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Abstract. By simulating erosion and deposition, landscape evolution models (LEMs) offer powerful insights
into Earth surface processes and dynamics. Stream-power-based LEMs are often constructed from parameters
describing drainage area (m), slope (n), substrate erodibility (K), hillslope diffusion (D), and a critical drainage
area (Ac) that signifies the downslope transition from hillslope diffusion to advective fluvial processes. In spite
of the widespread success of such models, the parameter values are highly uncertain mainly because the advec-
tion and diffusion equations amalgamate physical processes and material properties that span widely differing
spatial and temporal scales. Here, we use a global catalogue of catchment-averaged cosmogenic 10Be-derived
denudation rates with the aim to optimise a set of LEMs via a Monte Carlo-based parameter search. We con-
sider three model scenarios: advection-only, diffusion-only, and an advection–diffusion hybrid. In each case, we
search for a parameter set that best approximates denudation rates at the global scale, and we directly compare
denudation rates from the modelled scenarios with those derived from 10Be data. We find that optimised ranges
can be defined for many LEM parameters at the global scale. In the absence of diffusion, n∼ 1.3, and with
increasing diffusivity the optimal n increases linearly to a global maximum of n∼ 2.3. Meanwhile, we find that
the diffusion-only model yields a slightly lower misfit when comparing model outputs with observed erosion
rates than the advection-only model and is optimised when the concavity parameter is raised to a power of 2.
With these examples, we suggest that our approach provides baseline parameter estimates for large-scale studies
spanning long timescales and diverse landscape properties. Moreover, our direct comparison of model-predicted
versus observed denudation rates is preferable to methods that rely upon catchment-scale averaging or amal-
gamation of topographic metrics. We also seek to optimise the K and D parameters in LEMs with respect to
precipitation and substrate lithology. Despite the potential bias due to factors such as lithology, these optimised
models allow us to effectively control for topography and specifically target the relationship between denudation
and precipitation. All models suggest a general increase in exponents with precipitation in line with previous
studies. When isolating K under globally optimised models, we observe a positive correlation between K or
D and precipitation> 1500 mm yr−1, plus a local maximum at ∼ 300 mm yr−1, which is compatible with the
long-standing hypothesis that semi-arid environments are among the most erodible.

1 Introduction

To appreciate short-term changes in Earth surface processes,
such as those induced by humans (Brown, 1981; Hooke,
2000), it is first necessary to understand long-term rates
of denudation and deposition. Recognising this, some re-
cent studies (e.g. Simoes et al., 2010) have derived erosion-

transport rules from topography with an aim to predict
macro-scale patterns of denudation and sediment flux. At
more restricted spatial scales, denudation rates based on cos-
mogenic nuclides (e.g. 10Be) show a modest exponential cor-
relation with catchment-averaged slope, as does normalised
steepness in stream profiles (Portenga and Bierman, 2011;
Harel et al., 2016). Nevertheless, it is widely observed that
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steepness and stream power parameters are subject to con-
siderable variation wherever climate and/or lithology differ
(Harel et al., 2016; Gailleton et al., 2021; Marder and Gallen,
2023) and that the parameters also covary. A robust analysis
must accommodate such interactions.

Earth’s surface undergoes continuous modification
through uplift and denudation over timescales too long to
observe directly; hence landscape evolution models (LEMs)
are crucial tools for building knowledge. Note that we use
the term “denudation” to denote the mass loss leading to
the lowering of Earth’s surface. LEMs are often employed
over expansive scales of space and time in order to study
topographic response to changes in tectonics (e.g. Kooi and
Beaumont, 1996; Garcia-Castellanos et al., 2003), climate
(e.g. Temme et al., 2009, Adams et al., 2020), and sea level
(e.g. Pico et al., 2019; Ruetenik et al., 2019). And yet, large
spatial and temporal scales require generalisation of model
parameters that reliably accounts for processes of hillslope
diffusion and advective fluvial erosion. Using LEMs to esti-
mate denudation rates delivers the key advantage of bridging
scales and defining an empirically derived mechanism at
the local (grid cell) scale. This demands that denudation
rates are integrated over scales matching the topographic
changes they describe. At the local to regional scale, recent
studies have focused on constraining LEM parameters via
inversions that optimise rates of denudation, deposition, and
topographic observations (e.g. Miller et al., 2013; Croissant
and Braun, 2014; Pedersen et al., 2018; Barnhart et al.,
2020). However, implementing many of these approaches at
a global scale is challenging in terms of computational cost
and because it often requires a compilation of a large set
of observables (such as knickpoints, depositional patterns,
and denudation rates). In the absence of computational
power that can accurately simulate stratigraphy at the global
scale, and without constraints on global palaeo-topography,
we settle for optimising LEM parameters with respect
to catchment-averaged denudation rates estimated with
cosmogenic 10Be. While LEM parameters can be estimated
via direct topographic analysis (e.g. Wobus et al., 2006;
Clubb et al., 2014; Mudd et al., 2018), this approach can
lead to bias, as we discuss below.

Here, we determine LEM parameter values that minimise
the variance among 10Be-derived apparent denudation rates
in the OCTOPUS v.2 global catalogue (Codilean et al.,
2022), and we analyse the capacity of LEMs to predict the
denudation rate given those optimised parameters. Our LEM
employs the common stream-power-plus-diffusion formula-
tion, which is subject to important limitations, such as the ne-
glect of fluvial deposition and mass wasting processes (e.g.
Whipple and Tucker, 1999). The trade-offs involved in this
simplified approach, we believe, are justified by the record of
success with simulating landscape processes at large scales
and across a wide range of lithologies, drainage areas, and
steepnesses (e.g. Gallen et al., 2013; Miller et al., 2013; Fox
et al., 2014).

Catchment-averaged denudation rates from
cosmogenic 10Be

Rates of catchment-scale denudation can be estimated by
measuring the abundances of cosmogenic radionuclides,
such as 10Be, in quartz-bearing river sand (Granger et al.,
1996; Von Blanckenburg, 2005). Such nuclides accumulate
within minerals exposed to secondary cosmic rays in the up-
per few metres of the bedrock subsurface and are lost via
erosion and radioactive decay (Lal, 1991). The attenuation
of cosmic rays with depth causes the nuclide production rate
to decrease exponentially (at 2 m depth the 10Be production
rate is < 5 % that at the surface); hence, nuclide abundances
measured in sediment are an inverse function of denudation
rate.

The spatial variations observed in denudation rates across
a range of climates and lithologies (Portenga and Bierman,
2011; Starke et al., 2020) suggest that the erosional pro-
cesses driving the evolution of landscapes also vary. This
has important implications for the interpretation of 10Be-
derived denudation rates and how we parameterise LEMs.
Estimating catchment-averaged denudation rates from nu-
clide abundances in river sand depends on a multitude of as-
sumptions (Von Blanckenburg, 2005; Mudd, 2016). For ex-
ample, we assume that sediments were produced via long-
term, steady bedrock erosion distributed uniformly across
the catchment and that sediments have experienced contin-
uous exposure to cosmic rays at/near the surface. In detail,
long-term steady erosion refers to at least one attenuation
length (∼ 0.6 m) of surface lowering integrated over a 103–
105-year timescale. Abrupt bedrock erosion events, for in-
stance, caused by bedrock landsliding or glacial quarrying
may bias denudation rate estimates. Similarly, long inter-
vals of ice cover or intermittent deep sediment burial con-
tradict the requirement for continuous cosmic-ray exposure.
Other sources of potential discord relate to lithology, catch-
ment size, and hypsometry, which are known to affect sed-
iment transport dynamics and grain-size yields (Carretier et
al., 2015; Riebe et al., 2015; Lukens et al., 2016; Zavala et al.,
2020). The sources of deviation noted above are collectively
responsible for the considerable variability observed in large
compilations of 10Be-derived denudation rates (e.g. Portenga
and Bierman, 2011; Harel et al., 2016). Catchment-wide
denudation rates are commonly determined and published
for settings that do not strictly comply with the method’s
premises; these estimates are best referred to as apparent
denudation rates (Mudd, 2016). Nevertheless, 10Be-derived
data currently offer the most widely distributed insight into
long-term denudation on a global scale.
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2 Methods

2.1 Stream power and hillslope diffusion

Stream power is represented by a non-linear advection equa-
tion derived from observations of river morphology and gen-
eralised relationships for bed shear stress (e.g. Howard et al.,
1994; Whipple and Tucker, 1999; Lague, 2014). It affords
a description of channel incision as a function of upstream
drainage area (A) and local slope (S) for the portion of the
catchment (above the critical drainage area,Ac) where fluvial
advection dominates over hillslope diffusion and debris flow
processes (e.g. Lague and Davy, 2003; Fontana and Marchi,
2003; Whipple and Tucker, 1999). The stream power equa-
tion takes the form

Epredicted,advective =KA
mSn, (1)

where K is the advection coefficient or erosional efficiency
that is (in our formulation) uniform across a catchment, and
m and n determine the relative dependence of incision on
drainage area and slope. The ratio m/n defines how eleva-
tion scales with drainage area at a steady state relative to
the longitudinal channel profile and typically varies from 0.3
to 0.6 (Wobus et al., 2006; Whipple and Tucker, 1999); n
determines the erosional non-linearity of the model, which
is thought to be determined by regional discharge variabil-
ity, as well as processes governing incision thresholds, and
typically ranges from 1 to 4 (e.g. Lague, 2014). A global
compilation of stream power parameters constrained by to-
pographic metrics (Harel et al., 2016) reports an optimised
n∼ 2.6, albeit with considerable scatter (also observed by
Gailleton et al., 2021). The value of nmay also vary depend-
ing on the location in the channel network; the steepest and
fastest-eroding locales such as knickpoints can have values
closer to unity (Lague, 2014). In general, higher n results in
larger erosional flux from steep terrain, while higher m re-
sults in larger erosional flux from big rivers. However, if m
and n both increase (keeping their ratio and K constant), a
larger fraction of erosional flux will be sourced from steeper
main-stem channels.

