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Abstract. To predict the morphology of debris flow deposits, a control volume finite-element model (CVFEM)
is proposed, balancing material fluxes over irregular control volumes. Locally, the magnitude of these fluxes is
taken proportional to the difference between the surface slope and a critical slope, dependent on the thickness
of the flow layer. For the critical slope, a Mohr–Coulomb (cohesive-frictional) constitutive relation is assumed,
combining a yield stress with a friction angle. To verify the proposed framework, the CVFEM numerical algo-
rithm is first applied to idealized geometries, for which analytical solutions are available. The Mohr–Coulomb
constitutive relation is then checked against debris flow deposit profiles measured in the field. Finally, CVFEM
simulations are compared with laboratory experiments for various complex geometries, including canyon–plain
and canyon–valley transitions. The results demonstrate the capability of the proposed model and clarify the in-
fluence of friction angle and yield stress on deposit morphology. Features shared by the field, laboratory, and
simulation results include the formation of steep snouts along lobe margins.

1 Introduction

When they transition from steep gullies to milder topogra-
phy, debris flows typically spread out and slow down to form
fresh deposits. By burying houses, bridges, or other assets,
these may cause considerable damage to communities and
infrastructure (Liu and Huang, 2006; Scheidl et al., 2008;
Tai et al., 2019). This is illustrated in Fig. 1 for a case in
Taiwan (courtesy of the Chi Po-lin Foundation, 2009), where
debris flow deposition near a gully mouth buried the lower
stories of multiple buildings. To mitigate debris flow hazards,
it is therefore important to anticipate the possible extent and
thickness of their deposits.

To simulate the flow and deposition of debris flows, many
highly resolved models have been proposed. These typically
apply mass and momentum balance equations to flows over
non-erodible (O’Brien et al., 1993; O’Brien, 2006; Liu and
Huang, 2006; Murillo and García-Navarro, 2012; Pudasaini,

2012; Kowalski and McElwaine, 2013; Gregoretti et al.,
2016; Meng and Wang, 2016; Tai et al., 2019; Pudasaini and
Fischer, 2020) or erodible substrates (Armanini et al., 2009;
Bartelt et al., 2017). Such simulations, however, require de-
tailed hydrological input data and various rheological param-
eters which may be difficult to obtain and may also differ
dramatically from one case to another. In this context, it is
worth exploring whether reduced complexity models could
predict key features of debris flow deposits with less com-
putational effort and more limited data requirements. Unlike
existing models that also attempt to predict the runout at high
velocities, we limit our scope and focus on predicting the fi-
nal deposit morphologies of debris flows, modeled as slow,
quasi-static processes.

A class of reduced complexity models developed for flu-
vial problems rests on defining a constitutive model for the
mass flux, which in turn can be used with a mass balance
equation (e.g., the Exner equation) to evolve the bed surface
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Figure 1. Aerial view of the debris flow deposit formed at Xinfa,
southern Taiwan, during Typhoon Morakot in August 2009 (Photo-
graph by Chi Po-lin. Provided by Chi Po-lin Foundation© Above
Taiwan Cinema, Inc. Only authorized for this article and cannot be
extracted, distributed, or reproduced separately in any form. Offend-
ers shall be prosecuted for legal responsibility by relevant laws and
regulations).

elevation. For applications to alluvial fans and river deltas,
for instance, some models have been proposed that simply set
the mass flux proportional to the current slope at that point
(Voller and Paola, 2010; Lorenzo-Trueba and Voller, 2010;
Lorenzo-Trueba et al., 2013). More sophisticated approaches
employ the device of a critical threshold (Mitchell, 2006; Lai
and Capart, 2007), whereby sediment transport occurs only
when the bed inclination exceeds a critical slope (Lai and
Capart, 2007; Hsu and Capart, 2008; Lai and Capart, 2009).
In these models, the critical slope for the fluvial sediment
flux can be derived by considering the friction stress at the
sediment–water interface (the Shields stress). In some sense,
this idea of a critical slope is analogous to the angle of repose
governing the shapes of dry sand piles (Kuster and Gremaud,
2006; Giudice et al., 2019) or the morphology of idealized

deltas and fans (Ke and Capart, 2015; Zhao et al., 2019; Chen
and Capart, 2022).

Mass flux models have also been used to model mud flows.
In particular, we refer to the work of Yuhi and Mei (2004),
where a flux law was obtained by combining lubrication the-
ory with a cohesive yield stress criteria. Predictions from this
model were verified by comparing with analytical solutions
which constrain the slope of the deposit, in axisymmetric
domains, based on a cohesive yield stress criteria (Coussot
et al., 1996; Yuhi and Mei, 2004). Unlike what might be seen
in a sand pile or fluvial system close to the threshold, here
the slope at a point varies with the thickness of the deposit.

Contrasting with fluvial and mud flows, for debris flows it
is believed that both friction angle and yield stress can affect
the morphology of deposits (O’Brien et al., 1993; Mangeney
et al., 2010; Murillo and García-Navarro, 2012; Pudasaini,
2012; Gregoretti et al., 2016; Tai et al., 2019; Pudasaini and
Fischer, 2020). The study of Coussot et al. (1996) empha-
sizes this point. Using only a yield stress criterion, these au-
thors derived solutions for deposit profiles which they com-
pared with surveyed debris flow transects. This model was
found to work well for cohesive debris flow deposits with
high clay content. For lower clay content, however, deposit
inclinations are more consistent with control by the saturated
angle of friction (Takahashi, 1991). For debris deposits mix-
ing coarse and fine material, therefore, it appears necessary
to consider both a yield stress and a saturated friction angle,
as in the well-known Mohr–Coulomb model for cohesive-
frictional materials.

The objective of the current work is threefold, first, we
will develop a mass flux expression that considers both fric-
tion angle and yield stress in setting the critical slope under
a quasi-static assumption. Secondly, we will use this mass
flux in an unstructured control volume finite-element method
(CVFEM) solution of the Exner mass balance equation to ar-
rive at, for a given input mass, predictions of the final deposit
location and shape. Finally, we will assess the predictive per-
formance of this model by comparing predictions with avail-
able closed-form expressions, experimental measurements,
and field observations.

In line with our objectives, we note that, in general, allu-
vial and debris fans build up over time in more complex ways
than those immediately addressed by our proposed model
and experiments. For example, channel formation, migration,
and avulsion are expected to significantly affect fan evolu-
tion, especially for large-scale debris flow fans. For alluvial
fan experiments devoted to these processes, the reader is re-
ferred to Le Hooke and Rohrer (1979), Whipple et al. (1998),
Delorme et al. (2018), and Savi et al. (2020). Our focus here,
however, is on the formation of fresh deposits, possibly over
a preexisting fan surface, by unchannelized debris flows. For
such conditions, illustrated by Fig. 1, we hope to formulate
and verify a simplified model that could later be extended to
more general conditions.
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Figure 2. Deposition of a cohesive-frictional material over a substrate of known geometry. (a) Experimental case featuring a symmetric
deposit. (b) Schematic section along the deposit centerline.

