

Supplement of

How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)

Johannes Leinauer et al.

Correspondence to: Johannes Leinauer (johannes.leinauer@tum.de)

The copyright of individual parts of the supplement might differ from the article licence.

S1 Measuring devices on summit

Fig. S 1: Photo of vibrating wire crackmeter "Crack06" without its protective wood roof.

5 Fig. S 2: Photo of vibrating wire crackmeter "Crack06" with wood roof.

Fig. S 3:Photo of tipping bucket rain gauge on the summit of Hochvogel.

10 Fig. S 4: Photo of the main crack with position of seismic station HV₁ (red ellipse).

Fig. S 5:Photo of seismic station SA₂₂ during maintenance. During operation, the station is completely covered with rocks to protect the geophone from wind and rain.

ID	х	У	z	Installation	Sensor type	Logger type	gain
				depth			
HVGL1	608448.5	5248421.2	2586	0	PE6B	Cube3ext	32
HVGL2	609674.9	5247154.4	1588	0.5	TC120s	Cube3extBOB	4
HVGL3	610726.5	5247060.3	1489	0.4	TC120s	Cube3extBOB	4
HVGL4	609216.5	5246298.4	1252	0.3	TC120s	Cube3extBOB	4
HVGL5	609620	5248034	1933	0.3	PE6B	Cube3ext	16
SA_21	608433	5248426	NA	0.4	PE6B	Cube3ext	16
SA_22	608436	5248451	NA	0	PE6B	Cube3ext	32
SA_23	608455	5248474	NA	0.4	PE6B	Cube3ext	32

15 Table S 1: Station info data for all used seismic stations.

S2 Snowmelt modelling configuration

20	[GENERAL] BUFFER_SIZE = 370 BUFF_BEFORE = 1.5
	DATA_QA_LOGS = FALSE
25	[INPUT]
	COORDSYS = CH1903
	TIME_ZONE = 1
	METEO = SMET
	METEOPATH = .\input
30	METEOPATH_RECURSIVE = FALSE
	STATION1 = ZUGS1_2021.smet
	SNOWPACK_SLOPES = FALSE
	MERGE_STRATEGY = EXPAND_MERGE
25	TSG::CREATE = CST
35	TSG::CST::VALUE = 273
	SNOW = SMET
	SNOWPATH = ./Input
	SNOWFILET - 20031
40	[Ουτρυτ]
	COORDSYS = CH1903
	TIME_ZONE = 1
	METEO = SMET
	METEOPATH = ./output
45	WRITE_PROCESSED_METEO = FALSE
	EXPERIMENT = 2021
	USEREFERENCELAYER = FALSE
	SNOW_WRITE = FALSE
	PROF_WRITE = TRUE
50	PROF_FORMAT = PRO
	AGGREGATE_PRO = FALSE
	AGGREGATE_PRF = FALSE
	PROF_START = 0
55	HARDNESS IN NEWTON - FAISE
55	$CLASSIEY_PROFILE = EALSE$
	TS WRITE = TRUE
	TS FORMAT = SMET
	_ TS_START = 0
60	TS_DAYS_BETWEEN = 0.041666
	AVGSUM_TIME_SERIES = TRUE
	CUMSUM_MASS = FALSE
	PRECIP_RATES = TRUE
	OUT_CANOPY = FALSE
65	OUT_HAZ = FALSE
	OUT_SOILEB = FALSE
	OUT_HEAT = TRUE
70	
70	
	OUT STAB = TRUE
	_

