



## Supplement of

## **Revealing the relation between spatial patterns of rainfall return levels and landslide density**

Slim Mtibaa and Haruka Tsunetaka

Correspondence to: Slim Mtibaa (mtibaaslim@ffpri.affrc.go.jp)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1: Non-cumulative (gray histogram) and cumulative (black line) frequency distribution of landslide angle





Figure S2: Rainfall intensity maxima for multiple timespans (1-72 h) within the P<sub>std</sub> for the different R/A grid cells (excluding three R/A grid cells where landslide occurrence was deemed to be affected by anthropogenic activities).



Examined R/A grid cells (referred to as TD in landslides/km<sup>2</sup>)



Figure S3: Distribution of local slopes within  $A_{threshold}$  of the R/A grid cells. Note that the distributions are shown as box-and-whisker plots. The box delimitates the 25<sup>th</sup> and 75<sup>th</sup> percentiles. The black line indicates the median. The red cross '+' displays the mean. The circles 'o' designate the outliers.



Figure S4: Spatial distribution maps of *p-values* resulted from the Kolmogorov-Smirnov test



Figure S5: Estimated rainfall intensities for 5-year return period





Figure S6: Estimated rainfall intensities for 10-year return period



Figure S7: Estimated rainfall intensities for 25-year return period



Figure S8: Estimated rainfall intensities for 50-year return period



Figure S9: Estimated rainfall intensities for 100-year return period



Figure S10: Spatial distribution maps of *p-values* resulted from the Mann-Kendall test



35 Figure S11: Spatial distribution maps of Sen's slope





Figure S12: IDF curves and rainfall intensity maxima for multiple timespans (1 - 72 h) within the P<sub>std</sub> for the different R/A grid cells (excluding three R/A grid cells where landslide occurrence was deemed to be affected by anthropogenic activities).



Figure S13: Variation of the 100-year rainfall anomaly at multiple timespans over the R/A grid cells with low (a) and high landslide density (b) (excluding three R/A grid cells where landslide occurrence was deemed to be affected by anthropogenic activities).

Table S1. Adjusted *p-values* from multiple pairwise comparisons of slope distributions within  $A_{threshold}$  using the Dunn's test. The analysis expected three R/A grid cells, where most landslides occurred in areas affected by anthropogenic activities (e.g., slopes surrounding cropland and paddy field). The null hypothesis assumes no significant differences in slope distributions. A *p-value* higher than a significant level of 5 % leads to accept the null hypothesis. The test was applied after rejecting the null hypothesis of the Kruskal-Wallis static, which indicated significant differences in slope distributions within  $A_{threshold}$  of the R/A grid cells.

| TD     | 0.05 | 0.38 | 0.8  | 1.04 | 1.22 | 4.51 | 2.81 | 1.47 | 1.97 | 3.75 | 4.87 | 5.91 | 5.45 | 5.68 | 9.77 | 20.91 | 25.26 | 35.61 | 105.63 | 103.88 |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|--------|--------|
| 0.05   | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 0.38   | 0.00 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 0.8    | 0.00 | 1.00 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 1.04   | 1.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 1.22   | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 4.51   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 2.81   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |      |      |       |       |       |        |        |
| 1.47   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |      |       |       |       |        |        |
| 1.97   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |      |       |       |       |        |        |
| 3.75   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |      |       |       |       |        |        |
| 4.87   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |      |       |       |       |        |        |
| 5.91   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |      |       |       |       |        |        |
| 5.45   | 0.00 | 0.01 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |      |       |       |       |        |        |
| 5.68   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |       |       |       |        |        |
| 9.77   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |       |       |       |        |        |
| 20.91  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00  |       |       |        |        |
| 25.26  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 1.00  |       |        |        |
| 35.61  | 1.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 1.00  |        |        |
| 105.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 1.00   |        |
| 103.88 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 1.00   |

| Duration (h) | 1    | 2    | 3    | 6    | 12 | 24 | 48 | 72 |
|--------------|------|------|------|------|----|----|----|----|
| 1            | 1    |      |      |      |    |    |    |    |
| 2            | 0.97 | 1    |      |      |    |    |    |    |
| 3            | 0.93 | 0.93 | 1    |      |    |    |    |    |
| 6            | 0.83 | 0.86 | 0.94 | 1    |    |    |    |    |
| 12           | 0.71 | 0.74 | 0.85 | 0.96 | 1  |    |    |    |
| 24           | 0.71 | 0.73 | 0.85 | 0.96 | 1  | 1  |    |    |
| 48           | 0.70 | 0.72 | 0.84 | 0.95 | 1  | 1  | 1  |    |
| 72           | 0.71 | 0.74 | 0.84 | 0.96 | 1  | 1  | 1  | 1  |

Table S2: Spearman rank correlations between rainfall intensity maxima