groups (e.g. Brodu and
Lague, 2012; Zhong et al., 2016). However, the majority
of these are designed for ultrahigh-resolution TLS datasets
rather than UAV-LS (see Table 1 for density metrics), so
a semi-automated approach was employed. Smaller vege-
tation, where the structural composition cannot be fully re-
solved from UAV-LS data, was analysed from the July 2020
TLS survey, whereas larger vegetation was analysed in leaf-
off conditions from the February 2020 survey. Automatic
classification of ground and non-ground points was per-
formed using the progressive morphological filter in the LidR
package (Roussel et al., 2020) before manually segment-
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An overview of the workflow. used to process collected field data (Table 1) through to analysis of morphological change for each
functional group. Each colour block indicates a different stage of the analysis which corresponds to the numbered sections that follow.

Data collection methods, extent, and point density for each
survey date. TLS point density is based on the resultant point cloud
after registration. UAV-LS point density is determined after cleaning
of the raw clouds has taken place. Ground sampling distance (GSD)
is the resolution of the resultant orthomosaics.

Date Survey Sensor Point density/GSD
6Feb2020  Wholereach UAV-LS 778 m—2
UAV-MS  0.04m GSD
16 Jul 2020 Subsection UAV-LS 810m—2
UAV-MS  0.04m GSD
TLS 16000 m~2
14 Sep 2020  Wholereach UAV-LS ~ 762m~2
UAV-MS  0.04m GSD
UAV-RGB  0.02m GSD
14 Apr2021  Whole reach  UAV-LS 791 m—2
UAV-MS  0.04m GSD
3Jun2021  Wholereach UAV-LS 804 m—2
UAV-MS  0.04m GSD

ing in CloudCompare (https://www.danielgm.net/cc/, last ac-
cess: 1 December 2020) to create individual plant models
(Fig. 3, raw point cloud).

For the herbaceous plants in the TLS data, leaves and flow-
ering parts were manually removed from the clouds so as not
to influence the quantitative structural modelling (QSM; see
Sect. 3.2.2). This was done based on field images and the
appearance of the clouds to leave just the structural compo-
nents. Although foliage has previously been shown to be im-

portant (Jarveld, 2002a; Whittaker et al., 2013), for the meth-
ods used herein it could not be fully resolved due to insuf-
ficient point densities. Any statistical outliers were then de-
tected and removed from the dataset using the in-built tools
within CloudCompare, identifying points > 2.5 standard de-
viations above the mean separation distance between points
within the segmented cloud. This process was repeated for
plants found within the TLS scans of the study site, result-
ing in a sample dataset consisting of 37 herbaceous plants.
Plants that were selected from the TLS point cloud repre-
sented complete vertical profiles to minimise the effect of
shadowing from different scan angles.

Tree segmentation also consisted of a combination of man-
ual and automatic classification based on surveys undertaken
in leaf-off conditions to expose the full tree structure. A total
of 24 trees were selected from across the reach, representing
a range of structures and sizes from which complete mod-
els could be created. Trees were manually extracted prior to
interactive filtering using a number of statistical measures;
local volume density helped to separate points distinct from
the main tree woody structure, whilst linearity metric filters
(how aligned points are within a set radius) remove points
that are highly complex or not part of the main tree structure.
The statistical outlier removal tool and a final manual check
can then be used to remove any remaining points. This re-
sulted in a point cloud of predominantly large branches, with
a clearer structural profile as can be seen in Fig. 3 (filtered
point cloud). The thresholds for separating individual trees
are size-, structure-, and point-density-dependent, hence the
need for interactive selection. Although this adds an element
of user bias as to what is deemed a “main” branch, the lower
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Figure 3. Vegetation trait extraction from an individual raw plant point cloud to a cylindrical model and frontal area. The process is demon-
strated for two extracted vegetation point clouds, a large tree within the study reach collected from UAV-LS data, and a perennial on the
central bar collected from TLS; note the difference in scales. The segmented point cloud is coloured by branching order from blue to green
to red, with the cylinders coloured in the same manner. The 2D frontal areas are based on the filtered point clouds rather than the segmented
point clouds or QSM cylinder models, and as such these steps are not required to compute the frontal area data.

density of UAV-LS scans makes user input necessary before
reconstructing vegetation models (Brede et al., 2019).

Shrubs and grasses whose structure could not be fully re-
solved from the UAV-LS or TLS data were not analysed
for trait extraction. Grasses are typically too short to re-
motely sense with high degrees of confidence, and the com-
plex and extensive nature of the branching network of shrubs
would require several TLS scans per plant, with numerous
plants needing to be surveyed to get a reliable trait descrip-
tion (Vasilopoulos, 2017). As a result, point clouds for shrub
classes were only used for classification training, frontal area,
and density calculations.

3.2.2 Trait metric extraction

The hydraulically relevant traits collected were based on
those noted within Diehl et al. (2017a), which could also
be measured using the remote sensing methods available to
us within this study. These were plant height, number of
branches, maximum branching order, stem diameter, plant
volume, frontal area, and plant density.
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For the reconstruction of vegetation stems into cylindri-
cal models, the open-source TreeQSM method (Raumonen et
al., 2013) was applied to the segmented UAV-LS- and TLS-
derived individual plant data from 2020 as outlined above.
TreeQSM utilises “patches” to determine connected points
in the vegetation cloud before growing the tree structure by
joining patches together to form a complete model (Raumo-
nen et al., 2013). These are created using user-defined initial
patch sizes to adjoin points before refining the patch sizes
using minimum and maximum limits to create a complete
model. This allows the coarse branch structure of the tree to
be identified (Fig. 3, segmented point cloud). Sections are
then reconstructed as cylinders, both for computational effi-
ciency and because they provide a robust representation of
trees (Raumonen et al., 2013). The cylinders are then used
to describe the overall structure and properties of the indi-
vidual plant (Fig. 3, QSM cylinder model). A full method
description can be found in Raumonen et al. (2013). QSM
methods have been noted to overstate the volume of smaller
branches and are sensitive to noise in the data alongside vari-
able point density (Fang and Strimbu, 2019; Hackenberg et
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al., 2015). However, QSM reconstructs plant structures in a
manner which resolves many of the hydraulically relevant
vegetation traits, making it a suitable approach for this re-
search.