The paper is structured as follows. Section 2 presents the
governing equations that form the core of our model. The
CVFEM algorithm developed to obtain numerical solutions
is then described in Sect. 3. Section 4 describes how we
incorporate a Mohr–Coulomb constitutive relation into this
framework. In Sect. 5, we explain how to supplement our
CVFEM with a flux limiter to model flow over non-erodible
surfaces. In Sect. 6, we check simulations against available
analytical solutions. In Sect. 7, we verify our model by com-
paring results with field data and laboratory experiments. Fi-
nally, in Sect. 8, we discuss the contribution and limitations
of our work, emphasizing how our model can help under-
stand the influence of material properties on the morphology
of debris flow deposits.

2 Governing equations

To write governing equations, we consider a debris mixture
depositing over a fixed substrate of arbitrary topography. An
example is shown in Fig. 2a: supplied upstream of a steep
triangular channel, the mixture flows into a trapezoidal chan-
nel of mild inclination, where it spreads out and slows to a
complete stop. We denote the time-varying surface elevation
during flow using z̃(x,y, t) and the underlying bed topogra-
phy using zb(x,y). The corresponding profiles are shown in
Fig. 2b on a schematic section.

To capture the deposition process and predict the final de-
posit morphology, we express mass conservation using the
Exner equation (Exner, 1920, 1925)

∂z̃

∂t
=−∇ · q +Qinδ(xs), (1)

where q = (qx,qy) is the volumetric flux (volume transferred
per unit width and time), ∇ · q with ∇ = (∂/∂x,∂/∂y) is
the divergence of this flux, δ is the Dirac delta function,
xs = (xs,ys) is the location of the source, and Qin is the in-
flow source volumetric flux. For simplicity, we assume that
the flow is sufficiently slow to be regarded as quasi-static, al-
lowing inertia effects to be neglected. At each location (x,y),
the flux q is assumed to be aligned with the direction of
steepest descent according to

q =−ν∇ z̃. (2)

The diffusivity ν, however, is not assumed constant but
instead depends on the local surface slope ||∇ z̃|| according
to the formula

ν = ν∗max
(
||∇ z̃|| − Sc

||∇ z̃||
,0
)
. (3)

where ν∗ is a real and positive constant, and Sc(x,y) is a crit-
ical slope dependent on material properties and on the local
instantaneous thickness of the flow layer. This dependence
of Sc on the flow layer thickness is derived in Sect. 4. Com-
bining Eqs. (1)–(3), we see that we obtain a non-linear dif-
fusion process with a diffusivity ν that depends on the dif-
ference between the magnitude of the local gradient and the
critical slope Sc. With this model, the flux is only non-zero
when the local slope ||∇ z̃|| exceeds the critical slope Sc. By
contrast, models that consider momentum effects can pro-
duce local deposit slopes that are smaller than critical slopes
(e.g., Tregaskis et al., 2022). In our model, on the deposit sur-
face where the flow slows down to a complete stop, the flux q

vanishes as the local slope ||∇ z̃|| decreases from a value that
exceeds the critical slope Sc to exactly the critical slope Sc,
imposing the mathematical condition that

||∇ z̃|| = Sc, (4)

everywhere on the final deposit surface. Make particular note
that the critical slope developed in our model (see Sect. 4)
will involve the sum of two components, a constant friction
slope and a yield stress term that will be an inverse function
of the deposits thickness; thus, the final slope over the pre-
dicted deposited debris flow may not take a constant value.

To incorporate the above flux definition (Eqs. 2 and 3) in
an Exner balance, our model includes three main compo-
nents. First, we need a numerical method to solve the gov-
erning mass balance equation with the proposed flux model.
Second, we need to derive an appropriate expression for the
critical slope. In doing this we will consider both a friction
angle and a yield stress. Third, we need to provide a limiter
in our evolution algorithm to avoid fluxing out from a control
volume more than the amount of material available.
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Figure 3. Global and local mesh geometry: (a) the discretized do-
main and elements, (b) a triangular element divided by the seg-
ments connecting the centroid and the midpoint of each side, (c) the
control volume and the region of support of an internal node, and
(d) those of a node on the boundary.

3 Numerical method

To solve the Exner equation as formulated above, we
adopt the control volume finite-element method (CVFEM),
a method first proposed by Winslow (1966) and later ex-
tended by Baliga and Patankar (1980, 1983), Voller (2009),
and Tombarevic et al. (2013). The CVFEM is a useful tool
for this application because it couples the finite-element flex-
ibility of fitting the domain geometry with the explicit mass
balance of the control volume.

The application of the CVFEM to model debris flow de-
posits over an existing topography starts by identifying a
2-D planar problem domain (x,y) and then covering this
domain with a mesh of connected, non-overlapping, plane
geometric elements. In our case, we use a rectangular do-
main and cover it with an unstructured mesh of linear trian-
gle elements (Fig. 3a). Each triangular element is associated
with three vertex node points (locally labeled A,B, and C)
(Fig. 3b). This will result in i = 1,2, . . .N node points in the
domain, each storing values for the fixed bed substrate ele-
vations zb(x,y), assumed given, and for the time-dependent
flow surface elevations z̃(x,y, t) to be determined. To eval-
uate the values of zb and z̃ at internal points in an element
we use the classic finite-element interpolation based on lin-
ear shape functions. In this way, at a point (x,y) in a given
element we approximate the bed substrate elevation as

zb(x,y)= nA(x,y)zbA + nB (x,y)zbB + nC(x,y)zbC , (5)

and the flow surface elevation as

z̃(x,y, t)= nA(x,y)z̃A(t)+ nB (x,y)z̃B (t)+ nC(x,y)z̃C (t), (6)

where the shape functions, nA, nB , and nC , which are linear
functions in x and y, take a unit value at nodes A, B, and C,
respectively, and vanish along the element sides opposite the
labeled node, i.e, sides B −C, C−A, and A−B, respec-
tively. Thus, the CVFEM discretization provides piece-wise
linear approximations of the bed substrate and flow surfaces.
In particular, we note that in any element j in our domain we
can readily approximate the surface gradient by

∇ z̃j =
(
nAx z̃A+ nBx z̃B + nCx z̃C ,nAy z̃A+ nBy z̃B + nCy z̃C

)
, (7)

where, nAx ,nAy , etc., are the derivatives of the shape func-
tions. Due to the linear nature of the shape functions, we note
this approximation renders a constant value for the slope in
each element.

