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Abstract. Prediction of bed load sediment transport rates in rivers is a notoriously difficult problem due to
inherent variability in river hydraulics and channel morphology. Machine learning (ML) offers a compelling
approach to leverage the growing wealth of bed load transport observations towards the development of a data-
driven predictive model. We present an artificial neural network (ANN) model for predicting bed load transport
rates informed by 8117 measurements from 134 rivers. Inputs to the model were river discharge, flow width,
bed slope, and four bed surface sediment sizes. A sensitivity analysis showed that all inputs to the ANN model
contributed to a reasonable estimate of bed load flux. At individual sites, the ANN model was able to reproduce
observed sediment rating curves with a variety of shapes without site-specific calibration. This ANN model has
the potential to be broadly applied to predict bed load fluxes based on discharge and reach properties alone.

1 Introduction

Bed load transport in rivers is a stochastic (Ancey, 2010;
Paintal, 1971), nonlinear (Meyer-Peter and Müller, 1948;
Wong and Parker, 2006) phenomenon with high dimension-
ality (Goldstein et al., 2019). Further, direct measurements
of bed load transport are often challenging to collect reli-
ably, especially for large, rare floods or over long periods
of time. In lieu of continuous measurement, accurate esti-
mation of bed load transport rates with minimal site-specific
calibration has a number of applications (Wilcock, 2001), in-
cluding but not limited to quantifying channel conveyance
(Slater and Singer, 2013), informing river restoration efforts
(East et al., 2015; Warrick et al., 2015), and approximating
bedrock incision rates (Beer and Turowski, 2021). As such,
there has been a long legacy of scientific inquiry towards ac-
curate quantitative prediction of bed load transport rates, be-
ginning in the early 1900s (Gilbert, 1914) and continuing to
today (Einstein, 1937; Wilcock and Crowe, 2003; Lajeunesse
et al., 2010; and recently Zhao and Nepf, 2021, among many
others). A number of models of fluvial sediment transport
have been developed based on semi-empirical regressions fit
to flume (Meyer-Peter and Müller, 1948; Wong and Parker,

2006) and field (Recking, 2010, 2013b; Rickenmann, 1991)
data, probabilistic approaches (Einstein, 1950; Furbish et al.,
2012), and physics-based models (Lajeunesse et al., 2010;
Parker, 1990; Wilcock and Crowe, 2003). Multi-model com-
parisons demonstrate that few models consistently perform
well for large, multi-region datasets, partly due to limitations
in addressing site-specific variability or due to temporal and
spatial averaging (Barry et al., 2008; Gomez and Church,
1989; Recking, 2010, 2013a). As such, existing bed load
flux models are not versatile enough to be applied across the
range of observed river reaches without extensive regional or
site-specific calibration (Goldstein et al., 2019; Kitsikoudis et
al., 2015). Thus, predicting rates of bed load sediment trans-
port remains a persistent challenge, with predictions within 1
order of magnitude of direct measurements generally consid-
ered to be reasonable model performance (Recking, 2013a;
Recking et al., 2012).

This inherent variability in bed load transport observa-
tions, and the associated need for site-specific calibration
efforts, has led to recent suggestions that the reliable and
consistent prediction of bed load transport from reach-scale
parameters may be intractable (Gomez and Soar, 2022). In-
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deed, there are a number of factors that give rise to variabil-
ity in bed load transport rates across sites or through time at
a single site, including but not limited to spatial variability
in both turbulent stresses and bed heterogeneity (Monsalve
and Yager, 2017; Monsalve et al., 2016); grain protrusion,
compaction, and structural arrangement of the bed (Church
et al., 1998; Houssais et al., 2015; Marquis and Roy, 2012;
Masteller and Finnegan, 2017; Masteller et al., 2019); inter-
mittency in flux and sampling times (Bunte and Abt, 2005;
Singh et al., 2009; Recking et al., 2012); upstream sedi-
ment supply (Recking, 2012; Singer, 2010; Gomez and Soar,
2022); and interactions between grain size fractions on the
surface and within the bed (Wilcock, 1998; Ferdowsi et al.,
2017).

Results from laboratory flume experiments and long-term
field monitoring demonstrate that much of this variability
may be collapsed or understood under controlled conditions.
Grain protrusion within mixed grain size distributions can be
accounted for through the use of hiding functions and relative
reference critical shear stresses (Einstein, 1950; Ashida and
Michiue, 1972; Parker and Klingeman, 1982; Wilcock and
Crowe, 2003). The challenge of vertical sorting and differing
grain sizes between the riverbed surface and subsurface was
circumnavigated through the development of surface-based
transport relations (Parker, 1990). Even grain-scale complex-
ity in the particle shape can be unraveled by accounting for
relative changes in fluid drag and friction (Deal et al., 2023).
Field and laboratory experiments demonstrate that the im-
pact of a hydrograph with floods of different magnitudes and
shapes on bed load flux can be understood cumulatively and
is linearly related to the integral of the excess shear stress
(Phillips and Jerolmack, 2014; Phillips et al., 2018). These
selected demonstrations indicate that while there may be sig-
nificant variability in raw measurements of bed load flux,
this variability is not such that the development of a model
which accurately captures patterns in bed load flux is in-
tractable. Wholesale field application of a physically based
model will continue to remain data-limited; however, the in-
troduction of longer-term monitoring stations indicates that a
more nuanced physical model may be on the horizon (Rick-
enmann and McArdell, 2007; Rickenmann, 2018; Gomez et
al., 2022).