Patch diameters (which are used to determine adjacent
points within the same tree) were chosen following a pa-
rameter sensitivity exercise, with the range of values initially
based around those of Raumonen et al. (2013) and Brede et
al. (2019) for TLS and UAV-LS approaches, respectively. A
visual assessment was performed to identify parameters that
created models similar to the observed vegetation structure.
After testing for the optimum patch sizes, the TLS scans of
herbaceous vegetation initial patch diameter were set at a size
of 0.005 m, with the second patch diameter minimum and
maximum sizes of 0.002 and 0.01 m. The minimum cylin-
der radius was set to 0.005 m, prescribing the smallest de-
tectable branch structure of the extracted herbaceous plants.
For the UAV-LS-derived tree data, the initial patch diam-
eter was 0.2m, with the second patch diameter minimum
and maximum sizes of 0.1 and 0.5 m. The minimum cylin-
der radius was 0.1 m based on manual measurements of tree
branches within the point cloud that were detectable. For
each individual plant model the cylinder reconstruction and
variable extraction were repeated 10 times. As the modelling
begins at a random location each time, the start point can
affect the results, so multiple averaged simulations provide
a more representative solution. The modelling produces a
number of metrics, but for this study hydraulically relevant
traits of plant height, number of branches, stem diameter, vol-
ume, and maximum branching order were collected. For each
metric of interest, the average value and standard deviation of
these values are taken from the 10 runs.

The frontal areas of all segregated vegetation clouds were
extracted alongside the construction of the cylinder models
based on the 2D methods described by Vasilopoulos (2017).
For each discretised filtered plant point cloud (Fig. 3, fil-
tered point cloud), the data were flattened from 3D to 2D by
collapsing the data along a single horizontal dimension on
a regular grid (Fig. 3, 2D frontal area). The grid resolution
was set at half the width of the minimal detectable feature
resolved by the QSM: 0.0025 m for the TLS-derived herba-
ceous plants and UAV-LS 0.05 m for UAV-LS-derived trees.
Each plant was flattened along the x and y axis, respectively,
with an average frontal area taken.

In the absence of manually collected field validation data,
to assess the ability of the UAV-LS to capture vegetation
properties and for the QSM to produce reliable models, a
series of checks were undertaken. First, UAV-LS tree heights
and diameter at breast height (DBH) from February 2020 and
April 2021 were compared to trees that were also captured
in the TLS scans from July 2020. It is assumed that differ-
ences in tree height and DBH between these surveys due to
the temporal offset would be negligible. This provides an es-
timation of how well UAV-LS captures tree properties com-
pared to the benchmark high-resolution techniques (Kankare
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et al., 2013; Hillman et al., 2021; Calders et al., 2015; Brede
et al., 2019). For both the herbaceous and tree plants within
the QSM analysis, the modelled plant heights and DBH were
compared to measured values from each plant’s point cloud,
with DBH being measured across two perpendicular axes to
obtain a mean diameter for the point cloud. Finally, available
databases and the wider literature were used to ensure values
were within the expected range for each species measured at
other sites (see Sect. 4.2.1).

3.2.3 Identification of functional groups

For the separated individual plant point clouds, each was as-
signed to a functional group adapted from those outlined in
O’Hare et al. (2016) and Diehl et al. (2017a). These groups
were grasses, short branching herbs, tall single-stemmed
herbs, shrubs and bushes, low-DBH trees, and high-DBH
trees. As discussed previously, shrubs and grasses were not
identified using trait extraction. Short branching herbs and
taller single-stemmed herbs were separated due to the likely
variability in flexibility, branching architecture, and height,
all of which interact differently with flow. Large woody veg-
etation was split into two functional groups, those with high
diameter at breast height (DBH) that had a low density of
plants and those with lower DBH that had a higher plant den-
sity, to account for the different interactions with overbank
flow.

To assess whether remotely sensed data could separate
out plants into their functional groups in a statistically ro-
bust way, a principal component analysis (PCA) was under-
taken to identify the variables which explained most variation
within the derived trait metrics. The metrics used for the PCA
were those obtained from the QSM and frontal area calcula-
tions outlined above, which were normalised to remove the
influence of different scales (Alaibakhsh et al., 2017). The
principal components identified were used to inform the clas-
sification of reach-scale functional groups, identifying those
variables that most explained the variation between groups.
The PCA was performed separately on the two herbaceous
groups and the two woody groups, as although height would
clearly be a dominant variable between these two groups, it
would not necessarily be one within the groups. All of the
herbaceous point clouds from the summer 2020 TLS survey
were used in the herbaceous group PCA, and all the high-
and low-DBH tree point clouds from the winter 2020 UAV-
LS data were included in the woody group PCA.

3.2.4 Traits and land cover metrics at the reach scale

To scale the analysis from individual plants to the entire
reach level, a method of linking plant-scale traits to reach-
scale data is required. Convex hulls representing the spatial
extent for each plant-scale vegetation point cloud analysed
above were used to define the regions from which UAV-LS
and UAV-MS data were extracted. For small herbaceous veg-
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etation, this was buffered by 0.25 m to account for any mis-
alignment between TLS and UAV-LS clouds. For tree veg-
etation polygons this buffer was increased to 1 m to incor-
porate peripheral branches and leaves removed during point
cloud filtering. A total of 11 polygons for shrubs and bushes
were created based on field notes from various surveys and
photographs from the summer surveys, their outlines in the
UAV-LS point clouds, and UAV-MS imagery. Similarly, 11
polygons were defined for grasses. In addition to these vege-
tation functional groups, eight polygons for water classes and
five for a combined gravel bar and bare earth class were also
created using the same technique to classify the remaining
land cover. Within these polygons, leaf-on and leaf-off vari-
ables were extracted for scaling plant-scale functional group
identification to reach-scale classification.

The structural characteristics of the reach-scale point
clouds were extracted through TopCAT (Brasington et al.,
2012), obtaining the standard deviation, skewness, and kur-
tosis over a sampled grid at 1 and 4 m resolutions, the lat-
ter to account for larger vegetation footprints. The 4 m res-
olution grid only considered points classified as vegetation
to remove ground points. To extract a canopy height model
(CHM), a bare earth digital terrain model (1 m resolution)
was subtracted from a digital surface model (0.25 m reso-
lution) incorporating the vegetation points. The normalised
difference vegetation index (NDVI) across the reach was cal-
culated using the red band along with both the red-edge and
near-infrared bands of the MicaSense orthomosaic images to
produce two separate NDVI layers. As the red edge can be
used to separate out vegetation signatures, using a combina-
tion of both was expected to help differentiate plants with
similar structural but different spectral properties (Schuster
etal., 2012; Guo et al., 2021). For each of the vegetation con-
vex hulls, the attributes of the structural and spectral layers
for leaf-on and leaf-off conditions were extracted. The mean
and standard deviation for each attribute for each survey were
then calculated across the different functional groups for use
in the classification model.

