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Abstract. Low-intensity but high-frequency coastal flooding, also known as nuisance flooding, can negatively
affect low-lying coastal communities with potentially large socioeconomic effects. Partially driven by wave
runup, this type of flooding is difficult to predict due to the complexity of the processes involved. Here, we
present the results of a probabilistic analysis of flooding events measured on an eroded beach at the Texas
coast. A high-resolution time series of the flooded area was obtained from pictures using convolutional neural
network (CNN)-based semantic segmentation methods, as described in the first part of this contribution. After
defining flooding events using a peak-over-threshold method, we found that their size follows an exponential
distribution. Furthermore, consecutive flooding events were uncorrelated at daily timescales but correlated at
hourly timescales, as expected from tidal and day–night cycles. Our measurements confirm the broader findings
of a recent multi-site investigation of the probabilistic structure of high-water events that used a semi-empirical
formulation for wave runup. Indeed, we found a relatively good statistical agreement between our CNN-based
empirical flooding data and predictions using total-water-level estimations. As a consequence, our work supports
the validity of a relatively simple probabilistic model of high-frequency coastal flooding driven by wave runup
that can be used in coastal risk management and landscape evolution models.

1 Introduction

Coastal flooding is induced by a short-term rise in water lev-
els caused by a mix of stochastic and deterministic events,
such as storm surges, wave runup, tides or river discharge due
to heavy precipitation (Muis et al., 2016; Ward et al., 2018;
Bevacqua et al., 2019). In addition to extreme hurricane-
driven flooding events with return periods on the order of
10 or more years, the importance of low-intensity high-
frequency flooding events, with return periods on the order of
months, has recently became clear (Sweet et al., 2014; Mof-
takhari et al., 2017, 2018). When accumulated over time, the
social cost of nuisance flooding can outweigh the costs from
the large-scale flooding (Moftakhari et al., 2017, 2018). This

low-intensity flooding also controls the formation and post-
storm recovery of coastal dunes, which are essential for the
stability of barrier islands (Durán Vinent et al., 2021).

High-frequency and low-intensity coastal flooding is
mostly driven by extreme values of wave runup superim-
posed to the tidal signal (Serafin and Ruggiero, 2014; Serafin
et al., 2017) overtopping a characteristic beach elevation, or
any other feature close to the shoreline. As the characteristic
elevation of natural beaches typically adjusts to the average
wave runup during high tide, they are only flooded during
extreme events (Rinaldo et al., 2021). Therefore, it is very
difficult to predict in detail and has to be described statis-
tically. This probabilistic description can ideally lead to the
estimation of both the overtopping frequency λ(Z) (or return
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period T = λ−1) of a given elevation Z and the average size
S(Z) of events overtopping Z. This information can then be
used to assess the vulnerability of coastal features and coastal
infrastructure and plan accordingly.

Recently, Rinaldo et al. (2021) investigated the stochastic
properties of high-water events (HWEs), which are associ-
ated with coastal flooding, at several locations in the US and
across the world. These events were defined as clusters of
consecutive days when total water levels exceeded a given
threshold. The total water level was calculated by adding
still water level data, containing tides and surges, to predicted
wave runup data. Wave runup was estimated empirically as
function of the deep-water significant wave height and wave-
length (Stockdon et al., 2006, 2014). They found that HWEs
overtopping a characteristic beach elevation (and thus lead-
ing to coastal flooding) were uncorrelated and occurred ran-
domly in time and can thus be modeled as a Poisson process.
They also found that their size, defined as the maximum total
water level during the event relative to the beach elevation,
follows an exponential distribution. These findings can be
summarized in an equation for the overtopping frequency of
a threshold elevation Z: λ(Z)= λb exp[−(Z−Zr)/S], where
λb = 18 yr−1, S is the site-dependent average size of HWEs
(S ≈ 0.3 m) and Zr is a reference elevation that depends on
the tidal amplitude and average wave runup and can be in-
terpreted as a characteristic beach elevation (Rinaldo et al.,
2021).

However, in spite of the generality and simplicity of the
Rinaldo et al. (2021) results, they were based on empirically
estimated wave runup data, and therefore it is not clear how
they compare to direct measurements of coastal flooding.

The primary goal of the present study is to describe the
probabilistic structure of flooding events measured at a re-
cently eroded site in northern Texas. Flooding events were
defined applying the peak-over-threshold method to a high-
resolution time series of water area fraction, obtained from
coastal images using convolutional neural network (CNN)-
based image segmentation as explained in Part 1 of this work
(Kang et al., 2024). A central outcome of our research is the
validation of the results of Rinaldo et al. (2021). As shown in
Fig. 1, although our study complements the spatial and tem-
poral range investigated by Rinaldo et al. (2021), it is limited
to a single site and roughly half-year data. However, we can
use our results to establish the validity of the more general
predictions of Rinaldo et al. (2021).