The known complexity of natural river processes com-
bined with the amount of available bed load data across many
sites and settings (Hinton et al., 2017; King et al., 2004;
Recking, 2019) suggests that this process may be predictable
from a data science approach (Geron, 2019). Machine learn-
ing (ML) approaches leverage available data to train com-
puters to, through an automated process, determine the rela-
tive contribution of individual input variables to a measured
output (Geron, 2019). In the learning process, the ML algo-
rithm iteratively discovers patterns and relations within the
data and uses them for future predictions, given similar in-
put data. Many ML approaches do not consider the physics
behind any specified problem directly but excel at predicting

nonlinear relationships with high dimensionality, given suf-
ficient training data (Hosseiny, 2021; Hosseiny et al., 2020).
Machine learning approaches can leverage variability aggre-
gated from many existing datasets in order to improve site-
specific bed load transport predictions across a range of flu-
vial environments. ML approaches have been previously ex-
ploited in a variety of geoscience problems including the
identification of vulnerability in Antarctica’s ice sheet (Lai
et al., 2020), global-scale soil salinization predictions (Has-
sani et al., 2021), and landslide susceptibility mapping (Zhou
et al., 2021). In particular, an artificial neural network (ANN)
approach may be particularly well-suited for bed load predic-
tion. The ANN is a well-tested and powerful method which,
through an iterative and automated training process, deter-
mines the weighted contribution of numerous input param-
eters towards a specified output (Haykin, 2009). This itera-
tive approach allows ANN to parse nonlinear relations be-
tween numerous input parameters, making it a flexible tool
for solving a wide range of problems, including optimiza-
tion (Haykin, 2001) and data classification (Saravanan and
Sasithra, 2014). Relevant to geoscience applications, ANNs
have shown to be versatile tools towards more accurate de-
scriptions of rainfall–runoff processes (Hsu et al., 1995; Han
and Morrison, 2022), the prediction of riverbed porosity (Bui
et al., 2019), and flood prediction (Hosseiny et al., 2020).

Despite publicly available, high-quality observational
data, the application of ML tools to sediment transport in
rivers has, to our knowledge, remained limited. Kitsikoudis
et al. (2015) used sediment concentration data from flume
and field studies, for sand- (median grain size,D50 = 0.062–
2.0 mm) bed rivers (Brownlie, 1981), to evaluate the perfor-
mance of ML approaches: (a) ANN, (b) symbolic regression
(SR), and (c) adaptive-network-based fuzzy inference (AN-
FIS) models. Their results show that models trained solely
on flume data perform worse than those trained on field data
with root mean squared errors (RMSEs) of flume-trained
predictions between 85 % and 97 % more than field-trained
models. This study also found that the ANN model trained
on field data performed best, with RMSE values of 7.5 % and
11.1 % less than ANFIS and SR, respectively. Aseghi and
Hosseini (2020) trained an ANN using 102 measurements of
discharge, velocity, water surface slopes, flow depth, and me-
dian grain size to develop a prediction model for bed load
transport for a single site – the Main Red Fork River in
Idaho. They found that the trained ANN captured bed load
flux measurements more accurately than existing empirical
equations. However, the wider applicability of the study may
be limited because the ANN was trained using data from
only a single site. Kitsikoudis et al. (2015) focuses on bed
load transport within gravel-bed rivers; however, the dataset
is primarily drawn from a limited geographic region of the
United States (Idaho, King et al., 2004). These data are gen-
erally of high quality, and while they integrate measurements
from a number of rivers, they occupy only a limited portion
of the gravel-bed river parameter space. These rivers tend to
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be steeper, coarser grained, and shallower than average, lim-
iting relations derived from these data to similar geographic
locations (see Phillips and Jerolmack, 2019). Bhattacharya
et al. (2007) used an ANN approach using the Gomez and
Church (1989) sediment flux database for sand- and gravel-
(D50 = 0.062–64 mm) bed rivers in subcritical flow to pre-
dict bed load and total load transport rates as a function
of a combination of measured and derived input parame-
ters. These input parameters include velocity, depth, particle
diameter, slope, nondimensional shear stress, critical shear
stress, and stream power. They concluded that the RMSE of
the model trained based on field data (407 observations) was
on average 33.6 % less than those derived from flume data
and 16.4 % to 249.6 % less than several empirical and physi-
cally based models (Bhattacharya et al., 2007).