3.2.5 Reach-scale functional group and land cover
classification

To transition from plant-scale groups created from individual
UAV-LS and TLS clouds to reach-scale analysis, an object-
based random forest classification was undertaken. Object-
based approaches overcome some of the issues of varia-
tion and complexity in high-resolution images (Myint et al.,
2011), improving continuity in the results (Duro et al., 2012;
Wang et al., 2018). The RGB bands from the multispectral
camera and the CHM were combined to create a four-layer
image from which to identify distinct objects in summer im-
agery for both 2020 and 2021. The Felzenszwalb algorithm
was applied, which uses graph-based image analysis to seg-
ment an image into its component parts based on the pixel
properties (Felzenszwalb and Huttenlocher, 2004). This re-
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Table 2. Description of functional groups and land cover classes
used for training the random forest classifier, showing the number
of training objects from the image segmentation for 2020 imagery
and the training area size.

Functional group/ No. of Training area

land cover training objects size (m?)
Grasses 93 321
Branching herbs 15 25
Single-stemmed herbs 16 29
Branching shrubs 135 388
Low-DBH trees 158 876
High-DBH trees 62 238
Gravel bars and bare earth 122 641
Water 41 157

sults in regions within the image being grouped based on
them having similar properties according to the input lay-
ers, avoiding the salt-and-pepper effect found in traditional
pixel-by-pixel classification approaches (Wang et al., 2018).

In total, 644 training objects were identified for the 2020
summer imagery, with the previously discretised vegetation
convex hulls having multiple training objects present within
each sample (Table 2). A random forest classifier was then
trained using these 2020 data. The reach-scale structural and
spectral datasets created in Sect. 3.2.4 were used to train
the model, alongside an additional water mask layer created
from the multispectral imagery to account for varying flow
stages. Data from leaf-on and leaf-off conditions were used
for each year’s classification, with an annual map being con-
structed. This was chosen due to the need for both summer
and winter data to classify different functional groups. This
helps to improve confidence in the classification where vari-
ation in reach-scale metrics happens both between groups
and between seasons. Although leaf-on and leaf-off data with
no geomorphic change between surveys would have been
favourable, the combination of datasets where geomorphic
change had occurred is unavoidable based on the survey
dates.

An analysis of model accuracy vs. the number of forests
showed a convergence of accuracy above 100 forests and a
reduction in band importance variability above 300 forests.
Higher variation in band importance suggests that the num-
ber of trees is influencing the likelihood of an optimal so-
lution. This random forest classification (no. trees 300) was
then applied to the remaining unclassified objects within the
reach for 2020 and also for all objects in the segmented 2021
data.

Due to the limited number of extracted samples from the
point clouds, there were not enough to split into a training
and test dataset. The multi-tree approach of random forests
is constructed on a sample of the dataset and as such can
be tested against itself to determine an out-of-bag accuracy
score. It also successively adds and removes bands to de-
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termine the band importance in the classification (Adelabu
and Dube, 2015). Alongside this model self-assessment, for
the final functional group classes a total of 80 random points
were generated across the study site with an equal number
in each outputted group. These were manually classified us-
ing high-resolution ortho-imagery from a UAV-RGB (0.02 m
resolution) survey from September 2020, field photographs,
and study site knowledge. The output classification was not
visible when undertaking this accuracy assessment, and the
order of the control points was shuffled to remove user bias.
The classification map produced for 2020 was then compared
to the manually classified control points before a confusion
matrix was utilised to assess the accuracy of the classifica-
tion.

3.3 Morphological change

The M3C2 algorithm (Lague et al., 2013) was employed to
calculate morphological change, whereby the surface nor-
mals from a subsampled cloud of core points (here at 0.1 m
resolution) are calculated, and change along the normal di-
rection is identified with the calculation of a local confi-
dence interval. This overcomes some of the limitations of tra-
ditional elevation model differencing which cannot account
for the direction of change, a problem that is pronounced,
for example, on the vertical faces of riverbanks (Leyland et
al., 2017). The benefits of using both structure-from-motion
(SfM) and UAV-LS data allow their respective drawbacks
to be overcome through combining datasets. SfM has been
shown to perform poorly in vegetated reaches where UAV-
LS maintains good ground point densities, yet StM provides
good continuity and high point densities in unobstructed ar-
eas. Therefore, to ensure the creation of robust surface nor-
mals, both the UAV-LS and UAV-SfM clouds were merged
for each survey date (see Tomsett and Leyland, 2021a, for er-
ror analysis) and their vegetation was removed. These resul-
tant clouds were then differenced from their preceding survey
date using the M3C2 algorithm.

4 Results

4.1 Hydraulically relevant trait analysis
4.1.1 Trait extraction error and uncertainty

The repeat QSM of the individual plants produced consis-
tent trait results. The heights of herbaceous groups were con-
sistent to within 4 %, whilst tree groups were consistent to
just over 1 %. Repeat diameter calculations were within 16 %
(0.08 m) for tree groups and within 18 % (0.002 m) for herba-
ceous groups. Higher discrepancies were found in the num-
ber of branches; for trees, the numbers of branches for each
model repeat were within 9 % of each other, equivalent to
12 branches, whereas for herbaceous functional groups this
was 17 %, which equates to under 1 branch. The complex-
ity of the larger tree models makes this variation quite likely,
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especially when the resolution of branches approaches the
resolution of the scan data, whereas for herbaceous groups
the higher variation is a result of the low number of total
branches, so an additional branch being identified has a large
impact on the results.

When comparing data measured by TLS and UAV-
LS (Fig. 4a), the UAV-LS performs well, averaging
100.4 % + 1.8 % of TLS heights and 103.8 % +£11.2% of
TLS DBH values. Discrepancy in the latter may also be in-
fluenced by incomplete trunk reconstructions from the TLS
scans, which did not always capture the full trunk profile.
The RMSE in TLS vs. UAV-LS DBH was 0.094 m, which
is within the same order of magnitude of error identified by
Brede et al. (2019). When comparing reconstructed QSM
values to those measured directly in CloudCompare, val-
ues for both height and DBH align well (Fig. 4b). Across
all groups, average percentages of reference heights were
100.2% +2.04 % and for DBH were 100.2 % =+ 10.9 %.
The greater variation in DBH for herbaceous groups alone
(£12.01 %) is likely due to the stem widths being closer to
the precision of the TLS, with any error from manual diam-
eter measurements having a greater impact on comparisons
between modelled and referenced data. This suggests that the
UAV-LS and QSM methods used reconstruct plant structure
well for extracting traits and are suitable for this methodolog-
ical approach.

