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Abstract. The frequency and intensity of coastal flooding is expected to accelerate in low-elevation coastal areas
due to sea level rise. Coastal flooding due to wave overtopping affects coastal communities and infrastructure;
however, it can be difficult to monitor in remote and vulnerable areas. Here we use a camera-based system to
measure beach and back-beach flooding as part of the after-storm recovery of an eroded beach on the Texas
coast. We analyze high-temporal resolution images of the beach using convolutional neural network (CNN)-
based semantic segmentation to study the stochastic properties of flooding events. In the first part of this work,
we focus on the application of semantic segmentation to identify water and overtopping events. We train and
validate a CNN with over 500 manually classified images and introduce a post-processing method to reduce false
positives. We find that the accuracy of CNN predictions of water pixels is around 90 % and strongly depends on

the number and diversity of images used for training.

1 Introduction

Coastal flooding can cause significant damage to coastal
infrastructure, communities, and salt-intolerant ecosystems.
By definition, flooding occurs when extreme water levels —
due to a combination of high tide, wave runup, and/or storm
surge — exceed a natural or artificial threshold, e.g., a beach
berm, dune, or seawall. The frequency and severity of coastal
flooding is expected to increase with the acceleration of sea
level rise (Nicholls et al., 2011; Vitousek et al., 2017). In
order to respond to and minimize the damage from coastal
flooding, it is crucial to determine the frequency and inten-
sity of flooding events at different locations and identify the
physical factors behind them (Hallegatte et al., 2013; Moore
and Obradovich, 2020). This is particularly relevant for high-
frequency and low-intensity nuisance flooding not directly

associated with large storms that is thus difficult to predict
and detect (Moftakhari et al., 2018).

Over spatial scales on the order of kilometers or larger and
on timescales on the order of minutes or larger, water levels
are usually estimated from tidal gauges, while existing pre-
dicting tools can also account for wind-induced water levels
(Huff et al., 2020). Although these results can be interpolated
fairly well to cover locations between gauges, they still fail
to capture the contribution of local wave runup. Wave runup,
most typically measured by R» ¢,, can greatly exceed the av-
erage predicted water level by other methods or sensors, re-
sulting in the overtopping of coastal dunes and seawalls. This
is because runup is a function of wave height and wavelength
(Battjes, 1974) and thus depends on wave interaction with the
bathymetry and topography (Strauss et al., 2012; Vitousek
et al., 2017). In spite of several empirical formulas to esti-
mate wave runup from offshore wave data (e.g., Stockdon
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et al., 2006, 2014), accurately predicting wave runup is diffi-
cult because wave interaction is spatially localized. Further-
more, wave height and length are individualized measures
that longer-temporal-scale gauges are not designed to detect.

Fortunately, the excursion extent of the water level at these
localized spatial and temporal scales can be generally repre-
sented by the existence of the wet—dry line along a sandy
beach. Specially designed camera systems are now com-
monly used to monitor local wave runup, aiding in the refine-
ment of empirical formulas and the increased understanding
of runup’s stochastic properties. Over nearly 4 decades, the
evolution of optical remote sensing technologies has revolu-
tionized wave runup monitoring, moving from manual digi-
tization (Holman and Guza, 1984) to modern camera-based
systems that efficiently capture wave runup and shoreline
(Holman and Stanley, 2007).

Indeed, a lot of data are available online that could poten-
tially be mined to help improve coastal flooding predictions
if we had automated methods to classify the wet—dry line
in these images. For example, Vousdoukas et al. (2011) ap-
plied a classical machine learning model with a three-layer
artificial neural network (ANN) to determine the pixel inten-
sity threshold and estimate the elevations of shoreline con-
tours. Likewise, Alvarez-Ellacuria et al. (2011) applied ANN
to a time exposure image to determine the shoreline. Using
a structured support vector machine (SVM), Hoonhout et al.
(2015) estimated beach width and the location of the water
line based on semantic classification of mid-range coastal im-
agery and proved the robustness of such a technique for the
long-term analysis of the coastal imagery. More recently, the
US Geological Survey has also begun to harness the power
of SVM to augment the edge detection algorithm to identify
the runup edge (Palmsten et al., 2020).