To move on, we construct an additional geometric ele-
ment on our grid of triangular elements. We join the mid-
point of each element side to the centroid of each element,
generating a set of connected non-overlapping control vol-
umes around each node i in the domain; see Fig. 3c and d.
Thus, the control volume around node i has j = 1,2, . . .m
elements connected to it (the region of support), and each of
these elements contains two faces of the control volume. To
discretize our governing equation, Eq. (1), we integrate the
equation over the control volume, use the divergence theo-
rem, and make an explicit finite-difference approximation in
time to arrive at a discrete equation for the surface elevation
at each node point and time step,

z̃new
i − z̃i

1t
=−

1
ACV,i

m∑
j=1

Qj +
Qin,i

ACV,i
, (8)

where ACV,i is the area of the control volume, Qin,i is the
source flux at node i, and

Qj =

∫
SAB+SAC

qj · n̂ds, (9)

is the net discharge out of the control volume across the two
faces in element j , e.g., sides SAB and SAC in Fig. 3b.

With an appropriate constitutive equation for determining
the critical slope (see discussion below), we can use our ap-
proximations for the deposit slope in the element, Eq. (7)
to, through Eq. (2), arrive at an approximation for the flux
qj = (qxj ,qyj ) in element j ; we should expect this value to
be constant over the element. Further, if we use 1x and 1y
to express the change in the x and y values along a face as we
move counter-clockwise around node i (see Fig. 3b), we can
express the constant outward normal on a face with length `
as n= (1y/`,−1x/`). This provides us enough informa-
tion to fully approximate the discharge in Eq. (9) in terms of
the current nodal values of z̃i in the element (for full details
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refer to Voller, 2009). On making this approximation for each
element in the support of node i and rearranging Eq. (8), we
arrive at the following update for the surface elevation:

z̃new
i = z̃i −

1t

ACV,i

(
m∑
j=1

Qj −Qin,i

)
. (10)

We note that when a node i is on the domain boundary
(see Fig. 3d), we set the discharge across the control vol-
ume faces that coincide with the boundary to zero. Hence,
Eq. (10) provides us with an explicit means of updating the
nodal values of the surface elevation at time t +1t from the
known values at time t . To speed up computations while
still ensuring numerical stability, we use a dynamic time
step 1t = 0.21`2/max(νele), where 1` is the average ele-
ment size and νele is the element diffusivity given by νele =

ν∗(||∇ z̃ele||−Sc,ele)/||∇ z̃ele||. To let material diffuse rapidly
to surrounding elements when the element slope exceeds the
critical slope, we set ν∗ = 100max(Qin).

4 Critical slope

In the previous sections, we assumed that flow occurs when
the surface slope exceeds a critical slope, or, upon assum-
ing that the direction of steepest descent coincides with the
x axis,∣∣∣∣ ∂z̃∂x

∣∣∣∣> Sc. (11)

To set this critical slope, we adopt a Mohr–Coulomb fail-
ure criterion. For flow to occur, the shear stress τ at the base
must then satisfy

τ > σ tanφ+ τY, (12)

where σ is the normal stress, φ is the saturated friction angle
dependent on the solid fraction, the void fraction, and the fine
content in the fluid (Takahashi, 1991), and τY is the yield
stress. When the deposit surface slope is less than or equal to
the critical slope (i.e., |∂z̃/∂x| ≤ Sc), the mixture remains in
static equilibrium, with τ ≤ σ tanφ+τY. In the limiting state,
we can therefore use a force balance to derive an expression
for the critical slope.

In the CVFEM model, we express this force balance el-
ement by element under the following two simplifying as-
sumptions: (i) the surface slope in an element is uniform (a
direct consequence of our choice of linear elements), and
(ii) the flow thickness in an element is also uniform. This lat-
ter restriction is needed to keep expressions simple but will
still allow us to apply the model to flows of variable thick-
ness. Under these assumptions, we can simply consider a
two-dimensional force balance in the (ξ,η) coordinate sys-
tem aligned with the surface inclination, as illustrated in
Fig. 4. Force balance in the normal and tangential directions
can then be expressed as

σdξ = ρghcosβdξ, τdξ = ρghsinβdξ, (13)

Figure 4. Force balance of a small piece of material on a fixed
bed whose local gradient has a value equal to tanβ and direction
pointing towards ξ .

where ρ is the density of the mixture, g the gravitational ac-
celeration, h the oblique layer thickness in the η direction,
and β the bed inclination angle. To move forward, we note,
by our assumptions, that

∂z̃

∂x
=− tanβ, (14)

and that the vertical and oblique thicknesses are related by

H =
h

cosβ
. (15)

Thus, on substituting Eqs. (14) and (15) into the force bal-
ance relations, Eq. (13), we obtain the following expression
for the shear stress

τ = ρghsinβ =−ρgH
∂z̃

∂x
, (16)

which is an expression that matches the derivation made by
Yuhi and Mei (2004). Finally, on substituting this shear stress
into the Mohr–Coulomb criterion, we arrive at a model for
the critical slope

Sc =

∣∣∣∣ ∂z̃∂x
∣∣∣∣
max
≈

τ

ρgH
≈ tanφ+

τY

ρgH
. (17)

The critical slope in each element can therefore be deter-
mined by setting values for the saturated friction angle and
yield stress, taking into account the local vertical layer depth
H = z̃−zb. What distinguishes our expression from previous
suggestions for the critical slope Liu and Mei (1989), Cous-
sot et al. (1996) and Yuhi and Mei (2004) is the appearance of
the friction angle in addition to the yield stress. We empha-
size that this combination of the friction angle and bed thick-
ness in the definition of the critical slope is an essential ingre-
dient in our model. This affects the slope of the final deposit
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as follows. Where the thickness of the deposit is large, for
instance close to the source, the final slope will approach the
constant value tanφ. Towards the margins, by contrast, where
the deposit thickness decreases, steeper slopes and snout-like
features will produced, consistent with observations.

5 Flux limiter

In our CVFEM model, we assume a non-eroding bed sub-
strate. This will require the use of a “flux limiter” to ensure
mass conservation in an element over each time step of the
calculation. Over a time step, we cannot flux out more mate-
rial than what is available at the beginning of the time step.

With reference to the selected element in Fig. 3b, we note
that one-third of the element area AABC contributes to the
control volume around node A and thus, at the start of a
time step, the material available for fluxing from this sub-
section of the control volume will be 1

3 (z̃A− zbA)AABC . In
this way, over a time step 1t , the maximum discharge that
can be fluxed out from this section, contributing to the in-
flows to nodes B and C, is given by

Qmax,A =
z̃A− zbA

1t

AABC

3
. (18)

From this, following the time step calculation of the
flux QA across faces SAB and SAC , we can provide a lim-
iter by setting

QA = CAQA, (19)

where the limiting factor ≤ 1 is calculated as

CA =

{
Qmax,A/QA, if QA >Qmax,A

1, otherwise
. (20)

Similar limiters must likewise be applied to the outflows
from nodesB andC. In practice, to ensure that fluxes balance
out, we apply a single value of the limiting factor

C =min(CA,CB ,CC), (21)

to each element in the solution domain.