Finally, values extracted from the survey data were com-
pared to those found in the wider literature and online
databases. Within the tree functional groups, those with a
low DBH had an average height of 18.2m=+3.3m and a
DBH of 0.39m=+0.08 m. Field identification from photos
taken on site identified a large number of these trees to be
of the poplar variety (e.g. Populus alba), and comparisons
with both the TRY database (Kattge et al., 2020) and obser-
vations in the literature comparing height and DBH for these
species showed good agreement (e.g. Burgess et al., 2019;
Engindeniz and Olgun, 2003; Zhang et al., 2020). Trees with
a higher DBH were predominantly identified as a mix of wil-
low (Salix alba) and alder (Alnus glutinosa), with average
heights of 14.9m 4 3.2m and with average DBH values of
0.69m=0.11 m. This aligned well with the overall height
ranges observed in the TRY database for alder trees, with
the only record with both height and DBH values for alder
showing a tree of 30m having a DBH of 0.9 m. Southall
et al. (2003) found diameters of willows up to 0.45m for
plants 8-9 m in height, with the trees in this study being both
taller and larger in diameter, suggesting a difference in ma-
turity. Conversely, both Colbert et al. (2002) and Jurekova et
al. (2008) found DBH values for willow within the observed
range of diameters in this study for trees of similar height.
This suggests that although the original QSM methods were
tested on fir, spruce, beech, and oak trees, the methods are
suitable for use on a wider variety of plants and produce re-
sults in line with those expected for the species being ob-
served.
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Figure 4. (a) Differences in UAV-LS-derived height (top) and DBH (bottom) as a percentage of TLS values for the same trees (n = 14),
demonstrating good agreement in height and a slight overestimation in DBH from UAV methods. (b) Differences in QSM height (top) and
DBH (bottom) as a percentage of measured point cloud data for each of the four functional groups modelled (n = 48). Height values are

again closely matched, with greater variation in DBH values.

Field observations of the single-stemmed herbaceous
group identified a dominance of marsh thistle (Cirsium
palustre), with average heights of 1.14m+0.17m and an
average stem diameter of 0.013 m &= 0.002 m. Height values
align well with those found in the TRY database, with the
majority of recorded heights between 0.8 and 2m (Kattge
et al., 2020). Van Leeuwen (1983) measured stem circum-
ferences of 0.026-0.070 m, equating to diameters of be-
tween 0.008 and 0.022m, yet very little other literature
and very few values on stem circumference or diameter
are available. Likewise, comparison between the average
height values of the branching herbaceous group, predomi-
nantly identified as hedge mustard (Sisymbrium officinale),
and those values in the TRY database indicate good agree-
ment, with reconstructed values from the field having heights
of 0.46 m£0.12m and values in the TRY database averag-
ing 0.49 m, albeit with a much higher variation of £0.25 m.
As with the single-stemmed herbaceous group, there are very
few data to compare obtained values of stem diameter with.
It would be expected that the branching herbs would have
a lower diameter based on field images, and this is the case
with an average of 0.011 m 4= 0.003 m.

Overall, this methodological approach has provided a
good basis from which to extract traits. Both UAV-LS and
TLS have proved effective in modelling various vegetation,
and the QSM analysis has produced models that match the
original point clouds well. Likewise, the values extracted for
the species identified in the field match those in the wider
literature and online databases well. Overall, this provides
some confidence in the methods used to separate functional
groups and scale these to reach-based metrics.
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4.1.2 Functional group results

Figure 5 shows the PCA plots of herbaceous vegetation met-
rics from the TLS scans (a) and woody vegetation metrics
from the UAV-LS scans (b). It is clear that some separation
through dominant metrics is possible, with both plots exhibit-
ing two principal components capable of separating the de-
fined functional groups. For herbaceous vegetation (Fig. Sa),
height is identified as a clear principal component between
each functional group, as is volume. Although the number of
branches was not a key component for separating functional
groups, branches per unit height explained some of the vari-
ability in the data. Taller plants may have a similar number of
branches, so accounting for plant height produces a density
of branches independent of size to help explain plant struc-
ture. Of the four identified components, only height is identi-
fiable from the UAV-LS data for upscaling; however, spectral
properties may improve group separation. For woody veg-
etation (Fig. 5b) height is less important in distinguishing
the two functional groups than for herbaceous vegetation, yet
trees under or over certain heights are likely to be one group
or the other, suggesting minimum and maximum threshold
values. For separating functional groups, the most important
components appear to be DBH and vertical skew, which was
expected as this was the basis for initial functional group
classes. DBH cannot always be easily extracted from UAV-
LS data if it is incomplete; therefore, as the vertical distribu-
tion acts in the same component direction, this can be used as
a potential metric for differentiating functional groups. There
is, however, considerable overlap in both of these PCA plots
for woody and herbaceous vegetation. There are dominant
trends such as the DBH and plant height for separation, but
there is considerable variation within the functional groups
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for their QSM-based metrics, which may impact the final
classification.

4.1.3 Linking PCA clusters to reach-scale UAV-LS data

Figure 6 shows the results of the seasonal analysis of differ-
ent variables derived from UAV-LS and UAV-MS imagery for
each of the functional group classes. There are clear variables
which can separate different functional groups with ease; for
example, the height of the canopy is a key indicator between
woody, herbaceous, shrub, and grass functional groups. Sep-
arating out similar functional groups does appear to be more
nuanced. The high-DBH and low-DBH woody functional
groups both have very similar values and seasonal patterns
of changes in NDVI values as well as in their height. This
is unsurprising as the PCA showed height not being a dom-
inant factor in explaining variation, with numerous samples
showing crossover. Vertical skew did show group separation,
with the samples used for QSM analysis collected in leaf-off
conditions. Figure 6 suggests that changes in winter vertical
skew are visible between the two tree functional groups, with
a smaller amount of crossover as expected. Summer vertical
skewness is less informative, likely due to leaf-on conditions
affecting full tree reconstruction, with higher variability in
results between the sample areas. For example, a tree that has
little understorey reconstructed is likely to show little verti-
cal skew compared to one for which below-canopy data are
collected.

Separating out herbaceous functional groups is also a chal-
lenge. CHM values for single-stemmed herbs are more vari-
able and cross over into grasses and multi-branching herbs.
However, the mean CHM values are higher, in line with the
PCA, and may enable herbaceous group separation. Like-
wise, the average skew values help to differentiate between
classes, but again the variability in the data suggests it is
harder to separate by structural content alone. Conversely,
spectral data show great promise in differentiating between
functional groups. The absolute values between herbaceous
functional groups show differences, as do their seasonal pat-
terns, especially when utilising the red-edge band for NDVI
calculations.

