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Abstract. It is known that the spatial rainfall pattern can mark landslide distribution across the landscape dur-
ing extreme triggering events. However, the current knowledge of rainfall controls on this distribution remains
limited. Here, to reveal what rainfall characteristics control landslide spatial distribution, we explore the spa-
tiotemporal pattern of a rainfall event that triggered over 7500 landslides (area ~ 10°—10* m?) at a regional scale
with an area of 2 400 km? in Japan. Using a 5 km resolution radar-driven and gauge-adjusted hourly precipita-
tion dataset with 32 years of records, we compared rainfall return levels for various time ranges from 1 to 72h
and landslide density in each grid cell of the precipitation dataset (= 25 km?). The results show that, even if local
slope distributions within the grid cells are comparable, the number of landslides in a &~ 25km? grid cell was
substantially high when rainfall return levels exceeded the 100-year return period in all examined timespans (i.e.,
1-72h). In contrast, when only specific-duration rainfall intensities (e.g., 648 h) exceeded the 100-year return
level, the landslide density in corresponding grid cells tended to be low. Consequently, the landslide density
increased with the increase in rainfall return levels of various timespans rather than a specific rainfall intensity,
such as downpours for a few hours or long-term cumulative rainfall for several days. Moreover, with the increase
in the landslide density, the number of relatively large landslides exceeding & 400 m? increased. Therefore, the
spatial differences in rainfall return levels potentially constrain the density of total landsliding and relatively
large landslides. In this sense, whether rainfall intensities reach high return levels rarely experienced in a wide
timespan ranging from a few hours to several days is one of the key determinants of the spatial distribution of
landslides and the extent of related hazards.

gered landslides (Medwedeff et al., 2020; Milledge et al.,

Landslides are natural geomorphic processes driving long-
term landscape evolution (Korup et al., 2010), which may
impose substantial changes in hillslope and fluvial systems
and significant human and economic losses (Froude and Pet-
ley, 2018; Jones et al., 2021). Rainfall is the most common
trigger of landslides (Sidle and Bogaard, 2016). Although
rainfall may provoke individual landslides with localized im-
pacts, large-scale extreme rainfall events often induce numer-
ous landslides widely spread over the landscape (Emberson
et al., 2022). In such cases, landslide impacts span the spatial
extent of the triggering event, and their significance depends
on the location and magnitude (i.e., number and size) of trig-

2014; Benda and Dunne, 1997). Therefore, revealing rain-
fall controls on landslide spatial distribution through inves-
tigating the relationship between rainfall and landsliding is
fundamental for assessing landscape changes and supporting
hazard prediction efforts.

A well-established method for linking landslide occur-
rence to rainfall or hydrological characteristics (e.g., inten-
sity, duration, soil moisture) is the use of rainfall thresholds
(Guzzetti et al., 2008; Caine, 1980; Saito et al., 2010) and re-
cently hydro-meteorological thresholds (Bogaard and Greco,
2018). These empirical thresholds offer a straightforward
way to predict whether landslides will occur in the future.
However, they cannot quantify the magnitude of landslides.
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Therefore, multiple studies attempted to constrain quantita-
tive spatial relationships between landslide distribution, of-
ten described as density (e.g., number per km? or area per
km?), and dynamic explanatory variables that provide prox-
ies for the critical rainfall conditions triggering landslides.
Typically, these studies aimed at identifying the key rainfall
variable(s) that drive landsliding by relying upon regression
analysis and specific landslide records (i.e., a catalog of indi-
vidual landslide information; e.g., Gao et al., 2018, detailed
landslide inventories triggered by single or multiple rainfall
events; e.g., Marc et al., 2018; Chang et al., 2008).

So far, we still lack information on the best rainfall vari-
able(s) constraining the landslide spatial pattern during rain-
fall events. Some works showed increased landslide density
with the increase in total rainfall amount, rainfall duration,
the maximum rainfall amount for short durations (e.g., 3, 12,
24 h), or antecedent rainfall (Marc et al., 2018; Chen et al.,
2013; Chang et al., 2008; Dai and Lee, 2001; Abanco et al.,
2021). Other studies demonstrated that normalized rainfall
amounts for specific timespans (e.g., 2, 24, 48 h) by the mean
annual precipitation (Ko and Lo, 2016) or the 10-year return
period rainfall amount (Marc et al., 2019), which explain the
landscape coevolution with local climate (Benda and Dunne,
1997; Tida, 1999), are better predictors of landsliding.

On the other hand, these statistical relationships allow the
development of rainfall-based empirical models for predict-
ing the number of landslides likely to be triggered by future
rainfall events (e.g., Chang et al., 2008). However, their de-
velopment and extrapolation to other regions are challenging.
Constraining any spatial relationship requires comprehensive
landslide inventories that contain sufficient landslides for an
adequate statistical analysis. However, this need is extremely
difficult to fulfill (Marc et al., 2018; Emberson et al., 2022).
Furthermore, the constrained quantitative relationships are
very sensitive to the landslide records and the characteristics
of respective triggering rainfall events used in the statistical
analysis. Therefore, they are case-specific and cannot always
be extrapolated to predict the number of landslides likely to
be triggered by future rainfall events, even in the same region
(e.g., Gao et al., 2018).