6 Analytical solutions

As the flow spreads and slows, it will eventually come to a
complete stop and freeze in place. At each point of the result-
ing deposit, the limit equilibrium condition, Eq. (4), will then
be satisfied. If, say because of symmetry, the surface gradi-
ent along a certain transect is aligned everywhere with this
transect, then the surface profile will satisfy the following
simpler equation:

∂z̃

∂x
=±Sc =± tanφ±

τY

ρgH
, (22)

Figure 5. Analytical solutions for the centerline profiles of
cohesive-frictional deposits on an inclined plane of slope tanβ =
0.02 for different deposit heights assuming identical material prop-
erties tanφ = 0.05, τY/(ρg)= 0.01m.

with coordinate x taken along the transect direction. In this
expression, the plus operators denote downhill deposition (z̃
and zb decreasing in the same direction), while the minus
operators denote uphill deposition (z̃ and zb decreasing in
opposite directions). Substituting z̃= zb+H , the equation
becomes an ODE for the deposit thickness:

∂H

∂x
=−

∂zb

∂x
+
∂z̃

∂x
=− tanβ ± tanφ±

τY

ρgH
. (23)

For the special case in which the bed slope ∂zb/∂x = tanβ
is constant, Eq. (23) becomes a first-order autonomous ODE
that can be integrated analytically. In implicit form, the re-
sulting depth profile H (x) is given by

x− x0 =
(H (x)−H (x0))/A if B = 0,
(H (x)2

−H (x0)2)/(2B) if A= 0,
(AH (x)−B ln(|AH (x)+B|))/A2

−C otherwise,
(24)

where

A=− tanβ ± tanφ, B =±
τY

ρg
,

C =
AH (x0)−B ln(|AH (x0)+B|)

A2 . (25)

In the above expressions, H (x0) is the boundary condition
at x0, which can be any point within the depositing region.
Note that A will be zero for frictionless material deposits on
a horizontal plane or frictional materials depositing down-
hill when the friction slope equals the bed slope, and B will
be zero when there is no yield stress. In what follows, these
analytical solutions will be used for three purposes: to clar-
ify model properties, to verify the numerical method, and to
calibrate material parameters when comparing model results
with field and laboratory data.

As an example, analytical solutions for the centerline pro-
files of cohesive-frictional deposits over an inclined plane are
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illustrated in Fig. 5. For each case and deposit height H , we
supply material at a single point corresponding to the apex of
each deposit. To facilitate comparison, the source locations
are adjusted to let the deposits have the same toe location.
These locations xs are determined using the formula xs =

(AH −B ln(|AH +B|))/A2
−C, where A=− tanβ+ tanφ,

B = τY/(ρg), C = (−B ln(B))/A2. In all cases, the material
properties are the same, and the origin is taken at the down-
stream end of each deposit. This representation is chosen to
highlight two important features of the solutions. First, the
shape of the deposit toe does not change with the size of the
deposit and depends only on the bed slope and material prop-
erties. Secondly, the different material properties affect sep-
arate features of the profiles. The yield stress τY controls the
scale of the steep snouts, where the deposit thickness reaches
zero, whereas the friction slope tanφ sets the deposit incli-
nation far away from the snouts, where the deposit thickness
becomes large.

It follows from these properties that a single profile of suf-
ficient length through the toe of a deposit is sufficient to cali-
brate the material properties of the model. This is very useful
as it greatly facilitates model application to field and exper-
imental cases. A second implication is that, for deposits of
large size compared to the scale of the snouts, deposit shapes
may be well approximated by surfaces of constant slope. For
the deposits of Fig. 5, setting the yield stress to zero would
produce upright cones of slope tanφ centered at the apex
of each deposit. In general, however, the morphology of de-
posits will be affected by both the yield stress and the friction
angle.

7 Numerical model evaluation

In this section, we evaluate the CVFEM numerical model by
comparing results with analytical solutions. This provides an
opportunity to show how model results depend on material
parameters, for some additional simple cases. We also ex-
amine how mesh geometry and size affect the accuracy and
performance of the model.

7.1 Comparison with analytical solutions

To verify our CVFEM algorithm we consider deposits
formed by supplying material from a point source onto three
idealized geometries: (i) a horizontal plane, (ii) an axisym-
metric conical basin of slope tanβ = 0.05, and (iii) an in-
clined plane of constant slope (tanβ = 0.02). The CVFEM
model for each of these cases operates in Cartesian coordi-
nates and will produce 3D deposit shapes. Thus, to compare
with analytical solution profiles we need to select appropriate
transects. For the horizontal plane and conical basin cases,
we examine radial profiles (see Fig. 6a, b, e, f, i, and j).
For the inclined plane, we select two profiles through the
source point: a longitudinal profile in the direction of the base
slope and a transverse profile orthogonal to this direction (see

Fig. 6c, d, g, h, k, and l). For the longitudinal profile (Fig. 6c,
g, and k), we can use the analytical solution in Eq. (24) as the
exact solution. For the transverse profile (Fig. 6d, h, and l),
the transect is not a true symmetry axis. Nevertheless, the an-
alytical solution obtained by setting tanβ = 0 can be used as
an approximate solution. For each case, we impose a fixed
thickness of the deposit at the origin for both analytical solu-
tions and numerical solutions.

To show how parameters affect results and check the nu-
merical model under different assumptions, we compare nu-
merical and analytical solutions for three groups of material
properties: (1) tanφ > 0, τY = 0; (2) tanφ = 0, τY > 0; and
(3) tanφ > 0, τY > 0. We find excellent agreement between
the computational results and the analytical solutions in each
case regardless of the choice of parameters (Fig. 6) and there-
fore verify the proposed CVFEM algorithm.

In the cases with constant friction stress and no yield
(tanφ > 0, τY = 0, Fig. 6a–d), the simulated final deposits
have constant surface slopes equal to the friction slope,
which is consistent with physical and computational mod-
els for sand piles (Kuster and Gremaud, 2006; Giudice et al.,
2019).

In the cases with only yield stress (tanφ = 0, τY > 0,
Fig. 6e–h), we obtain piles with mild slopes in the central
regions and steep slopes along the margins of the deposit, re-
sulting in toes that have a snout-like profile. This matches the
analytical solutions and models proposed by Coussot et al.
(1996) and Yuhi and Mei (2004) for slow mud flows (fluids
with a Bingham plastic rheology). By considering the yield
stress, it is therefore possible to reproduce the snout-like toes
observed along the margins of many debris flow, mud flow,
and snow avalanche deposits (Johnson, 1970; Pudasaini and
Hutter, 2007).

Finally, in the cases with both friction and yield stress
(tanφ > 0, τY > 0, Fig. 6i–l), we note that snout-like pro-
files are again obtained at the toes. Away from the toes, how-
ever, the deposit slope now tends toward a finite inclination,
controlled by the friction angle. Overall the results in Fig. 6
clearly demonstrate how the friction angle and yield stress
affect deposit shapes.

