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Abstract. A convolutional neural network (CNN) was implemented to automatically classify 15 years of seis-
mic signals recorded by an eight-geophone network installed around the back scarp of the Åknes rock slope in
Norway. Eight event classes could be identified and are adapted from the typology proposed by Provost et al.
(2018), of which five could be directly related to movements on the slope. Almost 60 000 events were classified
automatically based on their spectrogram images. The performance of the classifier is estimated to be near 80 %.
The statistical analysis of the results shows a strong seasonality of the microseismic activity at Åknes with an
annual increase in springtime when snow melts and the temperature oscillates around the freezing point, mainly
caused by events within classes of low-frequency slope quakes and tremors. The clear link between annual tem-
perature variations and microseismic activity could be confirmed, supporting thawing and freezing processes as
the origins. Other events such as high-frequency and successive slope quakes occur throughout the year and are
potentially related to the steady creep of the sliding plane. The huge variability in the annual event number can-
not be solely explained by average temperatures or varying detectability of the network. Groundwater recharge
processes and their response to precipitation episodes are known to be a major factor of sliding at Åknes, but the
relationship with microseismic activity is less obvious and could not be demonstrated.

1 Introduction

Norwegian landscapes have been shaped by deglaciation
over thousands of years, creating very steep and mostly
water-filled valleys, the fjords, over the western parts of the
country. The steep flanks of the fjords are potentially unstable
and their collapse poses a significant hazard. Most of these
flanks are uninhabited and direct effects of a collapse would
be rather limited. However, the mass sledging into the fjord
can generate a local flood wave causing both infrastructure
damage on shorelines and casualties. During the 20th cen-
tury, 175 victims were reported in Norway due to such events
(Kveldsvik, 2008). Worldwide, different factors contribute to
the triggering of slides. For example, large earthquakes have
the potential to trigger landslides or accelerate their sliding
(Lacroix et al., 2015; Bontemps et al., 2020). Nevertheless,

the most common causes for sliding are related to variations
in the water content at depth both in terms of amount (e.g.
infiltration following precipitation; Helmstetter and Garam-
bois, 2010; Bontemps et al., 2020), pressure, and state (from
solid during freezing to fluid during thawing; e.g. Krautblat-
ter et al., 2013; Blikra and Christiansen, 2014). In addition
to its sharp relief, Norway experiences cold winters and mild
summers, especially in the north, which are favourable for
the temporary extension of frozen ground in winter or the
conservation of permafrost. A permafrost probability map for
the steep slopes of Norway was established by Magnin et al.
(2019). A total of 2 % of Norwegian slopes are believed to be
covered with continuous permafrost, 9 % with discontinuous
permafrost, and up to 20 % with sporadic permafrost. Eleva-
tions at which permafrost can be observed depend mainly on
latitude and slope aspect; i.e. a high latitude and an exposure
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to the north would lower the limit (Magnin et al., 2019). In
the same paper, it was additionally revealed that permafrost
may occur on steep slopes at lower elevations than on less
pronounced topography, particularly for north-facing flanks.
Moreover, permafrost could have acted as a slope stabilizer
over the past thousands of years. As a consequence of the
current global warming, the permafrost cover shrinks, lead-
ing to rock slopes becoming more unstable (Hilger et al.,
2021). Therefore, Norway may experience more catastrophic
sliding events in the near future and a crucial aspect is to de-
velop automatic monitoring systems on the slopes to mitigate
the related risk.

Currently, only a few sites are instrumented in Norway
(e.g. Blikra et al., 2005; Nordvik et al., 2010; Blikra and
Christiansen, 2014; Böhme et al., 2013). The Åknes unstable
rock slope, subject of the present work, started being heavily
instrumented in 2004 (Nordvik et al., 2009) and is consid-
ered the best and most thoroughly monitored rock slope in
Norway. As part of the monitoring system, seismic instru-
ments were installed to passively record seismic activity on
the slope. Because seismic sensors do not only record events
related to the movements of the slope but also regional earth-
quakes and anthropogenic noise, it is important to be able
to distinguish between different types of signals. The net-
work was fully functional in 2007, and since then, around
60 000 events have been detected. The combination of this
large number of data and the need for real-time implementa-
tion then required automation of the classification task.

In this paper, we will first present the Åknes site both in
terms of geology and monitoring, with a particular focus on
the seismic monitoring, and then describe the automatic clas-
sifier implementation. The statistical analysis of the results
shows the implications in terms of slope monitoring, partic-
ularly with the aim of better understanding the processes at
play.

2 The Åknes unstable rock slope

2.1 Geology

The Åknes unstable rock slope (62◦10.77′ N, 6◦59.45′ E) is
located in the municipality of Stranda in the Møre og Roms-
dal county in Western Norway (Fig. 1a). It overhangs the
Sunnylvsfjord, which branches off to the Geiranger fjord
in the south-east. This fjord became a World Heritage Site
in 2005, attracting a growing number of tourists and cruise
ships each year. The need for ensuring safety in the surround-
ings of this important touristic site partly explains why the
Åknes slope received a great deal of attention. The slope
faces south with a very steep topography from sea level to
1300 m altitude over a distance of about 1500 m (Ganerød
et al., 2008). The rock formations consist of three main types
of gneisses, the foliation of which is parallel or sub-parallel
to the slope. The steep slope angle (30–35◦) and the folia-
tion constitute the two main geological factors for instability.

The unstable part is delimited in the west by a NNW–SSE-
striking and steeply dipping strike-slip fault resulting in a
cliff of 10 to 40 m height (Fig. 1b). A NNE–SSW-striking
and gently NW-dipping strike-slip fault forms the eastern
boundary. The upper limit, the back scarp, is characterized on
its western part by a cliff and graben, separating geophones
6, 7, and 8 from the others, and on its eastern side by an open
fracture whose depth is difficult to estimate but is estimated
to be about 60 m deep in the western part, reaching to some-
what shallower depth towards the east (Fig. 1c). Geological
observations at the surface and investigations using different
geophysical methods (including radar, refraction seismics,
and resistivity profiles) led to the division of the unstable
slope into four sub-domains (Ganerød et al., 2008), which –
depending on the scenario – could collapse simultaneously or
independently of each other. In the worst-case scenario, the
total volume of unstable material was estimated to be more
than 50× 106 m3 (Fig. 1b), which would result in a tsunami
with up to 85 m run-up height at the nearby villages (Harb-
itz et al., 2014). Two sliding planes beneath the extensional
upper sub-domains (1, 2) as well as beneath the lower com-
pressional sub-domains were evidenced from surface obser-
vations (Fig. 1b, red lines).