An important limitation of the aforementioned computer
vision techniques is that they require calibration or feature
extraction pre-processing at the initial stage. Therefore, in-
depth knowledge was essential for each method, which has
prevented their widespread use. This limitation can be over-
come using “deep learning” algorithms such as convolutional
neural networks (CNNs).

The “deep learning” movement started in the mid-2000s
when Hinton et al. (2006) rekindled the use of the neural
network in machine learning by showing the networks with
many hidden layers could also be trained as well. Following
this work, the introduction of the rectified linear unit (RELU)
for multi-layer back-propagation has led to the widespread
use of CNNs for image recognition, which inherently has
deep architecture (Nair and Hinton, 2010; LeCun et al.,
1989). Breakthroughs of deep convolutional neural networks
in image classification have been transferred to pixel-level
semantic segmentation (Chen et al., 2016), since a fully con-
volutional network based on decoder structure outperforms
other classical machine learning models in terms of pixel ac-
curacy (Long et al., 2015).
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Image segmentation based on CNN has been applied to
various video-based coastal studies. Buscombe and Ritchie
(2018) introduced a hybrid model that combines fully con-
nected conditional random field (CRF) and CNN platform
to analyze large-scale coastal imagery. Valentini and Balouin
(2020) used the same method with the base of Simple Linear
Iterative Clustering (SLIC) super-pixels instead of fixed tiles
to detect and monitor Sargassum algae for an early warn-
ing system. The approach was convenient and accurate, as it
relied on a predefined dataset for the classification, which
does not require exhaustive manual annotations. However,
this segmentation process was based on the classification of
tiles — a bundle of pixels — rather than actual “pixels”. Thus,
the minimal resolution was often too low to classify fea-
tures smaller than the size of tiles and super-pixels. Further-
more, Sdez et al. (2021) used an U-net architecture for detect-
ing wave-breaking nearshore while other studies had tried
to validate semantic segmentation by comparing with other
measurement methods. For example, by comparing the re-
sults with gauges in a physical model test, den Bieman et al.
(2020) showed that image segmentation by SegNet can rea-
sonably predict surface elevation, runup, and bed level from
video images.

In terms of flooding management, studies conducted by
Muhadi et al. (2021) and Vandaele et al. (2021) have shown
the reliability of image segmentation for fluvial water level
estimation. In those studies, the correlation between esti-
mated water level and the water level estimation from lidar
data and river gauge measurement was higher than 0.9, which
signals potential use for coastal flooding analysis.

In this work, we explore the use of CNN-based semantic
segmentation to automatically detect water on beach imagery
and to identify and quantify coastal flooding events. In addi-
tion to a brief introduction to CNN-based image segmenta-
tion, we discuss the specific methodology used for this study
and present a simple but powerful post-processing method
for refining the accuracy of semantic segmentation. We then
investigate the performance of the method as function of
morphological diversity and the number of images in the
training set.

2 Methodology

In order to test CNN methods, we collected field data at a
heavily eroded location after Hurricane Harvey struck the
Texas Coast in 2017 and explored the imagery using CNN.
We provide a basic overview of CNN and the Deeplab ar-
chitecture used in our analysis and discuss the collection and
annotation of the images used for training and validating the
CNN.

2.1 Semantic segmentation using CNN

For the CNN architecture, we selected the Deeplab v3+
model based on Resnet-18, which adds some unique features
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to semantic segmentation such as the Atrous or Dilated con-
volution. Independently introduced by Chen et al. (2016) and
Yu and Koltun (2015), embedding the holes to the convolu-
tion filters has helped to circumvent the resolution loss from
downsampling by enlarging the field of view with a lower
computational cost. Furthermore, batch normalization layers
have been included in each of the parallel modules in the
Atrous Spatial Pyramid Pooling (ASPP) module. Normaliza-
tion over a mini-batch minimizes the transition in the dis-
tribution of internal network nodes (covariate shift) and as-
sures the distribution of nonlinear inputs remain more robust
(Ioffe and Szegedy, 2015). This helped to fix the vanishing
gradient problem, and hence it accelerated the training of the
deep neural network. Concatenated results from the parallel
modules and image-level features were passed through 1 x 1
convolution and provide more accurate results (Chen et al.,
2017).