For a given rainfall event, the return period of any rain-
fall episode with specific duration and intensity can be as-
sessed using the intensity—duration—frequency (IDF) curves,
which are equipotential lines of probabilities linking rainfall
durations and maximum intensities from long-term records
(Chow et al., 1988). This information can potentially evalu-
ate whether a rainfall event is likely to cause landslides as a
high rainfall return level (i.e., rare rainfall event) is generally
considered a proxy for the critical rainfall conditions trig-
gering landslides (Frattini et al., 2009; Griffiths et al., 2009;
Segoni et al., 2014, 2015; Tida, 2004). Several studies showed
the usefulness of considering rainfall return levels to indi-
rectly evaluate the potential of a forecast rainfall to trigger
landslides without the need for historical landslide records in
the targeted region (e.g., Kim et al., 2021; Tsunetaka, 2021;
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Vaz et al., 2018). Still, the potential relation between the spa-
tial patterns of rainfall return levels and landsliding remains
unrevealed.

Clearly, rainfall controls on landslide spatial distribution
differ depending on rainfall characteristics and local terrain
settings (e.g., Bogaard and Greco, 2018). Even during the
same triggering rainfall event, multiple inventories showed
discrepancies in landslide occurrence timing and geometric
features (e.g., area, volume, and depth) at the catchment (Ya-
madaetal., 2012; Yano et al., 2019; Guzzetti et al., 2004) and
hillslope scales (Biischelberger et al., 2022). This suggests
that landslides are triggered by disparate rainfall timespans
due to different hydromechanical responses of hillslopes to
forcing rainfall. If so, then it is reasonable to hypothesize that
landsliding can be constrained by the return levels of multiple
rainfall timespans. This study focused on an extreme rainfall
event that triggered over 7500 landslides in an area of around
400 km? in the northern part of the Kyushu region in south-
ern Japan to investigate whether spatial patterns of rainfall re-
turn levels govern landslide density. Using a gridded rainfall
dataset with a & 5 km resolution, we compared rainfall return
levels for various time ranges from 1 to 72h and landslide
density in each &~z 25 km? grid cell to investigate whether the
landslide density increase in grid cells where rainfall intensi-
ties reach high return levels that are rarely experienced. The
present research is expected to provide insights into what
rainfall characteristics control landslide spatial distribution
and when rainfall may cause high landslide density. Thus, it
can have promising implications for supporting hazard pre-
diction efforts and understanding landscape evolution.

2 Material and methods

2.1 Study site and landslide characteristics

The study focuses on an area of around 400 km? in the north-
ern part of the Kyushu region in southern Japan (Fig. 1a). The
examined area experienced an extreme rainfall event on 5 and
6 July 2017, caused by a linear mesoscale convective system
(Hirockawa et al., 2020), that triggered over 7500 landslides
(Fig. 1a).

If the landslides occurred in a homogeneous regolith,
which reduces the likelihood of their link to complex
geotechnical site characteristics (Marc et al., 2019), the inter-
pretation of the potential rainfall controls on landslide occur-
rence would be possible. Indeed, most landslides triggered
by the examined rainfall event were shallow, affected mainly
the soil mantle, and occurred on forested hillslopes with sim-
ilar lithological settings (granodiorite and pelitic schist) (Chi-
gira et al., 2018). Accordingly, previous investigations of the
importance of multiple predisposing factors (e.g., rainfall,
slope, elevation, land cover) in the occurrence of these land-
slides using machine learning methods showed the outweigh-
ing of rainfall conditions on the other predisposing factors
(Dou et al., 2020; Ozturk et al., 2021). Thus, the examined
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Figure 1. (a) Cumulative rainfall for 5 and 6 July 2017 (> 50 mm) and location of triggered landslides (black polygons in the inset figure).
(b) Distribution of the landslides (black polygons) over the slope map of the affected region.

area provides an adequate test field to investigate the rain-
fall controls on landslide density because at least the land
cover and lithological settings of hillslopes can be deemed
relatively homogenous.

Our research relied on the landslide inventory prepared by
the Ministry of Land, Infrastructure, Transport, and Tourism
of Japan from orthophotos of 0.1 m resolution and digital el-
evation models (DEMs) of 1 m resolution acquired by air-
borne laser scanning in July 2017 (i.e., immediately after
the landslide occurrence). The mapping method of land-
slide scars involves three steps. The first step identifies bare
land hillslopes as landslides and delineates them manually
from the orthophotos. The second step rectifies the delineated
landslide scars using DEM data acquired after the disaster
and maps them as polygons. The third step compares these
polygons to satellite and aerial images dated before July 2017
to exclude landslides that formerly occurred in the region.
The inventory counts 7676 polygons identifying widespread
landslides in the examined area (Fig. 1b). These polygons
represent only landslide source areas (scars) and omit runout
zones.

We investigated landslide size characteristics by examin-
ing the frequency—area distribution (FAD), which plots land-
slide sizes (i.e., measures of the area) with corresponding
frequencies (Malamud et al., 2004). The FAD can deter-
mine whether the landslide inventory follows the fundamen-
tal property of landslides (Hovius et al., 1997). For the land-
slide inventory this study relied on, the FAD exhibited a
rollover (i.e., the peak point of the distribution) at around
102 m?, below which the frequency of small landslides de-
creases, and a cutoff point of 439 m? (Fig. 2), which was
derived using the method of Clauset et al. (2009). The fre-
quency distribution of landslides with area size exceeding

https://doi.org/10.5194/esurf-11-461-2023

10

-2

10

-2

Frequency density (m )

107

10

-5

10

)

(m’

439

-6

10

| __Cutoff =439

-7

10

10’

107

10°

4

° 10

10

Landslide area (mz)

Figure 2. Non-cumulative frequency—area distribution of the land-
slide inventory.

the cutoff (area > 439 mz), which accounted for 28.12 % of
the total inventory and referred to, hereafter, as medium
and large landslides, fitted a power-law function with the
scaling parameter (8) of 2.26. This exponent is within the
typical range of 2-3 derived by other landslide inventories
(e.g., Guzzetti et al., 2002; Marc et al., 2018) and suggests
that the small landslides were more frequent than medium
and large landslides (area > cutoff point of 439 m?) during
the studied event. Accordingly, it is important to note that
the landslide inventory follows the fundamental properties
of landslides, as the FAD can fit an inverse gamma distri-

Earth Surf. Dynam., 11, 461-474, 2023



464 S. Mtibaa and H. Tsunetaka: Linking landslide density to rainfall return levels

bution with a right tail that decays as a power law (Stark
and Hovius, 2001). Considering the high resolution of DEM
and orthophotos used for constructing the examined land-
slide inventory, which is significantly lower than the cutoff
point and allowed capturing the geometric features of land-
slides with size on the order of 0.02m2, it is evident that
the observed divergence was due to physical processes rather
than under-sampling of small landslides (Frattini and Crosta,
2013; Medwedeft et al., 2020).