In what follows we introduce and correct the time series
of water data, define flooding events, perform the statistical
analysis of both the size and inter-arrival of flooding events,
and compare it to the results of Rinaldo et al. (2021). We fi-
nalize with a presentation of the probabilistic model for low-
intensity and high-frequency coastal flooding events summa-
rizing both our results and those of Rinaldo et al. (2021).

Figure 1. Comparison between this study and Rinaldo et al. (2021).

2 Defining and measuring flooding events

2.1 Field data

As explained in Kang et al. (2024), we installed three solar-
powered stationary GoPro cameras, each with a different
field of view, on a beach near Cedar Lakes, Texas, to
monitor the recovery after Hurricane Harvey in 2017 com-
pletely eroded the coastal dunes and the back-beach region
(see Fig. 2). This site was subject to frequent wave runup
events due to its low-lying bathymetric–topographic profile.
Each camera captured pictures every 5 min during a 06:00–
18:00 LT. observation period and turned off automatically
during the night. From November 2017 to May 2018, we
captured more than 51 000 images.

2.2 Time series of water area fraction

In Kang et al. (2024), we applied CNN-based image seg-
mentation to identify water pixels with an accuracy of more
than 90 %. Here we used the CNN to generate a time se-
ries of the number of water pixels from 24 793 consecu-
tive non-overlapping daylight pictures, while filling the non-
observation periods with zeros. For convenience, the number
of water pixels was normalized by the total number of pixels
in an image to obtain a water area fraction (Fig. 3).

Since our observation period was about 6 months, we ig-
nored the effect of seasonality and only corrected the images
to account for minor camera rotations due to strong winds
and a change in position following one camera replacement
(Fig. 4a). These changes in the camera field of view led
to different base levels of water area fraction during non-
flooding conditions (Fig. 4a). We identified this base level
as the most probable value of the water area between camera
rotations (or replacements) and estimated it from the mode
of the water area distribution during that time period (Fig. 5).
We then subtracted the base level (horizontal lines in Fig. 4a)
from the area fraction to obtain the excess water area frac-
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Figure 2. Location of field observations (a). Three solar-powered cameras (b–d) were installed in Cedar Lakes, Texas, a site breached during
Hurricane Harvey in 2017 that experiences frequent wave runup flooding. (b, c) Map data are sourced © Google and Landsat/Copernicus.

Figure 3. (a) Examples of non-flooding and flooding images captured from the camera. Two points at 26 November 2017, 17:29 LT (point 1),
and 4 December 2017, 16:49 LT (point 2), are selected to illustrate the area fraction extraction process. (b) Results of the semantic segmen-
tation using the convolutional neural network to identify water, sky and background regions. (c) Time series of the water area fraction,
defined as the fraction of water-labeled pixels in the water region of a segmented image (dark blue region in b), from 23 November to
23 December 2017.

tion A(t) (Fig. 4b). For simplicity, in what follows we refer
to A(t) as simply the water area fraction or just water area.

In order to study the stochastic properties of flooding
events at different timescales, we defined a new time series
of water areaA|τ (t) at timescale τ by taking the maximum of
A(t) over a time window τ . For example, A|1 h corresponds
to an hourly time series andA|24 h to a daily time series. Note
that, by definition, A|5 min is equivalent to A(t) as pictures
were taken every 5 min.

2.3 Definition of flooding events

We defined a flooding event as the set of consecutive val-
ues of the water area fraction A|τ (t) that exceeded the 2 %
threshold (Fig. 6). This threshold allowed a clear separation
between typical fluctuations in water area and the extreme
values that characterize flooding conditions (Fig. 5b) and can
be associated with a characteristic beach elevation above the
shoreline. From the definition, flooding events depend on the
time window τ , as it is enough for the water area to be above
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Figure 4. (a) Time series of original water area fraction. Dashed lines indicate camera rotations and replacement times dividing the time
series into five time spans with a relatively stable field of view. Solid lines show the “base level” for each time segment. (b) Time series of
the excess water area fraction A(t) obtained by subtracting the base level in (a) from the area fraction (negative values were neglected). The
dashed line shows the selected 2 % threshold separating the extreme values, characterizing flooding conditions from non-flooding conditions.

Figure 5. (a) Probability density function (PDF) of water area fractions for each time span between camera rotations and/or replacements
(see Fig. 4a). The “base level” of the water area fraction shown in Fig. 4a corresponds to the mode of the PDFs for each time span.
(b) Complementary cumulative distribution function (CCDF) of the excess area fraction, defined as the area fraction minus the base level
(see Fig. 4b), where the 2 % threshold (dashed line) separates the tail, or extreme values associated with coastal flooding, from the bulk.
CCDF(A) quantifies the probability of having an excess area fraction larger than A.