Deeplab v3+ also has a unique decoder module to refine
the details of object boundaries that extends the previous ver-
sions. Instead of naive bilinear up-sampling the encoder fea-
tures by a factor of 16, the encoder features are first bilinear
up-sampled by a factor of 4 and concatenated with the result
of 1 x 1 convolution of low-level features (Chen et al., 2018).
The 3 x 3 convolutions are then applied for the refinement,
which is followed by another up-sampling by a factor of 4.

In this study, we conduct regular convolution instead of
depth-wise separable convolution typically used for Deeplab
v3+ structure, as the Resnet-18 has relatively shallow layers
(18 layers) and the computation burden is not heavy, such
that we do not have to reduce the number of weights at the
cost of accuracy.

2.2 Data acquisition and classification

We installed three solar-powered stationary GoPro cameras,
with different fields of view, near Cedar Lakes in Texas
(28.819° N, 95.519° W) to monitor beach recovery after Hur-
ricane Harvey in 2017 (Fig. 1). We hypothesized that this
site would experience more flooding events after the beach
erosion following the storm. We preset each camera to cap-
ture pictures every 5 min during a 06:00-18:00 LT observa-
tion period and turn off automatically during the nighttime.
From November 2017 to May 2018, we captured more than
51000 images.

We chose 584 random pictures with different scenery,
weather, and light conditions (Fig. 2) and manually labeled
the regions on each picture according to three classes: “wa-
ter”, “sky”, and “background”, where the sky class was
added to reduce false positives of water pixels (Fig. 3). We
refer to the classes as labels when describing the pixel in an
image.

Every pixel was annotated by hand for each class to im-
prove accuracy. We opted not to utilize the SLIC super-pixel
method, a commonly employed computer vision technique
for labeling, as it often resulted in clusters of pixels contain-
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ing more than two classes. We then divided the 584 annotated
pictures into a training set with 493 images (85 %) and a val-
idation set with 91 images (15 %).

2.3 Training protocol

We used transfer learning (Bengio, 2012), which can expand
the use of deep learning for the limited training dataset. We
transferred the parameters of Resnet-18 that had been pre-
trained using the subset of the ImageNet database for Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC)
(Russakovsky et al., 2015). After this, we re-train the net-
work with our training images using MATLAB Deep Learn-
ing Toolbox as a module.

Both the training images and the manual annotations were
compressed from 1920 x 2560 to 480 x 640. For every iter-
ation during the training, we flipped each image horizontally
with 50 % probability to avoid over-fitting. The mini-batch
size was four. To deal with the local minimum problem, im-
ages were shuffled randomly for every epoch.

We choose stochastic gradient descent (SGD) with mo-
mentum for the optimization algorithm (Wilson et al., 2017)
and set the momentum as 0.9. We also replaced the standard
classification layer with the classification layer that uses the
weighted cross-entropy loss. This was done in order to off-
set the imbalanced classes induced by the backgrounds that
cover more than 80 % of almost every image (Eigen and Fer-
gus, 2014). Additionally, we used the step decay learning rate
for the training and set an initial learning rate of 10~ that
halves every five epochs. We found these rates provide better
performance than using the same initial value but decreasing
the rate by a factor of 10 every 10 epochs. The training pro-
cess was repeated until it reached 30 epochs. The accuracy
curve revealed no evidence of overfitting when 406 images
(70 %) were used for the training set and 87 images (15 %)
for the test set. Thus, to make the most use of the limited
number of images, we used all 493 images (85 %) for train-
ing the CNN for water prediction.

Figure 4 illustrates our general workflow to train and val-
idate the CNN. As discussed in the next section, we intro-
duced a new method to minimize false positives and improve
CNN predictions.

3 Results

3.1 Raw CNN prediction for water

We evaluated the performance of the trained CNN by com-
paring the number of predicted water pixels to those “mea-
sured” as water in the validation set (also called “ground
truth”).