The amalgamated outcomes of hillslope transport pro-
cesses, such as rain splash, soil creep, and bioturbation, are
primarily diffusive. Hence, to simulate hillslope processes,
we include a diffusion equation:

Epredicted,diffusive =D

(
d2z

dx2 +
d2z

dy2

)p
, (2)

where D is diffusivity, which is reported to range from ∼
4.4× 10−4 to 3.6× 10−2 for linear diffusion (e.g. Fernandes
and Dietrich, 1997). We use an exponentiated form of the
diffusion equation in which concavity is raised to an expo-
nent, p, in order to harmonise with Gabet et al. (2021), who
posit that denudation rate scales approximately with hillslope
concavity squared. For linear diffusion to satisfy mass con-

servation, the deposited and eroded sediment should be bal-
anced. However, in the exponentiated formulation, negative
concavities raised to a power of p can produce non-real com-
ponents. Thus, we calculate an average catchment-wide de-
nudation rate in which we ignore deposited sediment (areas
of negative concavity) and take an average based on eroded
sediment only.

For our joint advection–diffusion model, we follow the
common approach of combining stream power with linear
diffusion (i.e. p = 1 in Eq. 2). When Eqs. (1) and (2) are
combined, D and K covary, and it has been noted that a
higherD/K ratio results in a lower sensitivity of erosion rate
to catchment-averaged slope (Forte et al., 2016a). Hence, we
divide Eq. (3) by K , which allows the D/K ratio to be opti-
mised with respect to predicted erosion rate:

Epredicted

K
= AmSn+

D

K

(
d2z

dx2 +
d2z

dy2

)
. (3)

With our advection–diffusion model formulation (Eq. 3), we
set out to solve simultaneously for globally optimised val-
ues of D/K , n, and Ac. D/K and n determine the relative
importance of advective versus diffusive processes in driving
erosion; lower D/K and higher n (which implies higher m
given uniform m/n) will result in the dominance of advec-
tion, whereas higher D/K and lower n will promote diffu-
sion. While varying m and n, we keep their ratio constant
at 0.45, a widely applied average channel concavity (e.g.
Wobus et al., 2006; Harel et al., 2016) and in line with the
global average of 0.42 reported by Gailleton et al. (2021) (de-
spite considerable variability).

Based on previous modelling (e.g. Roering et al.,
2007), one might expect advection-dominant landscapes
to be rougher in outline relative to the smoothing ef-
fects of diffusion. However, Theodoratos et al. (2018)
show that multiple sets of parameters can give rise to
equifinality. In our modelling framework, the D/K ra-
tio covaries with n to determine the ratio of hillslope
denudation and total (fluvial+ hillslope) denudation, de-
noted here as Epredicted,diffusive/Etotal, where Etotal is the
sum of Epredicted,diffusive and Epredicted,advective. The ratio
Epredicted,diffusive/Etotal is therefore a function of both n and
D/K . In principle, this metric is inversely proportional to
an effective Péclet number for net denudation (Perron et al.,
2008). For values of Epredicted,diffusive/Etotal close to unity,
diffusive processes will dominate, while values closer to zero
represent advection dominance (Fig. 1).

2.2 10Be-derived apparent denudation rates

We conduct modelling experiments that employ randomly
selected sets of LEM parameter values and then com-
pare our model outputs with the global catalogue of
10Be-derived catchment-averaged denudation rates, OCTO-
PUS v.2 (Codilean et al., 2022). In addition to apparent de-
nudation rates (N = 4631), OCTOPUS includes topographic

https://doi.org/10.5194/esurf-11-865-2023 Earth Surf. Dynam., 11, 865–880, 2023



868 G. A. Ruetenik et al.: Optimising global landscape evolution models with 10Be

Figure 1. (a) Catchment example (Swakop River, Namibia) clipped from a Hydrosheds DEM based on the shapefile provided in OCTO-
PUS v.2 (Codilean et al., 2022). The lower panels (b–e) show corresponding relative denudation rates (colour ramp spans 0 %–98 % of the
range) for differing parameter values. No diffusion is included in (b) and (d); hence erosion is focused in the channels. In (c) and (e), a
moderately high (107) diffusivity is used relative to advection, which causes erosion to be more focused on hillslopes.

data and catchment outlines. Using the catchment boundaries
in OCTOPUS, we clipped rasters from the Hydrosheds Shut-
tle Radar Topography Mission (SRTM) dataset, a global dig-
ital elevation model (DEM) with 3 arcsec resolution (Lehner
et al., 2008), plus the National Elevation Dataset (Gesch
et al., 2002) for catchments in Alaska north of 60◦. Local
pits (i.e. lakes) within the catchments were filled using the
priority-flood method of Barnes et al. (2014). In building the
network of local upstream drainage areas for each cell, runoff
is assumed to flow down the steepest descent in accordance
with the D8 flow-routing algorithm. Slopes for every cell are
computed along this steepest-descent flow path.

To determine the effect of DEM resolution, we test our
models on 1 arcsec Copernicus DEM data, although for rea-
sons of computational capacity we restrict our analyses to
catchments with < 1.3× 106 grid cells (N = 3414) and to

the diffusion-only and advection-only scenarios. We find that
DEM resolution is not decisively important to our results
(Figs. S1 and S2 in the Supplement).

About 24 % of the OCTOPUS dataset is not exploitable
for our purposes: 68 catchments are too small to be processed
by the LEM (< 3 DEM cells in any dimension), and we ex-
clude 33 of the very largest catchments due to the extreme
computational cost. Multiple denudation rate measurements
included in OCTOPUS refer to samples from different loca-
tions within the same larger catchment. For such cases, a sep-
arate catchment is defined only where the drainage area dif-
fers by> 5 %; otherwise, we amalgamate the data and derive
a single average denudation rate. In total, 3640 catchment-
wide apparent denudation rates (Eapparent) are used in our
modelling experiments, ranging from 0.028 to 430 000 km2
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(11 to 53×106 grid cells). We do not separate 10Be measure-
ments conducted on different grain-size fractions.

Processing DEMs begins with computing the drainage
network. To minimise the effects of disequilibrium pertur-
bations (e.g. Schwanghart and Scherler, 2017), we smooth
river profiles using a∼ 1 km averaging window. Unsmoothed
profiles are also used for comparison and yield similar re-
sults, where the largest discrepancies lie in the advection–
diffusion model. After catchment slopes and drainage areas
are computed, the diffusion and stream power equations can
be solved. The LEM is run for exactly one time step on
DEMs representing each of the 3640 catchments; the sedi-
ment flux to the catchment outlet is then averaged over the
total drainage area to yield a LEM-predicted denudation rate
(Epredicted). Because different values of input LEM param-
eters typically yield different denudation rates (with the ex-
ception of highly diffusive models, as described below), such
models are then optimised by comparison with our catalogue
of Eapparent data.

2.3 Monte Carlo simulations

We use a brute-force Monte Carlo approach to investigate the
parameter space by running randomly selected sets of param-
eters and testing the fit of modelled versus observed (10Be-
derived) denudation rates. We adopt the philosophy of equi-
finality (e.g. Beven and Binley, 1992) to evaluate the model
parameters applied in our LEMs; implicit in these assump-
tions is that multiple sets of parameters may give rise to a
similar or equifinal result (e.g. Csilléry et al., 2010). Hence,
we report both the range of optimal parameters and the best-
fit model parameters.