7.2 Influence of mesh geometry and size

By using triangular elements as building blocks, the CVFEM
model can be applied to either structured or unstructured
meshes. In Fig. 7, we show how model results are affected
by mesh geometry and size. For these calculations, we again
consider a simple test case in which material supplied at the
origin deposits over a horizontal substrate, under the com-
bined influence of friction angle and yield stress (tanφ > 0,
τY > 0). For these tests a prescribed volume of material is
supplied, by controlling the accumulated discharge supplied
at the source.

Three different meshes are considered: a structured mesh,
built from triangular elements laid out in a row-column pat-
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Figure 6. Comparison between computational and analytical solutions for different material parameters and geometries: (a, e, and i) radial
deposit profiles on a horizontal plane, (b, f, and j) radial deposit profiles on a conical basin, (c, g, and k) longitudinal deposit profiles on
an inclined plane, (d, h, and l) transverse deposit profiles on an inclined plane, (a–d) deposit with friction angle and no yield (tanφ = 0.15,
τY/(ρg)= 0m), (e–h) deposit with yield stress and no friction angle (tanφ = 0, τY/(ρg)= 0.01m), and (i–l) deposit with both friction angle
and yield stress (tanφ = 0.05, τY/(ρg)= 0.01m).

Figure 7. Mesh geometries (a–c) and calculated contours (d–f) for the deposition of a prescribed volume of material on a horizontal substrate:
(a, d) structured mesh, (b, e) unstructured mesh, and (c, f) fine unstructured mesh (8408 elements). The contours show deposit elevations
z̃= 0.1h,0.2h, . . .,0.9h.

tern (Fig. 7a); an unstructured mesh, constructed by the mesh
generation algorithm of Engwirda (2014) (Fig. 7b); and a
fine unstructured mesh, constructed by the same algorithm
(Fig. 7c). The corresponding model results are shown in

Fig. 7d–f, representing the calculated topography by eleva-
tion contours.

In Fig. 7d, clear directional errors can be seen when re-
sults are computed on the structured mesh. In this case, the
deposits contours visibly protrude along the x and y direc-
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Table 1. Influence of mesh size on model accuracy and computa-
tional time.

Avg. No. of (h−H )/h (R10max− Computational
element elements R10min)/r10 time [s]
size
[m]

0.265 526 0.063 0.092 0.092
0.132 2116 0.032 0.037 2.46
0.066 8612 0.020 0.012 46.5
0.033 33 986 0.011 0.007 1117.4

tions. Such errors can be reduced by using an unstructured
mesh (Fig. 7e) and by calculating on a finer grid (Fig. 7f).
By doing so, the calculated contours become closer to the
expected circular pattern.

By performing tests on progressively finer meshes, we can
also check the convergence of our CVFEM algorithm. For
this purpose, we consider two predictive measures to assess
grid convergence. The first is the normalized modeling error
(h−H )/h between the calculated deposit height H and the
analytical value h= 0.241m. Noting that even unstructured
meshes can introduce some bias (in particular when the mesh
is coarse), our second measure is the difference between the
maximum and minimum radii associated with the contour
z̃= 0.1h, normalized by the analytical value r10 = 1.628m.

In Table 1, we list these height and radius measures for
different mesh sizes, as characterized by the average length
of element edges and by the number of elements of the mesh.
As the mesh is refined, we see that both measures converge
to 0. In particular, the normalized modeling error (h−H )/h
clearly converges to the first order with respect to element
size. In Table 1, we also report the computational time in
seconds needed to run these simulations on an i5-9500 Intel
processor. We emphasize that the use of the dynamic time
step in our solution contributes significantly to its efficiency.
Preliminary versions of the code used a constant time step
selected by 1t = 0.251`2/ν∗. This approach produces the
same predictions as those reported here but requires over an
order of magnitude more CPU time.

8 Comparisons with field and laboratory data

To further test the model, in this section we present compar-
isons with field and laboratory data. Measured profiles for the
toes of debris flow deposits are first exploited to verify the ap-
plicability of the critical slope and Mohr–Coulomb model to
field cases. Comparisons with new laboratory experiments
are then made to check the ability of the CVFEM model
to predict the overall morphology of cohesive-frictional de-
posits. The calibration and CVFEM numerical model code
and input and output data discussed in this section are avail-
able in Chen et al. (2022).

8.1 Comparison with field profiles

Coussot et al. (1996) observed six natural debris flow de-
posits in the French Alps. By categorizing these deposits
by their fine fractions (ratio of particles whose diameter
is less than 40 µm to total solid volume), they found that
debris flow deposits with a low fine fractions (< 1 %), at
Bourgeat, Le Bez, and Ste-Elisabeth, exhibit nearly straight
profiles, whereas debris flow deposits with a high fine frac-
tions (10 %–15 %), at Les Sables, St-Julien, and Mont Guil-
laume, exhibit significant snout-like toes. Therefore, Coussot
et al. (1996) focused on the latter case to test their model in-
volving only the effect of yield stress. For each deposit with
a high fine fractions, they documented two profiles, frontal
and lateral, which they sought to fit by calibrating two pa-
rameters: the bed slope tanβ and the yield stress over specific
weight τY/(ρg). For each site, they calibrated these parame-
ters separately for the frontal and lateral profiles. The lengths
of the profiled deposits were in the range 2 to 15 m, and the
corresponding thicknesses were in the range 1.5 to 3 m.

Straight profiles, characterized by a constant slope, can be
reproduced in our model by setting the yield stress to zero
and the saturated friction slope tanφ equal to the deposit sur-
face slope. We therefore need to check whether our model
can reproduce also the snout-like profiles observed for the
case of high fine fractions. By taking both friction angle and
yield stress into account, we can test whether analytical pro-
files can reproduce the field profiles using only one set of
parameters per site. For this purpose, we assume that the
frontal and lateral profiles at the same site share the same ma-
terial properties (tanφ and τY/(ρg)). For the frontal profile,
we treat the substrate bed slope (tanβ) as unknown, while
for the lateral profile we assume that the bed slope is zero
(tanβ = 0).

To estimate the three parameters, we fit the analytical so-
lution given by Eq. (24) to the two measured profiles. As-
signing the measured toe position as the boundary condi-
tion (x0 = xtoe and H (x0)= 0), we obtain a predicted pro-
file for given values of the frontal substrate bed slope tanβ,
the saturated friction angle tanφ, and the ratio of yield stress
over specific weight τY/(ρg). Then, on minimizing the root-
mean-square error (RMSE) between predicted and measured
fan profiles we arrived at best-fit estimates for tanβ, tanφ
and τY/(ρg).