Following semantic segmentation, each pixel (i, j) was as-
signed a probability pl@ to belong to water (k =“w”), sky
(k =*s"), or background (k = “b”), with the dominant class
being the one with highest probability. Thus, water pixels
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Figure 1. Location of field observations (a). Satellite view of Cedar Lakes, Texas, before Hurricane Harvey (b). Three solar-powered
cameras (c, d) were installed in Cedar Lakes, a site breached during Harvey that experienced frequent flooding afterwards. (b, ¢) Map data:
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Figure 2. Contrasting images captured from our three cameras depicting both flooding and normal conditions.

were described by the following binary matrix:

wij =0} — p))- Ol — p}), (1)
where © is the Heaviside function (®(x) =0 for x < 0 and
O(x) = 1 otherwise). By definition, w;; = 1 for water pixels
and 0 otherwise.

The total number of predicted water pixels in a given pic-
ture was then

AP = ZW,']'. (2)
LJ
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Similarly, the number of measured water pixels was
Am=) mjj, 3)
)

where m;; is the binary matrix for water obtained from hand
annotation and equals 1 for pixels identified as water and O
otherwise.

As shown in Fig. 5, raw CNN predictions (Ap) compared
quite well to the measurements (Ap), in particular during
flooding conditions. The algorithm handled different light-
ing conditions well and clearly distinguished water and sky
during storms. In general, there were no noticeable radiomet-
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(@)

Figure 3. A example of a picture taken during flooding conditions (a) with manual labels superimposed (b).
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Figure 4. Diagram of the workflow we followed.

ric or geometric errors due to saturation, brightness, or hue
caused by the Sun or the GoPro curved lens introduced by
different camera angles or distance to water.

3.1.1 Evaluation of accuracy

We quantified the accuracy of predictions for a single picture
using three different metrics. The first one is the “accuracy
ratio” defined as the ratio of predicted to measured water pix-
els:

=1 “
which just compares the size of the datasets without distinc-
tion between false positives or false negatives.

The second one is the true positive rate or “sensitivity”,
defined as ratio of the number of true positives, given by the
intersection Amnp of both datasets (i.e., measured water pix-
els also predicted as water by the CNN), and the number Ay,
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of measured water pixels:

Amﬁp
Am

where Apmnp = Z jMij Wi

By definition, the sensitivity b includes only true positives
and therefore measures the effect of false negatives while ne-
glecting false positives. In fact, the fraction of false positives
is given by the following difference:

b= ; ®)

Ap — Amnp

—b=——= 6
r A (6)
where A, — Amnp is the number of false positive pixels.

The third metric is the intersection over union (IoU):
_ Amﬁp _ Amﬂp (7)
AmUp Ap + Am - Amﬁp ’

which takes into account both sources of errors: false nega-
tives and false positives.
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Figure 5. Comparison of CNN-predicted and measured water pix-
els for the 91 pictures in the validation set. The color of the symbol
represents the camera used. Both raw CNN predictions (open sym-

bols) and improved ones (filled symbols) are shown. Beach flooding
seems to take place when the number of water pixels exceeds 104,

Instead of analyzing the accuracy for individual images (it
will be discussed afterwards), we use the mean absolute per-
centage error (MAPE) to provide a scale-independent metric
of the global CNN performance.

The MAPE is defined as the mean over all images of the
absolute deviations of r, b, and u from the ideal value 1:

100 &
§r=—>"|1=rl, ®)
N &
n=1
100 &
8b=——>"|1—=byl, ©)
N
n=1
100 &
du=—= 11 —u, (10)
N n=1

where N is the total number of images and the subscript
n denote values for a single image. Therefore, the MAPEs
quantify the deviations of the different accuracy metrics from
the ideal, such that a perfect prediction would have MAPEs
equal to 0. For simplicity, in what follows we will refer to the
MAPE simply as the error of the respective accuracy metric.

We found the general error of the CNN, given by dr and
du, was about 20 %. The CNN was much better at predict-
ing all measured water pixels, with only about 2 % error in
the fraction of true positives, as given by 8b, which suggests
most of the CNN uncertainty comes from false positives. In-
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deed, the average fraction of false positives (r — b) is about
22 %, as some regions have been mislabeled as water instead
of background, for example, some frosts, wooden pieces, or
wet sand areas near water (Fig. 6). One likely explanation is
that the algorithm is trained in a manner that it tries to avoid
false negatives while still allowing for false positives.