Additionally, we quantified landslide angles as the me-
dian slope at landslide scars derived from the analysis of a
10 m resolution DEM, which was developed by the Geospa-
tial Information Authority of Japan (GSI) from 1 : 25000-
scale topographic maps dated before the disaster (Fig. 1b).
For landslides with an area smaller than 100 m? (i.e., DEM
pixel size), the slope value of the pixel was taken as landslide
angle. The landslide angles ranged between 0.45 and 51.03°
(median = 27.20°). More than 90 % of the triggered land-
slides were associated with hillslopes of more than 16.26°
slope (Fig. S1 in the Supplement).

2.2 Rainfall data and processing methods
2.2.1 Rainfall data

We employed the radar/rain gauge-analyzed (R/A) precipi-
tation dataset to examine the spatiotemporal pattern of the
triggering rainfall and derive the return levels of rainfall in-
tensities for multiple timespans in the intensity—duration—
frequency (IDF) curves. The R/A dataset is a gridded hourly
precipitation product developed by the Japan Meteorologi-
cal Agency (JMA) based on 5-minutely reflected echo inten-
sities and Doppler velocities of 46 C-band radars (Nagata,
2011). The processing algorithm of this product includes
three steps. First, accumulated radar echo intensity data were
processed by a quality control algorithm for correcting pre-
cipitation observation errors attributed to various meteoro-
logical, topographic, and technical factors (e.g., beam block-
age, ground clutter, anomalous beam propagation, and range
effects) (Makihara, 2000). Subsequently, the hourly accu-
mulated corrected radar data were adjusted to rainfall mea-
surements obtained from local rain gauges to produce ac-
curate quantitative precipitation estimates (QPEs). Finally,
the calibrated QPEs from the 46 radars were processed and
assembled to derive nationwide hourly precipitation maps
that compose the R/A product (Makihara, 2000; Nagata,
2011). This correction and processing scheme made the R/A
dataset the most reliable long-term precipitation data over the
Japanese archipelago. Accordingly, it has often been used as
referential data for analyzing localized heavy rainfall (e.g.,
Kato, 2020; Hirockawa et al., 2020; Saito and Matsuyama,
2015), evaluating precipitation forecasts and estimates (e.g.,
Kubota et al., 2009; Iida et al., 2006; Yin et al., 2022), and
constraining empirical relationships between rainfall infor-
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mation and landslide occurrence (e.g., Saito et al., 2010;
Marc et al., 2019; Ozturk et al., 2021).

In this study, we relied on the R/A data for 1988-2019.
The product provides hourly adjusted rainfall estimates with
a spatial resolution of ~ 5 km (1988-2001), ~ 2.5 km (2002—
2005), and ~ 1 km (from 2006) (Mtibaa and Asano, 2022).
Therefore, for homogeneity reasons, we downscaled the data
from 2002 to =~ Skm spatial resolution (same as the res-
olution of the 1988-2001 dataset) using the method rec-
ommended by Nagata and Tsujimura (2006). We selected
this method because it produced homogenous maximum
hourly and daily rainfall time series based on the homo-
geneity tests applied by Urita et al. (2011) and Saito and
Matsuyama (2015). It spatially averages the 1 km product to
2.5 km spatial resolution and downscales the 2.5 km product
to 5 km spatial resolution by selecting the maximum value of
the four 2.5km grid cells. Although the downscaling stage
degrades the spatial details of rainfall events, it is unavoid-
able in this study due to the requirement of long-term rain-
fall data in investigating rainfall return levels. Still, the down-
scaled R/A dataset (i.e., 5 km resolution) can capture spatial
rainfall patterns over the examined region as it could suffi-
ciently resolve mesoscale convective systems that resulted in
most heavy rainfall events in Japan (Hirockawa et al., 2020).

2.2.2 Rainfall processing methods

As stressed in the Introduction, owing to the hillslope-scale
variation in the effective rainfall needed for triggering land-
slides, using multiple rainfall durations is crucial for elu-
cidating the relation between the potential of these rainfall
timespans to trigger landslides and the spatial pattern of land-
slide density. Because the correct timing of respective land-
slide occurrence is unknown and probably different within
each grid cell of the R/A precipitation dataset, setting a stan-
dardized rainfall period covering a combination of disparate
rainfall timespans from short to long duration deemed re-
sponsible for triggering landslides is required for compar-
isons between spatial distributions of rainfall and landslide
density. In this study, the 72 h that accumulated the maximum
rainfall during the examined rainfall event was used as the
standardized rainfall period (Pgq), as suggested by Tsune-
taka (2021). We assumed that the various landslides experi-
enced in our study area occurred within this period. This as-
sumption was based on the fact that the studied event brought
unprecedented rainfall amount that outweighs the possible
effects of antecedent rainfall on landslide occurrence (Marc
et al., 2019; Guthrie and Evans, 2004). The temporal rainfall
pattern was subsequently examined by computing the maxi-
mum rainfall intensity (rainfall intensity maxima) for multi-
ple timespans (1, 2, 3, 6, 12, 24, 48, and 72 h) within the Pgq
for all R/A grid cells.