In our framework, no more than three parameters are mod-
ified and compared at any one time (Table 1). This is possible
thanks to several simplifying steps (detailed below) that re-
quire fewer modelling runs (e.g. Theodoratos et al., 2018).
The performance of the model with a given set of parameters
is evaluated based on the mismatch between E∗predicted and
Eapparent with respect to the likelihood function (Beven and
Binley, 2014). Modelled and observed rates are compared di-
rectly, and no regression is involved. In so doing, one or more
local maxima representing an optimised parameter set may
be identified in the space defined by parameter values versus
the likelihood function. A range is then defined within 1 %
of the peak (for example, if the best-fit model has a score
of 0.500, we report the range of parameters from models with
scores> 0.495).

For each randomly selected set of parameter values (Ta-
ble 1), the LEM computes a single time step, and the erosion
in each grid cell is integrated. E∗predicted is then scaled by em-
ploying a log transformation on all modelled catchments:

log
(
K∗
)
=

1
N

∑(
log

(
Epredicted

K

)
− log

(
Eapparent

))
, (4)

log
(
E∗predicted

)
= log

(
Epredicted

K

)
+ log

(
K∗
)
, (5)

where N is the number of observations, and K∗ is K prior
to log transformation (see Eq. 7 below). The performance
of log(E∗predicted) against log(Eapparent) is then calculated for
each parameter set. This set-up offers the advantage of lim-
iting the number of parameters varied; it is not our aim to
determine the absolute values of coefficients because these
covary; instead, we focus on the ratio D/K (see Sect. 2.1).

After optimal values of Ac, D/K , and/or n are found, the
associated value ofK can be corrected for log transformation
using an unbiased estimator (after Ferguson, 1986).

K =K∗e
s2
2 , (6)

where s2 is an estimate of the variance:

s2
=

1
N − 1

∑(
log

(
Eapparent

)
− log

(
E∗predicted

))2
. (7)

An equivalent form of Eqs. (4)–(7) is used for the diffusion-
only model, simply by replacing K with D. Although we
believe this log transformation is justified, we also provide
coefficients without Eqs. (6) and (7) (Fig. S7c).

Given that our denudation rate data span several orders of
magnitude, we compare log(Eapparent) and log(E∗predicted) us-
ing the Nash–Sutcliffe coefficient of efficiency (NSE):

NSE= 1−

∑(
Eapparent−E

∗

predicted

)2

∑(
Eapparent−mean

(
Eapparent

))2 . (8)

Optimised values are defined as the maximum NSE value
only where they are surrounded by local maxima in the like-
lihood, which is the case in all the experiments below. We
also tested a version of NSE that incorporates measurement
uncertainty, based on Harmel and Smith (2007), but it had
little effect on the optimised parameters (Figs. S3 and S4).
Additionally, we calculate the mean absolute error (MAE)
to gauge the sensitivity to the likelihood function (Figs. S5
and S6).

2.4 The influence of lithology and precipitation on
denudation

We subdivide the OCTOPUS catchments according to
(1) areally dominant lithology based on the GLiM global ge-
ologic map (Hartmann and Moosdorf, 2012), which gives a
vectorised description of lithology compiled from a number
of regional high-resolution geologic maps at a target resolu-
tion of 1 : 1000000, and (2) spatially averaged mean annual
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Table 1. Parameter values and ranges for the three model set-ups.

Model set Parameter Range Sampling

Stream power only n 0–4 Random, 1000 samples
Ac 0.01–8 km2 Random, log-uniform, 1000 samples

Diffusion only p 0–4 Linear increment by 0.2

Stream power+ diffusion n 0–4 Random, 10 000 samples
D/K 103–1010 m0.9n+1 Random, log-uniform, 10 000 samples
Ac 0.01–8 km2 Random, log-uniform, 10 000 samples

precipitation (MAP) using the CHELSA dataset (Karger et
al., 2017).

Precipitation differences between lithologic subgroups can
be significant; for instance, averages range from 851 to
2077 mm yr−1 for unconsolidated sediment and metamor-
phic rocks, respectively. To address lithological variations in
the presence of climatic differences between lithologic sub-
groups in the advection-only model, we attempt to isolate
substrate effects with the form of the stream power equa-
tion given by Kooi and Beaumont (1996), which explicitly
includes precipitation variations that are normally folded into
K under the assumption that precipitation (P ) scales linearly
with discharge:

Epredicted,advective =Klith(PA)mSn. (9)

Although many factors influenceK besides precipitation, we
useKlith in this case to denote the variable we are attempting
to isolate. We do not attempt to correct for variable precipita-
tion in calculating D, for instance, by devising an equivalent
Dlith from Eq. (9), and it is only applied when calculatingK .

3 Results

3.1 Advection-only model

We apply a stream-power-based advection-only model
(Eq. 1) (excluding hillslope diffusion), with two free param-
eters: a slope exponent (n) and critical drainage area (Ac).
Variations inm are fixed to n such that concavity is held con-
stant atm/n= 0.45. We report the optimised values in terms
of maximum value and an optimised range of values (Q0.01)
that are within 1 % of the maximum. The advection-only
model (Fig. 2) is globally optimised at n∼ 1.28 (Q0.01 =

1.23–1.43; Fig. 2a) and at Ac ∼ 0.05 km2 (Q0.01 = 0.03–
0.07 km2; Fig. 2b). We note that n changes by ∼ 6 % (n∼
1.36) using the higher-resolution 1 arcsec DEMs (Fig. S1).
The slight differences in n are likely the result of the sensi-
tivity to higher catchment-averaged slopes, which naturally
arises from higher-resolution topographic data (Table S1).

3.2 Diffusion-only model

The diffusion-only model (Fig. 3) is globally optimised
with the hillslope diffusion exponent, p ∼ 2.0 (NSE= 0.51;
Fig. 3b), and with negligible dependence on DEM resolu-
tion, p ∼ 2.0 for the 1 arcsec models (Fig. S2). We also find
that the 1 arcsec Copernicus DEM has a lower overall per-
formance than the 3 arcsec SRTM DEM (see discussion in
Fig. S2).

3.3 Advection–diffusion model

While the optimisation of our diffusion-only model with
p = 2 (Fig. 3) is an intriguing result that invites further in-
vestigation (cf. Gabet et al., 2021), we retain linear diffu-
sion (p = 1) in our advection–diffusion experiment because
for p 6= 1 the model is (1) numerically unstable when imple-
mented in LEMs, and (2) it fails to accommodate hillslope
deposition and hence does not conserve mass.

The advection–diffusion model (Fig. 4) is globally
optimised at n∼ 2.3 (Q0.01 = 1.59–2.70; Fig. 4c) and
D/K ∼ 1.79×106 m0.9n+1 (Q0.01 = 2.97×104 to 3.44×107;
Fig. 4d). For n and D/K , the Q0.01 ranges are quite broad in
part because both parameters are co-dependent (Fig. 4a). Op-
timumAc ∼ 0.03 km2 (Q0.01 = 0.01–0.17; Fig. 4e) is similar
to that from the advection-only models. The models are more
diffusive when n is low, and D/K is high, and Epredicted is
dependent mainly on catchment slope. This results in values
clustering at NSE∼ 0.34 (Fig. 4c–e) for models with high
diffusion. Because D/K covaries with n (and m; Fig. 4a),
we find that sediment transport derived from diffusional pro-
cesses is maximised when Epredicted,diffusive/Etotal is ∼ 0.43
(Fig. 4f).

4 Discussion

In their benchmark study, Portenga and Bierman (2011) em-
ploy stepwise regression to relate their compilation of 10Be-
derived denudation rates to a range of factors embracing
topography, climate, lithology, and seismicity. That study,
along with the later inclusion of normalised steepness (e.g.
Harel et al., 2016; Marder and Gallen, 2023), added sub-
stantially to our knowledge of how and why denudation rate
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Figure 2. The advection-only model. (a) Optimised n= 1.28 (Q0.01 = 1.23–1.43), (b) optimised Ac = 0.05 km2 (Q0.01 = 0.03–0.07 km2),
(c) apparent versus predicted erosion rate (NSE= 0.48; no regression is performed, and the black line indicates a 1 : 1 fit).

Figure 3. The diffusion-only model. (a) The sole free parameter (p) is optimised at p = 2.00. (b) Apparent versus predicted erosion rate
(NSE= 0.51; the black line represents a perfect 1 : 1 fit).

varies. Our alternative approach here focuses on the ero-
sional processes at play in terms of advective and diffusive
mass flux rather than attempting to interpret the machina-
tions of landscape response to internal and external agents.
A significant advantage is that explicit relations between m,
n, topography, denudation, and LEM parameters are derived
at the scale of the DEM grid cell within each catchment,
and success is gauged from the absolute difference between
modelled (E∗predicted) and 10Be-derived (Eapparent) denudation
rates. In other words, we evaluate LEM parameters as they
are commonly implemented in the models.