2.2 Monitoring

The first evidence of movement at the Åknes rock slope was
reported as early as 1964, when locals observed a widening
of the upper crack (Grøneng et al., 2011). Today, the slope is
continuously monitored by NVE (the Norwegian Water Re-
sources and Energy Directorate) and is thoroughly equipped
with numerous types of instruments. Displacement rates are
measured by 5 extensometers within the upper crack, 2 lasers
at the back scarp, 10 permanent GPS points and 30 prisms
covering the whole slope (Pless et al., 2021). Displacement
measurements were also regularly performed through field
campaigns of remote-sensing techniques such as ground-
based and satellite-based InSAR (interferometric synthetic-
aperture radar; Kristensen et al., 2013; Bardi et al., 2016)
and terrestrial laser scanning (TLS; Oppikofer et al., 2009).
Annual displacement rates of a few millimetres to up to 8 cm
(Nordvik and Nyrnes, 2009) with an average of 1–2 cm yr−1

were recorded (Ganerød et al., 2008). Larger displacements
were observed in the upper part of the slope (sub-domains
1 and 2) compared to the lower part (sub-domains 3 and
4; Ganerød et al., 2008). Twelve boreholes were drilled and
instrumented with inclinometers to monitor deformation as
well as piezometers to survey groundwater level variations.
Groundwater fluctuations are believed to be the main reason
for the slope movement. Increases in the groundwater level
are correlated with increases in measured displacement rates
(Nordvik and Nyrnes, 2009; Grøneng et al., 2011). The data
are not self-sufficient, though, and need to be integrated with
models of groundwater recharge processes. Hence, many hy-
drogeological field campaigns were conducted in summer-
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Figure 1. (a) Åknes rockslide location in Western Norway (red star). The photo at the top right shows the Åknes slope seen from the opposite
side of the fjord (Roth and Blikra, 2010). The red shaded area represents the unstable area. Digital elevation model of the slope in 3D (b) and
map view (c), zoomed to the top scarp, where the eight surface geophones are placed (red reversed triangles). The two main bunkers at the
top and in the middle of the slope are displayed as blue squares. We use a local coordinate system centred on the upper bunker (Ørnereiret).
In (b), the black contour delimits the whole area that could potentially collapse into the fjord. The red lines highlight two of the sliding
planes. Sub-domains are indicated by yellow numbers. In (c), the back scarp splits the network in two, with geophones 1 and 2 placed on
the stable ground behind the back scarp. The open fracture is highlighted by the yellow double arrow. The 50 m spaced elevation contours
are also plotted. The two black arrows indicate the approximate displacement direction in sub-domains 1 and 2, and the dashed yellow curve
marks the separation between the two sub-domains.

time to map the streams on the slope and collect geochem-
ical and flow data to better characterize water movement
(Sena and Braathen, 2021). Last, but not least, a meteorolog-
ical station installed close to the upper bunker (blue square
in Fig. 1b, c) measures the temperature, precipitation, wind
speed, and snow cover.

As part of the monitoring system, seismic instruments
were installed. Passive seismic monitoring has the advan-
tage of continuously recording waves propagating within the
ground either in the form of well-identified seismic events
or as background noise. In terms of slope monitoring, an
increase in the number of detected seismic events can indi-
cate movements of and on the slope. The magnitude of such
events may help characterize the type of slope movement;
e.g. a few large events or many small events can result in the
same amount of movement but caused by different processes.
In addition, seismic events can be of various origins and they
may be located at the surface or at depth, hence providing in-

formation about the rock properties in the subsurface. There-
fore, many rockslides worldwide are continuously monitored
seismically (e.g. Spillmann et al., 2007; Dammeier et al.,
2011; Lacroix and Helmstetter, 2011; Gomberg et al., 2011;
Tonnellier et al., 2013; Arosio et al., 2018; Vouillamoz et al.,
2018). Seismic precursors to rock slides have been observed
on different scales (Senfaute et al., 2009; Walter et al., 2012;
Yamada et al., 2016; Poli, 2017; Schöpa et al., 2018; Butler,
2019; Zhang et al., 2019) and seismic records have been used
to better understand rockfall dynamics as well (Hibert et al.,
2017). In addition, an increasing number of studies leverages
background seismic noise, which likewise contains valuable
information (e.g. Colombero et al., 2018; Le Breton et al.,
2021; Colombero et al., 2021; Kang et al., 2021). More pre-
cisely, tiny variations in seismic velocities can be measured
by analysing long time series of ambient noise. It was ob-
served that slope failures are preceded by an irreversible drop
in velocity, which can be directly linked to a loss of rigidity

https://doi.org/10.5194/esurf-11-89-2023 Earth Surf. Dynam., 11, 89–115, 2023



92 N. Langet and F. M. J. Silverberg: Åknes automatic classifier

of the material. More interestingly, reversible and seasonal
changes are generally measured, giving an insight into the
different, site-specific processes at play.

2.3 Seismic data

At Åknes, a small-scale seismic network composed of eight
three-component geophones was set up in 2005 (Roth et al.,
2006; Fischer et al., 2020) around the back scarp, which
represents the most active zone, and has been continuously
recording ground motion since 2006. The network total ex-
tent is 200 by 300 m. Seismic data are recorded in triggered
mode with a low threshold to include as many events as
possible. In the case of a trigger, 16 s long files, sampled
at 1000 Hz, are transferred to NORSAR in near real time,
where a more selective automatic STA/LTA (short-term aver-
age over long-term average) detection (Withers et al., 1998)
is performed. In 2009, the seismic instrumentation was sup-
plemented by a broadband seismometer (AKN) in the cen-
tral, more stable part of the slope for continuous data record-
ing. This station, operated by NORSAR, provides data to the
Norwegian National Seismic Network (NNSN) and the Eu-
ropean Integrated Data Archive (EIDA) and contributes to
the regional and teleseismic earthquake monitoring. So far, it
has not been used for slope monitoring in a systematic man-
ner. Lastly, in 2017, a string of eight geophones was installed
in a borehole in the upper part of the slope, just above one
of the sliding planes (Fig. 1b). The present paper will focus
exclusively on the data registered on the surface geophone
network. In Sect. 5, we will discuss how the other available
data streams may complement this work in the future.

It must be noted that network maintenance is challenging
due to the harsh conditions and the limited fieldwork sea-
son. In particular, cables between surface geophones and dig-
itizer are the weakest links and are regularly sheared by ei-
ther rockfalls or snow avalanches. For example, geophones
6, 7, and 8 in the western part of the slope are separated from
the others by a gully, which is particularly prone to rockfalls,
while geophone 2, in the eastern part of the slope, is placed
in a snow avalanche corridor. As a consequence, there are
variations in detectability inherent in the dataset.

Rockslides can generate various types of seismic signals
which have been analysed in several detailed studies at dif-
ferent sites (e.g. Helmstetter and Garambois, 2010; Occhiena
et al., 2012; Tonnellier et al., 2013; Vouillamoz et al., 2018).
Provost et al. (2018) brought together data recorded on differ-
ent landslides (including Åknes) and proposed a standardized
typology reflecting the diversity of these signals, composed
of three main classes (slope quakes, rockfalls, and granu-
lar flows) subdivided into several subclasses. This typology
must be adapted to site-specific characteristics, being aware
that the network layout, the type of sensors, and the acqui-
sition parameters have an effect on records, data analysis,
and subsequently typology. Moreover, even though different
types of signals are observed at various sites, their physical

origins are still relatively unknown. For example, the fre-
quency content of a recorded signal depends on the distance
from the source to the recording station, especially if the
medium is highly heterogeneous, dispersive, or attenuative.
Thus, records from a single event may have different seismic
signatures at different stations. Likewise, two events having a
similar source mechanism but occurring at different locations
may display completely different waveforms. Event loca-
tions can help discriminate between source and path effects.
However, accurately locating events on rockslides to high-
light structures at depth is usually far from being straightfor-
ward. At Åknes, the medium is highly fractured and highly
attenuative; hence, an adequate velocity model is difficult to
establish and seismic phases are not always easily identifi-
able on the waveforms. Several attempts have been made to
locate the events; for example, Fischer et al. (2020) applied
a back-propagation approach limited by the use of only a
homogeneous velocity model and by constraining the loca-
tions to the surface. In the same paper, seismic events were
divided into four categories (microseismic events, rockfalls,
distant events, and noise), but this work represented a feasi-
bility study and was not systematically implemented as part
of the automatic monitoring system.