While these previous studies have demonstrated that ML
models can improve upon existing sediment transport mod-
els, this suite of ML models have been trained with limited
data (less than 500 observations) and under a relatively nar-
row range of the full parameter space which gravel-bed rivers
occupy globally. Despite the increasing availability of bed
load datasets, the application of ML in generating a versatile,
data-driven model for predicting bed load transport across a
wide range of fluvial settings has not yet been investigated.
To fill this gap, this paper develops a new ML model for
predicting river bed load using an ANN approach and over
8000 measurements from over 100 unique field sites. The
performance of the proposed model is then shown to out-
perform four existing sediment transport models using only
the publicly available data (Einstein, 1950; Recking, 2013b;
Wilcock and Crowe, 2003; Wong and Parker, 2006). We fi-
nally demonstrate the utility of a broadly trained ANN model
by producing bed load transport rating curves for discharge
without the need for additional site-specific calibration.

2 Materials and methods

2.1 Data summary and preparation

We use a compilation of bed load transport rates downloaded
from BedloadWeb (http://en.bedloadweb.com, last access:
25 April 2022), a publicly available online platform that
hosts both previously published field and laboratory bed load
datasets compiled from scientific literature or official reports
and databases (Recking, 2019). Our study focused on field-
collected datasets only as these cover a greater range of vari-
ability in terms of the key variables associated with bed load
transport (e.g., discharge, grain size, slope). The database
includes 10 056 individual measurements of bed load trans-
port from more than 134 unique field sites across the globe.
Each reported bed load transport data point, qs (g s−1 m−1),
in our study has an associated measurement of river dis-
charge, Q (m3 s−1), bed slope, S (m m−1), flow width, W
(m), and the 16th, 50th, 84th, and 90th percentiles of the
bed surface grain size distribution (D16, D50, D84, D90).

An additional advantage of these specific input parameters
is that the static parameters (slope and grain size) can be di-
rectly measured between transport events and used to pre-
dict sediment flux from available hydrograph data (discharge
and width). An important advantage of using a multi-site
dataset, such as the BedloadWeb database, for model train-
ing is to encompass a broader parameter space than would
be present at any individual river location. These data span a
wide range of bed slopes (0.018–0.136 m m−1), widths (0.3–
306 m), grain sizes (D50 0.00013–0.22 m), and discharges
(0.00005–427.5 m3 s−1). As such, an ANN model trained us-
ing this dataset will have significantly wider applicability
than one trained on a dataset covering a smaller range. Within
this database, slope and grain size are largely static variables
for each site describing the river reach, while flow width and
discharge are dynamic and vary in time at each site. Grain
size data are a mixture of direct measurements and interpo-
lated data under the assumption that bed surface sizes are
log-normally distributed. Interpolated data are used in cases
where specific percentiles of the grain size distribution have
not been directly measured or reported by the original stud-
ies. In our compiled database, we used measured grain sizes
whenever they are available. In five cases, D16 values are
not reported, and interpolated data are used (Recking, 2019).
In 53 cases, both D16 and D90 were not reported, and sim-
ilarly, interpolated values were used as input parameters in
these instances. In the initial training of the ANN, all reported
variables are used as input parameters to train the model and
predict qs , as we expect that a model informed by all avail-
able parameters (knowledge) will have the strongest predic-
tive power (Haykin, 2009).

Prior to model training, the data were inspected for over-
all quality and outliers were removed. The presence of ex-
treme values and outliers generally degrades the overall per-
formance of the resulting model (Geron, 2019). As such, fol-
lowing procedures used in prior studies, we chose to first re-
move transport measurements with associated discharge val-
ues exceeding the 95th percentile (Dovoedo and Chakraborti,
2013; Kennedy et al., 1992) of all reported discharges in
the database (Q> 430 m3 s−1; a total of 504 points), fol-
lowed by removing extreme qs values above the 95th per-
centile of the remaining data (qs > 401.4 g s−1 m−1; 478 data
points) as well as those below the 10th percentile (Kennedy
et al., 1992) of remaining data (qs < 0.1 g s−1 m−1; 957 data
points). Following removal of these points, the total sam-
ple number was reduced from 10 056 to 8117 measurements
across 134 rivers. This screening process did not eliminate
any individual site from the database, such that neither large
nor small rivers are selectively removed during this data
preparation step. While this removal of more extreme values
is an important step to ensure model quality, we acknowl-
edge that this step preferentially removes the most extreme
flow and sediment transport events from the dataset. While
there is significant interest in predicting sediment transport
rates for extreme flow events, these largest events are the
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least frequently occurring in the dataset and more data would
be needed to train an ANN model to reliably predict bed
load flux under these conditions. Following this screening,
we maintain 134 distinct datasets, emphasizing that the train-
ing data do encompass more frequently occurring small and
intermediate floods across all available sites in the database.
Thus, while the trained model presented here may not be ap-
propriate to predict bed load flux in response to exceptional
events in larger rivers, it can still be applied over many or-
ders of magnitude of discharge, as described above. Follow-
ing this screening process, the median number of samples
across all sites is n= 50. For larger rivers with maximum
discharges exceeding 300 m3 s−1 (n= 17), the median num-
ber of samples is reduced to n= 23. However, five of these
largest rivers have sample sizes exceeding the median sample
size of n= 50, with a maximum sample size of n= 146 for
the Mondego River (1.8 % of the full database). Thus, fol-
lowing the screening process, large rivers remain adequately
represented in the training dataset. The 25th percentile for
sample sizes is n= 18 and the 75th percentile is n= 83, with
82 % of the sample sizes within 1 order of magnitude. Only
22 sites have more than 100 samples. The largest dataset
is from Goodwin Creek, which has 307 samples and com-
prises< 4 % of the full database. Given this, we do not ex-
pect that any individual dataset should overly bias model
training. Data were then log-transformed (base 10) such that
each parameter distribution would more closely follow a nor-
mal distribution (see Supplement). Data were then scaled by
minimum and maximum measurement values, such that the
transformed range of values for each variable ranged from 0
to 1 (Geron, 2019; Haykin, 2009). Data were shuffled and
randomly divided into two populations: a training population
(80 %) and a test population (20 %) with equivalent distribu-
tions consistent with the full dataset.