	[SNOWFACK]
	ROUGHNESS LENGTH = 0.002
	HEIGHT OF METEO VALUES = 5
80	HEIGHT OF WIND VALUE = 5
	ENFORCE MEASURED SNOW HEIGHTS = TRUE
	SW_MODE = BOTH
	ATMOSPHERIC_STABILITY = MO_MICHLMAYR
	CANOPY = FALSE
85	MEAS_TSS = TRUE
	CHANGE_BC = TRUE
	THRESH_CHANGE_BC = -1
	SNP_SOIL = FALSE
90	
50	
	ADJUST HEIGHT OF METEO VALUES = TRUE
	ADJUST HEIGHT OF WIND VALUE = TRUE
95	SNOW EROSION = TRUE
	 WIND_SCALING_FACTOR = 1
	NUMBER_SLOPES = 1
	PERP_TO_SLOPE = FALSE
	ALLOW_ADAPTIVE_TIMESTEPPING = TRUE
100	THRESH_RAIN = 1.2
	FORCE_RH_WATER = TRUE
	THRESH_RH = 0.5
	THRESH_DTEMP_AIR_SNOW = 3
	HOAR_THRESH_TA = 1.2
105	HOAR_THRESH_RH = 0.97
	HOAR_THRESH_VW = 10
	HOAR_DENSITY_BURIED = 125
	HOAR_MIN_SIZE_BURIED = 2
110	HOAR_DENSITY_SURF = 100
110	MIN_DEPTH_SUBSURF = 0.07
	$I_CRAZY_MAX = 240$
	NEW SNOW GRAIN SIZE = 0.3
115	STRENGTH MODEL = DEFAULT
110	VISCOSITY MODEL = DEFAULT
	SALTATION MODEL = SORENSEN
	ENABLE VAPOUR TRANSPORT = FALSE
	WATERTRANSPORTMODEL_SNOW = BUCKET
120	WATERTRANSPORTMODEL_SOIL = BUCKET
	SOIL_EVAP_MODEL = EVAP_RESISTANCE
	SOIL_THERMAL_CONDUCTIVITY = FITTED
	ALBEDO_AGING = TRUE
	SW_ABSORPTION_SCHEME = MULTI_BAND
125	HARDNESS_PARAMETERIZATION = MONTI
	DETECT_GRASS = FALSE
	PLASTIC = FALSE
	JAM = FALSE
	WATER_LAYER = FALSE

	COMBINE_ELEMENTS = TRUE		TA::ARG1::MAX = 320
	TWO_LAYER_CANOPY = TRUE		HS::FILTER1 = MIN
	CANOPY_HEAT_MASS = TRUE		HS::ARG1::SOFT = true
135	CANOPY_TRANSMISSION = TRUE		HS::ARG1::MIN = 0.0
	FORESTFLOOR_ALB = TRUE	150	RH::FILTER1 = MIN_MAX
	ADVECTIVE_HEAT = FALSE		RH::ARG1::SOFT = TRUE
			RH::ARG1::MIN = 0
	[INTERPOLATIONS1D]		RH::ARG1::MAX = 1
140	ENABLE_RESAMPLING = TRUE		RH::ARG1::MIN_RESET = 0
	WINDOW_SIZE = 2419200	155	RH::ARG1::MAX_RESET = 1
			[TechSnow]
	[FILTERS]		SNOW_GROOMING = FALSE
	TA::FILTER1 = MIN_MAX		
145	TA::ARG1::MIN = 240		

165

S3 Seasonal data analysis

Fig. S 6: All available data averaged per month of the year. Note the generally higher values of all variables in the summer months (black bars: crack rate (events/d), green line: displacement rate (0.01mm/d), blue line: rain intensity (0.1mm/d), red dots: temperature (°C). The numbers in the bottom give the number of available data points per bin (black for cracks, red for other variables).

170 S4 Random Forest classifier

Table S 2: Features that have been used as input for the Random Forest classifier. Features 6-66 have been calculated for the station with the highest signal-to-noise ratio (SNR), once for the picked signal itself (prefix "pick_") and once for a longer signal including 3 s buffer before and after the picked signal (prefix "long_"), using the function "signal_stats" from eseis.