The goal of the present work is (1) to identify the differ-
ent signals recorded at Åknes, (2) to establish an automatic
classifier, (3) to integrate it in the current processing routines
in a way in which non-seismologists can exploit the cata-
logue of detected events without having to interpret the wave-
forms, and (4) to discuss the classification of events in light
of the processes involved in the slope movement. For that
purpose, a large amount of waveforms was visually inspected
and event classes were manually assigned following a modi-
fication of the typology proposed by Provost et al. (2018). In
the next paragraphs, various observed signals are described.

3 Description of observed seismic signals

The first main class of seismic events is called slope quakes.
This terminology was introduced in order to avoid the wide
variety of terms that can be found in the literature (micro-
quakes, quakes, microseismic events, and so forth). This
class is further subdivided into simple and complex slope
quakes. Simple slope quakes correspond to events that are
believed to be associated with either the fracturing or the
sliding of the slope. Based on their frequency content, sev-
eral mechanisms may be hypothesized (Provost et al., 2018).
Complex slope quakes encompass signals that are believed
to be directly associated with phenomena affecting the slope
stability at depth, such as tremors, but their origin is more
speculative and, so far, not as well understood.

At the Åknes site, high-frequency (HF) and low-frequency
(LF) simple slope quakes are observed as well as tremors. HF
slope quakes are impulsive and short-duration events, usu-
ally< 2 s (Fig. 2a). They contain energy at frequencies above
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Figure 2. Spectrograms and normalized waveforms of the maximum-amplitude record of signals representative of each class: (a) HF slope
quake, (b) LF slope quake, (c) tremor, (d) successive slope quakes, (e) rockfall, (f) regional earthquake, (g) spike, and (h) noise. Note that
colour scales are in a logarithmic scale [dB] and not normalized. Frequencies are only shown up to 150 Hz. In (f), both the P- and S-wave
arrivals are visible at ca. 2 and 8 s, respectively. Vertical component waveforms of the example events recorded at all geophones are displayed
in the Appendix (Figs. B1 to B8).

40 Hz and regularly comprise frequencies of 80 Hz or more.
Differences in the higher-frequency content may be an effect
of the distance of the geophones to the source; therefore HF
events are grouped into a single class. While lasting approx-
imately as long as HF slope quakes, LF slope quakes feature
emergent onsets hampering the identification of the signal
start, and their energy is mostly concentrated in frequencies
below 25 Hz (Fig. 2b). Usually, their maximum amplitude is
much lower. Tremors have similar characteristics to LF slope
quakes but a longer duration (> 4–6 s, Fig. 2c). They partly
exhibit a large portion of harmonic signals. Lastly, we de-
fined a class of successive HF slope quakes (Fig. 2d). They
present roughly similar characteristics to HF slope quakes
but possess a longer duration (2 to 4 s) and consist of several
bursts of energy (up to four).

In addition to events taking place at depth, surface pro-
cesses caused by the slope steepness and instability such as

rockfalls, snow avalanches, and granular flows are recorded.
Due to the file length limitation to 16 s and detection set-
tings, snow avalanches are very often either not detected or
difficult to classify. Therefore, we do not have a dedicated
class in the present classifier, and the corresponding signals
potentially are classified as noise (see Sect. 5). Rockfalls, on
the other hand, can exhibit a wide range of waveforms and
can be associated with different processes, e.g. a single rock
splitting and falling down, a rock bouncing repeatedly, or a
larger rock block collapsing. In general, rockfalls are char-
acterized by emergent signals of longer duration than sim-
ple slope quakes (> 2 s). They cover a large frequency band-
width, reaching up to 150 Hz or more, and their waveforms
display several bursts of energy (Fig. 2e) as well as a high
variability across the seismic network (Fig. B5).

Seismic instruments also record signals that occur farther
away (e.g. regional earthquakes) and electric noise, mostly
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Figure 3. Sketch of the Åknes rock slope featuring local and dis-
tant natural phenomena generating seismic signals (see Table 1).
Adapted from Fig. 10 in Ganerød et al. (2008) and Fig. 1 in Provost
et al. (2018). Waveforms at the top are the same as the ones in Fig. 2.

as spikes. Although not relevant to the slope monitoring,
they need to be classified in order to be removed. Thus,
spikes are defined as short, narrow, and high-amplitude sig-
nals (Fig. 2g), whereas regional earthquake durations always
exceed the file length of 16 s (Fig. 2f). However, a pitfall for
regional earthquakes is that, depending on the source loca-
tion, the S wave may not be visible in the records. Therefore,
phenomena of longer duration such as snow avalanches or
granular flows may be regarded by the classifier as regional
earthquakes.

Lastly, we defined a “noise” class, corresponding to all sig-
nals that do not exhibit distinct features allowing them to be
classified as any of the previously described classes (Fig. 2h).
In practice, this class only contains few events, since the
STA/LTA detector is sufficiently restrictive to discard noisy
signals.

The main characteristics and the hypothesized mechani-
cal processes of each event class are summarized in Table 1,
while their relationship to the slope geology is represented
schematically in Fig. 3.

4 Classification

4.1 Background

Automated classification of seismic signals started as early
as the 1990s, when Dowla et al. (1990) discriminated natural
earthquakes from nuclear explosions. Later on, it was suc-
cessfully applied and developed in the field of volcano seis-
mology (e.g. Falsaperla et al., 1996; Ohrnberger, 2001; Ma-
sotti et al., 2006; Curilem et al., 2009; Langet, 2014; Maggi

et al., 2017; Malfante et al., 2018) and recently on rockslides
(e.g. Hammer et al., 2013; Provost et al., 2017; Feng et al.,
2020; Lin et al., 2020). Amongst the most commonly used
methods are neural networks (NNs), hidden Markov models
(HMMs), support vector machines (SVMs), and random for-
est (RF).

Classification is a supervised learning problem. This im-
plies that a set of well-known data was labelled and used to
train the machine learning algorithm. Building a good train-
ing set is crucial, since in the case of supervised learning, the
system is not able to learn anything new by itself: a signal
will always be divided into one of the pre-defined classes.
A training set should therefore be representative of the data
and provide an exhaustive sampling in terms of (1) classes
present in the data and (2) data quality. The representative-
ness is important due to the trade-off between the classifier
generalization and its precision, the aim being to maximize
the number of correctly classified events, while minimizing
the number of incorrect classifications for all classes.