4.1.4 Creation of seasonal reach-scale functional group
maps

The annualised reach-scale classifications (combinations of
winter and summer data) based on functional groups and land
cover are shown in Fig. 7. Areas surrounding both high- and
low-DBH tree groups show a prominence of shrub groups.
This may be due to segmented regions during the image clas-
sification at the edge of trees having heights similar to those
of the shrubs group, possibly leading to a false classification
not picked up in the accuracy assessment against the man-
ual classification. Herbaceous groups were predicted in areas
typically associated with such vegetation: close to the chan-
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nel, in side channels which are reactivated over winter, and
in mobile areas of the reach where larger vegetation would
find it more challenging to establish. The out-of-bag accu-
racy score when training the random forest classifier with
300 trees was 87.2 %. Figure 8a shows the importance of
each band in the classifier, with structural elements proving
key in separating functional groups, especially using summer
standard deviation of point heights. The near-infrared band
and winter standard deviation are the next most important
elements, with the remaining individual spectral bands pro-
viding a smaller contribution to the classification. The higher
importance of the two NDVI layers implies that providing the
classifier with analysed image data is more useful than indi-
vidual bands alone. Likewise, the canopy models alone are
less informative than the variation in plant height when de-
tecting functional groups, supporting the use of manipulated
rather than simple metrics to help improve classification.

The accuracy assessment confusion matrix can be seen in
Fig. 8b, comparing the number of manual checkpoints that
are correctly and incorrectly predicted by the classifier. The
overall model accuracy is 80 %, lower than the out-of-bag
prediction. However, this is not surprising as training ar-
eas were delineated based on complete structural profiles for
the QSM analysis and the total number of samples used for
training was small relative to the possible variation across
the reach. There was a general overclassification of points
within the grass functional group, with only one grass con-
trol point incorrectly classed as branching herbs. Branching
herbs which are more detectable from imagery and likely to
return more laser scan points were classified reasonably well,
only being misclassified as grass.

Single-stemmed herbs were relatively poorly classified
(50 % accuracy), being misclassified as grass, branching
herbs, and water. However, their narrow structure and sparse
spacing make them hard to identify from coarser imagery and
UAV-LS. This class also exhibited large variations in values
when using reach-scale metrics to evaluate functional group
samples, overlapping with several other classes. Shrubs were
predominantly misclassified as branching herbs and grass;
this may be due to the object segmentation not always isolat-
ing complete plants or including surrounding ground points,
which may have affected the classification. Low-DBH trees
with a top vertical skew were classified well by the model,
most likely due to their larger heights and winter skew,
whereas higher-DBH trees were misclassified as both low-
DBH trees and grass. The former is likely due to the diffi-
culty in separating out these two functional groups, which
have subtle differences in certain classification layers such
as winter skew, and the latter is from surrounding data being
included in a segmented object from factors such as shadow-
ing continuing an object outside its true bounds during seg-
mentation. However, of all 20 tree checkpoints, only one was
incorrectly classified as a functional group with clearly dif-
ferent traits: a high-DBH tree segment as grass (see Fig. 8b).
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Figure 5. PCA of (a) herbaceous branching and single-stemmed vegetation as well as (b) high-DBH and low-DBH tree functional groups.
Lines indicate the direction of each variable that explains variation in the data.

4.2 Morphological change

As expected, the majority of morphological change occurs
over winter months (Fig. 9) when there are higher flows
(Fig. 1). Conversely, over periods of lower flow (see Fig. 1)
during the summer both the extent and magnitude of change
are reduced. Throughout the first winter period erosion oc-
curs on the outer bank edges with fairly consistent plan-
form evolution throughout the reach. Deposition is evident
throughout the entire reach; however, erosion is consider-
ably more dominant than deposition, with just under 3000 m?
of net erosion. The second winter appears to have more lo-
calised effects on morphology, with clear channel reshap-
ing through the upper half of the study area. Overall, de-
spite having similar levels of deposition across both winters
(~2000m?>) the increase in erosion for the second year led
to a greater increase in net erosion (~ 5000 m?3). Both his-
tograms of change within the winter seasons show a domi-
nance in erosion overall. Over both winters, morphological
change in the tree group dominated downstream reach has
undergone similar levels of change with areas of erosion and
deposition influenced by the presence of large vegetation.
Both summer periods have a greater degree of stability, with
erosion and deposition taking place but in lower magnitudes.
This is consistent throughout the reach with no hotspot areas
of either deposition or erosion, with deposition shown to be
more dominant overall.

4.3 Eco-geomorphic interactions

A key benefit of being able to identify the location of dif-
ferent functional groups is the ability to analyse the overall
distribution of morphological change within each functional
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group for each time period (Fig. 10). When assessing the dis-
tribution of erosion and deposition between groups across the
four time periods, each functional group follows the over-
all pattern presented in the general morphological analysis,
whereby there is a clear dominance of erosion over deposi-
tion in winter and a balanced or deposition-dominant signal
in the summer periods. Unsurprisingly, erosion dominates in
both winters for locations that are classed as water due to
lateral migration of the channel. In this case the presence of
planform change was the prominent form of morphological
change, accounting for a large proportion of the net volume
shift, with only grass and high-DBH trees seeing large vol-
umes of net erosion at over 100 m>. In fact, when compared
to the changes in the summer, most of the functional groups
saw similar magnitudes of change across the two time peri-
ods. Compared to winter 2021, however, the net change in
volume for areas classified as water was similar, with the
remainder of change happening throughout the remaining
functional groups and on bars. During this time, there was net
deposition on channel bars; however, there are large quanti-
ties of both erosion and deposition in this group, in line with
the highly active nature of such features. Whilst across all
functional groups there is an increase in the net erosion com-
pared with the first winter period, this is exaggerated amongst
grasses and shrubs, accounting for 32 % of net erosion. For
both cases, these are likely to be the result of channel reac-
tivation during overbank flow removing floodplain sediment.
Throughout all of the time periods, no group exhibits a con-
sistent pattern of erosion or deposition, changing based on
season and year, making it difficult to identify any direct eco-
geomorphic interactions at these scales over these two winter
periods. However all groups appear to undergo a dominant
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Figure 6. Results of leaf-on and leaf-off analysis (x axis within panels) of different reach-scale metrics (y axis) from UAV-LS and UAV-
MS data for each identified plant functional group. The point clouds at the top provide an example of vegetation in each functional group,
with canopy height ranges acquired from trait extraction for the four analysed functional groups and from the reach-scale analysis for the
remaining grass and shrub functional groups. Box plots indicate the distribution of values derived from the reach-scale data for individual
plants. CHM (canopy height model) is given in metres and is plotted in log scale to show the variation for shorter functional groups; IR refers
to infrared and RE to red-edge bands in the NDVI calculations. Winter data are from February 2020, and summer data are from July 2020.
For plants in the tree groups from the half of the reach not surveyed in July, data from September 2020 were used.
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Figure 7. Resulting classification from reach-scale analysis for the areas covered by both UAV-LS and UAV-MS data for year 1 and year 2
of the surveys. Note the changes in channel planform and functional groups through the central section of the reach compared to the relative
stability at each end of the reach.
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Figure 8. Individual band importance in the final classification (a) and confusion matrix (b) from the accuracy assessment. The band im-
portance represents the contribution of an individual layer to the final classification. The confusion matrix demonstrates for which functional
groups the classification struggled, showing an overclassification of grasses and the poor detection of single-stemmed herbs. The overall
classification accuracy was 80 %.
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Figure 9. Morphological change throughout the monitoring period, showing the spatial variation in erosion and deposition as well as the net
change in sediment. Note that February 20-July 2020 is a composite DEM of difference consisting of comparisons between February and
July to the left of the dashed line as well as February and September to the right of it. In July, only half of the survey area was captured.
The stability of the reach over summer (July to September) justifies attributing change to the February—July result. Change less than 0.1 m
in elevation was not shown as this was deemed below the level of detection of the sensor (see Tomsett and Leyland, 2021a, for accuracy
assessment details). The histograms adjacent to each time period show the distribution of magnitude of change, the volume of erosion and
deposition over that time period, and the net volume change across the corresponding time periods. Areas of the histogram in light grey