3.2 Improved CNN predictions

Our results demonstrate the utility of using a simple post-
processing method to minimize the error §r of the accuracy
ratio r by using only the classification probability. Although
we focused on water segmentation, the proposed method
could be extended further to the prediction of other classes
as well. The central idea of such a method is to impose a
threshold p¢ on the predicted water label w;; (Eq. 1), such
that a given pixel (i, j) is classified as water when the proba-
bility pivjv. is both the highest among the different classes and
above p;. The filtered binary matrix for water pixels in this
case was given by

wii(p) = O(p}l — p))- O(pls — pl) - O(pl — p).  (11)

From this definition it follows that the number A, of pre-
dicted water pixels and the ratios r, b, and u, as well as their
corresponding MAPEs (Egs. 2 and 4-10), are all a function
of the threshold probability p;. Imposing a threshold thus
corresponds to a filtering of the raw CNN prediction. A zero
threshold (p; = 0) gives back the unfiltered values introduced
in the previous section.

For threshold probabilities below 0.5, we find the error of
the accuracy ratio (67) remains constant around 20 %, which
essentially corresponded to the unfiltered results (Fig. 7). For
larger thresholds, ér decreased and reached a minimum of
about 7 % for p ~ 0.9. Similarly, the error of the IoU (5u)
reaches a minimum of about 15 % also for p; ~ 0.9. In con-
trast, the error of the sensitivity (§b) consistently increased
with p as more true positives are filtered out (Fig. 7).

The improvement in the accuracy ratio for increasing
thresholds, as evidenced by a decrease in the error §r, was
mainly due to the consistent reduction of false positives,
shown by the average fraction of false positives r —b in
Fig. 7. For water thresholds up to 0.9, the reduction of false
positives outweighed the decrease in the sensitivity (i.e.,
higher error 6b) led by the decrease of true positives (Fig. 7).
However, for thresholds above 0.9, the loss of true positives
became dominant and the CNN accuracy worsened as ér in-
creased.

We selected p; = 0.9 as the optimum threshold probabil-
ity for water segmentation in our validation set (Fig. 4), as it
provided the most accurate results in terms of both the accu-
racy ratio and IoU (Fig. 7). Indeed, filtering the CNN results
using p; = 0.9 noticeably increased the accuracy of the CNN
predictions and improved the accuracy ratio across the whole
range of water conditions (Fig. 8).
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Measurement (ground truth)

CNN prediction

Figure 6. Examples of image segmentation during flooding conditions for cameras 1 (a, b, ¢) and 3 (d, e, f), showing the occurrence of false
positives when the CNN mislabels wet sand as water. The red dots superimposed on the CNN prediction on the right panel represents the

limits of the actual extension of water measured manually (b, e).
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Figure 7. Mean absolute percentage errors (MAPE) of the accuracy
ratio (8r), the sensitivity (§b), and the intersection over union (5u)
as a function of the threshold probability p:. The average fraction
of false positives 7 — b is also shown (in percentage).

3.3 Effects of diversity and number of training images

Given how time-consuming the training step can be, we were
also interested in understanding how the accuracy of the
trained CNN depended on two main factors: the diversity of
images in the training set and the number of images in the
training set.
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Since we were primarily interested in identifying water,
we divided the training set into two groups depending on the
number of water pixels: “flooding images” with more than
1.5 x 10* water pixels and “normal images” otherwise (see
pictures in Fig. 5). The number of training images was kept
constant at 393 for every trained CNN, while the fraction of
flooding images was increased from 0 % to about 23 %. Each
trained CNN was then tested with the validation set, which
has 21 flooding images and 70 normal images.