For the Åknes dataset, events were classified by visual in-
spection of a large number of waveforms recorded in differ-
ent years. Except for the sparsely populated noise class (only
10 events), each class contains approximately 200 events.
The distribution of classes across the training set is recog-
nizable in Fig. B11a in the Appendix and numbers are given
in Table 1. Most classes constitute around 12 % of the train-
ing set. The class of HF slope quakes is twice as large in
size (ca. 24 %) as it appears to be the dominating event class
in the whole dataset. The regional earthquake class contains
slightly more events (16 %) and was cross-checked with a
reviewed seismic bulletin (NORSAR, 1971) to ensure the
proper labelling of corresponding events.

4.2 Convolutional neural network

Machine learning methods have developed quickly during
the past few years. Breakthroughs have occurred not only
due to the development of new conceptual approaches but
also because of substantial improvements in hardware and
computational capacity, which allow dealing with a much
larger number of data. In particular, deep learning methods
are now able to classify images (Hinton et al., 2006) by cre-
ating a model not only for conditional probabilities P (Y |X)
(i.e. probability of an event belonging to class Y knowing
its set of features X) but for joint probabilities P (X,Y ) (i.e.
the event belongs to the class Y maximizing the conditional
probability P (Y |X) given its image X).

Traditionally, in machine learning methods such as SVM
or RF, the input data are discretized into feature vectors for
which the features are extracted from the raw data with the
aim to offer a best possible description. Due to the complex-
ity of seismic waveforms, these features should describe the
signals in the time domain in terms of duration, shape (e.g.
number of peaks, peakedness), in the frequency domain (e.g.
predominant and central frequencies, spectrum bandwidth)
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Table 1. Summary of the seismic event classes identified at Åknes. Asterisks (∗) indicate events that occur directly on the slope and are
therefore relevant and meaningful for the monitoring. Hypotheses on the physical processes causing the events are provided, inferred both
from the literature and the observations at Åknes developed in Sect. 5. Ntr and Nt are the number of events constituting the training and test
sets, respectively. Probability density functions of the main signal characteristics are shown in Fig. B18 in the Appendix.

Class Subclass Duration Frequency Other Potential origin Ntr Nt

Slope quake∗ High frequency (HF) < 2 s > 40 Hz, up to 80 Hz Very impulsive Shearing on sliding plane 448 969
(at depth) Low frequency (LF) < 4 s < 25 Hz Lower amplitudes Fracture opening; new cracks 218 333

Tremor 4–10 s < 25 Hz May contain harmonics Water flow in cracks (thawing) 212 192
Succession of HFs 2–4 s > 40 Hz Several bursts of energy Shearing on sliding plane 207 323

Rockfall∗ > 6 s Large bandwidth, Several bursts of energy Rainfall, snowmelt, etc. 215 225
up to 150 Hz

Other Snow avalanche∗ Dependent on avalanche regime (beyond the scope of this work)
Regional earthquake >16 s < 10 Hz Tectonics 294 256
Distant, large (file length) Dependent on event size and distance to seismic sensors
Rockslide/avalanche
Noise Dependent on type of noise; irrelevant for slope monitoring Anthropogenic, electric 218 163

and in the cepstral domain (the cepstral domain results from
the inverse Fourier transform of the logarithm of a Fourier
spectrum; e.g. Malfante et al., 2018). The number of features
effectively used by the system may be reduced by remov-
ing correlated features and performing principal component
analysis (PCA). Feature-based methods have the advantage
that they are easier to understand in the sense that features
that are the most discriminant for each event class can be
identified. However, their main drawback is that these fea-
tures must be pre-defined manually, and selecting them may
be rather subjective.

Waveform complexity may act as an obstacle to classifica-
tion; i.e. the classifier will be difficult to generalize and will
have a tendency to over-fitting, resulting in each individual
event defining a class if the waveforms are not sufficiently
similar. Spectrograms, on the other hand, constitute a simpli-
fied representation of waveforms in the time–frequency do-
main. They contain the same information but include a tem-
poral reference in addition. Discretized features can also be
extracted from spectrograms (e.g. distance between the max-
imum and mean frequencies; see Provost et al., 2017; Hibert
et al., 2017; Wenner et al., 2021). However, defining such
features can be avoided as spectrograms can already be seen
as matrices of features that are not defined explicitly. For ex-
ample, the duration information corresponds to the time span
in which most of the energy is concentrated, instead of being
defined by a scalar value expressed in seconds. Such infor-
mation matrices can be processed as images by convolutional
neural networks (CNNs). Filters in the CNN’s convolutional
layers act as features; the more layers, the more filters are
applied and the more features are extracted. The filter pa-
rameters are learnt during the training process. Pooling and
resampling layers do not learn new parameters but decrease
or increase the number of features. They may help in the
identification of dominant features. The classification itself
is carried out by a fully connected layer. Convolution being a
linear operation, convolutional layers must be accompanied

by an activation function for the system to learn non-linear
features. There are many different activation functions avail-
able; for example, ReLU (rectified linear unit) is widely used
and consists in keeping only positive values after the convo-
lution operation, while negative values are replaced by zeros.
The architecture of the CNN, i.e. the number of layers, their
order, the type of activation functions, etc., offers great flex-
ibility, and choices may affect the classification results. Still,
well-known architectures have proved to be successful in a
wide range of applications (e.g. LeNet-5, AlexNet, ResNet).

In the Åknes network, each event is recorded by eight geo-
phones on three channels, i.e. on 24 traces in total. Depend-
ing on the source location and its distance to each geophone,
wave onsets are not simultaneous across the network and
the different ray paths through a very heterogeneous medium
distort the waveforms recorded at each geophone. However,
since inter-station distances are short, differences in travel
times are expected to be small. Therefore, we simplify the in-
formation by (1) computing individual spectrograms for all
channels and (2) stacking them all together, resulting in a
single image. Note that we only stack spectrograms for geo-
phones that detected the event and remove low-quality traces.
A trace is regarded as low-quality if its signal-to-noise ratio
(SNR) is much lower than the SNR of the other traces, i.e.
if SNRtr,norm < 0.7 · SNR−σSNR

max(SNR) , where SNRtr,norm is the nor-
malized SNR of the trace, SNR is the average SNR over all
traces, and σSNR is the standard deviation. The factor 0.7 was
finally chosen after testing on several data. In the end, this
implies that the number of employed traces in each stack dif-
fers between events.

Practically, processing was implemented using the Py-
Torch python package (Paszke et al., 2019). We tested several
CNN architectures (Silverberg, 2020) and chose the AlexNet
architecture (Krizhevsky et al., 2017). In this pre-trained net-
work, the RGB spectrogram images must have a fixed size
[l, m, n], where l is the number of channels (three for RGB)
and m and n are the height and width of the image, respec-
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tively. We computed spectrograms for the whole file length
(16 s) using a 1 s long sliding window with a 95% overlap.
We truncated the spectrograms to 150 Hz, since only few
events contain frequencies exceeding this value. After perfor-
mance tests, the “afmhot” matplotlib sequential colour map
was used to produce the spectrogram plot before its conver-
sion to an RGB image of the size (3, 224, 224). The RGB val-
ues ranging from 0 to 255 are normalized for each channel.
The best-performing optimizer as well as other determinant
parameters for the CNN, such as the learning rate, were de-
termined in advance by both grid search and cross-validation
approaches. Finally, once the set of parameters yielding the
best performance was found, the training of the final CNN
was carried out on the entire training set.