feature nr	name	details
1	snr_min	SNR of the station with the minimum SNR
2	snr_max	SNR of the station with the maximum SNR
3	dur_mean	mean signal duration of all stations that picked the signal
4	dur_diff	duration difference between the minimum and the maximum
		signal duration of all stations that picked the signal
5	t_risefall	ratio of rise to fall time
6	a_skewness	Skewness of the signal amplitude
7	a_kurtosis	Kurtosis of the signal amplitude
8	a1_kurtosis	Kurtosis of the filtered (0.1-1 Hz) signal amplitude
9	a2_kurtosis	Kurtosis of the filtered (1-3 Hz) signal amplitude
10	a3_kurtosis	Kurtosis of the filtered (3-10 Hz) signal amplitude
11	a4_kurtosis	Kurtosis of the filtered (10-20 Hz) signal amplitude
12	e_maxmean	Ratio of maximum and mean envelope value, see Hibert et al.
		(2017)
13	e_maxmedian	Ratio of maximum and median envelope value, see Hibert et
14	e_skewness	Skewness of the signal envelope
15	e_kurtosis	Kurtosis of the signal envelope
16	e1_logsum	Logarithm of the filtered (0.1-1 Hz) envelope sum, see Hibert
		et al. (2017)
17	e2_logsum	Logarithm of the filtered (1-3 Hz) envelope sum, see Hibert et
		al. (2017)
18	e3_logsum	Logarithm of the filtered (3-10 Hz) envelope sum, see Hibert
19	e4_logsum	Logarithm of the filtered (10-20 Hz) envelope sum, see Hibert
20	c_peaks	Number of peaks (excursions above 75)
21	c_energy1	Sum of the first third of the signal cross correlation function,
		see Hibert et al. (2017)

22	c_energy2	Sum of the last two thirds of the signal cross correlation func- tion, see Hibert et al. (2017)		
23	c_energy3	Ratio of c_energy1 and c_energy2, see Hibert et al. (2017)		
24	s_peaks	Number of peaks (excursions above 75)		
25	s_peakpower	Mean power of spectral peaks, see Hibert et al. (2017)		
26	s_mean	Mean spectral power, see Hibert et al. (2017)		
27	s_median	Median spectral power, see Hibert et al. (2017)		
28	s_max	Maximum spectral power, see Hibert et al. (2017)		
29	s_var	Variance of the spectral power, see Hibert et al. (2017)		
30	s_flatness	Spectral flatness		
31	s_entropy	Spectral entropy		
32	s_precision	Spectral precision		
33	s_sd	Standard deviation of the spectral power		
34	s_sem	Standard error of the mean of the spectral power		
35	s1_energy	Energy of the filtered (0.1-1 Hz) spectrum, see Hibert et al. (2017)		
36	s2_energy	Energy of the filtered (1-3 Hz) spectrum, see Hibert et al. (2017)		
37	s3_energy	Energy of the filtered (3-10 Hz) spectrum, see Hibert et al. (2017)		
38	s4_energy	Energy of the filtered (10-20 Hz) spectrum, see Hibert et al. (2017)		
39	s5_energy	Energy of the filtered (20-30 Hz) spectrum, see Hibert et al. (2017)		
40	s_gamma1	Gamma 1, spectral centroid, see Hibert et al. (2017)		
41	s_gamma2	Gamma 2, spectral gyration radius, see Hibert et al. (2017)		
42	f_modal	Modal frequency		
43	f_mean	Mean frequency (aka central frequency)		
44	f_median	Median frequency		
45	f_q05	Quantile 0.05 of the spectrum		
46	f_q25	Quantile 0.25 of the spectrum		
47	f_q75	Quantile 0.75 of the spectrum		
48	f_q95	Quantile 0.95 of the spectrum		
49	f_iqr	Inter quartile range of the spectrum		