To investigate the return levels (i.e., recurrence levels) of
these rainfall intensity maxima, we developed the IDF curves
that statistically fit the annual maxima series (AMS) of rain-
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fall intensities observed over 1-72h. We extracted the rain-
fall AMS from the 32-year (from 1988 to 2019) R/A pre-
cipitation dataset. Then, we used the Gumbel distribution
based on the L-moments method (Hosking, 1990) to fit the
extracted rainfall AMS due to its few shape parameters that
may reduce the estimation uncertainty (Frattini et al., 2009).
Such a statistical model assumes an asymptotic behavior of
the rainfall dataset and a stationarity in the rainfall AMS.
To assess the ability of the estimated distributions to repre-
sent the extracted rainfall AMS, we used the Kolmogorov—
Smirnov (KS) test, which examines the goodness of fit be-
tween the estimated and observed cumulative distributions.
Here, the null hypothesis assumes identical distributions.
Therefore, the p value calculated using an asymptotic dis-
tribution of the KS test statistic should be less than a signifi-
cance level of 5 % to reject the null hypothesis.

Although the Gumbel distributions may well fit the ob-
served rainfall AMS based on the KS test, this does not
mean that the derived IDF curves do not shift over time
(i.e., stationary) due to climate change (Slater et al., 2021).
It is, therefore, crucial to test the stationarity assumption in
the Gumbel model parameters by assessing the existence
of trends in rainfall AMS during the examined period. To
this end, we employed the Mann—Kendall and Sen’s slope
tests, two non-parametric statics frequently applied in hydro-
meteorology for trend analysis (e.g., Yan et al., 2018). The
Mann-Kendall test assesses the significance of trends in rain-
fall (Mann, 1945; Kendall, 1975), while Sen’s slope test
quantifies the magnitude of these trends, if existent (Sen,
1968). The null hypothesis of the Mann—Kendall test as-
sumes no trends. Therefore, a p value less than a significance
level of 5 % would imply the existence of a significant trend
in rainfall AMS.

2.3 Investigating rainfall controls on landslide spatial
distribution

2.3.1 Landslide density

The spatial distribution of triggered landslides over the study
area can be described as a spatial variation of landslide den-
sity (i.e., number per km?). Landslide density is generally
calculated by counting the number of landslides that oc-
curred within a specific area. Here, because we intended to
reveal the potential control of rainfall return levels for multi-
ple timespans derived from the R/A dataset on the variation
of landslide density, we used the R/A grid cell (= 25 km?) as
a sliding window to calculate landslide density. To count the
number of landslides that occurred within each R/A grid cell,
we converted the polygon data of landslide scars to points lo-
cating the centroid of each polygon. These numbers are gen-
erally biased by the non-uniformly distributed topographic
features (i.e., hills, mountains, plains, lakes) within the dif-
ferent R/A grid cells because landslides commonly occur in
hilly and mountainous areas rather than plains (Lombardo et
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al., 2021). To avoid such a possible bias, landslide density
was calculated as the number of landslides within each R/A
grid cell divided by the area of the R/A grid cell where the
slope is higher than a threshold angle (Sihreshold) assumed to
be a minimum angle to allow landsliding. Sihreshold defines
the threshold angle above which 90 % of landslides occurred
(Prancevic et al., 2020) and was determined as 16.26° based
on the DEM data analysis (Fig. S1).

Although medium and large landslides — landslides with
area size exceeding the cutoff point of the FAD (439 m?) —
counted only 28.12 % of the total landslides, their areas rep-
resented more than 70 % of the total landsliding area (i.e.,
the total scar areas of the triggered landslides). Therefore, it
is interesting to investigate rainfall controls on the density
of total and only medium and large landslides. Accordingly,
we computed two landslide density metrics, total landslide
density (TD) and only medium and large landslide density
(MLD), as the number of landslides per unit area (km?), for
each R/A grid cell using Egs. (1) and (2). Note these met-
rics represent averaged landslide density within the R/A grid
cells.

D= Total number of all landslides within an R/A grid cell

(1

Athreshold
MLD =

Number of medium and large landslides within an R/A grid cell

2

Athreshold

where Athreshold 1S the area in square kilometers of an R/A
grid cell where the slope > Sihreshold (i.€., 16.26°).

2.3.2 Relationships between the spatial pattern of
landslide density and rainfall information

Similar to previous studies (e.g., Chang et al., 2008), our in-
vestigation started by evaluating the statistical correlations
between calculated landslide density metrics (TD and MLD)
and rainfall intensity maxima for multiple timespans (1-
72h). We used Spearman’s rank coefficient (p) to measure
the non-parametric monotonicity of these relationships. In
doing so, we intended to explore whether the developed sta-
tistical relationships can explicitly explain the rainfall con-
trols on landslide density. Subsequently, we compared the
variation in rainfall intensity maxima and their return levels
and landslide density at the R/A grid cell scale.

Although the use of Areshold as @ normalization method
for calculating TD and MLD suppresses the influence of
the non-uniformly distributed topographic features within
the different R/A grid cells, still, these metrics can be bi-
ased by the non-uniformly distribution of local slopes within
the Athreshold @s landslide occurrence also depends on hills-
lope steepness (Prancevic et al., 2020). Therefore, it is cru-
cial to focus on R/A grid cells with comparable local slope
distributions to explicitly investigate the potential control of
rainfall intensity maxima and their return levels on landslide
density. To this end, we first tested the differences in local
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Table 1. Spearman rank correlation between rainfall intensity maxima and landslide density metrics.