4.3 Near real-time implementation

The supervised automatic classifier was implemented in near
real time. For each newly detected event, spectrograms are
extracted, stacked, and fed into the classifier. The result-
ing class is included in the catalogue of detections, a fig-
ure is produced (Fig. 4), and both are published on a dedi-
cated web page (NORSAR, 2022) with a 10 to 15 min de-
lay. Such figures are useful to visualize the event. In addi-
tion, the classifier returns probabilities, indicating the confi-
dence with which the event was classified and, in the case of
the event fitting multiple classes, the proportions with which
these classes overlap. In Fig. 4, we show the example of an
HF slope quake classified with a probability of 100%.

In addition, the automatic classifier was also applied to the
database of past events. Note that we excluded the year 2006,
since the recording system was still in its test phase, and dif-
ferent sampling rates and file durations were used. Hence,
the catalogue starts in 2007. Until the end of the year 2021, a
total of 59 608 events were classified.

4.4 Results

In this section, we present the results from the classification
process and attempt to interpret the outcome for the purpose
of slope monitoring. A total of 20 % of the automatically
classified events are not related to movements of the slope
and represent regional earthquakes, electric spikes, and noise
(Fig. B12). Note that in compliance with the training set, the
noise class is almost non-existent. Of the remaining 80 % of
events, 75 % correspond to slope quakes. Of those, HF slope
quakes are largely predominant (38 %).

Since events are also classified manually on a daily basis
by visually scanning waveforms and spectrograms, we estab-
lished a test set consisting of 2554 events which are all dif-
ferent from the events contained in the training set. This test
set is used to evaluate the performance of the CNN classifier
in the confusion matrix in Fig. 5.

The distribution of manually attributed classes within the
test set is shown in Fig. B11b and Table 1. We assume it to

be representative of the whole dataset (Fig. B12). It is worth-
while noting that despite clearly defined characteristics, man-
ual labelling is not straightforward for most of the events.
Thus, manually defined classes should not be used as abso-
lute ground truth and results should be interpreted with cau-
tion.

The CNN’s overall success rate is good (slightly above
80 %) in spite of large discrepancies in success between
classes (Fig. 5). Spikes are generally well identified as are
79 % of rockfalls. HF slope quakes are identified with a rate
close to 88 %, whereas the LF slope quakes reach 72 %. More
than 75 % of successive slope quakes are properly classified.
Tremors constitute the event class that apparently is most dif-
ficult to classify with a success rate of only 61.5 %. This is
not surprising, since the characteristics of this class are less
clearly defined. Mostly, tremors are confused with regional
earthquakes (19 %) and rockfalls (11.5 %). Finally, less than
half of the signals corresponding to noise are properly rec-
ognized by the CNN. This is expected, since noise examples
are severely underrepresented in the training set; instead the
system tends to classify noise as regional earthquakes (32 %).
The classifier has a tendency to classify more regional earth-
quakes and HF slope quakes than suggested by the manual
classification; hence higher classification rates are reached
for these classes.

To summarize, Fig. 5 shows that the classifier is able to
properly discriminate between events that do not occur on
the slope, with the possible exception of noise. However, the
number of noise records is only marginal and will not af-
fect the interpretation of the results. Events occurring on the
slope reach classification rates of 75 % on average. However,
due to the complexity of manual classification and the over-
lap between classes, those rates are considered satisfactory.
The automatic processing results are more homogeneous and
consistent than the manual ones.

5 Discussion

The initial motivation for building a classifier was to better
characterize seismic events recorded at the Åknes site. Al-
though the number of detections provides information on the
seismic activity rates over time, it does not allow us to dis-
criminate between different mechanisms at play and may po-
tentially be biased by including signals that are not linked
to the slope. This is illustrated in Fig. 6 where the number
of considered events drops to 47 561 after regional events,
spikes, and noise are removed, thus comprising approxi-
mately 80 % of detections. Note that for this part of the in-
terpretation only, the automatically generated catalogue was
revised semi-manually to delete records of electric spikes er-
roneously classified as events, based on their maximum am-
plitude. The trend of the cumulative number-of-events curve,
however, is not drastically different once these signals are
removed (Fig. 6). In general, we observe a deceleration of
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Figure 4. Example of an event classified as a high-frequency (HF) slope quake by the automatic classifier. In (a), waveforms are shown for
each component. Grey colour indicates geophones not contributing to the stack. Bold red text highlights the trace with maximum amplitude.
The bottom trace represents the envelope stack of the traces with detection (black traces only). In (b), the spectrogram resulting from the
stack of individual spectrograms computed for each channel is plotted employing the colour scale used in the CNN. In (c), the power spectral
density (PSD) of the trace featuring the maximum amplitude is illustrated. Finally, in (d), the bar displays the classification probability.

the seismic activity since mid-2012 and regular inflections
in the first half of each year, corresponding to an increase
in seismic activity. In addition, Fig. 6 shows the cumulative
energy of these local events in terms of squared amplitude
used as a proxy for magnitude. Together with the cumulative
number of events, it indicates whether the release of seismic
energy was due to a few larger or multiple smaller events oc-
curring within a short period of time. No particular episodes
of higher-amplitude events emerge, suggesting that the en-
ergy is generated by small but numerous and regular seismic
events.

In the previous work by Fischer et al. (2020) analysing
the same dataset for the time period 2006–2013, a season-
ality of seismic activity was observed and a clear correla-
tion with temperature variations was demonstrated. Both this
study and the work by Grøneng et al. (2011) using displace-
ment data showed that there is an acceleration of the sliding
during spring which could be attributed to snowmelt. Indeed,
by melting, the snow facilitates the infiltration of water into
the fractures and towards the sliding plane, in turn increasing
the pore pressure and reducing the friction and ultimately al-
lowing for more sliding. In the following, we compare the

catalogue of microseismicity with available meteorological
data and expand the analysis further by adding the informa-
tion on event types provided by the automatic classifier in or-
der to identify which types of events are more related to me-
teorological conditions. Throughout a typical year, a signifi-
cant increase in activity is observed in spring (from March to
May), while summer months (June to September) are quieter
(Fig. 7). There is also a gradual increase in seismic activity
from October to February. This variation can be attributed
to climatic conditions with temperatures below 4 ◦C being
reached regularly as early as in October. Temperatures are
usually sub-zero from mid-November until the end of March.
The transition to temperatures above zero occurs in April,
and generally, temperatures exceed 4 ◦C by the end of May.
Liquid water has a density varying with temperature. Most
notably, under normal atmospheric pressure conditions, its
highest density is reached at a temperature of 4 ◦C, while wa-
ter turns into solid ice at temperatures of 0 ◦C or below. Ice
is thus less dense than liquid water, which means its volume
grows. If the cracks in the rocks are filled with water and the
temperature is oscillating between 0 and 4 ◦C as observed
from March to May, the variations in water density lead to
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Figure 5. Confusion matrix comparing the results of manual and
automatic classification for the test dataset. The matrix is colour-
coded by percentage rates. Numbers in brackets indicate the abso-
lute number of events in each class.

seismic signals, which can be attributed to either (1) wa-
ter state changes corresponding to freezing and thawing in
water-filled micro-cracks, (2) the creation of new cracks, or
(3) both. These explanations are in good agreement with the
hypothesized mechanisms for the class of LF slope quakes
and, interestingly, their number increases in spring (Fig. 7)
while decreasing from June to October. Relative variations
in the number of events are displayed in Fig. B13 in the Ap-
pendix and show that in addition to LF slope quakes, tremors,
rockfalls, and, more surprisingly, regional earthquakes are
also more numerous in spring. Rockfalls are more frequent
in late summer and the beginning of autumn as well.