50	f_centroid	Spectral centroid
51	p_kurtosismax	Kurtosis of the maximum spectral power over time, see Hibert et al. (2017)
52	p_kurtosismedian	Kurtosis of the median spectral power over time, see Hibert et al. (2017)
53	p_maxmean	Mean of the ratio of max to mean spectral power over time, see Hibert et al. (2017)
54	p_maxmedian	Mean of the ratio of max to median spectral power over time, see Hibert et al. (2017)
55	p_peaksmean	Number of peaks in normalised mean spectral power over time, see Hibert et al. (2017)
56	p_peaksmedian	Number of peaks in normalised median spectral power over time, see Hibert et al. (2017)
57	p_peaksmax	Number of peaks in normalised max spectral power over time, see Hibert et al. (2017)
58	p_peaksmaxmean	Ratio of number of peaks in normalised max and mean spec- tral power over time, see Hibert et al. (2017)
59	p_peaksmaxmedian	Ratio of number of peaks in normalised max and median spec- tral power over time, see Hibert et al. (2017)
60	p_peaksfcentral	Number of peaks in spectral power at central frequency over time, see Hibert et al. (2017)
61	p_diffmaxmean	Mean difference between max and mean power, see Hibert et al. (2017)
62	p_diffquantile21	Mean difference between power quantiles 2 and 1, see Hibert et al. (2017)
63	p_diffquantile32	Mean difference between power quantiles 3 and 2, see Hibert et al. (2017)
64	p_diffquantile31	Mean difference between power quantiles 3 and 1, see Hibert et al. (2017)

Fig. S 7: ROC (receiver operating characteristic curve) for the first step Random Forest Model showing the cutoff threshold of 0.172 for a true positive rate of 0.9 leading to a false positive rate of 0.15. The blue dot marks the point with the minimum mean misclassification error.

Fig. S 8: Variable importance of the 25 most important features in the final Random Forest model.

Fig. S 9: ROC (receiver operating characteristic curve) for the refined Random Forest Model showing the cutoff threshold of 0.323 for a true positive rate of 0.9 leading to a false positive rate of 0.07. The blue dot marks the point with the minimum mean misclassification error.

S5 Focus times

S5.1 Rain

190 Fig. S 10: Detail plot of focus time 3. (a) displacement rate and rain intensity (lines 3 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 1 h and a coefficient of 0.559. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 1 h shifted data.

Fig. S 11: Detail plot of focus time 8. See how multiple consecutive rain events accumulate in one acceleration. (a) displacement rate and rain intensity (lines 5 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 88 h and a coefficient of 0.812. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 88 h shifted data.

Fig. S 12: Detail plot of focus time 9. (a) displacement rate and rain intensity (lines 5 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 13 h and a coefficient of 0.530. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 13 h shifted data.

205

210

S5.2 Snow

Fig. S 13: Detail plot of focus time 1. (a) crack rate and snowmelt (lines 7 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 2 d and a coefficient of 0.849. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 40 h shifted data.

Fig. S 14: Detail plot of focus time 2. (a) displacement rate and snowmelt (lines 5 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 4.3 d and a coefficient of 0.721. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 103 h shifted data.

S5.3 Seismic crack events

215

Fig. S 15: Detail plot of focus time 11. (a) crack rate and mean temperature (lines 1.5 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears without any lag and a coefficient of 0.558. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with data not shifted (0 h).

Fig. S 16: Detail plot of focus time 12. (a) crack rate and mean temperature (lines 3 d smoothed, columns 12 h means). (b) cross-correlation coefficient of the two lines. The highest correlation appears with a lag of 15 h and a coefficient of 0.693. (c) scatter plot with linear trendline (95 % confidence interval as grey area) with 15 h shifted data.

230

235

Fig. S 17: Detail plot of focus time 10. Crack rate, mean temperature (solid line), minimum and maximum temperature (dashed lines, all lines 2 d smoothed, columns 12 h means). Peaks in the crack rate coincide with days with freeze-thaw or thaw-freeze conditions (black bars on top). From mid-November onwards, crack rate increases during days with severe temperature drops.

15 of 33

Fig. S 18: Detail plot of focus time 13. Crack rate, mean temperature (solid line), minimum and maximum temperature (dashed lines, all lines 1.5 d smoothed, columns 12 h means). Peaks in the crack rate coincide with days with freeze-thaw or thaw-freeze conditions (black bars on top). Beginning of June, crack rate increases with increasing temperatures.