4.1 Optimised parameters for landscape evolution
models

We first consider some comparisons with previous work
regarding advection-only approaches. Our optimised Ac ∼

0.05 km2 (Fig. 2b) for the 3 arcsec resolution models falls
near the minimum of the range applied in previous studies,
such as Whipple and Tucker (1999), who suggest 0.059–
0.14 km2. Our optimised n∼ 1.3 (n∼ 1.4 for the 1 arcsec
models) is much lower than the 2.6 reported by Harel et
al. (2016), which is derived from regression of denudation
rate and normalised steepness (ks,ref). Harel et al. (2016) then
use the product of ks,ref and a scaling drainage area to cal-
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Figure 4. Model parameters representing variations in the relative dominance of advection versus diffusion. (a) Covariance of D/K with n;
when D/K is low (no diffusion), optimal n approaches ∼ 1.3 (y intercept). (b) The best correspondence between E∗predicted and Eapparent is

achieved with NSE= 0.52, where (c) n∼ 2.3 (Q0.01 = 1.59–2.7), (d) D/K ∼ 1.79×106 (Q0.01 = 2.97×104 to 3.44×107), and (e) Ac ∼
0.03 km2 (Q0.01 = 0.01–0.17 km2). Clustering at NSE∼ 0.34 in panels (c)–(e) represents parameter sets where diffusion dominates over
advection. (f) Sediment transport derived from diffusional processes is maximised when Epredicted,diffusive/Etotal is ∼ 0.43.

culate Mχ . In principle, Mχ and n should be similar to our
K and n values; however, n is derived from a regression
of Eapparent against Mχ , and it is integrated based on each
pixel within the catchment. The large discrepancy between
our globally optimised values of n and those of Harel et
al. (2016) may stem from the inability of the latter method to
accommodate inherent non-linearities at the sub-catchment
or sub-reach scale when n 6= 1, whereas our approach is de-
signed to capture some of these non-linear effects. This is
particularly important in transient catchments, as spatial het-
erogeneity in denudation rate is often controlled by steep ar-
eas in the catchment, such as knickpoints, and higher values
of n amplify the proportion of denudation derived from steep
areas relative to the rest of the catchment (Fig. 1).

While linear diffusion (p = 1) is commonly applied in
landscape evolution studies (e.g. Forte et al., 2016b), our op-
timised p ∼ 2 for the diffusion-only model is consistent with
Gabet al. (2021), in which denudation rate correlates best

with the square of hillslope convexity. In response to Ga-
bet et al. (2021), Struble and Roering (2021) point to a sys-
tematic underestimation of curvature in natural landscapes
that may be an artefact of the numerical methods used for
estimating curvature from DEMs. Gabet et al. (2021) em-
ploy high-resolution (∼ 1 m) lidar data, but the broader point
made by Struble and Roering (2021) poses a serious limita-
tion for large-scale LEM analyses that are typically restricted
to lower-resolution DEMs. In such cases, the need for mass
conservation and numerical stability is an important con-
sideration. And yet, a diffusion equation with the exponent
p 6= 1 is numerically unstable and physically unexplained
and does not accommodate deposition (the result of nega-
tive curvature). What does it say about the utility of running
LEMs on natural landscapes if the optimised parameter value
(p ∼ 2) cannot be implemented? Struble and Roering (2021)
suggest that p ∼ 2 enhances the influence of steep, rapidly
eroding areas on average curvature, which is commonly un-
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derestimated by many methods. Below, we discuss how the
influence of these steep areas may be approximated by the
stream power equation coupled with linear diffusion.

Our advection–diffusion model allows us to explore as-
pects of how hillslope and river processes govern sediment
flux in river catchments. Theoretically, for a catchment in a
perfect state of mass-flux equilibrium (or steady state), hill-
slopes and rivers erode at the same rate, so either one should
be equally useful as a proxy for denudation rate. There would
be no apparent advantage to combining advection and diffu-
sion in the same model since they would both yield the same
average denudation rate. Landscapes are, however, more of-
ten not at a steady state (at least over timescales integrated by
cosmogenic 10Be), and the slight dominance of advective de-
nudation in our optimised model (Epredicted,diffusive/Etotal =

0.43; Fig. 4f) suggests that transient signals disproportion-
ately affect catchment-averaged denudation rates.

The positive relationship we observe between optimised n
and relative diffusivity gives rise to a compelling possibil-
ity: as diffusivity increases, advective denudation becomes
less important as a proxy for the total average denudation
rate within the catchment and more of a proxy for transience
focused on the most rapidly eroding zones. However, in the
absence of diffusion, river incision must account for all sed-
iment that would otherwise be eroded diffusively from hill-
slopes. The increase in optimised n with diffusivity there-
fore represents the expanding role of steep transient zones in
dictating the catchment-scale denudation rate. Our optimised
result for the advection–diffusion model, n∼ 2.3 (Fig. 4c),
is compatible with previous work suggesting that, typically,
n > 1 (e.g. Lague, 2014; Harel et al., 2016).

The best correlation between predicted and apparent de-
nudation rates occurs whenD/K ∼ 1.79×106 (Fig. 4d). This
outcome broadly agrees with other studies that use K values
in the range of ∼ 10−8 to 10−5 m(n−1) yr−1 and D values in
the expected range noted by Fernandes and Dietrich (1997)
of 4.4×10−4 to 3.6×10−2 m2 yr−1. Whipple et al. (2017) re-
port an optimalD/K ratio of 5×102 from Himalayan catch-
ments, although fixing n= 1 in their models is a limiting as-
sumption because D/K covaries with n, as we show. The
diffusion model employed here assumes that the long-term
flux of hillslope material is similar to the amount transported
in one time step. In reality, catchments may not be at a steady
state, and the hillslope denudation rate may change notably
so as to change the rate of hillslope flux within individual
catchments.

4.2 Erosion and precipitation

Correlating topographically derived metrics with mean an-
nual precipitation (MAP) on a global scale has been a long-
standing goal (e.g. Ahnert, 1970). Harel et al. (2016) examine
correlations between stream power variables and climate as
defined by the Köppen–Geiger scheme. They find that arid-
ity yields the lowest n and that, in general, ks,ref and temper-

ature covary inversely: warm deserts yield the highest ks,ref
and polar regions the lowest, on average, albeit with large un-
certainties. Because our approach compares model results to
denudation rates, rather than using regression, we can more
directly correlate K and n as they are implemented in LEMs
under differing climate. This also means that our method is
potentially better suited for transient catchments.

We demonstrate a general increase in n and p with pre-
cipitation for both the advection model and the diffusion
model (Fig. 5b and c), with the exception of the highest
MAP bin (∼ 2300–6500 mm yr−1). Our advection–diffusion
model shows a similar increase in n, aside from the lowest
MAP bin (Fig. 5d). In the stream-power-based models, the
rising n with respect to precipitation suggests that wetter en-
vironments favour a non-linear erosional response perhaps
tied to heavy-tailed flood-frequency distributions. Extremely
variable flow regimes are characteristic of drylands (Zaman
et al., 2012), and yet, in two of the three models (advection-
only and diffusion-only), the exponent (n or p) is low. By
contrast, only the advection–diffusion model yields a rela-
tively high n (∼ 2.8) for drylands. This may indicate that the
advection–diffusion model, which we suggest is more sen-
sitive to transience, does a better job at simulating dryland
catchments. However, we emphasise the relatively low per-
formance of all models (NSE= 0.2–0.3) for the driest set-
tings (Fig. 5b–d), which may reflect the challenge of cap-
turing the erosional dynamics of drylands with such simple
models.

It is difficult to differentiate changes in exponents from
changes in model coefficients due to their inherent cou-
pling in power-law functions (e.g. Syvitski et al., 2000). In
response to this issue, we calculate the coefficient D (for
diffusion-only) or K (advection) for each of the optimised
models (i.e. with constant exponents) using Eq. (5) in catch-
ments represented by 20 MAP bins distributed regularly
(N = 182± 1; Fig. 5e). By looking at how the coefficients
vary within each bin, we effectively reduce the influence
of topography and isolate the relationship between erosion
rate and precipitation. We emphasise that, due to the wide
range of data used, optimised models can have large uncer-
tainties (dry regions having the highest uncertainty relative
to the mean), with residuals that are generally log-normally
distributed (Fig. S8). We also trialled different drainage-area
bin sizes, where a similar (albeit noisier) pattern remains with
higher bin density (Fig. S7).