Temperature appears to be a predominant factor influenc-
ing the microseismic activity on the slope (Fig. 7). This is
also evident in daily data (Fig. 8) where we observe slightly
more activity during the daytime (from ca. 08:00 to 16:00).
This could indicate a potential contamination by anthro-
pogenic noise; however, the Åknes site is remote, only ac-
cessible by helicopter, and therefore protected from such
sources of noise. All human activities on the slope related
to research and monitoring cease from the end of October
to at least the end of April due to weather conditions pro-
hibiting fieldwork. Moreover, Fig. 8 reveals that all classes
of events, except tremors, occur in relatively constant ratios
independently of the hour of the day. Since tremors are rarely
observed in summertime (Fig. 7), an anthropogenic origin is
improbable. Our observations show that tremors are mostly
recorded during the snowmelt season and during the daytime.
The curves of relative temperature variations clearly indicate
that daily variations are larger in spring and summer com-
pared to autumn and winter (Fig. 8). This is expected, since
at the latitude of Åknes, the daylight period is as short as 5 h

in winter. In Fig. C1 in the Appendix, we show both abso-
lute temperatures and their relative variations for each month
of the year. On the whole, those observations strengthen and
confirm the thawing–freezing cycles as the leading cause of
tremors. Although LF slope quakes are more numerous in
spring (Fig. 7), there is no obvious relation to daily temper-
ature changes (Fig. 8). Therefore, they could rather be re-
lated to either water infiltration and flow within pre-existing
cracks, to the fracture opening, or to the formation of new
cracks.

In the absence of magnitude computation, event size is
estimated by calculating the mean of the maximum ampli-
tudes at each geophone. Amplitudes of slope quakes and
rockfalls are plotted against time in Fig. 9. We observe a
seasonal variation for all classes (Fig. B14), notably that
lower-amplitude events (≤ 150) are mostly recorded in au-
tumn and winter, while higher-amplitude events (≥ 1000) are
recorded throughout the year (Fig. B15). This is explained
by a better detection capacity of the network from late Oc-
tober to May potentially due to an absorbing snow cover,
enhanced geophone coupling, and, although already low, re-
duced anthropogenic noise. Further, the amplitudes of LF
slope quakes and tremors (predominantly < 150) are signifi-
cantly lower than HF and successive slope quakes (predom-
inantly > 150; see Fig. B16). Rockfalls feature the highest
amplitudes among slope-related events. Interestingly, rock-
falls are more frequent during certain periods of the years
(Figs. 9e, B13). No obvious correlation of event amplitudes
to precipitation could be established. More generally, al-
though precipitation is commonly regarded as one of the
main causes of landslides (e.g. Helmstetter and Garambois,
2010) and at Åknes (Pless et al., 2021; Sena and Braathen,
2021), a link between observed microseismicity and precip-
itation has not yet been fully evidenced for the Åknes site.
This was also one of the results from the previous study by
Fischer et al. (2020). The analysis is obfuscated by depen-
dencies on the speed of water infiltration and the process
of groundwater recharge after a rain episode, which varies
across the slope (Sena and Braathen, 2021). More detailed
analyses are required, e.g. by following an approach similar
to Helmstetter and Garambois (2010), in which a cumulative
rainfall index was defined to take into account the drainage
of water over time.

Seasonal temperature variations are relatively stable over
the years (Fig. 9a), on average not exceeding 1.5 ◦C. Never-
theless, a decrease in seismic activity is observed since 2012
(Fig. 6), illustrated more clearly in Fig. 10. The number of
events halved between 2007–2012 and 2013–2021. Note that
in 2019, the network was not functional from March to mid-
June. The detection capacity, of course, depends highly on
the number of functional geophones but not only on that.
Nevertheless, 2012 was the most active year so far, despite
two geophones being out of order. In addition, far fewer
events were recorded in 2013 and 2014, although the same
geophones were functional. The difference in event numbers
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Figure 6. Cumulative number of seismic events and energy over time. Left axis: cumulative number of events including all detections
(grey line) and restricted to events occurring on the slope (coloured line). The colour code highlights the seasonality. Right axis: normalized
cumulative energy (dark blue line). The time range in 2019 shaded in grey corresponds to a period when the system was down and no data
could be collected.

Figure 7. Seasonality of events and temperature per month for
15 years of data (2007–2021). Left axis: number of events. Bars are
subdivided into event classes; noise records are not visible, since
they are sparse. Top right axis: average temperature (black line) in-
cluding standard deviation (grey shade). Solid and dashed horizon-
tal grey lines indicate temperatures of 0 and +4 ◦C, respectively.

cannot be solely explained by temperature variations nor by
differences in precipitation. This suggests that while temper-
ature and seismic activity are clearly linked, their relationship
is more complex and additional factors need to be consid-
ered.

The file length of 16 s highly limits the capability of the
classifier and could potentially explain the apparent seasonal
increase in regional events (Figs. 7, B13). Since such a be-
haviour is not expected for earthquakes, it indicates that snow
avalanches, granular flow, and landslides in the region sur-
rounding the Åknes site are mistaken for regional events.
This is exemplified in Figs. 11, B9, and B10.

In Fig. 11, we show an example of a regional earthquake
and an event on the eastern part of the slope recorded on
the broadband seismometer (AKN). In the absence of wit-

Figure 8. Distribution of detected events over hours of the day
for 15 years of data (2007–2021). Left axis: number of events.
Bars are subdivided into event classes; see legend of Fig. 7
for explanation. Top right axis: relative variations in temperature
(1T/1Tmax) throughout the day, subdivided into seasons. For de-
tails, see Fig. C1.

nesses, it is difficult to distinguish if the event represents
a snow avalanche or a granular flow. The corresponding
records of the eight geophones are shown in Figs. B9 and
B10 in the Appendix. Although in Fig. 11, the signal char-
acteristics are unequivocal, e.g. with P- and S-wave arrivals
clearly identifiable for the earthquake, the 16 s long signals
are too short to distinguish between both origins. For the
earthquake (Fig. B9), only the P-wave onset was recorded,
while the beginning of the trace in Fig. B10 can be misin-
terpreted as weak P- and stronger S-wave arrival at around
2 and 7 s, respectively. To avoid such misinterpretation, the
broadband records could be integrated more systematically
into the analysis, whilst in the long term, upgrading the sys-
tem to obtain continuous records would be the best solution.
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Figure 9. Amplitudes of events occurring on the slope over time
(thin black: smoothing over 7 d). Temperature smoothed with a 7 d
sliding window is added to (a). Precipitation is supplemented in (e).