Rainfall 1 2 3 6 12 24 48 72
timespan (h)

p (TD) 0.62* 0.66* 0.74* 0.79* 0.79* 0.79* 0.79* 0.80*
p» (MLD) 0.68* 0.71* 0.77* 0.84* 0.82* 0.81* 0.81* 0.82*

* Significant at 1% level.

slope angle distribution within Apreshold Of the different R/A
grid cells using the Kruskal-Wallis test (Kruskal and Wal-
lis, 1952). Then, we employed Dunn’s nonparametric pair-
wise test (Dunn, 1961) with a Bonferroni correction for the p
value for detecting the R/A grid cells with similar mean rank
sums of slopes within Areshold (Similar slope conditions).
Here, the null hypothesis assumes no significant differences
in the distribution of slope angles within the Areshold Of
the R/A grid cells. Therefore, the p value should be higher
than a significant level of 5% to accept the null hypothe-
sis (Dinno, 2017). Accordingly, the pairwise R/A grid cells,
where Dunn’s test accepts the null hypothesis, would be ideal
examples for comparing the relation between rainfall inten-
sity maxima and their return levels and the variation of land-
slide density metrics.

3 Results

3.1 Relationship between landslide density and rainfall
intensity maxima

A line-shaped band of high-rainfall-intensity maxima
matched the overall spatial pattern of triggered landslides
(Fig. 3), indicating that the spatial distribution of rainfall
intensities constrains the landslide distribution. These max-
ima exhibited substantial differences at the R/A grid cell
scale, suggesting spatial disparity in the characteristics of
the temporal rainfall pattern. The total triggered landslides
were distributed within 23 R/A grid cells with a TD var-
ied between 0.05 and 105.63 landslides per square kilome-
ter and an MLD ranging between 0.00 and 36.26 landslides
per square kilometer (Fig. 3). More than 65 % of the total
landslides occurred within only three R/A grid cells with a
TD of 35.61, 103.88, and 105.63 landslides per square kilo-
meter. The MLD values in these R/A grid cells were 11.98,
36.26, and 28.03 landslide per square kilometer, respectively,
indicating the highest number of medium and large land-
slides occurred during the triggering event. From a statistical
point of view, Spearman’s rank correlation coefficients (Ta-
ble 1) showed significant monotonic positive relationships
between all computed rainfall intensity maxima and TDs
(0.62 < p < 0.80) and MLDs (0.68 < p < 0.84) at the 1 %
level. However, these relationships did not necessarily mean
that landslide density increases with increased rainfall inten-
sity maxima, as we observed R/A grid cells with comparable
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rainfall intensity maxima but different TDs and MLDs (e.g.,
Fig. S2n and r). Therefore, rainfall controls on landslide den-
sity cannot be explicitly grasped from the developed statisti-
cal relationships.

The 23 R/A grid cells, where the triggered landslides were
distributed, exhibited significant non-uniformly distributed
local slopes within Areshold, @s shown in Fig. S3, and con-
firmed by the rejection of the null hypothesis of the Kruskal—
Wallis test (p value < 0.05). Applying Dunn’s post hoc test,
we could idealize three pairs of R/A grid cells with compara-
ble slope distributions within Areshold, s Dunn’s test could
not reject the null hypothesis (Table S1 in the Supplement).
These three pairs of R/A grid cells were referred to as P1,
P2, and P3 and focused on hereafter to explicitly investigate
the relation between rainfall intensity maxima and landslide
density (Fig. 4). Note we excepted three R/A grid cells where
most landslides occurred in areas affected by anthropogenic
activities (e.g., slopes surrounding cropland and paddy field)
from Dunn’s post hoc test.

Despite the similarity in local slope distributions, the dif-
ferences in landslide density (TD and MLD) between the
paired R/A grid cells in P1 and P2 were well distinguish-
able (& 700 times and ~ 70 times, respectively). In P1, the
rainfall intensity maxima observed over the R/A grid cell
that experienced high landslide density (TD =35.61 and
MLD = 11.98 landslide per km?) were 1.5 to 1.7 times higher
than those observed in the low-landslide-density R/A grid
cell (Fig. 4a). Similarly, the differences in rainfall intensity
maxima over the paired R/A grid cells in P2 varied between
1.7 to 3.3 times of rainfall intensity (Fig. 4b). Thus, some
paired R/A grid cells with comparable local slope distribu-
tions showed that landslide density increased with the in-
crease in rainfall intensity maxima.

Importantly, even with comparable rainfall intensities and
slope distributions, landslide density over two R/A grid cells
could be different (Fig. 4c). Unlike the observations in P1
and P2, rainfall maxima recorded for 12—-72h over the two
R/A grid cells in P3 (Fig. 4c) were similar. The R/A grid
cell with higher landslide density experienced little higher
rainfall intensity maxima for 1-6h timespans than those
recorded in the R/A grid cell with lower landslide density.
But the differences in these rainfall intensity maxima were
slight (& 1.15 times) compared to those observed between
the paired R/A grid cells in P1 and P2. Because P1 and
P2 paired two of the R/A grid cells with the lowest land-
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Figure 3. Spatial distribution maps of rainfall intensity maxima for 1 to 72 h timespans within P4 in mm h, triggered landslides (grey

polygons), and landslide density metrics (circles).