2 % for a few minutes to count as a threshold crossing at any
larger timescale (see Fig. 6).

Following Rinaldo et al. (2021), we characterized a flood-
ing event i (for a given τ ) by its starting time ti , i.e., the
time water area increased above 2 %; its duration di ; and its
size Si , defined as the maximum water area relative to the
2 % threshold during the duration of the event (Fig. 6). Fur-
thermore, we defined the inter-arrival time 1ti as the time
between consecutive flooding events ti+1− ti . Below, we an-
alyze the probability distribution function of the duration d,
size S and inter-arrival time1t of flooding events at different
timescales τ .

3 Statistical analysis of measured flooding events

3.1 Duration of flooding events

At the lowest timescale (and higher time resolution, τ =
5 min), the probability density function f (d) of the duration
d of flooding events lasting up to 2 h can be approximated by
a power law distribution (Fig. 7),

f (d)=
β

dmin

(
dmin

d

)1+β

, (1)

with β = 0.7 and a lower limit of dmin = 3 min. The fact that
this lower limit is below the 5 min temporal resolution of our
data suggests that we are missing many relatively short flood-
ing events. Interestingly, as can be seen in Fig. 8, short flood-
ing events are not necessarily of small size.
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Figure 6. Definition of the flooding events, their size (S) and inter-arrivals (1t) from the excess water area fraction A(t). Examples shown
are for the original timescale τ = 5 min (a) and for a daily timescale (τ = 24 h) (b). Note all the events shown in (a) were clustered in a single
event in (b) (shaded region).

Figure 7. Complementary cumulative distribution function 1−
F (d) (F is the cumulative distribution function) of the duration d of
flooding events. The line shows a power law fit (dmin/d)β , with ex-
ponent β = 0.7 and a lower limit dmin = 3 min. The time resolution
of the data sets a lower cutoff at d = 5 min.

Above 2 h, the event duration data drastically deviated
from the power law distribution, with no event lasting more
than 3 h in our nearly 6-month-long measurement period
(Fig. 7). Furthermore, the size and duration of flooding
events was poorly correlated (Fig. 8), as events where wa-
ter covered around 10 % of the images’ pixels (above the 2 %
threshold), i.e., S > 10 %, can last anywhere from 10 min to
2 h. However, there seems to be a lower limit for the size of
events lasting more than 10 min (Fig. 8).

3.2 Distribution of flooding size

The distribution of the size S of flooding events at the low-
est timescale (τ = 5 min), obtained from A|5 min(t), is well

Figure 8. Relation between the size S and duration d of flooding
events. Note that the event size S is defined as the maximum value
of the water area fraction during the event relative to the 2 % thresh-
old. The time resolution of the data is 5 min.

approximated by an exponential distribution e−S/S/S with
average flooding size S = 3.36 % (Fig. 9a). As shown in
Fig. 9b, the flooding size distribution remains exponential for
timescales τ up to the maximum value investigated (36 h),
with p‘values higher than the rejection threshold for both the
Lilliefors and the Cramér–von Mises tests of exponential fit
(Lilliefors, 1969; Cramér, 1928). The average flooding size S
increases with the timescale τ but seems to saturate to∼ 8 %
at daily or larger timescales (Fig. 9c).

3.3 Distribution of inter-arrivals

The distribution of inter-arrivals 1t strongly depends on the
timescale τ and seems to converge towards an exponential
distribution for timescales above∼ 10 h (Fig.10a and b). This
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Figure 9. (a) Complementary cumulative distribution function 1−F (S/S) of the flooding event size S normalized by the average S at
three different timescales: τ = 5 min, 1 and 24 h. The exponential distribution is shown for reference (dashed line). (b) The p value testing
compatibility with the exponential distribution at different timescales (τ ) – 0 % (100 %) indicates perfect incompatibility (compatibility) with
5 % as the typical threshold for passing the test. (c) The average size of S during flooding events (%) for different timescales τ .

Figure 10. (a) Complementary cumulative distribution function 1−F (λ1t) of the inter arrivals (1t) of flooding events normalized by the
flooding frequency λ= 1/1t at timescales τ =5 min, 12 and 24 h. The exponential distribution is shown for reference (dashed line). (b) Mean
p values with confidence-bound (±σ ) testing compatibility with the exponential distribution at different timescales (τ ) – 0 % (100 %) indi-
cates perfect incompatibility (compatibility) with 5% as the typical threshold for passing the test. Passing the test, i.e., inter-arrivals are expo-
nentially distributed, means the events are independent, whereas failing the test suggests the events are correlated. (c) Frequency λ of flooding
events at different timescales (τ ), including the 95 % confidence interval obtained by λ×[clower,cupper], where clower = χ

2
0.025,2n/2n and

cupper = χ
2
0.975,2n/2n.

is evidenced by the sharp increase in the p values of both the
Lilliefors and the Cramér–von Mises tests from around 10 %
to about 60 % for timescales between 10 and 12 h (Fig.10b).
The p values remain above 30 % for larger timescales.