Figure 10. Distribution of slope-related microseismic events over
15 years. Left axis: number of events. Right axis: cumulative pre-
cipitation for each year (black crosses). Note that the rain gauge
malfunctioned in 2021; hence the value was removed. Top: data
availability for each geophone (1 at the top to 8 at the bottom). Grey
colour: available data; white: missing data.

Figure 11. Vertical component records and spectrograms recorded
on the broadband seismometer (AKN) showing (a) a M2.7 earth-
quake located in the North Sea and (b) an avalanche in late spring
2016, which destroyed the cable to geophone 2. Data are band-pass-
filtered in the range 2–80 Hz.

Similarly, the observed increase in the number of rockfalls
during spring (Figs. 7, B13) may result from a misinterpre-
tation of smaller snow avalanches in the vicinity of the net-
work. Accessing monitoring cameras would help increase the
knowledge of the seismic signature of these different surface
phenomena.

Another drawback of working with triggered data is that
several detections may be contained in a single file. The CNN
AlexNet configuration does not allow us to use differently
sized spectrogram images. In order to circumvent the limita-
tion, we mask the signal parts in the spectrogram images that
are not related to the detection (Fig. B17b). However, many
of these events are not well classified; most of them are de-
clared as regional events. This behaviour may also explain
the unequal distribution of the number of regional events
throughout the year. However, files with multiple detections
are relatively seldom, such that the interpretation of the clas-
sified events should not be overly affected.

The dataset is not limited to the classes defined in this
study and actually contains an even richer diversity of signals
(Christiansen, 2021). In particular, complex slope quakes
with precursors and hybrid slope quakes as defined by
Provost et al. (2018) were found as well. An example of such
signals is given in Fig. 12. This example illustrates the com-
plexity of the signals recorded at Åknes and the problem of
adapting the classification approach to the case under consid-
eration. The automatic classifier defined the event as an LF
slope quake. However, if the computation parameters for the
spectrograms are changed to enhance the resolution (here, a
sliding window of 0.25 s with a 90% overlap), a weak, but
clear phase emerges before the main burst of energy. On the
broadband seismometer (Fig. 12b), a frequency decay of the
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Figure 12. Example of a complex slope quake with precursory sig-
nal as defined by Provost et al. (2018). The level of detail necessary
for its classification requires higher-resolution computation param-
eters and is difficult to capture by the CNN. Signal recorded on the
north component of (a) a surface geophone; (b) the broadband seis-
mometer (AKN). The white vertical dashed lines mark two phases,
the second being the most energetic.

main peak is visible from approximately 20–30 to 10 Hz af-
ter 2.5 s, as would be expected for a hybrid slope quake. This
behaviour is less obvious on the geophone (Fig. 12a). In or-
der to explore more classes, the spectrogram computation,
for example, would have to be reduced to the event duration,
resulting in different sizes of the input images, which is not
possible if using a CNN but could be circumvented either
by reshaping the images to a fixed size or by using a fully
convolutional network. Moreover, events that are recorded
simultaneously on the geophone network and the broadband
seismometer installed on the central slope are rare; creating
a training set with sufficient examples in each class may then
become challenging.

Locating the microseismic events could help to better con-
strain the classification and vice versa. Nevertheless, accurate
event location (i.e. enabling us to delineate geological struc-
tures at depth such as cracks, fractures, and sliding planes) re-
mains difficult due to the extremely heterogeneous and frac-
tured subsurface material at Åknes. Active seismic profiles
were acquired during various field campaigns in summer
(Tassis and Rønning, 2019) and show strong velocity con-
trasts, especially in the back scarp area, ranging from less
than 2 km s−1 to more than 5 km s−1 in only 50 m of mate-
rial. Several attempts were made to locate the events. Fischer
et al. (2020) employed a migration-stacking approach and a
homogeneous velocity model with a P-wave velocity VP of
1500 m s−1, fixing the event depth to the surface. In particu-
lar, the use of a homogeneous velocity model may be inap-
propriate. More recent attempts using a 3D velocity model
resulting from the combination of both check shots and seis-

mic refraction profiles did not yield event locations within
reasonable uncertainty limits, i.e. not more than a few tens of
metres (Dahl, 2020). Since, depending on the study, the slid-
ing plane depth has been estimated as being between 50 and
120 m (e.g. Kveldsvik, 2008; Nordvik et al., 2009), a suffi-
cient depth resolution of event locations is required. In addi-
tion, locating the events is hampered by the proper identifica-
tion of the phases in the seismograms as illustrated in Fig. 12.
Inverting the proper observations with the correct associ-
ated velocity model is fundamental whatever type of loca-
tion algorithm would be used (e.g. the picking or migration-
stacking approach).

Finally, although the classifier delivers satisfying results
(Fig. 5), it still can be improved. First of all, the spectro-
gram stacking approach is not optimal, especially for sig-
nals exhibiting a strong variability in their waveforms for
different geophones (e.g. Figs. B4 and B5) such as rockfalls.
One way of tackling the problem would be to classify each
spectrogram separately. The chosen class could be the pre-
dominant one or the one which returns the largest combined
probability. In addition, such an approach would enable us
to significantly increase the size of the training set, which
could ultimately result in even better-defined classes, taking
into account all the existing waveform variability (Lee et al.,
2022). Secondly, events related to surface processes such as
rockfalls and snow avalanches lack ground truth. This could
be partially resolved if web cameras were available. Even
though it is not possible to monitor the whole slope, only a
few exemplary observations of events of each class would be
sufficient to identify the related signal characteristics.

6 Conclusions and perspectives

In this paper, we characterized and automatically classified
seismic signals recorded by an eight-geophone surface net-
work on the Åknes unstable rock slope. Five classes of events
directly related to the slope could be identified following the
typology proposed by Provost et al. (2018), including HF,
LF, and successive slope quakes, short tremors, and rockfalls.
Fifteen years of data, corresponding to approximately 60 000
events, was classified and analysed.

Similarly to the observations by Fischer et al. (2020), the
seismic activity displays a strong seasonality with the ma-
jority of events occurring in spring, corresponding to both
the period of snowmelt and temperatures oscillating around
the freezing point. This observation is in agreement with dis-
placement rates of the Åknes slope which feature seasonal
variations as well, i.e. acceleration in spring and autumn
(Grøneng et al., 2011).
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This periodically increased seismic activity is accompa-
nied by a significant increase in the number of detected low-
frequency slope quakes, tremors, and rockfalls. Compara-
tively, the number of high-frequency and successive slope
quakes seems to remain almost stable throughout the year.
Our hypothesis is that HF and successive slope quakes are
related to shearing on the sliding plane. LF slope quakes and
tremors, on the other hand, are associated with the thawing–
freezing process within small cracks. Since tremors are more
frequent during the daytime, they could be related to water
movement within newly created cracks after thawing, while
LF slope quakes could correspond to the back scarp opening
and the formation of new cracks. It is difficult to distinguish
if the apparent increase in rockfall activity in spring is re-
alistic or if it is caused by other surface processes such as
local snow flows. Their increase at the beginning of autumn
coincides with increased precipitation. Finally, larger events
such as snow avalanches and granular flows may occur but
are more difficult to characterize without continuous data and
ground truth.