Optimised coefficients show a local peak in denudation
rates centred around 300 mm yr−1, subsequently dipping
overall from around 1100 to 1600 mm yr−1 before increas-
ing again for extremely wet regions (Fig. 5e). These re-
sults agree well with the classic work of Langbein and
Schumm (1958), which suggests that the fastest-eroding en-
vironments are semi-arid (MAP∼ 250 mm yr−1). This rela-
tionship is thought to be a product of the interplay between
denudation, vegetation, total precipitation, and storm fre-
quency in semi-arid regions – an outcome reproduced by Is-
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Figure 5. (a) Global distribution of catchments in the OCTOPUS v.2 catalogue of 10Be-derived apparent denudation rates (Codilean et al.,
2022) coloured by mean annual precipitation (MAP). (b–d) Violin plots (symmetric kernel density plots) of n or p values within the top 1 %
of model runs for the advection (b), diffusion (c), and advection–diffusion (d) models. Blue stars correspond to the NSE value for each bin.
(e) Coefficients for diffusion (circle), advection (square), and advection–diffusion (cross) calculated for each globally optimised model per
MAP bin. Diffusion model plots represent only the global maximum within each bin due to insufficient model runs to form a distribution.
All panels use the same colour ramp, which corresponds to the MAP bin; blue shading represents the average bootstrapped 90 % confidence
interval spanned by the three models, and the thick blue line is the mean. The grey line represents the range spanned by the 90 % confidence
interval averaged among all three models relative to the mean (see Fig. S8).

tanbulluoglu and Bras (2006), who show a positive relation-
ship between sediment transport and the effects of reduced
sediment cover and increased runoff during drought.

While Langbein and Schumm (1958) had scant access to
data from wetter settings, our results reveal an upward trend
in coefficient values for MAP> 1500 mm yr−1 (Fig. 5e).
This is in line with the global study of sediment yield and
climate of Walling and Kleo (1979), which also shows a fur-
ther major peak at ∼ 800 mm yr−1 and may be attributed to
the most expansive agricultural production globally (e.g. Hy-

man et al., 2016). In contrast to Walling and Kleo (1979),
who do not isolate the effects of variable land use, topog-
raphy, and geology on sediment yields, our use of denuda-
tion rates based on 10Be means that we can largely ignore
the effects of land use. This may explain the subdued peak
at∼ 800 mm yr−1 in our data.

Marder and Gallen (2023) find a non-linear relationship
between 10Be-derived denudation rate and ksn via regression;
they also find that the exponent relating ksn to erosion rate
(here related to n) increases with precipitation. They took
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steps to exclude transient catchments, as transience may in-
fluence n due to the non-linear effects of stream power, as
noted above. Likewise, we find that n generally increases
with precipitation, giving credence to the idea that our ap-
proach may account to some degree for transience. In partic-
ular, we envisage cases in which steep zones, such as adjust-
ing areas downstream of knickpoints, are responsible for a
large proportion of the total catchment erosional flux, even
when they may represent a small fraction of the drainage
area (Willenbring et al., 2013). Where denudation is a non-
linear function of slope and drainage area, an average of these
denudation rates is unlikely to be proportional to the inte-
grated ksn.

One acknowledged shortcoming of our approach (noted in
Sect. 2.4) is that some lithologies may be over-represented
in areas with higher or lower MAP. As we discuss in the
next section, it is a challenge to discriminate biases due to
lithology from those linked to precipitation in bins that span
heterogeneous lithologies.

4.3 Erosion and lithology

We assessed the variability in LEM parameters within each
lithological bin following a similar approach to Sect. 4.2,
with the additional step of employing Klith (Eq. 9) to isolate
the effects of lithology on K in the advection-only model.
The threefold range in erodibility (Fig. 6e) is much lower
than that reported elsewhere, in some cases by several orders
of magnitude (Sklar and Dietrich, 2001; Garcia-Castellanos
and O’Connor, 2018). This may be due to the greater focus
on the differential erodibility within individual sites and to
the spatial scale of the analysis. Despite our efforts to ac-
count for some of the covariation with MAP, our analysis in-
evitably smooths out some variability owing to the diversity
of catchments incorporated within each lithological bin.

We find that for the advection-only model (Fig. 6b), n
is higher in metamorphic and intermediate plutonic rocks,
which also tend to be more resistant (e.g. Moosdorf et al.,
2018). This is not surprising given that n is thought to be
influenced by higher thresholds for rock detachment, which
in turn can lead to more non-linear behaviour. More com-
plex relationships involving hillslope diffusion may result in
the general lack of a comprehensible pattern emerging in
the advection–diffusion models (Fig. 6c and d). The higher
number of parameters used in the advection–diffusion model
leads to broader distributions (Fig. 6d).

When looking at the variability in K , our overall results
are somewhat expected: all three models agree on the gen-
eral tendency of sedimentary rocks being most erodible and
plutonic and volcanic being least, although the relative mag-
nitudes of these differences vary between models. Unconsol-
idated sedimentary rock is the first- or second-most erodible
of all according to the diffusion- and advection-only models
(Fig. 6e). Models disagree about the least erodible subcat-
egories: basic plutonic, intermediate volcanic, or pyroclas-

tic. The pyroclastic, intrusive plutonic, and unconsolidated-
sediment rock types show the most variance. For pyroclas-
tic rock types, the advection models suggest relatively low
erodibility, whereas the diffusion-only models suggest mod-
erate erodibility. Most models agree on the moderate erodi-
bility of plutonic–intrusive rocks, but due to the low sample
size, the uncertainty is very high. Less expected is the rela-
tively high erodibility of carbonate sedimentary rocks shown
for all our models. For example, other studies argue that car-
bonates should be less erodible (Ott, 2020) and that volcanic
rocks may be relatively more erodible than we show here
(Moosdorf et al., 2018). Some of these variable findings pos-
sibly arise due to factors such as fracture density and weath-
ering condition, which are difficult to accommodate in large-
scale analyses (Neely et al., 2019), and these factors also con-
tribute to the large uncertainty (Fig. S9).

4.4 Erosion and drainage area

Are LEM parameters sensitive to catchment drainage area?
Violin plots (Fig. 7) show exponent (n and p) values binned
according to drainage area. The advection–diffusion model
shows no dependence on area, but for the advection-only
and diffusion-only models, the exponent values generally in-
crease with drainage area, n ranging from ∼ 1.1 to ∼ 1.5,
and p ranging from ∼ 1.8 to 2.2. Additionally, we note the
extreme range in n (∼ 1.3 to∼ 3) for small catchments in the
advection–diffusion models, potentially indicating the influ-
ence of landslides in headwaters (e.g. Yanites et al., 2010).
This dependence of n and p on drainage area may be difficult
to discern from other effects, but one possibility may be the
inherent link with precipitation. Larger catchments are more
likely to cross large rainfall gradients, which as we show,
gives rise to higher n or p.

4.5 Limitations and future considerations

An important limitation of our approach is that it fails to un-
ravel the m/n ratio, which is known to vary widely (Gail-
leton et al., 2021). We ran several trials (using optimised
Ac = 0.05 km2 and 20 values of n linearly spaced from 0
to 4) and found that m/n= 0.3, 0.45, and 0.6 yielded neg-
ligible differences in fit (NSE= 0.48, 0.47, and 0.45, respec-
tively) despite the similar values of optimised n of 1.4, 1.2,
and 1.2, respectively (Fig. S10). One option for improvement
is to determinem/n from the river profile concavity using re-
cent integral-based techniques (e.g. Harel et al., 2016; Gail-
leton et al., 2021) before running the suite of models. This
may be especially useful for tuning them/n ratio within spe-
cific regions.

Our approach cannot account for several factors that
are known to bias 10Be-derived denudation rates (e.g.
Von Blanckenburg, 2005; Dingle et al., 2018; Hippe et al.,
2019; Struck et al., 2018a). Such factors violate two key un-
derpinning premises of the method: steady and uniform ero-
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Figure 6. (a) Global distribution of catchments in the OCTOPUS v.2 catalogue of 10Be-derived apparent denudation rates (Codilean et al.,
2022) coloured by dominant lithology. (b–d) Violin plots of n or p values within the top 1 % of model runs for the advection (b), diffusion (c),
and advection–diffusion (d) models. Blue stars correspond to the NSE for each bin. (e) Coefficients (normalised by their maximum values)
for different best-fit models within 12 lithologic subsets (from Hartmann and Moosdorf, 2012). Coefficients for diffusion (circle), advection
(square), and advection–diffusion (cross) calculated for each globally optimised model per lithologic bin; blue shading represents average
bootstrapped 90 % confidence interval spanned by the three models, and the thick blue line is the mean. All panels use the same colour ramp,
which corresponds to the lithologic bin. The grey line represents the range spanned by the 90 % confidence averaged among all three models
relative to the mean (see Fig. S9).

sion across the catchment and continuous exposure of sed-
iment at/near the surface (noted in the section “Catchment-
averaged denudation rates from cosmogenic 10Be”). For ex-
ample, sudden pulses of sediment from sources of deep-
seated mass wasting can shift apparent denudation rates
downward by diluting the nuclide abundances in the river
sediment sample. Given that our LEM is deterministic, it is
difficult to model the impact of landslides on nuclide invento-

ries, particularly in small headwater catchments where their
influence will be greater (e.g. Yanites et al., 2010). A second
pertinent issue is that our modelling assumes the erosional
flux is transported instantly to the catchment outlet without
intermediate storage. And yet, river sediment is likely to ex-
perience multiple episodes of erosion and deposition, espe-
cially in large lowland catchments where the volume of sed-
iment storage expands greatly. Intermediate sediment stor-
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Figure 7. Distributions of n or p within each area bin for (a) advection-only, (b) diffusion-only, and (c) advection–diffusion models. Blue
stars represent the corresponding NSE for each bin. The top 1 % of model runs are used.

age can push 10Be-derived denudation rates either upwards
or downwards depending on the duration and depth of sedi-
ment burial (Wittmann and von Blanckenburg, 2016; Struck
et al., 2018b). The extent of bias in the OCTOPUS dataset
(Codilean et al., 2022) is essentially unknown, but it no doubt
contributes to the data scatter we report here.