slide density metrics during the examined rainfall event with
two of the R/A grid cells with the highest landslide den-
sity metrics, the differences in landslide density metrics were
much more pronounced than that observed over the R/A grid
cells in P3 (= 3.5 times for TD). However, the R/A grid cell
with higher landslide density in P3 indicated the fifth high-
est TD (20.91 landslides per km?) and MLD (5.65 landslides
per km?) in the total of 23 R/A grid cells (Fig. S3), being a
sufficiently high landslide density. Given this, the results in
P3 indicated that differences in rainfall intensities and slope
distributions (i.e., topography) do not necessarily constrain
landslide density.
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3.2 Relationship between landslide density and return
levels of rainfall intensity maxima

During the examined rainfall event, the spatial patterns of
rainfall return levels can be constraints for the variation of
landslide density. The Gumbel distributions estimating these
return levels were able to represent the observed AMS of
rainfall intensities for 1-72 timespans, as the KS test could
not reject the null hypothesis (p value > 0.05) (Fig. S4). The
rainfall intensities estimated for various return periods (5—
100 years) and durations (1-72 h) displayed substantial spa-
tial differences at the R/A grid cell scale (Figs. S5-S9). The
Mann—Kendall and Sen’s slope tests showed a spatial hetero-
geneity in the significance and magnitude of trends in ob-
served rainfall AMS (Figs. S10 and S11). Specifically, some
R/A grid cells in the western part of the study area showed
statistically significant positive rainfall trends at the 95 % sig-
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Figure 4. Comparison of rainfall intensity maxima in three
pairs of R/A grid cells with comparable local slope distributions
within Athreshold-

nificance level, as the Mann—Kendall rejected the null hy-
pothesis (p value < 0.05). Other R/A grid cells exhibited no
significant trends, especially for short-duration rainfall inten-
sities (Fig. S10a—c), where Mann—Kendall accepted the null
hypothesis (p value > 0.05). The increasing trends could be
attributed to the climate change effect and indicated that the
rainfall IDF curves developed for the examined region are al-
ready subject to climate change and may be altered in the fu-
ture due to the persistent effect of climate change. Still, they
could provide valuable information about the return levels
of the rainfall intensity maxima characterizing the examined
rainfall event.

Comparing the position of rainfall intensity maxima in
the IDF curves recorded for each R/A grid cell discloses
disparate return levels (Figs. 5 and S12). The return levels
of rainfall intensity maxima over the R/A grid cells with
high-landslide-density metrics in the three idealized pairs
(Fig. 5d—f) were generally higher than those observed over
the corresponding R/A grid cells with lower landslide den-
sity metrics (Fig. 5a—c). In P1 and P2, rainfall return levels
of all maxima over the high-landslide-density R/A grid cells
(Fig. 5d and e) exceeded or hit the IDF curve for the 100-year
return period. On the other hand, the return levels of rainfall
intensity maxima exceeded the 100-year return period only
at 6 and 12 timespans (Fig. 5a) and did not reach this level
at any of the examined timespans (Fig. 5b) for the R/A grid

Earth Surf. Dynam., 11, 461-474, 2023

cells with low landslide density in P1 and P2, respectively.
Therefore, the number of triggered landslides increased sub-
stantially when rainfall return levels exceeded the 100-year
return period in the IDF curves for the multiple examined
timespans (i.e., 1-72h).

Interestingly, despite the comparable rainfall intensities
and slope distributions within the R/A grid cells in P3
(Fig. 4c), return levels of short-duration rainfall intensity
maxima differed, as for the landslide density metrics (Fig. 5¢
and f). The return levels of rainfall intensity maxima in both
R/A grid cells exceeded the 100-year return periods only for
some timespans and shared comparable return levels for the
rainfall intensity maxima at 12—72 h. Still, the rainfall return
levels for 1-6 h intensities in the high-landslide-density R/A
grid cell (Fig. 5f) were higher than those observed in the R/A
grid cells with lower landslide density (Fig. 5c¢). For instance,
the return level of 3 h rainfall intensity exceeded the 100-
year return period in the R/A grid cell with TD =20.91 land-
slides per square kilometer (Fig. 5f), but it was on the or-
der of the 50-year return period in the R/A grid cell with
TD = 5.68 landslides per square kilometer (Fig. 5c). There-
fore, the results in P3 showed that the landslide density met-
rics over an R/A grid cell increased with the increase in rain-
fall return levels, rather than rainfall intensities.

The observations over the three idealized pairs showed that
the spatial patterns of rainfall return levels constrain the vari-
ation of landslide density metrics observed during the exam-
ined event. For setting a quantitative reference that assesses
the spatial disparity in rainfall return levels and their rela-
tion to the variation in landslide density, we calculated the
ratio between the rainfall intensity maxima within the Pgq
and the estimated rainfall intensity for a 100-year return pe-
riod derived from the IDF curves. This index was referred to
hereafter as the “100-year rainfall anomaly” and serves as a
comparative index of the severity and rarity of rainfall inten-
sity maxima observed over the R/A grid cells.

Clearly, the 100-year rainfall anomaly in the R/A grid cells
with high landslide density was higher than that observed
over the paired low-landslide-density R/A grid cells in the
idealized pairs (Fig. Sg—i). In P1 and P2, the 100-year rainfall
anomaly exceeded 1 at all timespans in the case of the R/A
grid cells with high landslide density, mirroring unprece-
dented and severe rainfall intensities. On the other hand, it
was lower than or exceeded 1 only at some timespans for the
R/A grid cells with lower landslide density (Fig. 5g and h).
In P3, the 100-year rainfall anomalies for 12-72h rainfall
durations observed over the two paired R/A grid cells were
comparable. However, the 100-year rainfall anomalies for 1—-
6 h timespans were higher in the high-landslide-density R/A
grid cell (Fig. 5i), particularly for the 3 h rainfall duration,
which exceeded 1. Therefore, the comparison of the 100-
year rainfall anomaly can indirectly reflect the difference in
rainfall return levels and explain the spatial variation in land-
slide density observed over the R/A grid cells in the idealized
pairs.
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Figure 5. Return levels of rainfall intensity maxima for multiple timespans (1-72h) within Pgyq in the IDF curves (a—f) and comparisons of
the 100-year rainfall anomaly (g—i) over the paired R/A grid cells in P1, P2, and P3.