2.2 Machine learning structure and implementation

Following previous applications of ML to sediment trans-
port (e.g., Bhattacharya et al., 2007; Goldstein et al., 2019;
Kitsikoudis et al., 2015), we employ an artificial neural net-
work (ANN) approach. The ANN framework is based on
a network of connected units (neurons), most commonly
comprised of single input and output layers, and multiple
hidden layers, where each layer contains a set of neurons
(Geron, 2019; Haykin, 2009) (Fig. 1a). The ANN presented
here was developed using Keras (Chollet, 2015), an appli-
cation programming interface in the Python programming
language. The structure of the ANN was informed by avail-
able bed load transport data and associated measurements of
discharge, channel morphology (slope and width), and grain
size (4 measurements). The input and output layers of the
ANN were set to seven (Q, S, W , D16, D50, D84, D95) and
one (qs), respectively. The functions that guide the model in
identifying nonlinear relations (activation functions) were set
to the rectified linear unit (ReLU), except one function as-

sociated with the output layer, which was set to be a sig-
moid function. The ReLU(x) returns the maximum (0, x)
and sigmoid(x) returns 1/(1+exp(−x)). To avoid overfitting
in the training process, each input segment was normalized
(batch normalization) and a subset of the neurons in each
layer were temporarily ignored (dropout) to add additional
noise to data (Geron, 2019). The training process of the ANN
model uses 80 % of the bed load transport data to determine
the weight coefficients of the neurons’ connections that mini-
mize prediction error. During each iteration of the ANN dur-
ing the training process, the mean standard error (MSE) is
computed between the model-predicted data and the obser-
vational training data (Fig. 1b). We select MSE over root
mean square error (RMSE) because it more heavily penal-
izes larger errors compared to RMSE, which is the square
root of MSE, or the coefficient of determination (R2). This
penalization of large errors by MSE is particularly helpful in
the efficient optimization of the ANN across multiple train-
ing epochs. To assess whether the model may be over-fit to
the training data, we also perform a validation test of the
model at every iteration of the ANN. The validation of the
ML model in each iteration (epoch) was carried out by cal-
culating the MSE on a random subset of the training dataset
that is not used in that epoch. For this application, 10 % of
the training dataset was used within the epoch model valida-
tion step. Once the MSE of the training dataset has reached
a stable minimum across many iterations (Fig. 1b), and the
MSE on the validation data is consistent with this minimum,
we consider the model to be sufficiently trained.

2.3 Comparison of ANN performance with previous bed
load models

We selected four bed load transport models with varying
approaches and degrees of complexity to compare to and
build intuition for the predictions of the ANN model. We
selected the following: (1) a probabilistic model developed
by Einstein (1950), (2) a physics-based model developed by
Wilcock and Crowe (2003), and (3, 4) two empirical models
from Wong and Parker (2006) and Recking (2013b). We ac-
knowledge that these physics-based bed load transport equa-
tions could likely be calibrated to fit the available data as
many of the equation coefficients are in practice tuneable to
the data at hand. However, the need for site-specific sedi-
ment flux measurements to calibrate a relation severely lim-
its the application of these bed load transport equations to
most natural settings as the accurate measurement of bed
load transport remains a challenging and time-consuming en-
deavor. Given that the aim of this contribution is to develop
a predictive model that does not require any site-specific cal-
ibration, we do not undertake any additional tuning of the
existing equations for bed load transport across sites prior to
comparison with the ANN predictions. Within this analysis,
the purpose of utilizing these four different bed load transport

Earth Surf. Dynam., 11, 681–693, 2023 https://doi.org/10.5194/esurf-11-681-2023



H. Hosseiny et al.: Development of a machine learning model for river bed load 685

Figure 1. (a) Structure of the ANN model developed in this study with seven input parameters. (b) Learning curves illustrate the decline in
mean squared errors (MSEs) for training and validation. (c) Variations in ML model performance in training and validation due to changes
in model input variables.

equations is to provide a comparison with and build intuition
for the ANN approach.