In addition to the complications with stream-power- and
diffusion-based models (noted in the Introduction), the in-
herent assumption that channel width increases monotoni-
cally with stream discharge (or its proxy, drainage area) is
one that is violated widely. Channel width narrows at knick-
points (Whitbread et al., 2015; Yanites, 2018) and across di-
verse substrate erodibilities (Jansen et al., 2010; Croissant et
al., 2017). The value of n extracted from transient landscapes
will be influenced by this process, and a goal of future global
analyses should be to incorporate more sophisticated rules
for channel width evolution (e.g. Yanites, 2018).

The approach described here is sufficiently robust to incor-
porate many different types of models. We would like to see,
for instance, an exploration of the way in which drainage is
routed through catchments. Different flow-routing schemes
can give rise to notably different drainage networks and cor-
responding drainage areas (e.g. Endreny and Wood, 2003).
Here we have used unidirectional “D8” flow, but alternatives
such as multiple-flow routing can produce alternative results
and perspectives (e.g. Pelletier, 2004). Future efforts may test
a range of flow-routing methods against denudation rate in
order to test their efficacy.

5 Conclusions

We have examined the most widely used parameters applied
to a set of three landscape evolution model set-ups: (1) a
stream-power-based advection-only model, (2) a diffusion-
only model, and (3) an advection–diffusion hybrid model.
We optimised the parameter values by directly comparing the
catchment-averaged denudation rates predicted by our three
models with a global catalogue of 10Be-derived apparent de-
nudation rates (Codilean et al., 2022).

The diffusion-only model outperformed the advection-
only model when applying p ∼ 2. However, the physical im-

plications and numerical limitations of this result make it
impractical for implementation in LEMs. Instead, we pro-
pose that linear diffusion coupled with fluvial denudation
(advection–diffusion) captures a high proportion of sediment
derived from rapidly eroding, steep areas in a similar sense to
a diffusion model with the exponent p ∼ 2. In the advection–
diffusion hybrid model, the best agreement between the pre-
dicted and apparent denudation rates is observed with n∼
2.3 (assuming a fixed concavity, m/n= 0.45), while the ra-
tio of diffusivity / advection coefficient (D/K) is optimised
at ∼ 1.79× 106.

The Monte Carlo method employed here is a simple and
powerful means of identifying ideal parameter sets over large
spatial scales and is especially useful for dealing with sparse
datasets. We applied the same approach to elucidate differ-
ences in optimal LEM parameters when considering lithol-
ogy and precipitation. By looking at the LEM coefficients,
we were able to better account for the influence of topog-
raphy when isolating the relationship between denudation
rate and precipitation/lithology. Of particular interest was a
general upward trend in the coefficients (K and D) with
respect to precipitation and a local maximum centred at ∼
300 mm yr−1. This local maximum may represent the higher
erodibility of semi-arid environments identified by Langbein
and Schumm (1958).

Nevertheless, many other influences on denudation are yet
to be explored in a robust way. At the local and regional scale,
optimised values will differ from what we have inferred
here, but future studies may use these parameter ranges as
a baseline to inform large-scale landscape evolution studies.
Moreover, our methodology could be extended to incorpo-
rate more complexity into the canonical-advection-based and
diffusion-based equations applied here.
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available online at https://doi.org/10.5281/zenodo.8317033
(Ruetenik et al., 2023). Maps were produced using PyGMT
(https://doi.org/10.5281/zenodo.8303186, Tian et al., 2023).

https://doi.org/10.5194/esurf-11-865-2023 Earth Surf. Dynam., 11, 865–880, 2023

https://doi.org/10.5281/zenodo.8317033
https://doi.org/10.5281/zenodo.8303186


878 G. A. Ruetenik et al.: Optimising global landscape evolution models with 10Be

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esurf-11-865-2023-supplement.

Author contributions. GR conceived the study, performed data
analysis, and devised the code. JDJ and PV assisted with framing
the study, and LYM performed code analysis. All co-authors con-
tributed to manuscript production.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Many thanks to Bruce Wilkinson for his
guidance in framing the study and to Daniel Garcia-Castellanos
and Kim Huppert for their constructive advice. We are grateful for
the reviews from Richard Ott and Boris Gailleton, who encouraged
us to explore new datasets and methods and greatly improved the
manuscript. Several calculations were performed on the CSDMS
Blanca HPC at the University of Colorado, Boulder.

Review statement. This paper was edited by Tom Coulthard and
reviewed by Richard Ott and Boris Gailleton.

References

Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath,
A. M., and Hodges, K. V.: Climate controls on ero-
sion in tectonically active landscapes, Sci. Adv., 6, 3166,
https://doi.org/10.1126/sciadv.aaz3166, 2020.

Ahnert, F.: Functional relationships between denudation, relief, and
uplift in large mid-latitude drainage basins, Am. J. Sci., 268,
243–263, 1970.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal
depression-filling and watershed-labeling algorithm for digital
elevation models, Comput. Geosci., 62, 117–127, 2014.

Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade,
R. C., Rossi, M. W, and Hill, M. C.: Inverting topography for
landscape evolution model process representation: 1. Conceptu-
alization and sensitivity analysis, J. Geophys. Res.-Earth, 125,
1–31, https://doi.org/10.1029/2018JF004961, 2020.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, 1992.

Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28,
5897–5918, 2014.

Brown, L. R.: World population growth, soil ero-
sion, and food security, Science, 214, 995–1002,
https://doi.org/10.1126/science.7302578, 1981.

Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J.,
Riquelme, R., Christophoul, F., Charrier, R., Gayer, E., Farías,

M., and Audin, L.: Differences in 10Be concentrations between
river sand, gravel and pebbles along the western side of the cen-
tral Andes, Quater. Geochronol., 27, 33–51, 2015.

Clubb, F. J., Mudd, S. M., Milodowski, D. T., Hurst, M. D., and
Slater, L. J.: Objective extraction of channel heads from high-
resolution topographic data, Water Resour. Res., 50, 4283–4304,
2014.

Codilean, A. T., Munack, H., Saktura, W. M., Cohen, T. J., Jacobs,
Z., Ulm, S., Hesse, P. P., Heyman, J., Peters, K. J., Williams, A.
N., Saktura, R. B. K., Rui, X., Chishiro-Dennelly, K., and Panta,
A.: OCTOPUS database (v.2), Earth Syst. Sci. Data, 14, 3695–
3713, https://doi.org/10.5194/essd-14-3695-2022, 2022.

Croissant, T. and Braun, J.: Constraining the stream power law:
a novel approach combining a landscape evolution model
and an inversion method, Earth Surf. Dynam., 2, 155–166,
https://doi.org/10.5194/esurf-2-155-2014, 2014.

Croissant, T., Lague, D., Steer, P., and Davy, P.: Rapid post-
seismic landslide evacuation boosted by dynamic river width,
Nat. Geosci., 10, 680–684, 2017.

Csilléry, K., Blum, M. G., Gaggiotti, O. E., and François, O.:
Approximate Bayesian computation (ABC) in practice, Trends
Ecol. Evol., 25, 410–418, 2010.

Dingle, E. H., Sinclair, H. D., Attal, M., Rodés, Á., and Singh,
V.: Temporal variability in detrital 10Be concentrations in a
large Himalayan catchment, Earth Surf. Dynam., 6, 611–635,
https://doi.org/10.5194/esurf-6-611-2018, 2018.

Endreny, T. A. and Wood, E. F.: Maximizing spatial congruence
of observed and DEM-delineated overland flow networks, Int. J.
Geogr. Inform. Sci., 17, 699–713, 2003.

Ferguson, R. I.: River loads underestimated by rating curves, Water
Resour. Res., 22, 74–76, 1986.

Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffu-
sive processes: The timescale for equilibrium adjustments, Water
Resour. Res., 33, 1307–1318, 1997.

Fontana, G. D. and Marchi, L.: Slope–area relationships and sedi-
ment dynamics in two alpine streams, Hydrol. Process., 17, 73–
87, 2003.