depict change below the 0.1 m level of detection.

erosion signal in the winter followed by an accretion signal
in the summer, suggesting that vegetation that can recover or
survive peak flows may go on to trap sediment and stabilise
the channel and adjacent floodplain.

5 Discussion

5.1 Trait extraction and functional group formation

Current measurements of plant functional traits are still pre-
dominantly ground-based; they are therefore limited by on-
site access and require extensive sampling (Palmquist et
al., 2019; e.g. Diehl et al., 2017a; Hortobagyi et al., 2017,
Stromberg and Merritt, 2016). Remote sensing of these traits
is therefore a potentially useful way to collect data across
larger areas. Although no ground-truth data relating to traits
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were collected in the field, the assessment of variability in
model construction, comparisons between TLS and UAV-LS
data, comparisons between UAV-LS data and reconstructed
models, and references to wider records in databases and the
literature suggest that the methods developed herein were
reasonably able to extract physical attributes. This high-
lights the potential of remote sensing to collect structural
trait data for eco-geomorphic research moving forward, es-
pecially once trade-offs in terms of time and spatial extent
are accounted for.

The use of pre-determined rather than site-specific func-
tional groups was a method employed by Butterfield et
al. (2020) on the basis of those outlined in Diehl et
al. (2017a). The vegetation in both of these studies was simi-
lar, and the application to a temperate UK-based site is chal-
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Figure 10. Histograms of morphological change for each classified functional group (x axis) location throughout the reach for each of the
time periods studied (y axis). Below each is the volume of erosion and deposition in cubic metres (m3), as well as the net volume change
stated in the upper right corners. The transparent elements of the histogram show the change that occurred below the minimum level of
detection and was not included in the erosion, deposition, as well as net volume change information. Note the change in x-axis values for the
erosion and deposition bars for the water class so as not to subdue the other groups due to the disproportionate amount of change over both

winters here.

lenging because of the complexity and similarities of some
plants. When compared to previous studies, the reduction
in the number of herbaceous functional groups used herein
is due to the data resolution, whereby only two categories
could be explicitly detected. The use of a PCA led to the suc-
cessful separation of functional groups, highlighting metrics
which could be used to separate them over larger scales. The
influence that different herbaceous vegetation, with variable
flexibility and branching structure, has on flow is well stud-
ied (e.g. Nepf and Vivoni, 2000; Jarveld, 2004; Sand-Jensen,
2008), and being able to successfully differentiate these two
groups highlights the applicability of the survey and trait ex-
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traction methods developed in this research. Likewise, the
difference in flow conditions between low-DBH trees that are
closely packed and less densely packed high-DBH trees may
show a resemblance to the influence found at smaller scales
on plant density (Jarveld, 2002a; Kim and Stoesser, 2011).
The relationship between DBH and vertical skew is not sur-
prising, and as plants could not be easily differentiated by
measuring their DBH, using vertical skew provides promis-
ing results for upscaling to larger areas, with similar work al-
ready being done using vertical distribution to classify forests
(Antonarakis et al., 2008; Michatowska and Rapiriski, 2021).
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UAV-LS data for QSM have been shown to overesti-
mate canopy reconstruction volume (Brede et al., 2019;
Dalla Corte et al., 2022), which mirrors the over-complexity
demonstrated in the QSM cylinder models (Fig. 3). Extract-
ing traits using remote sensing can improve on ground-based
methods for coverage but cannot match the accuracy and
interpretive ability of manual in-field measurements yet, as
shown by Dalla Corte et al. (2022) for height, DBH, and
volume. Moreover, the use of TLS for analysing herbaceous
functional groups is highly localised (Lague, 2020), meaning
only a small number of samples can be analysed, which may
not reflect the full variation in vegetation. The UAV-LS data
collected for this study took a significant amount of time to
post-process: days for each survey and weeks for the remain-
ing analysis. Yet, algorithms which can extract vegetation
and classify large areas are improving in much the same way
that STM methods have developed, making processing times
quicker and allowing a greater number of plants to be anal-
ysed (e.g. Burt et al., 2019; Krisanski et al., 2021; Yarroudh,
2023; Letard et al., 2023).

Both UAV-LS and TLS also struggle to capture the com-
plex structures of shrubs, with TLS requiring many scans to
resolve the structure of enough samples (Boothroyd et al.,
2016; Olsoy et al., 2014) and UAV-LS having too low a point
density and canopy penetration for such complex branching.
However, methods pioneered by Manners et al. (2013) re-
lating vertical profiles from TLS and ALS data may help to
overcome this. Similarly, more work is needed to overcome
the difficulty in separating out species that appear structurally
and spectrally alike, such as woody saplings and herbaceous
plants, but which may have different hydraulic impacts. At
present, these two different vegetation types could easily be
misclassified, and with the likely different interactions with
flow and subsequent morphology, not being able to account
for these with remote sensing is a limitation. Efforts to fur-
ther investigate this, possibly using proximity measures to
other functional groups or probabilistic rather than categori-
cal classification methods, may help to overcome the issue.