In Fig. 8, we compare the resulting profiles with the field
data, normalizing both axes by the length scale τY/(ρg).
From the figure, we see that our critical slope model based
on the Mohr–Coulomb constitutive law provides close fits
to the field observations in the cases of Les Sables (Fig. 8a
and b) and Mont Guillaume (Fig. 8e and f) and an accept-
able fit in the case of St-Julien (Fig. 8c and d). The ability
to use the same parameters (friction angle and yield stress)
to fit both frontal and lateral profiles indicates that, while it
is significant during the flowing stage, inertia may only play
a limited role in determining the final deposit morphologies.

https://doi.org/10.5194/esurf-11-325-2023 Earth Surf. Dynam., 11, 325–342, 2023



334 T.-Y. K. Chen et al.: A CVFEM model for predicting the morphology of debris flow deposits

Figure 8. Comparison of debris deposit profiles at three field
sites in the French Alps (Coussot et al., 1996) with analytical
profiles calculated using calibrated values for parameters tanβ,
tanφ, and τY/(ρg): (a, c, and e) frontal profiles, (b, d, and f) lat-
eral profiles, (a, b) Les Sables (tanβ = 0.136, tanφ = 0.069,
τY/(ρg)= 0.297m), (c, d) profiles for St-Julien (tanβ = 0.296,
tanφ = 0.262, τY/(ρg)= 0.432m), and (e, d) profiles for Mont
Guillaume (tanβ = 0.245, tanφ = 0.028, τY/(ρg)= 0.656m).

For the debris flow deposits in Les Sables and St-Julien, the
additional parameter (tanφ) plays an important role in deter-
mining the deposit morphology and provides the degree of
freedom needed to describe each pair of profiles for the same
site using the same set of parameters. For Mont Guillaume,
calibration produces a low value for the saturated friction an-
gle, indicating that the yield stress and bed slope are suffi-
cient to represent the deposit morphology. This may be due
to the high clay content at this site.

Depending on scale and material composition, either the
friction angle or the yield stress alone may be sufficient to
characterize certain debris deposits in the field. Both influ-
ences, however, must be considered for intermediate cases
and to encompass the range of possible behaviors in a single
description. However, other effects could also cause or con-
tribute to the formation of steep snouts in debris flows, this
could include, for example, pore pressure loss at the front
and margins (e.g., Iverson, 1997; Iverson and Vallance, 2001;
Savage and Iverson, 2003; Iverson et al., 2010; Gray, 2018)
and the frictional hysteresis of the angular sand particles
(e.g., Félix and Thomas, 2004; Mangeney et al., 2007; Ed-
wards et al., 2017; Rocha et al., 2019; Edwards et al., 2019).
These effects are not currently included in our model.

To go beyond transect comparisons, in the next section
we will use laboratory experiments to test the ability of
our CVFEM model to simulate the complete morphology of
cohesive-frictional deposits.

8.2 Experimental design and conditions

To investigate the morphology of cohesive-frictional deposits
in well-controlled conditions but more complex geometries,
we conducted new laboratory experiments at the Hydrotech
Research Institute of National Taiwan University. As illus-
trated in Fig. 9, these experiments were conducted in faceted
flumes assembled from beveled wood panels. Different from
alluvial fan experiments (Le Hooke and Rohrer, 1979; Whip-
ple et al., 1998; Delorme et al., 2018; Savi et al., 2020), which
involve water and cohesionless sediment, here the deposits
are built from mixtures of sand, kaolinite, and water, mixed
together thoroughly to behave as a cohesive-frictional mate-
rial. To produce varied deposits, controlled volumes of these
mixtures were supplied upstream of steep V-shaped canyons
and conveyed by these canyons to zones of milder topog-
raphy where they could spread, slow, and freeze in place.
Water-soluble dyes were added to distinguish the materials
supplied to different canyons. Finally laser scanning (Ni and
Capart, 2006; Lobkovsky et al., 2007) was used to acquire
high-resolution maps of the substrate and deposit topogra-
phy.

As illustrated by the photographs of Fig. 9d–f, the experi-
ments generate rather idealized deposits, which nevertheless
reproduce various features exhibited by debris flow deposits
in the field. These include steep snouts along lobe margins
and cusped weld lines where separate lobes come into con-
tact. Surface folds, indicative of viscoplastic behavior, can
be observed at various locations (see, for instance, the lobe
in the foreground of Fig. 9e), similar to the folds visible in
some areas of the field deposit shown in Fig. 1.

The following two series of tests were conducted: canyon–
plain experiments (T01–T04), using the geometry shown in
Fig. 9a, and canyon–valley experiments (T11–T15), using
the geometry shown in Fig. 9b. For the canyon–plain exper-
iments (runs T01–T04), two V-shaped canyons connect to a
wide U-shaped plain that has a planar floor and vertical walls.
The canyon thalwegs have an inclination of 18.8◦ relative
to the planar floors. The experiments were designed so that
the whole flume could be tilted away from horizontal, in the
longitudinal direction of the tributary channels. In each run,
a mixture of 61.4 wt% silica sand (d50 = 0.6mm), 8.8 wt%
kaolinite, and 29.8 wt% water was used to deposit a fan into
an initially empty and clean flume.

For run T01 the flume floor was horizontal, and two equal
volumes of mixture were poured simultaneously upstream of
the two canyons. For run T02 the inclination was the same,
but the volumes supplied to the two tributary channels TC1
and TC2 were in a ratio of 1 to 2. The continuous mass in-
put was arranged to start and end at the same time. Runs T03
and T04 were identical to run T02 apart from different flume
tilt angles, set to 3 and 6◦, respectively. For these runs, the to-
pography was scanned with the laser oriented perpendicular
to the canyons, and the resulting DEM data have a resolution
of 2 mm× 2 mm.
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Figure 9. Experimental setup and photos: (a) flume geometry for the canyon–plain experiments (T01–T04); (b) flume geometry for the
canyon–valley experiments (T11–T15); (c) initial conditions for runs T11–T14; (d–f) final deposits for runs T12, T13, and T14.

For the canyon–valley experiments (T11–T15), the flume
had a more complex configuration, illustrated in Fig. 9b.
Three V-shaped canyons, having thalweg inclinations equal
to 14◦, connect at right angles to a wide trapezoidal chan-
nel of longitudinal inclination equal to 3◦. Two of the
canyons (TC1 and TC2) connect on the right side, and one
connects on the left side (TC3) slightly downstream. In all
runs the initial state of the canyon was clean wood, but the
main channel was covered by a 2 cm thick layer of unconsol-
idated silica sand (d50 = 0.6mm). For run T11 a controlled
volume of mixture was supplied to tributary TC1 only. For
run T12 different volumes were supplied simultaneously to
tributaries TC1 and TC2 and arranged to start and end at the
same times. For run T13 different volumes were supplied to
tributaries TC1 and TC3, and for run T14 different volumes
were supplied simultaneously to all three tributaries.

For run T15, deposits were formed in three separate stages.
In the first stage, deposits were formed as in run T13 by
supplying different volumes to tributaries TC1 and TC3. In
the second stage, a constant water discharge was supplied to

the main channel for 20 min, eroding the first-stage deposits.
The resulting topography was scanned to provide initial con-
ditions for the third stage, in which new volumes of mate-
rial were supplied to tributaries TC1 and TC3. This provides
an opportunity to examine the formation of fresh deposits
onto a preexisting deposit surface. For all canyon–valley ex-
periments, the topography was scanned with the laser ori-
ented orthogonal to the main channel and parallel to the
canyons, and the resulting DEM data have a resolution of
5 mm× 5 mm.