We compared bed load flux measurements to predictions
from these four bed load transport models and the trained
ANN model (Fig. 2). All predictions were made using the
20 % of data excluded from the ANN training process (test
data, n= 1624). The ANN model utilizes all available data
from the bed load database (7 inputs), while the bed load
transport models have varying degrees of complexity, rang-
ing from requiring four input parameters (Einstein, 1950;
Wong and Parker, 2006) to five input parameters (Wilcock
and Crowe, 2003) (see Table S3). Selected previously devel-
oped models are valid for sand- and gravel-bed rivers, and
therefore, the comparison is restricted to these rivers. A fur-
ther description of these models is provided in the Supple-
ment.

2.3.1 Einstein (1950)

The Einstein (1950) model assumes that bed load flux is re-
lated to the probability of a particle being eroded as a func-
tion of changes in turbulent intensity rather than the average
fluid forces acting on the particle. As such, the model relates
the probability of erosion (as a function of flow intensity) to
the intensity of bed load transport (Eq. 1). This method does
not require a critical shear stress for incipient motion since
the movement of the grain is based on probabilistic estimates.
The Einstein equation tends to perform well for estimating
local bed load in large rivers with uniform sand and gravel
(Garcia, 2007). The implicit form of the Einstein equation is
described as

1−
1
√
π

(0.413/τ∗)−2∫
−(0.413/τ∗)−2

e−t
2
dt =

43.5q∗

1+ 43.5q∗
, (1)

where τ ∗ is the dimensionless shear stress for uniform flow
(Shields stress), t is the integral parameter, and q∗ is the
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Figure 2. Comparison between ANN prediction for the test data (gravel- and sand-bed rivers) and previous models of (a) Einstein (1950),
(b) Wong and Parker (2006), (c) Wilcock and Crowe (2003), and (d) Recking (2013). Note that calculated Einstein values below 1×
10−3 g s−1 m−1 are not shown in the plot for legibility.

dimensionless bed load transport rate (or Einstein bed load
number).

2.3.2 Wong and Parker (2006)

Wong and Parker (2006) reanalyzed the data used to develop
the foundational Meyer-Peter and Muller (MPM) equation
(Meyer-Peter and Müller, 1948) and found a better fit to data
resulting in the following equation:

q∗ = 3.97
(
τ ∗− τ ∗c

)3/2
, (2)

where the exponent is fixed at 3/2 and τ ∗c = 0.0495 is the
dimensionless threshold of sediment entrainment. The MPM
equation is similar in form but tends to overpredict bed load
at higher discharges (Barry et al., 2004). Experimentally, bed
load flux is well-described by Eq. (5) and similar models em-
ploying excess shear stress raised to a 3/2 power (see La-
jeunesse et al., 2010); however, application within different
rivers and flumes typically requires that both the coefficient
and threshold shear stress be treated as fitting parameters
(Mueller et al., 2005; Phillips and Jerolmack, 2019). Here,
for the sake of comparison, we have applied this equation us-
ing fixed coefficient and thresholds as it was not possible to
estimate these parameters at each site in the database. The
difficulty in estimating the threshold shear stress is a signifi-

cant hurdle in the application of bed load transport equations
(Buffington and Montgomery, 1997, Phillips et al., 2022).

2.3.3 Wilcock and Crowe (2003)

Wilcock and Crowe (2003) presented a sophisticated trans-
port model for mixed gravel and sand based on 48 labora-
tory experiments with 5 different sediments sizes. The frac-
tional transport discharge in this model is estimated based on
a reference parameter informed by the sediment distribution
of the bed surface. This model represents a major advance
by incorporating the nonlinear effects of sand content on the
mobility of gravel and the overall transport rate (Wilcock and
Crowe, 2003). We applied this model to the available test-
ing dataset by estimating sand fractions from sediment grain
size data followed by estimating the reference shear stress for
the geometric mean grain size. More information about this
method and the steps undertaken in this study is presented in
the Supplement (Sect. S1).

2.3.4 Recking (2013b)

The Recking (2013b) model is a single continuous function
from two equations previously developed in Recking (2010).
The model can be used for sand and gravel mixtures and was
developed based on 6319 field observations and 1317 flume
measurements (Recking, 2010). The model considers sedi-
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ment mobility based onD84, as this size was observed to im-
pact bed material mobility, flow resistance, hiding, surface
armoring, and bed shear stress (Recking, 2013b). The criti-
cal mobility parameter (τ ∗c ) is set to a constant for sand, and
as a function of the ratio of D84/D50 and the river slope, S.

2.3.5 Quantitative comparison of ANN performance and
bed load models

In order to evaluate the performance of the ANN relative to
these existing models, we calculated MAE for the four previ-
ous bed load transport models and the ANN model based on
the direct measurements of bed load flux from the Bedload-
Web database within the portion of the dataset reserved for
the test (n= 1624). MAE is calculated as

MAE=
∑
|observed-predicted|

number of samples
. (3)

We selected MAE as the primary criteria to assess the aver-
age model performance because it is less sensitive to extreme
values (Willmott and Matsuura, 2005). To better compare the
under- and overprediction of each model across multiple or-
ders of magnitude, we log-transformed all bed load trans-
port observations and predictions. This is because, based on
Eq. (3), predicted values that fall multiple orders of magni-
tude below observed values will result in very small differ-
ences between predicted and observed values, which, result,
by definition, in very small MAE values. In extreme cases,
MAE values computed for models that, on average, under-
predict the observed data by multiple orders of magnitude
(e.g., Fig. 2a) can be less than MAE values for models that
equally over- and underpredict the observed data within the
same order of magnitude (e.g., Fig. 2d). In this case, comput-
ing MAE on log-transformed observations and model predic-
tions more equally weights underpredictions of each model
relative to model overpredictions. Further, given that the ob-
servations of bed load transport span 4 orders of magnitude
and are not normally distributed, this procedure helps to more
equally account for model errors across the full range of the
dataset.