As expected, the accuracy of the predictions for flooding
images in the validation set increased with the proportion of
flooding images in the training set, with the error §r quickly
decreasing from about 50 % for no flooding images to about
12 % for 23 % of flooding images (Fig. 9). Surprisingly, the
accuracy of the predictions for normal images in the vali-
dation set also improved by almost 50 % (with §r decreasing
from 40 % to about 20 %), despite the decrease in the fraction
of normal images in the training set, which led to a significant
improvement in the general accuracy of the CNN (Fig. 9).
The trend continued up to the point where 23 % of the train-
ing set was composed of flooding images. Beyond that, when
26 % of flooding images were included in the training set, we
noted a decline in accuracy. Specifically, the error rate §r rose
from 20 % to about 27 % for the total validation set and from
22 9% to approximately 30 % for normal images. As a result,
this revealed a critical threshold in the utilization of flooding
images within the training data, highlighting the importance
of an optimal balance for effective modeling.

Furthermore, to investigate the effect of the number of
training images on CNN accuracy, we trained it using a ran-
dom subset of N different images from the total of 493 im-
ages available for training, roughly doubling N from 4 to

Earth Surf. Dynam., 12, 1-10, 2024
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Figure 8. (a) Accuracy ratio (r), (b) sensitivity (b), and (c) intersec-
tion over union (u#) of the CNN predictions for water segmentation
of individual images of the validation set as function of the number
of measured water pixels. Both raw CNN predictions (py = 0, open
symbols) and filtered ones (p¢ = 0.9, filled symbols) are shown.

493 (Fig. 9b). For each value N, we repeated the training M
times using different random samples to randomize the im-
age type and account for changes in the fraction of flooding
images. We chose M = 50 for N < 100, decreasing M for
larger training sets (M = 10 and 5 for N = 123 and 247, re-
spectively) to save training time. Each of the trained CNNs
was then applied to the whole validation set to evaluate its
accuracy.

Again, as expected, the accuracy of the predictions in-
creased with the size of the training set (Fig. 9), with a large
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error dr, in the range 100 %—-1000 %, when using only 4
training images, down to about 20 % for the total set of 493
images. We found that §r(N) decreases with N /2 which
points to the random nature of the convergence of the CNN
prediction.

4 Discussions and conclusions

Our results demonstrate that CNN-based image segmentation
is a viable method to identify water in complex coastal im-
agery. We found the mean absolute percentage error (MAPE)
of the accuracy ratio (i.e., the ratio of predicted to measured
water pixels) to be about 20 %. This error can be further re-
duced to about 7 % after applying a novel method for filter-
ing false positives during post-processing. After filtering, we
found the MAPE of the true positive rate (sensitivity) to be
about 8 %, a value similar to the average ratio of false pos-
itives. We also found the accuracy of the filtered CNN pre-
dictions to be relatively independent of the amount of water
in the images, and it tended to be better for images with a
larger fraction of water, corresponding to flooding conditions
(Fig. 8). As for the lingering problem of false negatives, it
may be better solved by interpolating or extrapolating a line
across areas with greatest contrast, thereby connecting true-
positive regions.

As expected, the accuracy of the raw CNN predictions de-
pended on the training dataset. The accuracy increased with
the number N of training images, with the error decreasing as
1/+/N. In general, more than 100 images were needed to re-
duce the error below 50 %. Furthermore, the CNN performed
much better when we increased the diversity of image types
during training. This suggested that there is value in using ad-
ditional metrics for quantifying image diversity, such as the
multiscale structural similarity index measure (MS-SSIM),
which evaluates the similarity between two images. For in-
stance, we can ensure diversity in the training set by adding
pairs of images with very low MS-SSIM values.

Our work demonstrates the usefulness of in situ camera
systems with automatic image segmentation for the obser-
vation of beach and back-beach overtopping events at spe-
cific locations. This method has the potential to enhance the
monitoring of local wave runup, in particular after combin-
ing it with photogrammetry and other ways to measure ac-
tual spatial data, thus contributing to improve predictions of
nuisance coastal flooding and potentially enhancing coastal
resilience. Indeed, our findings open the way for the extrac-
tion of high temporal resolution data to better understand the
stochastic properties of flooding events and validate and/or
improve widely used empirical runup formulas. This stochas-
tic analysis and the comparison with empirical predictions is
the focus of the second part of this study (Kang et al., 2023a).
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