Irrespective of the differences in local slope distributions
and rainfall characteristics between the R/A grid cells in
the idealized pairs, landslide density metrics increased with
the increase in the 100-year rainfall anomaly, except for the
low-landslide-density R/A grid cells in P2 (Fig. Sh). For in-
stance, the low-landslide-density R/A grid cell in P1 (i.e.,
TD = 0.05 landslides per km?2) and P3 (i.e., TD = 5.68 land-
slides per km?) showed different landslide density metrics.
In parallel, the rainfall anomaly in the R/A grid cell with a
TD =5.68 landslides per square kilometer was higher than
that observed over the R/A grid cell with a TD =0.05 land-
slides per square kilometer. Thus, comparing the 100-year
rainfall anomaly may explain the spatial variation in land-
slide density observed in some of the R/A grid cells, irre-
spective of the differences in local slope distributions.

In this sense, we can categorize the R/A grid cells that
experienced landslides (except three R/A grid cells where
landslides were affected by anthropogenic activities) based
on differences in the 100-year rainfall anomaly and land-
slide density. Accordingly, the high-landslide-density R/A
grid cells (TD > 30 and MLD > 10 landslides per kmz), of
which the R/A grid cells with high landslide density in
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P1 and P2 showed a 100-year rainfall anomaly, exceeded
1 at all timespans (Fig. S13b). In other words, rainfall in-
tensities for all examined timespans (i.e., 1-72h) exhibited
return levels exceeding the 100-year return period. While
over lower-landslide-density R/A grid cells (TD <30 and
MLD < 10 landslides per km?), which include the R/A grid
cells with low landslide density in P1 and P2 and the two
paired R/A grid cells in P3, the 100-year rainfall anomaly
was generally lower than 1 or exceeded 1 only at some times-
pans within the Py (Fig. S13a).

4 Discussion

4.1 Rainfall return levels govern landslide density

Our results demonstrate that landslide density in terms of
TDs and MLDs varied depending on rainfall return levels for
the examined timespans ranging from 1 to 72 h, which char-
acterize the spatiotemporal rainfall pattern of the triggering
rainfall event and provide proxies for the disparate rainfall
periods needed for landsliding.

When rainfall exhibited return levels exceeding the 100-
year return period for the various timespans from 1 to 72h

Earth Surf. Dynam., 11, 461-474, 2023
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(e.g., Fig. 5d and e), the number of total landsliding was
substantially high (TD > 30 landslides per km?). The high
landslide density can dictate that the rare and extreme rain-
fall intensities for multiple timespans from 1 to 72h could
satisfy the trigger and dynamic predisposition factors for the
landsliding of numerous hillslopes. The constraint of these
unprecedented rainfall intensities on landslide density over-
whelmed that of topographic conditions (Fig. 5), as we ob-
served substantial landslide density differences over R/A grid
cells with comparable local slope distributions. This accen-
tuates the importance of high rainfall return levels in induc-
ing widespread landslides (Ilida, 2004; Griffiths et al., 2009;
Segoni et al., 2014). In parallel, the density of large and
medium landslides was also the highest (MLD > 10 land-
slides per km?) during the examined rainfall event. This
implies that the high rainfall return levels for the various
examined timespans constrain the occurrence of relatively
large landslides and suggests that the spatiotemporal rain-
fall pattern characteristics can also govern the landslide size
distribution, which is consistent with the findings of Marc
et al. (2018). In contrast, when rainfall return levels did
reach the 100-year return period only at specific timespans,
lower landslide density (TD < 30 and MLD < 10 landslides
per kmz) was observed (e.g., Fig. 5a, c and f). In other words,
only some periods of rainfall (e.g., 6—48 h) exhibited extreme
and rarely experienced intensities over the R/A grid cells, re-
sulting in the failure of only the relatively vulnerable hill-
slopes. Therefore, we can conclude that whether rainfall in-
tensities reach high return levels in a wide timespan, ranging
from a few hours to several days, is one of the key determi-
nants of the density of total landsliding and relatively large
landslides.

Given the relatively homogeneous regolith of the study
area this research focused on, it is likely that the landslide
spatial distribution was primarily governed by rainfall re-
turn levels. However, other landslide susceptibility factors
may intervene if the studied rainfall event is experienced in a
heterogeneous regolith. To examine the importance of rain-
fall controls on landslide spatial distribution during large-
scale rainfall events, Crozier (2017) proposed a storm cell
model linking landslide density to rainfall intensity, impact
magnitude, and the criticality of landslide susceptibility pa-
rameters. The proposed model assumes the occurrence of
landslides in a circular pattern mirroring rainfall intensity
during rainfall events and defines three landslide response
zones: the core (storm center), the middle, and the periphery
zone. It further suggests an overwhelming influence of ex-
tremely intense rainfall in the core zone, where total rainfall
is > 500 mm, on other landslide susceptibility factors.

In analogy to the storm cell model of Crozier (2017), the
high rainfall return levels experienced over high-landslide-
density grid cells may outweigh the influence of terrain-
related parameters if experienced in other sites with hetero-
geneous regolith settings. Therefore, when rainfall intensities
reach high return levels for a wide timespan ranging from
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1h to a few days, high landslide density over the landscape
can be expected regardless of the variations in terrain char-
acteristics (land use, lithology, and topography). In contrast,
when rainfall return intensities exceed the 100-year return
level only for specific timespans (e.g., 6—48 h), the variation
in landslide susceptibility factors can also govern landslide
density. This can be supported in analogy to the findings
of Crozier (2017) in the middle zone of the proposed storm
model.