No correlation of the seismic activity with precipitation
could be established in this work. For example, strong rain
episodes (> 100 mm within a day) are not necessarily fol-
lowed by an increase in the microseismic activity. This does
not mean that such a correlation does not exist, since for
example increases in the groundwater level are correlated
with higher displacement rates (Nordvik and Nyrnes, 2009).
However, recent work aiming to better understand the hydro-
geological system at Åknes emphasized its complexity and
showed the existence of barriers maintaining a high ground-
water level at high elevation (e.g. Sena and Braathen, 2021;
Pless et al., 2021). Establishing potential systematic corre-
lations between classified microseismicity, precipitation, and
groundwater level fluctuations should be the subject of future
work.

In the future, we plan to take advantage of the seismic data
recorded by the broadband seismometer and the borehole
geophones that have been installed on the slope but are not
yet part of the monitoring system. Since these instruments
record data in a continuous mode, they may help provide
more exhaustive catalogues of microseismicity. Last, but not
least, the classifier implemented in this study, which is based
on stacked spectrogram images and avoids the explicit defini-
tion of features, achieves a success rate of up to 80 %. Its per-
formance could be improved further by applying ensemble
prediction on individual spectrograms and by applying more
advanced techniques such as self-supervised learning (Lee
et al., 2022). Recently, random forests for classification pur-
poses were also successfully applied to continuous streams of
seismic data (e.g. Chmiel et al., 2021; Wenner et al., 2021).
Although not tested in this work due to the limitation of the
dataset to triggered data only, the CNN workflow should be
adaptable to continuous data by defining moving time win-
dows, similarly to the work of Takahashi et al. (2021), where
tremors, earthquakes, and noise recorded on a single station

were automatically classified. Automatic detection of signals
could possibly be added to such an implementation through
class activation maps (Zhou et al., 2016).

Appendix A: Detection

Microseismic events are detected via STA/LTA (Withers
et al., 1998). Computation and detection parameters are pro-
vided in Table A1. An event is detected if the trigger criteria
are met at a minimum number of channels within a given
time window.

Table A1. STA/LTA parameters used for event detection.

Parameter Value

STA 0.2 s
LTA 1.9 s
Trigger threshold 4
Detrigger threshold 1.1
Minimum number of channels 10
Common time window 1 s

Appendix B: Classification

B1 Diversity of seismic signals

Figures B1 to B8 show the vertical component records (left)
and associated spectrograms (right) of the example signals
plotted in Fig. 2 to illustrate either the relative similarity or
the variability of the waveforms across the geophone net-
work.
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Figure B1. Example of a high-frequency (HF) slope quake. Geophone 7 was not functional.

Figure B2. Example of a low-frequency slope quake. A stronger spurious signal was recorded on geophone 7.
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Figure B3. Example of a tremor-like slope quake.

Figure B4. Example of a succession of slope quakes. Geophone 5 was not functional, while geophones 1, 7, and 8 were noisy.
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Figure B5. Example of a rockfall. Note the distinctive variability of the waveforms across the geophones. Geophones 6 and 7 were not
functional.

Figure B6. Example of a regional earthquake. P- and S-wave arrivals are clearly identifiable. Geophone 5 was not functional.
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Figure B7. Example of an electric spike.

Figure B8. Example of a noise record.
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Figure B9. Example of a regional earthquake of magnitude M2.7 located in the North Sea, SW of Åknes. Due to the distance of the
hypocentre to the stations, only the P-wave arrival is visible on the 16 s long records. Waveforms recorded on geophones 2 and 4 are noisy
and show greater variability compared to the other waveforms. Geophone 7 was not functional.

Figure B10. Vertical component traces of the event shown in Fig. 11. A first, weak arrival is visible around 2 s before a second, stronger
arrival at 8 s. These observations are misleading and could be wrongly interpreted as P- and S-wave arrivals, respectively.
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B2 Classifier

Figure B11. Pie diagrams showing the distribution of events within the different classes (a) in the training set and (b) in the test set, both
expressed in terms of number of events and percentages.

Figure B12. Distribution of automatic classes over a time period of 15 years (2007–2021): (a) histogram; (b) pie diagram.

Figure B13. Relative variations R of the number of eventsN per class over chunks of 10 d. The reference value is taken from the first chunk;
i.e. we compute R = (N −N (1))/N (1). Note that noise events are so rare that they are not visible in the plot.
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Figure B14. Box plots showing the distribution of amplitudes for each event class by season. Amplitudes in summertime are systematically
higher than during the rest of the year.

Figure B15. Histogram showing the distribution of events of lower amplitude (light grey), intermediate amplitude (grey), and higher ampli-
tude (dark grey) over months. The number of events is normalized in (a) by the total number of events in the different amplitude ranges, in
(b) by the total number of events per month, and in (c) by the total number of events in the dataset. The deficit in low-amplitude events from
June to October is particularly visible in all cases. A seasonal variation in the proportion of intermediate and high-amplitude events exists as
well but to a much lesser extent.
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Figure B16. Box plots showing the distribution of amplitudes for each event class.

Figure B17. Example of an event wrongly classified as a regional earthquake instead of an HF slope quake; see Fig. 4 for description.
Note that we only display the waveforms at geophones 1 to 5, since geophones 6–8 were not functional. The event file contains two events
and detected electric noise at around 2 s. A mask was applied on the spectrogram image but cannot prevent misinterpretation. However,
(d) illustrates that the probability of being a regional event is relatively low (below 50 %) and the probability of being an HF slope quake is
not much lower.
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Figure B18. Probability density functions of some extracted features from the training set. Although the CNN is not a feature-based algo-
rithm, it is interesting to look at the distribution of those features since they are the ones that a human eye would subconsciously catch and
analyse while manually labelling the data.

Appendix C: Meteorological data

The meteorological station is located in the vicinity of the
upper bunker (Ørnereiret) close to the top scarp. Temperature
and precipitation are measured and averaged hourly.

Figure C1. Temperature variations recorded at Åknes. The measurement period spans 15 years (January 2007–December 2021). (a) Hourly
variations in average temperature for each month of the year. To obtain the relative variations shown in (b), the curves in (a) were normalized
by their minimum and maximum values: 1T/1Tmax = (T − Tmin)/(Tmax− Tmin).
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Figure C2. Distribution of the number of days per year when the
average temperature is lower than 0 ◦C (dark blue), between 0 and
4 ◦C (light blue), or above 4 ◦C (light red). Hatches correspond to
days in the first half of the year (1 January to 30 June). The number
of days when the average temperature is between 0 and 4 ◦C during
spring is indicated. Days with outliers (abnormally small or high
temperature values) are removed.
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