3 Results

3.1 Model training

We found that five hidden layers, each with 600 neurons,
could adequately reflect dataset measurements with mini-
mum error (Fig. 1b). The fine-tuning of the ANN model
showed that the optimum model had a batch size of 1200,
a learning rate of 0.6, a dropout rate of 0.1, incorporated
the mean squared error (MSE) as a loss function, and an
“Adadelta” optimizer for minimizing the error in the training
process (Chollet, 2015; Geron, 2019). The training process
began with initial training and validation losses with MSE of
0.094 and MSE of 0.058 (Fig. 1b) and final values with MSE

of 0.0126 and MSE of 0.013 after 600 iterations (epochs).
Minimal improvements in error occurred between 300 and
600 epochs, indicating that the ANN model had captured
the relationships between the inputs and output adequately,
and further iteration would not improve performance. The
ANN model performed similarly on the validation dataset
(Fig. 1b), which reveals that overfitting is not an issue since
the difference between training and validation errors is rela-
tively constant and minimal (Geron, 2019; Haykin, 2009).

3.2 Model performance against observations

Following model training, the model with the weighting co-
efficients determined during training was applied to the re-
maining 20 % of the dataset (test data) to independently
predict bed load transport rates. The ANN prediction re-
sulted in a very close prediction of the mean observed flux
per unit width (qsANN = 25.6 g s−1 m−1 compared to qsDATA =

31.6 g s−1 m−1) (Fig. 2). We also performed a sensitivity test
of the ANN model by training and testing a set of addi-
tional models in the same fashion as described for the full
ANN model but removed a single input parameter each time
(Fig. 1c). We also trained and tested an ANN model with
three of the observed grain sizes (D16, D84, D94) being re-
moved. We found that the performance of the ANN was most
sensitive to the removal of discharge leading to a 95 % in-
crease in model error (MSE) during training (Fig. 1c) and
an associated 65 % increase in model error when the trained
model was applied to test data.

We compared site-specific, mean absolute error (MAE)
values using site-specific ANN predictions to both the in-
terquartile range (IQR) and the full range of observed bed
load transport rates at each site (see Supplement). We found
that, on average, MAE values are less than both the IQR
and the full range of qs values across 134 sites. We found
11 instances where the MAE exceeds the IQR and only 1 in-
stance where the MAE exceeded the full range of observed
values at a site, comprising less than 10 % of sites in the
database. However, the median number of samples in these
cases was 17, relative to a median of 50 samples across all
sites. In addition to this, we looked at functional relation-
ships between the site-specific model MAE for the test data
versus the total number of samples at each site. We did this to
ascertain whether the model was biased towards differences
in sample size. We did not find any systematic or significant
relationships between the sample size at any individual site
and the computed errors between the ANN output and our
test data. Because some of the input parameters to the ANN
are dynamic (e.g., discharge, width), we also explored the
absolute error between every individual observation in our
database and the model input parameters. We found that there
is no systematic or significant relationship between the abso-
lute error across all data points and any individual input pa-
rameter. We did find that the lowest measured transport rates
result in increased errors at some sites, which is consistent
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with most bed load flux models as bed load transport is often
within the partial or intermittent transport regime very close
to the threshold for motion (Wilcock and McArdell, 1997).

3.3 Comparison of ANN to previous bed load transport
models

In direct comparison, the ANN model outperforms all four
previous models, regardless of their complexity. The ANN
prediction of bed load transport rates across the test data
results in a MAE of 0.704, which is 2.5–16.8 times less
than the calculated MAE for the other considered models.
In addition, the standard deviation for the test predictions
by the ANN model was 48.2 g s−1 m−1 and the minimum
amongst all models. Among the four previous bed load equa-
tions chosen for comparison, Recking (2013b), an empiri-
cal model with five input parameters, performed markedly
better than all other previous models with an MAE of 1.81
when compared to measured data (Fig. 2d). Einstein (1950),
a probabilistic model with four inputs, performed substan-
tially worse, with an MAE of 11.84 for the log-transformed
bed load predictions. It is worth noting that the mean error
ratio of −0.07, calculated for the Einstein (1950) model, is
less than the other three existing bed load transport mod-
els (see Table S4). This is due to the tendency of the Ein-
stein (1950) model to underpredict observed bed load trans-
port rates relative to the other models. Einstein (1950) un-
derpredicts measured bed load transport rates for more than
82 % of observations, often by multiple orders of magni-
tude, resulting in the largest MAE when calculated using
the log-transformed data (Fig. 2a). In contrast, bed load
flux predictions made using Wong and Parker (2006) and
Wilcock and Crowe (2003) lead to considerable overpredic-
tions in bed load fluxes across sites (Fig. 2b and c). Wong and
Parker (2006) resulted in an average qs of 855.7 g s−1 m−1