Forte, A. M., Whipple, K. X., Bookhagen, B., and Rossi, M. W.:
Decoupling of modern shortening rates, climate, and topography
in the Caucasus, Earth Planet. Sc. Lett., 449, 282–294, 2016a.

Forte, A. M., Yanites, B. J., and Whipple, K. X.: Complexities of
landscape evolution during incision through layered stratigra-
phy with contrasts in rock strength, Earth Surf. Proc. Land., 41,
1736–1757, 2016b.

Fox, M., Goren, L., May, D. A., and Willett, S. D.: Inversion of
fluvial channels for paleorock uplift rates in Taiwan, J. Geophys.
Res.-Earth, 119, 1853–1875, 2014.

Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Bin-
nie, S. A., and Dunai, T. J.: Hilltop curvature increases with the
square root of erosion rate, J. Geophys. Res.-Earth, 126, 1–16,
https://doi.org/10.1029/2020JF005858, 2021.

Gailleton, B., Mudd, S. M., Clubb, F. J., Grieve, S. W., and Hurst,
M. D.: Impact of changing concavity indices on channel steep-
ness and divide migration metrics, J. Geophys. Res.-Earth, 126,
1–31, https://doi.org/10.1029/2020JF006060, 2021.

Gallen, S. F., Wegmann, K. W., and Bohnenstiehl, D. R.: Miocene
rejuvenation of topographic relief in the southern Appalachians,
GSA Today, 23, 4–10, 2013.

Earth Surf. Dynam., 11, 865–880, 2023 https://doi.org/10.5194/esurf-11-865-2023

https://doi.org/10.5194/esurf-11-865-2023-supplement
https://doi.org/10.1126/sciadv.aaz3166
https://doi.org/10.1029/2018JF004961
https://doi.org/10.1126/science.7302578
https://doi.org/10.5194/essd-14-3695-2022
https://doi.org/10.5194/esurf-2-155-2014
https://doi.org/10.5194/esurf-6-611-2018
https://doi.org/10.1029/2020JF005858
https://doi.org/10.1029/2020JF006060


G. A. Ruetenik et al.: Optimising global landscape evolution models with 10Be 879

Garcia-Castellanos, D. and O’Connor, J. E.: Outburst floods provide
erodability estimates consistent with long-term landscape evolu-
tion, Sci. Rep., 8, 1–9, 2018.

Garcia-Castellanos, D., Vergés, J., Gaspar Escribano, J., and
Cloetingh, S.: Interplay between tectonics, climate, and flu-
vial transport during the Cenozoic evolution of the Ebro
Basin (NE Iberia), J. Geophys. Res.-Solid, 108, 2347,
https://doi.org/10.1029/2002JB002073, 2003.

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and
Tyler, D.: The national elevation dataset, Photogram. Eng. Re-
mote Sens., 68, 5–32, 2002.

Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged
long-term erosion rates measured from in-situ produced cosmo-
genic nuclides in alluvial sediment, J. Geol., 104, 249–257, 1996.

Harel, M. A., Mudd, S. M., and Attal, M.: Global analysis of the
stream power law parameters based on worldwide 10Be denuda-
tion rates, Geomorphology, 268, 184–196, 2016.

Harmel, R. D. and Smith, P. K.: Consideration of measurement un-
certainty in the evaluation of goodness-of-fit in hydrologic and
water quality modeling, J. Hydrol., 337, 326–336, 2007.

Hartmann, J. and Moosdorf, N.: The new global lithological
map database GLiM: A representation of rock properties
at the Earth surface, Geochem. Geophy. Geosy., 13, 1–37,
https://doi.org/10.1029/2012GC004370, 2012.

Hippe, K., Gordijn, T., Picotti, V., Hajdas, I., Jansen, J. D., Christl,
M., Vockenhuber, C., Maden, C., Akçar, N., and Ivy-Ochs, S.:
Fluvial dynamics and 14C-10Be disequilibrium on the Bolivian
Altiplano, Earth Surf. Proc. Land., 44, 766–780, 2019.

Hooke, R. L.: On the history of humans as geomorphic agents, Ge-
ology, 28, 843–846, 2000.

Howard, A. D., Dietrich, W. E., and Seidl, M. A.: Modeling fluvial
erosion on regional to continental scales, J. Geophys. Res.-Solid,
99, 13971–13986, 1994.

Hyman, G., Barona, E., Biradar, C., Guevara, E., Dixon,
J., Beebe, S., Castano, S. E., Alabi, T., Gumma, M. K.,
Sivasankar, S., and Rivera, O.: Priority regions for research
on dryland cereals and legumes, F1000 Research, 5 pp.,
https://doi.org/10.12688/f1000research.8657.2, 2016.

Jansen, J. D., Codilean, A. T., Bishop, P., and Hoey, T. B.: Scale-
dependence of lithological control on topography; bedrock chan-
nel geometry and catchment morphometry in western Scotland,
J. Geol., 118, 223–246, 2010.

Istanbulluoglu, E. and Bras, R. L.: On the dynamics of soil
moisture, vegetation, and erosion: Implications of climate
variability and change, Water Resour. Res., 42, W06418,
https://doi.org/10.1029/2005WR004113, 2006.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-
Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler,
M.: Climatologies at high resolution for the earth’s land surface
areas, Sci. Data, 4, 1–20, 2017.

Kooi, H. and Beaumont, C.: Large-scale geomorphology: Classical
concepts reconciled and integrated with contemporary ideas via
a surface processes model, J. Geophys. Res.-Solid, 101, 3361–
3386, 1996.

Lague, D.:. The stream power river incision model: evidence, theory
and beyond, Earth Surf. Proc. Land., 39, 38–61, 2014.

Lague, D. and Davy, P.: Constraints on the long-term colluvial ero-
sion law by analyzing slope-area relationships at various tectonic

uplift rates in the Siwaliks Hills (Nepal), J. Geophys. Res.-Solid,
108, 2129, https://doi.org/10.1029/2002JB001893, 2003.

Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide
production rates and erosion models, Earth Planet. Sc. Lett., 104,
424–439, 1991.

Langbein, W. B. and Schumm, S. A.: Yield of sediment in relation
to mean annual precipitation, Eos Trans. Am. Geophys. Union,
39, 1076–1084, 1958.

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography de-
rived from spaceborne elevation data, Eos Trans. Am. Geophys.
Union, 89, 93–94, 2008.

Lukens, C. E., Riebe, C. S., Sklar, L. S., and Shuster, D. L.: Grain
size bias in cosmogenic nuclide studies of stream sediment in
steep terrain, J. Geophys. Res.-Earth, 121, 978–999, 2016.

Marder, E. and Gallen, S. F.: Climate control on the relationship
between erosion rate and fluvial topography, Geology, 51, 424–
427, 2023.

Miller, S. R., Sak, P. B., Kirby, E., and Bierman, P. R.: Neogene re-
juvenation of central Appalachian topography: Evidence for dif-
ferential rock uplift from stream profiles and erosion rates, Earth
Planet. Sc. Lett., 369, 1–12, 2013.

Moosdorf, N., Cohen, S., and von Hagke, C.,: A global erodibility
index to represent sediment production potential of different rock
types, Appl. Geogr., 101, 36–44, 2018.

Mudd, S. M.: Detection of transience in eroding landscapes, Earth
Surf. Proc. Land., 42, 24–41, 2016.

Mudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D.: How
concave are river channels?, Earth Surf. Dynam., 6, 505–523,
https://doi.org/10.5194/esurf-6-505-2018, 2018.

Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and Caf-
fee, M. W.: Bedrock fracture density controls on hillslope erodi-
bility in steep, rocky landscapes with patchy soil cover, southern
California, USA, Earth Planet. Sc. Lett., 522, 186–197, 2019.

Ott, R. F.: How lithology impacts global topography, veg-
etation, and animal biodiversity: A global-scale analysis
of mountainous regions, Geophys. Res. Lett., 47, 1–11,
https://doi.org/10.1029/2020GL088649, 2020.

Pedersen, V. K., Braun, J., and Huismans, R. S.: Eocene to mid-
Pliocene landscape evolution in Scandinavia inferred from off-
shore sediment volumes and pre-glacial topography using inverse
modelling, Geomorphology, 303, 467–485, 2018.

Pelletier, J. D.: Persistent drainage migration in a numerical
landscape evolution model, Geophys. Res. Lett., 31, L20501,
https://doi.org/10.1029/2004GL020802, 2004.

Perron, J. T., Dietrich, W. E., and Kirchner, J. W.: Controls on
the spacing of first-order valleys, J. Geophys. Res.-Earth, 113,
F04016, https://doi.org/10.1029/2007JF000977, 2008.