5.2 Reach-scale functional group mapping

The benefits of remote sensing become evident when scal-
ing from individual plants to reach-scale analysis. Finding
common features of defined functional groups is more com-
putationally effective than analysing every individual plant
throughout the reach at present. Using structural characteris-
tics of the point cloud alongside spectral properties across
time allows the leaf-on and leaf-off patterns to enhance
functional group classification. It is clear that initial sepa-
ration between functional group types can be made based on
canopy height, although this presents a challenge at the tran-
sition between groups. The need for seasonal data is empha-
sised across functional groups. Herbaceous groups benefit
from seasonal patterns in NDVI to complement variation in
height, with single-stemmed herbs appearing to show greater
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seasonal variation. Tree groups, however, require leaf-off
data to improve canopy penetration to help separate out each
functional group, and as such the timing of data collection
will likely impact the effectiveness of this method. Previ-
ous work has emphasised the need for seasonal data to im-
prove eco-geomorphic research (Bertoldi et al., 2011; Nal-
laperuma and Asaeda, 2020), which the results of our re-
search supports. Moreover, for these methods to be imple-
mented at other sites a seasonal approach to surveying is re-
quired, as has been undertaken in similar studies (Van Iersel
et al., 2018; Souza and Hooke, 2021), yet this presents a lim-
itation for some research.

The accuracy from the random forest classifier is in line
with that reported by Butterfield et al. (2020), who used mul-
tispectral imagery alone, with most misclassifications hap-
pening in functional groups which are similar. This is unsur-
prising when viewing the uncertainties in functional group
properties (Fig. 6), where there is evidence of overlap across
multiple attributes for two different groups. Therefore, ad-
jacent groups may be erroneously classified due to having
similar spectral and structural characteristics, as well as im-
age segmentation including two groups within one segment.
Identifying ways to better segment regions of vegetation may
help to improve the overall classification success. However,
the outputs here add to the growing body of research using
random forests for high-resolution classification approaches
(Adelabu and Dube, 2015; Chan and Paelinckx, 2008; Adam
and Mutanga, 2009). As the methods here only assign one
group for each image segment, elements such as understorey
vegetation, which will influence overbank flow, are currently
not accounted for.

Despite these limitations, the resulting classification accu-
racy (Figs. 7 and 8b) shows promise for linking local-scale
trait modelling to larger-scale functional group mapping. The
spatial distribution of classes throughout the reach aligns
with the wider literature, with herbaceous species dominat-
ing the active meandering section as these are more adaptable
to changing topography and flood conditions, whilst larger
woody species which require more stable hydraulic condi-
tions are seen in less active sections of the reach (Kyle and
Leishman, 2009; Stromberg and Merritt, 2016; Aguiar et al.,
2018). The classification methods herein utilised a mix of
structural and spectral data to determine functional group dis-
tribution, as opposed to the species identification and subse-
quent grouping performed by Butterfield et al. (2020). This
is important as the same species may display varying traits
based on their proximity to the channel (Hortobédgyi et al.,
2017), and as such using the physical characteristics of plants
can be seen as an advantage, yet species identification still
plays an important role. However, obtaining secondary data
on species traits that are relevant to the area of study can be
challenging (see Sect. 4.2.1) and may limit the applicability
of trait-based methods to the wider scientific community.
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5.3 Eco-geomorphic change

There appears to be more localised evolution in the second
winter of surveying, whereas the first winter appears to show
a more consistent response throughout the reach. The singu-
lar lower peak in water levels for the second winter as op-
posed to several higher peaks in the first (see Fig. 1c) sug-
gests that priming may be more important for channel move-
ment, whereby a single flow event of lower magnitude can
incite a greater resultant planform shift. However, without
multiple surveys across the winter, it is hard to determine
whether change is predominantly from a single event or mul-
tiple events. The response in summer is much smaller in
terms of both deposition and erosion, with little morphologi-
cal change occurring. What change does occur may be from
reductions in bank support after high flows leaving banks ex-
posed to collapse (Zhao et al., 2020).

Separating survey data by functional groups does not iden-
tify any dominant links between vegetation and morpholog-
ical change. Yet some of the effects were noticeable, includ-
ing tree functional groups providing less winter stability than
expected based on previous research (Gurnell, 2014; Horto-
bagyi et al., 2018). However, portions of the western end of
the reach are visibly stabilised by vegetation pinning (Figs. 6
and 8), suggesting a mixed effect on morphological change.
The lack of any clear pattern could be due to a number of
factors. Primarily, the relatively short nature of the study pe-
riod at 2 years is not necessarily long enough to provide cer-
tainty in any feedbacks occurring. In addition, errors in the
reconstruction, separation, and classification could propagate
through to suggest that the lack of clear pattern is due to the
inability to classify functional groups effectively at a reach
scale. However, the vegetation reconstruction has proved to
be effective within both this study and others (e.g. Brede et
al., 2019), producing model attributes in line with previously
published values for the same species. The accuracy of the
classification was similar to other studies (e.g. Butterfield et
al., 2020) and the majority of misclassifications happened
between similar groups. Finally, the lack of an obvious link
could in part be due to the absence of data linking morpho-
logical change and vegetation with relevant flood inundation
depths.

To assess the link between vegetation, morphological
change, and flood inundation, some simple further analysis
was undertaken to explore the possibility of depth-dependent
drag being related to morphological change. Based upon the
well-established relationship between submerged vegetation
frontal area and drag (Nepf and Vivoni, 2000; Jarveld, 2004;
Wilson et al., 2006; Gurnell, 2014) we estimated indicative
excess drag for each functional group (except grass) at depths
of upto 0.1, 0.5, 1, 2, and 4 m for a hypothetical flood. In ad-
dition to the previously analysed herbaceous and tree point
clouds, 10 additional individual shrub point clouds were ex-
tracted to calculate average frontal area. To identify flow
depths across the reach, a simple exploratory 2D depth model
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in Delft3D (Deltares, 2021) was set up to extract hypothetical
maximum flood depths across the study area using indicative
flows taken from the gauge downstream of the study site for
the winter 2021 time period (Fig. 1).

Within the modelled Delft3D water extent, the depth was
used to extract the relevant frontal area interacting with the
flow. Each of these depth-dependent frontal areas was then
used to determine the average excess drag component (F') of
a single plant according to

1
F=§CDA0,0U2, (1)

where Cp is the coefficient of drag, Ag is the frontal area
of the plant facing the flow, p is the fluid density, and U
is the velocity of the fluid, approximated using Delft3D and
a floodplain Manning’s n of 0.035 to represent long grass.
The excess drag for an individual plant was then transformed
into an excess drag per metre squared, being multiplied by
the plant density which was calculated using a local max-
imum filter to identify the top of individual plants, similar
to the procedures used to delineate individual trees in dense
canopies (Douss and Farah, 2022; Chen et al., 2020). How-
ever this approximation does not account for differences in
drag caused by variations in the density and distribution of
biomass (James et al., 2008; Sand-Jensen, 2008). Drag co-
efficients were estimated based on morphology and values
from the wider literature (see the Supplement). As a result,
spatially varying excess drag was approximated across the
domain for the winter of 2021 based on an indicative maxi-
mum flood extent. This can be used to compare the morpho-
logical change to spatially varying estimates of excess drag
(Fig. 11), demonstrating the excess drag and aggregated mor-
phological change for each functional group, for each binned
flow depth.