with a standard deviation of 2318 g s−1 m−1 and a mean
error ratio of 202.52. Wilcock and Crowe (2003) resulted
in an average qs of 13278.45 g s−1 m−1 with a standard
deviation of 24 011.43 g s−1 m−1 and the maximum calcu-
lated error ratios across all models, with a mean error ratio
of 5555.7. The model generally overpredicts the observed
data, with the 25th percentile of the estimated values for
the test data being 1294-fold larger than reported measure-
ments. In addition, high positive skewness in the predictions
(skewness= 4.57) by Wilcock and Crowe (2003) showed
that without independent calibration, the model could not re-
flect the distribution of the measured data. However, MAE
calculations on the log-transformed results from Wong and
Parker (2006) and Wilcock and Crowe (2003) yield an MAE
of 2.23 and 6.59, respectively, demonstrating that while these
uncalibrated models may lead to overprediction, the scale of
these overpredictions is multiple orders of magnitude less
than the potential underprediction of the uncalibrated Ein-
stein (1950) approach.

We find that, without site-specific calibration, the trained
ANN developed in this contribution most reliably reflects the
distribution of the measured bed load data in the training
dataset. Of the uncalibrated existing bed load transport mod-
els, the approach of Recking (2013b) most reliably reflects
the measured test data.

4 Discussion

We demonstrate that the trained ANN model provides a ro-
bust prediction of available test data. This is particularly
encouraging because the model is trained using a dataset
with wide parameter ranges compiled from many sites across
the world, suggesting that it may be readily applied to any
site which falls within the existing distributions of the train-
ing dataset with fairly good results (see Supplement). Cau-
tion should be applied in the application of this ANN for
input parameters outside of the parameter distributions for
which it was trained. Admittedly, the ANN model leverages
all seven available inputs from the BedloadWeb database,
whereas previous models only utilize a subset (Table S3) and
as such, it is not entirely surprising that the ANN outper-
forms existing models. However, it is worth noting that, to
our knowledge, there is no available empirical or theoretical
bed load model that would similarly leverage all of these in-
put parameters. ANN model sensitivity testing revealed that
each of the seven parameters aides in the final prediction;
however, the removal of discharge produced the largest er-
rors by far. This result is also unsurprising, and it is con-
sistent with findings from other recently developed sediment
transport models (e.g., Cohen et al., 2022). Bed load flux is
chiefly a function of the fluid stress applied to the bed in ex-
cess of the threshold for motion and thus primarily dependent
on how channel discharge maps to stress through the chan-
nel cross section (Meyer-Peter and Müller, 1948; Wong and
Parker, 2006). It is worth noting, however, that the trained
ANN model which does not include discharge only has an
MAE of 21.1 g s−1 m−1 compared to the full ANN MAE of
15.8 g s−1 m−1, which is still less than those from all previ-
ous models (Table S5). It should be noted that all four ex-
isting bed load transport models require some form of dis-
charge (or shear stress) data to make predictions. All other
ANN models trained on only a subset of the input parameters
showed an increase in model error (MSE) in the test phase
of up to 12 % relative to the full ANN model. Across these
sensitivity runs, the ANN model error was most sensitive to
the removal of the channel width (MSE increase of 12 %)
and least sensitive to the removal of D90 (MSE increase of
0.8 %). These findings are consistent with those from a sen-
sitivity analysis of the global-scale model WBMSed (Cohen
et al., 2022) and recent sediment transport models devel-
oped using a stream power approach (Lammers and Bledsoe,
2018). Across all cases, increases in total error of this class
of ANN models (average MSE= 1546.0 g2 s−2 m−2) is still
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significantly less than the four uncalibrated bed load models
(minimum MSE= 6215.1 g2 s−2 m−2).

We suggest that the relative insensitivity of ANN perfor-
mance reflects the inherent self-organization of alluvial river
systems (Leopold et al., 1960; Parker, 1978; Phillips and
Jerolmack, 2016). Alluvial rivers evolve towards a stable ge-
ometry that reflects a condition at which the bankfull flood
will only slightly exceed the threshold for motion and initi-
ate bed load transport (Dunne and Jerolmack, 2020; Parker,
1990). By extension, if a river is at or near this stable state,
its width, slope, and surface grain size distribution all hold
information about channel size and therefore discharge re-
quired to transport sediment. We suggest that the machine
learning approach, which incorporates all these inputs, bet-
ter captures the covariation between channel characteristics
and their influence on bed load transport rates in natural sys-
tems when compared to more deterministic models. This is,
in part, due to the model training, which is explicitly aimed
at parsing the functional relationships between these covar-
ied input parameters.