In Table 2, we present the range of parameter values cov-
ered by the laboratory experiments (runs T11–T15) and com-
pare them to typical values for natural debris flows (Iverson,
1997; Zhou and Ng, 2010). From the table, we can see that
the experiments exhibit smaller Froude and Reynolds num-
bers; hence, inertia effects are smaller in the experiments
than in field cases. Nevertheless, the Bagnold number (ratio
between collisional and viscous forces), the Savage number
(ratio between collisional and frictional forces), and friction
number (ratio between frictional and viscous forces) in the
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Table 2. Parameter ranges in the laboratory experiments (T11–T15) and in documented field cases.

Parameter Symbol Unit Definition Range in T11–T15 Range in field cases∗

Volumetric solid fraction in mixture νs – 0.412 0.3–0.72
Volumetric fine fraction in interstitial fluid νfine – 0.100 0.02–0.12
Solid density (silica sand and kaolinite) ρs kgm−3 2650 2500–3000
Interstitial fluid (kaolinite+water) density ρf kgm−3 ρsνfine+ ρw(1− νfine) 1160 1030–1200
Characteristic grain size δ m δ ≈ d50 0.0006 0.001–0.005
Mean deposit thickness H m 0.01–0.02 1–20
Average front velocity u ms−1 0.015–0.02 10–20
Flow front shear rate γ̇ 1s−1 u/H 0.75–2 1–20
Interstitial fluid viscosity µ Pa s 0.015–0.46∗∗ 0.001–0.5
Froude number Fr – u/

√
gH 0.034–0.064 1.4–3.2

Reynolds number NRey – ρuH/µ 0.5–47 103–108

Bagnold number NBag – νsρsδ
2γ̇ /((1− νs)µ) 0.0011–0.1 0.002–20

Savage number NSav – γ̇ 2ρsδ
2/((ρs− ρf)(gH tanφs )) 3× 10−6–4× 10−5 1× 10−7–5× 10−2

Friction number NFric – NBag/NSav 2× 102–3× 104 1× 100–4× 105

∗ The parameter ranges in documented field cases are collected or calculated from the data of Iverson (1997) and Zhou and Ng (2010). ∗∗ Viscosity for the experimental interstitial fluid is
estimated from a set of viscometer measurements.

experiments are within the range of values encountered for
natural debris flows.

In the next sections, the data from these different experi-
ments will be used to calibrate model parameters and com-
pare CVFEM simulation results with the topography mea-
surements acquired in each case.

8.3 Comparison with canyon–plain experiments

To apply the CVFEM method to the canyon–plain experi-
ments (runs T01–T04), we first determine model parameters
from longitudinal deposit profiles, measured along the cen-
terlines of the deposits from each canyon (see example pro-
file locations in Fig. 10a). The calibration method used is
the same as the one applied to the field profiles, except that
the substrate slope tanβ is known from the flume geome-
try; hence, only the material parameters tanφ and τY/(ρg)
remain to be determined. For this set of experiments, some
variability in material properties was caused by uncontrolled
variations in moisture in the kaolinite. For this reason, we
use all eight of the available measured profiles together to
estimate a pair of parameters that best fit the whole series of
experiments. The resulting estimates are tanφ = 0.063 and
τY/(ρg)= 0.115cm.

Initial and boundary conditions are set up as follows. An
unstructured mesh of average element size 1`= 4mm is
generated over the problem domain. The flume topography
measured before each experiment is then used to set the sub-
strate and initial surface elevations zb(x,y) and z̃(x,y,0). To
input the deposits, constant discharge sources are placed at
the vertices closest to the upstream ends of the two channel
thalwegs (x,y)= (0,10) cm and (x,y)= (0,34.8) cm, respec-
tively. The rates of these discharges are set to ensure that at
the end of the chosen simulation time the volumes supplied
match the measured experimental volumes for each source.

In Fig. 10, we compare simulation results with the exper-
imental measurements for the four runs T01–T04. Qualita-
tively and quantitatively, the simulations are found to predict
the measured topography of the deposits reasonably well. As
indicated by the contours, both the simulations and experi-
ments produce steep snouts along lobe margins, well-defined
cusps along weld lines, where two lobes come into contact,
and saddle points along these same weld lines.

In planform (Fig. 10a–h), the model is able to reproduce
the outer boundaries of the deposits well, both along the steep
canyon and valley sides and over the mildly inclined floor.
This agreement holds for both the symmetric (equal volumes
supplied to the two canyons) and asymmetric cases (unequal
volumes). The model also reproduces the gradual elongation
of the deposit lobes as the flume inclination is increased.

In profile (Fig. 10i–l), model results also compare well
with the measurements. The model is able to capture the
observed deposit slope variations, from steep upstream of
the canyons, to mild over the thick lobes, and back to steep
snouts at the downstream toes. In both the simulations and
experiments, the deposits become gradually shallower as the
flume slope is increased.

Nevertheless, there are some discrepancies between the
CVFEM model and the experiments. Within the canyons and
at canyon outlets, the model produces narrower and shal-
lower deposits than the experimental results. This could be
due to the geometrical simplifications used to derive the crit-
ical slope model, in which the basal substrate was assumed
approximately parallel to the surface. There are also some
mismatches in planform length and width, possibly due to
the previously mentioned moisture variations between runs.
This is especially notable for the distal parts of run T04.

Earth Surf. Dynam., 11, 325–342, 2023 https://doi.org/10.5194/esurf-11-325-2023



T.-Y. K. Chen et al.: A CVFEM model for predicting the morphology of debris flow deposits 337

Figure 10. Comparison of measured and simulated deposit topographies for the canyon–plain experiments. Left to right, the columns show
runs T01, T02, T03, and T04, corresponding to flume inclinations of 0, 0, 3, and 6◦, respectively: (a–d) experimental results, (e–h) CVFEM
simulations, (i–l) longitudinal profiles for transects y = 10cm (black) and y = 34.8cm (gray) along the centerlines of the deposits. Contours
are at intervals of 1z= 0.2cm.

8.4 Comparison with canyon–valley experiments

For the canyon–valley experiments (T11–T15), the moisture
was better controlled; hence, the material composition was
more nearly identical for all runs. We can therefore use the
longitudinal profile for the single deposit produced in run
T11 (red line in Fig. 11a) to calibrate the parameters for
all cases. The resulting estimates for the material parame-
ters, tanφ = 0.118 and τY/(ρg)= 0.344cm, are used for all
CVFEM simulations of this series.

To simulate these runs, we use an unstructured mesh of
average element size 1`= 5mm. Like before, for each case
we obtain the initial condition by sampling the measured pre-
event topography at the mesh nodes. For runs T11–T14, we
prescribe point sources of constant discharge at the vertices
where canyon thalwegs intersect the domain boundaries (red
points in Fig. 11). For run T15, the deposits partly buried the
canyons; hence, line sources are used instead at cross sec-
tions along the domain boundary (red lines in Fig. 11j). The
discharge for these various sources are again set to match the
volumes of the individual deposits.