Pico, T., Mitrovica, J. X., Perron, J. T., Ferrier, K. L., and Braun, J.:
Influence of glacial isostatic adjustment on river evolution along
the US mid-Atlantic coast, Earth Planet. Sc. Lett., 522, 176–185,
2019.

Portenga, E. W. and Bierman, P. R.: Understanding Earth’s eroding
surface with 10Be, GSA Today, 21, 4–10, 2011.

Riebe, C. S., Sklar, L. S., Lukens, C. E., and Shuster, D. L.: Climate
and topography control the size and flux of sediment produced
on steep mountain slopes, P. Natl. Acad. Sci. USA, 112, 15574–
15579, 2015.

https://doi.org/10.5194/esurf-11-865-2023 Earth Surf. Dynam., 11, 865–880, 2023

https://doi.org/10.1029/2002JB002073
https://doi.org/10.1029/2012GC004370
https://doi.org/10.12688/f1000research.8657.2
https://doi.org/10.1029/2005WR004113
https://doi.org/10.1029/2002JB001893
https://doi.org/10.5194/esurf-6-505-2018
https://doi.org/10.1029/2020GL088649
https://doi.org/10.1029/2004GL020802
https://doi.org/10.1029/2007JF000977


880 G. A. Ruetenik et al.: Optimising global landscape evolution models with 10Be

Roering, J. J., Perron, J. T., and Kirchner, J. W.: Functional rela-
tionships between denudation and hillslope form and relief, Earth
Planet. Sc. Lett., 264, 245–258, 2007.

Ruetenik, G. A., Jansen, J. D., Val, P., and Ylä-Mella, L.: Code and
data for Ruetenik et al., (2023): Optimising global landscape evo-
lution models with 10Be (v0.13), Zenodo [data set and code],
https://doi.org/10.5281/zenodo.8317033, 2023.

Ruetenik, G., Moucha, R., and de Boer, B.: Deformation in re-
sponse to landscape evolution during glacial cycles on the US At-
lantic passive margin, Earth Planet. Sc. Lett., 526, 115759,
https://doi.org/10.1016/j.epsl.2019.115759, 2019.

Schwanghart, W. and Scherler, D.: Bumps in river pro-
files: uncertainty assessment and smoothing using quan-
tile regression techniques, Earth Surf. Dynam., 5, 821–839,
https://doi.org/10.5194/esurf-5-821-2017, 2017.

Simoes, M., Braun, J., and Bonnet, S.: Continental-scale erosion
and transport laws: A new approach to quantitatively investi-
gate macroscale landscapes and associated sediment fluxes over
the geological past, Geochem. Geophy. Geosy., 11, Q09001,
https://doi.org/10.1029/2010GC003121, 2010.

Sklar, L. and Dietrich, W. E.: Sediment supply, grain size and rock
strength controls on rates of river incision into bedrock, Geology,
29, 1087–1090, 2001.

Starke, J., Ehlers, T. A., and Schaller, M.: Latitudinal effect of veg-
etation on erosion rates identified along western South America,
Science, 367, 1358–1361, 2020.

Struble, W. T. and Roering, J. J.: Hilltop curvature as a proxy
for erosion rate: wavelets enable rapid computation and reveal
systematic underestimation, Earth Surf. Dynam., 9, 1279–1300,
https://doi.org/10.5194/esurf-9-1279-2021, 2021.

Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D.,
Egholm, D. L., Fülöp, R. H., Wilcken, K. M., Price, D. M.,
and Kotevski, S.: Soil production and transport on postorogenic
desert hillslopes quantified with 10Be and 26Al, Geol. Soc. Am.
Bull., 130, 1017–1040, 2018a.

Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D.,
Fülöp, R.-H., Wilcken, K. M., Price, D. M., Kotevski, S., Fifield,
L. K., and Chappell, J.: Tracking the 10Be–26Al source-area sig-
nal in sediment-routing systems of arid central Australia, Earth
Surf. Dynam., 6, 329–349, https://doi.org/10.5194/esurf-6-329-
2018, 2018b.

Syvitski, J. P., Morehead, M. D., Bahr, D. B., and Mulder, T.: Es-
timating fluvial sediment transport: the rating parameters, Water
Resour. Res., 36, 2747–2760, 2000.

Temme, A. J. A. M., Baartman, J. E. M., and Schoorl, J. M.:
Can uncertain landscape evolution models discriminate between
landscape responses to stable and changing future climate? A
millennial-scale test, Global Planet. Change, 69, 48–58, 2009.

Theodoratos, N., Seybold, H., and Kirchner, J. W.: Scaling and
similarity of a stream-power incision and linear diffusion
landscape evolution model, Earth Surf. Dynam., 6, 779–808,
https://doi.org/10.5194/esurf-6-779-2018, 2018.

Tian, D., Uieda, L., Leong, W. J., Schlitzer, W., Fröhlich, Y.,
Grund, M., Jones, M., Toney, L., Yao, J., Magen, Y., Jing-
Hui, T., Materna, K., Belem, A., Newton, T., Anant, A.,
Ziebarth, M., Quinn, J., and Wessel, P.: PyGMT: A Python
Interface for the Generic Mapping Tools, Zenodo [data set],
https://doi.org/10.5281/zenodo.8303186, 2023.

Von Blanckenburg, F.: The control mechanisms of erosion and
weathering at basin scale from cosmogenic nuclides in river sed-
iment, Earth Planet. Sc. Lett., 237, 462–479, 2005.

Walling, D. E. and Kleo, A. H. A.: Sediment yields of rivers in
areas of low precipitation: a global view, The Hydrology of areas
of low precipitation, International Association of Hydrological
Sciences (IAHS) Publication, Vol. 128, 479–493, 1979.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power
river incision model: Implications for height limits of mountain
ranges, landscape response timescales, and research needs, J.
Geophys. Res.-Solid, 104, 17661–17674, 1999.

Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and
Ouimet, W. B.: Timescales of landscape response to divide mi-
gration and drainage capture: Implications for the role of divide
mobility in landscape evolution, J. Geophys. Res.-Earth, 122,
248–273, 2017.

Whitbread, K., Jansen, J. D., Bishop, P., and Attal, M.: Substrate,
sediment, and slope controls on bedrock channel geometry in
postglacial streams, J. Geophys. Res.-Earth, 120, 779–798, 2015.

Willenbring, J. K., Gasparini, N. M., Crosby, B. T., and Brocard,
G.: What does a mean mean? The temporal evolution of detrital
cosmogenic denudation rates in a transient landscape, Geology,
41, 1215–1218, 2013.

Wittmann, H. and von Blanckenburg, F.: The geological signif-
icance of cosmogenic nuclides in large lowland river basins,
Earth-Sci. Rev., 159, 118–141, 2016.

Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J.,
Spyropolou, K., Crosby, B., Sheehan, D., and Willett, S. D.:
Tectonics from topography: Procedures, promise, and pitfalls,
Special papers 398, Geological Society of America, 55 pp.,
https://doi.org/10.1130/2006.2398(04), 2006.

Yanites, B. J.: The dynamics of channel slope, width, and sedi-
ment in actively eroding bedrock river systems, J. Geophys. Res.-
Earth, 123, 1504–1527, 2018.

Yanites, B. J., Tucker, G. E., Mueller, K. J., and Chen, Y. G.: How
rivers react to large earthquakes: Evidence from central Taiwan,
Geology, 38, 639–642, 2010.

Zaman, M. A., Rahman, A., and Haddad, K.: Regional flood fre-
quency analysis in arid regions: A case study for Australia, J.
Hydrol., 475, 74–83, 2012.

Zavala, V., Carretier, S., and Bonnet, S.: Influence of orographic
precipitation on the topographic and erosional evolution of
mountain ranges, Basin Res., 32, 1574–1599, 2020.

Earth Surf. Dynam., 11, 865–880, 2023 https://doi.org/10.5194/esurf-11-865-2023

https://doi.org/10.5281/zenodo.8317033
https://doi.org/10.1016/j.epsl.2019.115759
https://doi.org/10.5194/esurf-5-821-2017
https://doi.org/10.1029/2010GC003121
https://doi.org/10.5194/esurf-9-1279-2021
https://doi.org/10.5194/esurf-6-329-2018
https://doi.org/10.5194/esurf-6-329-2018
https://doi.org/10.5194/esurf-6-779-2018
https://doi.org/10.5281/zenodo.8303186
https://doi.org/10.1130/2006.2398(04)

	Abstract
	Introduction
	Methods
	Stream power and hillslope diffusion
	10Be-derived apparent denudation rates
	Monte Carlo simulations
	The influence of lithology and precipitation on denudation

	Results
	Advection-only model
	Diffusion-only model
	Advection–diffusion model

	Discussion
	Optimised parameters for landscape evolution models
	Erosion and precipitation
	Erosion and lithology
	Erosion and drainage area
	Limitations and future considerations

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