The robust performance of the trained ANN across many
sites also demonstrates that potential sources of variability
may be absent in a particular site and that the ANN success-
fully captures an expected average behavior. Alternatively,
these effects may be embedded within correlations between
model input parameters. For example, it has been demon-
strated experimentally that decreased sediment supply can
result in coarsening of the bed surface (Dietrich et al., 1989).
Thus, the effect of relative differences in sediment supply
may be implicitly accounted for in the ANN results due to
differences in the grain size input parameters relative to chan-
nel width and slope measurements. If so, this only reinforces
the critical importance of river self-organization in setting
bed load transport rates (Phillips and Jerolmack, 2019) and
the ability of the ANN to parse this organization through a
data-driven approach. The ANN cannot explicitly define the
sources of potential variability given the available input pa-
rameters, but this is also beyond the scope of this contribu-
tion.

Inspection of the model predictions (Fig. 3) shows that
the models of Wong and Parker (2004) and Wilcock and
Crowe (2003) tend to overpredict observed fluxes but gener-
ally capture the correct shape of the observed data and there-
fore could likely be calibrated to match the observed data.
Calibration of bed load transport functions through adjust-
ments to the leading coefficient and/or the threshold term can
generally increase their utility (Hinton et al., 2017). How-
ever, these calibration parameters are not always easy to esti-
mate and usually require direct measurements of bed load
flux. Phillips and Jerolmack (2019) specifically analyzed
field sites to investigate channel geometry and the threshold
of motion and were only able to reliably calibrate bed load
functions for 68 of the 134 sites (51.5 %). Application of em-
pirical functions can require additional derived or calculated
parameters such as shear stress. Shear stress is not necessar-

Figure 3. Example of the ANN model developed in this study ap-
plied to construct bed load transport rating curves for several sites.
The numbers in parentheses show the percentiles of each variable
relative to the whole dataset.

ily challenging to derive by assuming steady, uniform flow;
however, even shear stress data are rarely available at the ma-
jority of stream-monitoring sites and can require a compli-
cated set of processing routines for gaged sites (see Phillips
and Jerolmack, 2016). More notably, the generally poor pre-
dictions from the physically based and semi-empirical bed
load transport models (Fig. 2) highlight the challenge in uti-
lizing any bed load transport equation to predict or construct
a rating curve without existing site-specific flux measure-
ments. A primary advantage of this ANN model is that it uti-
lizes either parameters that are directly and consistently mea-
sured at stream gages (flow), measured from high-resolution
topography (slope, width), or can be measured during low-
or no-flow periods (grain size). For the majority of sites, both
slope and grain size are static site variables and this presents a
major advantage of this ANN model for predicting bed load
transport at gaged sites where direct measurements of bed
load are not available to develop empirical rating curves or
to calibrate other existing bed load functions.

One application of the ANN model developed here is to
construct bed load transport rating curves for a broad range
of gaged rivers. We selected a small subset of rivers that
cover a wide range of parameters from the dataset used in
this study to highlight the ANN model output (Fig. 3). These
simple results highlight how the ANN approach can be used
for the prediction of bed load transport at gaged sites with-
out additional site-specific calibration. The strength of the
ANN model should allow for this approach to be adapted
relatively easily to any gaged catchment with similar param-
eters or site without prior transport measurements to estimate
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bed load flux based on a hydrograph and reach-scale esti-
mates of bed grain size and slope. Within the US Geological
Survey National Water Information System, there are thou-
sands of potential gages. Furthermore, this model could be
paired with spatially distributed hydrologic models if suffi-
cient grain size measurements could be made and could also
be readily applied within global-scale sediment flux models
(such as WBMSed; see Cohen et al., 2022) or in Earth sys-
tem models (e.g., Tan et al., 2021; Li et al., 2022) where ad-
ditional necessary parameters can be modeled or estimated
from global compilations (Tan et al., 2021; Li et al., 2022;
Cohen et al., 2022).

5 Conclusions

This paper presented an artificial neural network (ANN)
model for predicting river bed load. To do that, a large,
measured bed load dataset, including 8117 data points from
134 rivers, was gathered from the BedloadWeb, a free public
online platform. The structure of the ANN included an input
layer, an output layer, and five hidden layers with 600 neu-
rons. The inputs to the model included temporally variable
river discharge, flow width, and static measurements of bed
slope and grain size (specifically D16, D50, D84, and D90).
A sensitivity analysis was carried out to show the sensitivity
of the model with the input parameters. The results showed
that the ANN model was most sensitive to the river discharge
and least sensitive to the largest grain size (D90). Our anal-
ysis suggests that including all available parameters in the
ANN model better captures the covariations between the in-
put and output parameters. Further, the ANN model pro-
vides robust prediction of the test (unseen) bed load data
(n= 1624) within the bounds of 1 order of magnitude. We
highlight that an advantage of this ANN model is that it was
developed on a broad range of rivers and appears to accu-
rately capture the variation in the data, making this model a
good candidate for predicting bed load fluxes at gaged sites.
The proposed machine learning model in this research lays
the foundations for efficient and accurate predictions of river
bed load within the broadest array of rivers to date.
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