S6 Running cross-correlations

Fig. S 19: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) displacement rate (mm/h), (b) seismic crack rate (events/h), black dots mark the timing of earthquakes from the catalogue. (c) cross-correlation factor for running cross-correlation between the two curves for a 30 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

250 Fig. S 20: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) displacement rate (mm/h), (b) rain intensity (mm/h). (c) cross-correlation factor for running cross-correlation between the two curves for a 20 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

255

Fig. S 21: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) displacement rate (mm/h), (b) snowmelt (mm/h). (c) cross-correlation factor for running cross-correlation between the two curves for a 60 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 120 h.

Fig. S 22: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) displacement rate (mm/h), (b) temperature (°C, solid: mean, dashed min/max). Black dots mark days with freeze-thaw/ thaw-freeze conditions. (c) cross-correlation factor for running cross-correlation between the two curves for a 30 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

Fig. S 23: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) seismic crack rate (events/h), black dots mark the timing of earthquakes from the catalogue. (b) rain intensity (mm/h). (c) cross-correlation factor for running cross-correlation between the two curves for a 40 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

Fig. S 24: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) seismic crack rate (events/h), black dots mark the timing of earthquakes from the catalogue. (b) snowmelt (mm/h). (c) cross-correlation factor for running cross-correlation between the two curves for a 40 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

Fig. S 25: Analysed data between Oct 2018 and Nov 2022 with marked and numbered focus times (rectangles). Data are aggregated to 1 h resolution (see the degree of smoothing in the headers). Columns give 12 h means. (a) seismic crack rate (events/h), black dots mark the timing of earthquakes from the catalogue. (b) temperature (°C, solid: mean, dashed min/max). Black dots mark days with freeze-thaw/ thaw-freeze conditions. (c) cross-correlation factor for running cross-correlation between the two curves for a 60 d window shifted in 1 d steps. Colours represent different time lags (see legend). The black dashed line marks a lag of 0 h.

290 S7 Earthquake analysis

Fig. S 26: Map showing all earthquakes of the catalogue with M>2 and less than 150 km away from the Hochvogel. Note the clustering of events along the valleys next to the Hochvogel region: Inn, Lech, Alfenz and Rhein. Yellow diamonds mark the two snow stations at Nebelhorn (2075 m a.s.l.) and Zugspitze (2420 m a.s.l.). Basemap and labelling source: Esri, USGS, NOAA, Garmin, NPS.

Fig. S 27: Map showing all earthquakes of the catalogue with M>2 and less than 150 km away from the Hochvogel that happened during station operation of HVGL1 at the summit an at least one more station further down. Events are labelled with a ID-number between 1–31. Yellow diamonds mark the two snow stations at Nebelhorn (2075 m a.s.l.) and Zugspitze (2420 m a.s.l.). Basemap and labelling source: Esri, USGS, NOAA, Garmin, NPS.

305 Fig. S 28: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 25°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 29: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 35°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

26 of 33

315

Fig. S 30: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 45°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 31: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 55°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 32: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 65°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 33: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 75°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 34: Lines indicate for different factors of safety, at which magnitude and distance of an earthquake a theoretical Newmark displacement of 2 cm is expected. This calculation is based on the mean focal depth of 8 km and a slope angle of 85°. All earthquakes from the catalogues are plotted with black crosses. The earthquakes with the 10 biggest Newmark displacements are labelled in black with their dates. The Saulgau 1935 event is labelled in red.

Fig. S 35: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 25°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

Fig. S 36: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 35°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

Fig. S 37: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 45°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

360

Fig. S 38: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 55°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

Fig. S 39: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 65°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

370 Fig. S 40: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 75°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

375 Fig. S 41: Theoretical Newmark displacement against Factor of Safety (FOS) of the 10 events with the biggest Newmark displacement for a slope angle of 85°. Dashed lines mark uncertainty according to the formula. Displacements are only noteworthy for very low FOS.

Fig. S 42: Example of measured seismic signal of HV1 at summit (top three rows) and HV4 in valley (bottom three rows) for all three components (top: Z, middle: E, bottom: N) for earthquake events 1 (left: seismogram, middle: envelope, right: spectrogram).