To compare measured and simulated results, topographic
contours and deposit thickness maps for the different cases
are presented in Fig. 11. Overall, good agreement is observed
between the CVFEM simulations and the experiments. Be-
cause the main channel dips to the left, the deposit lobes ac-

quire an asymmetric, distorted shape, which is well repro-
duced by the simulations. In both the experiments and the
simulations, steep snouts are produced along the outer and
side margins of the deposits, where they connect with the
valley bed and sides. For runs T12 to T14, the weld lines
obtained where different lobes come into contact are also ac-
curately predicted. Using a single set of material parameters,
the simulations also reproduce the deposit thickness distribu-
tions obtained in the different experiments well.

Similar to the canyon–plain experiments, some discrepan-
cies are nevertheless observed between the simulations and
experiments. The simulated fans are slightly wider (x direc-
tion) and shorter (y direction) than their experimental coun-
terparts. This could be due to momentum, neglected in our
CVFEM model, allowing the experimental mixture to flow
out further in the canyon direction.

Finally, the T15 experiment (Fig. 11i and j) allows us to
test our model for the case of fresh deposits onto a preexist-
ing deposit of complex shape. This case is similar to the 2009
Xinfa debris flow shown in Fig. 1, where the inundation of
houses suggests a flow of around 2–3 m deep occurring on a
much larger (around 40 m tall) preexisting debris flow fan.
We see that the experimental deposit exhibits similar fea-
tures to the Xinfa debris flow deposits, in particular the well-
defined snouts of the secondary deposits on top of the pre-
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Figure 11. Comparison of measured (left) and simulated (right) deposit topographies for the canyon–valley experiments: (a, b) run T11,
(c, d) run T12, (e, f) run T13, (g, h) run T14, and (i, j) run T15. Lines show the elevation contours at intervals of 1z= 0.5cm.

existing deposit. In the experiments, the earlier deposit may
deform slightly due to the new deposition, but we neglect this
complication and take it as a new rigid boundary in the sim-
ulations. For this challenging case, the CVFEM model again
provides an excellent overall prediction of the thickness, ex-
tent, and morphology of the secondary deposits. In both the
experiments and simulations, the fresh deposits do not com-
pletely cover the preexisting lobes. The fresh material stops
over these lobes at some locations, flowing further at other
locations to form new secondary lobes. The corresponding
margins again feature well-defined snouts.

9 Conclusions

In this paper, we proposed a novel computational model to
simulate the morphology of debris flow deposits. The nu-
merical algorithm uses the control volume finite-element
method (CVFEM) to discretely approximate fluxes over a
finite-element mesh and explicitly enforce mass balance over
prescribed control volumes. Unlike fluvial and mud flow de-
posits, debris flow deposits are affected by both cohesion
and friction. To set the critical slope at which flow starts or
stops, we therefore adopted a Mohr–Coulomb criterion that
includes both a yield stress and a friction angle.

We verified the CVFEM algorithm by comparing compu-
tational results to analytical solutions in idealized cases, ob-
taining excellent agreement. Comparisons with field profiles
were then performed to check that our critical slope model
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based on the Mohr–Coulomb relation can reproduce the key
features of debris flow deposits. For deposits characterized
by a high fine fraction, the inclusion of a yield stress allows
our model to reproduce the blunted snouts observed at de-
posit toes. Accounting for a friction angle, on the other hand,
allows our model to match the trailing slope observed away
from the toes and makes the model also applicable to deposits
with a low fine fraction, which feature more even slopes.

Finally, comparisons with new laboratory experiments
were conducted to test the ability of our CVFEM model to
predict the extent, thickness, and morphology of cohesive-
frictional deposits in more complex geometries. The con-
ditions considered include supply by single and multiple
sources, and deposition over faceted substrates and preexist-
ing deposits. Using material parameters calibrated from one
or more transects, the model is found to reproduce the mea-
sured topography well in all cases. Deposit features captured
accurately by the model include steep snouts along the mar-
gins of primary and secondary lobes and cusped weld lines
where different lobes come into contact.

Although good agreement was obtained for the different
comparisons, we do recognize some possible limitations.
First, the model cannot simulate the dynamic evolution of
debris flows, since it is only designed for computing the
quasi-static morphology of debris flow deposits and relies
on a hypothetical diffusivity and pseudo time steps. Sec-
ond, the model neglects flow momentum and basal erosion;
hence, it does not apply to rapid or erosive debris flows (Ar-
manini et al., 2005). Besides, as noted above, the model does
not include other effects that may lead to the formations of
snouts and channel levees, such as pore pressure loss and
frictional hysteresis. Likewise, it does not account for the
thixotropic behavior whereby deposits gradually solidify to
form a new substrate for fresh deposits (Murata, 1984; Rous-
sel, 2006). Finally, our model and experiments do not include
processes like channel formation, migration, and avulsion
that also affect the evolution over time of debris and allu-
vial fans (Le Hooke and Rohrer, 1979; Whipple et al., 1998;
Delorme et al., 2018; Savi et al., 2020).

Despite these current limitations, we have shown that a
critical slope model accounting for yield stress and friction
angle can simulate deposit morphology with excellent effi-
ciency using dynamic time steps. Aside from computation
time, another key consideration is the work involved in cali-
brating model parameters. In this regard, an important advan-
tage of our proposed simple model is that its parameters can
be calibrated directly from topography profile data. As done
in the paper for the experimental cases, all model parame-
ters can be acquired from a single long profile through ob-
served deposits. It is therefore not necessary to run the three-
dimensional model multiple times to adjust model parame-
ters by trial and error. More complex models, by contrast,
typically require multiple iterations or must rely on other
sampling and material analysis to acquire parameter val-
ues. The model can easily calibrate parameters for a broader

range of conditions than has been considered previously. To
simulate such deposits in complex geometries, moreover, the
control volume finite-element method (CVFEM) was found
to provide a promising numerical approach and could pos-
sibly be extended in the future to more general processes or
other geomorphic systems.

Code and data availability. The MATLAB codes of the
CVFEM model and parameter calibrations, input data (ex-
perimental pre-event and post-event topography data), and
model output data are available at Chen et al. (2022),
https://doi.org/10.5281/zenodo.7324739.

The algorithm for constructing unstructured mesh used in this
paper is an open-access MATLAB package built by Engwirda (En-
gwirda, 2014) available at https://github.com/dengwirda/mesh2d
(Engworda, 2019).

The algorithms for linearly interpolating triangulation and
plotting contours for triangular mesh used in this paper are
open-access MATLAB codes built by Hanselman (Hanselman,
2021a, b) available at https://www.mathworks.com/matlabcentral/
fileexchange/38925-linearly-interpolate-triangulation and
https://www.mathworks.com/matlabcentral/fileexchange/
38858-contour-plot-for-scattered-data.
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