All functional groups exhibit an increase in erosion with
greater flow depths, as expected due to the increases in
shear stress with depth (e.g. Biron et al., 2004; Phillips,
2015). Yet for herbaceous groups, erosion rates are stable
or decrease up until the maximum plant heights (see Fig. 6)
whereby erosion increases again, suggesting possible mod-
eration due to the vegetation. The remaining three functional
groups all see consistently increasing levels of excess drag
across flow depths as the plant heights exceed the maximum
depth. Shrubs show the most consistent morphological sta-
bility, most likely due to their ability to reduce flow speeds
and the root structures of larger vegetation providing greater
soil cohesion. Both sets of tree groups follow a similar pat-
tern, appearing to accelerate erosion at low flow depths be-
fore showing a stabilising effect at greater depth, some of
which may be in part due to the poor ability to classify un-
derstorey vegetation, missing some of the variability in these
areas.

This begins to raise interesting questions around the cou-
pled nature of flow and vegetation, as well as thresholds
above which vegetation may begin to dominate in dictating
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Figure 11. A comparison of how, for each separate functional group, the approximated excess drag (coloured lines, no dots) and morpho-
logical response (black line, dotted) change with hypothetical flow depth. The cartoon at the top helps to illustrate how, for different groups,
different flow depths result in different proportions of the plant interacting with flow.

the direction of geomorphic evolution. The exploratory anal-
ysis undertaken here begins to investigate this by using struc-
tural data across the domain to estimate the influence of veg-
etation at hypothetical flow depths during an observed flood
event, whilst also comparing these to real changes in mor-
phology. Although the drag calculations are averaged for the
entire functional group and the morphological signal used is
an average, this provides a new and promising avenue of re-
search which could relate individual plant influence on vari-
ous flood stages and the subsequent morphological response
of the channel.

6 Remote sensing of plant functional traits: what
next?

One of the key benefits of remote sensing is the ability
to quickly capture datasets over scales not possible with
ground-based surveying. Although the collection of the data
used is fairly straightforward, the subsequent post-processing
must be accounted for when considering the routine appli-
cation of a trait-based approach. Once data have been pro-
cessed, the success of the classification suggests that func-
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tional groups can be classified for other sites that contain
similar vegetation in much the same way as previous trait-
based research has done (e.g. Butterfield et al., 2020). More-
over, such methods may benefit areas in which ground-based
surveying is more challenging, improving the applicability
and usability of trait-based methods when compared to tra-
ditional taxonomic approaches. However, further assessment
comparing ground-based with remotely sensed trait collec-
tion is still required.

Combining structural and spectral data provides the op-
portunity to upscale datasets collected via other platforms,
such as high-resolution satellite imagery and ALS datasets.
Currently, the main difficulty with trait-based analysis is col-
lecting adequate data over large enough areas. The methodol-
ogy developed here provides a potential starting point from
which a set of tools to classify different hydraulically rele-
vant functional groups across larger areas can be developed.
This may overcome some of the scale issues in linking vege-
tation functional groups to geomorphic change, whereby not
enough data to link directions of change with different func-
tional groups have previously been collected.
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Future work may also consider how vegetation is repre-
sented and how these representations change temporally: for
example, the role of vegetation changes from establishment,
maturity, and removal over the course of a plant’s life. Large
trees, for example, transition from stabilising banks during
maturity to altering channel flow when removed into the river
system (Jeffries et al., 2003; Sear et al., 2010). Likewise, the
inclusion of layers such as inundation frequency or flow ve-
locity may improve classification approaches, with different
traits being dependent on hydraulic and environmental con-
ditions (Gothe et al., 2017; Corenblit et al., 2015). More-
over, both shrubs and grasses are key elements of UK and
other temperate river systems, and remote sensing methods
will struggle to capture their complexity due to the sensors’
limits of detection, currently relying on species identification
from imagery. As such, approaches to improve their integra-
tion into the methods presented here (e.g. Manners et al.,
2013) are required to be of benefit to wider eco-geomorphic
research. Finally, in order to reduce the limitations of com-
bining winter and following summer data, capturing data fre-
quently to enable 4D analysis of how vegetation properties
change through time will enable further investigations into
eco-geomorphic feedbacks beyond what has been undertaken
in this study, particularly focusing on changes occurring dur-
ing specific geomorphic events.

7 Conclusions

This study has presented a methodological workflow to ex-
tract vegetation traits within a river corridor from remotely
sensed data before creating functional groups that can be
compared to geomorphic change. This presents an impor-
tant advance in relation to current methods which use species
identification from ground surveys or aerial imagery, instead
scaling individual plant data to reach-scale classifications.
The use of leaf-on and leaf-off surveys enabled the separation
of functional groups across the reach, highlighting the ben-
efits of a seasonal approach when utilising remote sensing
for vegetation mapping. Despite not identifying discernible
directions or magnitudes of geomorphic change between dif-
ferent functional groups, the methods used can still provide
a template for future research into eco-geomorphic interac-
tions. Exploratory analysis between depth-related drag and
morphological evolution highlighted the potential of using
such approaches in the future, where vegetation function and
the proximity and interaction with flow can be taken into ac-
count.

The potential of UAV-LS for river corridor research is con-
siderable, capturing elements of topography and vegetation
simultaneously in ways which are not possible from current
SfM approaches alone. In addition, the combination of UAV-
LS and SfM data enables greater confidence in the spatial
representation of vegetation types and morphological change
throughout the river corridor. This is especially pertinent

https://doi.org/10.5194/esurf-11-1223-2023

given the seasonal approach employed in this study, where
repeat surveying of the reach could be undertaken efficiently
without the need for extensive ground surveying. However,
this does not replace the need for ground-based methods,
with species identification and TLS being used to supple-
ment aerial datasets. These will continue to be required for
vegetation groups that are either too small to be captured
at the plant scale or too complex for their traits to be cap-
tured from UAV platforms. This is an area of research that
requires further investigation, allowing for improved integra-
tion between remotely sensed and ground-based data. The
methods presented herein offer a way in which to address
the current gap between individual plant-scale trait analy-
sis and reach-scale functional groups classification, allowing
trait-based approaches to be applied to other river reaches of
similar scale or greater, enabling greater insight to be gained
in relation to eco-geomorphic interactions within the river
corridor and beyond.
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