Last, it is worth noting that landslides occurred even when
rainfall did not reach the 100-year return level at any of the
examined timespans (Fig. S12b, e and f). However, landslide
density over these grid cells (i.e., grid cells where rainfall
did not reach the 100-year return level) was considerably
low (& 0.4-1.5 landslides per km? in terms of TDs) com-
pared with most other grid cells. Dou et al. (2020) and Oz-
turk et al. (2021) used statistical machine-learning methods
to investigate the importance of numerous predisposing fac-
tors in landslide occurrence by the examined rainfall event.
Their findings showed that rainfall is the main factor control-
ling landslide occurrence in our study area, followed by the
slope and land use parameters. Accordingly, landslide occur-
rence over these grid cells during the examined rainfall event
could be constrained by terrain settings (e.g., land cover) as
the rainfall return levels were low. Therefore, landslides can
occur even if rainfall return levels do not reach the 100-year
return period but with substantially low density. In any case,
comparing rainfall return levels in the IDF curves can explain
the substantial differences in landslide density due to consid-
ering multiple return periods.

4.2 Importance of considering rainfall return levels as
explanatory for landslide spatial distribution

From a statistical perspective, the significant quantitative cor-
relations between rainfall intensity maxima and landslide
density (TDs and MLDs) suggest an increased landslide den-
sity with increased rainfall intensities for the various ex-
amined timespans (i.e., 1-72h) (Table 1). These statisti-
cal relationships are not surprising since they likely arise
from the correlations between the different rainfall inten-
sity maxima (Table S2). However, this does not necessarily
mean that landslide density increases with increased specific-
duration rainfall intensity (e.g., rainfall intensity maxima for
6 h, Fig. 4a and c). Indeed, our results showed substantial dif-
ferences in landslide density over R/A grid cells with com-
parable short-duration rainfall intensity maxima but disparate
long-duration rainfall intensities (e.g., low-landslide-density
R/A grid cells in P1 and P3, Fig. 4a and c). The pronounced
difference in landslide density is likely due to the disparity
in rainfall characteristics that affected the slope stability dif-
ferently, initiating a disparate number of landslides. Thus,
although the quantitative correlations in Table 1 can suc-
cessfully predict landslide density, as indicated by Chang et
al. (2008) and Dai and Lee (2001), relying on a single rainfall
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metric (e.g., 6 h rainfall intensity maxima) may lead to spu-
rious interpretations regarding rainfall controls on landslide
density and subject to uncertainties if used for predicting the
number of landslides due to concealing the characteristics of
the temporal rainfall pattern (Gao et al., 2018).

Regardless of the spatial variation in rainfall intensity
maxima characterizing the temporal rainfall pattern, the re-
turn levels could evaluate the exceptionality and extremity
of rainfall for various timespans. Indeed, by comparing the
rainfall return levels over two R/A grid cells, it was clear that
the R/A grid cells with the highest landslide density experi-
enced higher rainfall return levels for the various timespans,
as revealed by the proposed 100-year rainfall anomaly met-
ric (e.g., Fig. 5g—i). This can dictate that rainfall with higher
return levels was more extreme and less frequent, having a
higher potential to cause numerous landslides over the land-
scape. This was also valid even for R/A grid cells with com-
parable rainfall intensities and local slope distributions em-
phasizing the constraint of rainfall return levels on landslid-
ing rather than rainfall intensities (Fig. 5i). Accordingly, the
differences in rainfall return levels could explain the substan-
tial spatial disparity in landslide density. Thus, the compari-
son of rainfall return levels can be a valid approach for un-
derstanding the substantial differences in landslide density
regardless of the variation in temporal rainfall pattern char-
acteristics.

5 Conclusions

This study explored the spatiotemporal pattern of an extreme
rainfall event that triggered widespread landslides to reveal
what rainfall characteristics control the spatial landslide dis-
tribution. We examined the temporal rainfall pattern by com-
puting the maximum rainfall intensity for multiple times-
pans (1-72h) within a 72h duration that accumulated the
maximum rainfall amount ( Pyq) during the examined rainfall
event. Landslide density, in terms of the total number of trig-
gered landslides (TDs) and only medium and large landslides
(MLDs), significantly correlated with all computed rainfall
intensity maxima. However, this did not necessarily mean
that landslide density increases with increased rainfall in-
tensity maxima for a specific timespan. More than 65 % of
triggered landslides occurred in areas where all computed
rainfall intensity maxima exceeded or hit the 100-year re-
turn levels, with a high density (TDs > 30 landslides per km?
and MLDs > 10 landslides per km?). This corresponds to a
100-year rainfall anomaly, which calculates the ratio between
rainfall intensity maxima and estimated intensity for the 100-
year return period, exceeding 1 at all timespans within the
Pgq. On the other hand, lower landslide density was found
in areas of rainfall characterized by intensities that did not
or did reach the 100-year return period only at some times-
pans within the Pyq (e.g., 6—48 h). The constraint of rainfall
return levels on landslide density overwhelmed that of to-
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pographic conditions, as we observed substantially different
landslide densities in areas with comparable slope distribu-
tions but different rainfall return levels. Overall, this work re-
veals the role played by the spatial patterns of rainfall return
levels for various timespans in controlling landslide density.
It further suggests that whether rainfall intensities reach high
return levels for a wide timespan, ranging from a few hours
to several days, is one of the key determinants of the density
of total landsliding and relatively large landslides.
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