In these statistical tests, the time at which the time win-
dow analysis started was changed to avoid biases. For a given
timescale τ , we calculated the goodness of the exponential fit

n times, where n= τ/5 min is the number of possible initial
times at which the time window of size τ could start. For
example, the statistical tests were conducted only once for
A|5 min(t) but 12 times forA|1 h(t) and 288 times forA|24 h(t).

Given that the exponential distribution of inter-arrivals im-
plies the events are random and independent, we interpreted
the large deviations from the exponential distribution for
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timescales less than 10 h as evidence of correlation between
consecutive events (Fig. 10b). At larger timescales, consecu-
tive flooding events did become independent (i.e., their inter-
arrival followed an exponential distribution) and can be mod-
eled as a Poisson process.

3.4 Frequency of flooding events

The frequency λ of flooding events is by definition the in-
verse of the average inter-arrival λ= 1/1t or equivalently
λ=N/T , where N is the total number of flooding events
obtained from the condition A|τ (t)> 2 % and T = 167 d is
the total duration of the time series. As expected, λ decreases
with the timescale τ as flooding events are merged, reach-
ing a plateau at the daily scale of 2.5 events per month,
from about 6 events per month at the hourly scale (Fig. 10c).
Most of the decrease in λ roughly takes place at the tran-
sition from correlated to uncorrelated events for timescales
between 6 and 12 h (Fig. 10b).

4 Comparison with run-up model predictions

The exponential distribution of both the flooding size S and
the inter-arrival1t of events over timescales above 10 h is in
agreement with the findings of Rinaldo et al. (2021) for the
size and inter-arrival of events overtopping a characteristic
beach elevation (referred to as high-water events or HWEs)
obtained from the predicted daily time series of total water
levels. However, how do the predictions compare to the mea-
surements beyond these general stochastic properties? In par-
ticular, how does the predicted frequency of HWEs compare
with the flooding frequency measured from the camera ob-
servations? Also, is the predicted flooding from HWEs cor-
related to flooding measurements at the daily timescale?

Following the methodology from Rinaldo et al. (2021),
which involved calculating the hourly time series of total wa-
ter elevation for the same site using a beach slope of 0.02, we
generated a new time series of daily total water levels relative
to mean sea level (MSL). This required summing the still wa-
ter level as measured by a tidal gauge and a semi-empirical
estimation of the 2 % exceedance wave run-up. The latter re-
lied on offshore values of the significant wave height and
peak wave frequency and the local beach slope (Stockdon
et al., 2006, 2014).

Our data sources included the tidal gauge at Galveston
Pier 21 (29.31◦ N, 94.793◦W) and wave buoy station 42035
(29.236◦ N, 94.403◦W). Both located in Galveston, Texas,
they provided hourly measurements of water levels and sig-
nificant wave heights and peak period. While the water depth
of the wave buoy was 15 m, we did not consider reverse
shoaling to deeper water, as recommended by Stockdon et al.
(2006), to maintain the simplicity of our analysis and directly
compare to the results of Rinaldo et al. (2021). Since we did
not perform measurements of the beach profile at the study
site in the observation period, we assumed the beach slope,

which is needed to calculate wave runup, was constant and
equal to 0.02 (Rinaldo et al., 2021).

For consistency, we ignored total water level values dur-
ing non-observation hours of flooding monitoring. We then
converted the hourly time series of total water level to a time
series of daily maximum total water level ηd by taking the
maximum value per day. This removed tidal cycles from the
time series. Finally, we defined a high-water event (HWE)
as the set of consecutive daily total water levels exceeding
a given elevation Zc relative to MSL (Rinaldo et al., 2021).
Here, Zc is interpreted as a characteristic beach elevation in
which case HWEs represent potential flooding events. Thus,
since flooding events and HWEs are equivalent for the pur-
pose of this work, in what follows we will refer to HWEs
as “predicted flooding events”, in contrast to the “measured”
flooding events obtained from our CNN-based analysis of
camera observations.

4.1 Frequency of predicted vs. measured flooding
events

As expected, the frequency of predicted flooding events de-
creased with the characteristic beach elevation Zc, as the
number of overtopping events decreased (Fig. 11). The pre-
dicted flooding frequency was within the 95 % confidence
interval of the measurements for Zc in the range Zc < 0.9 m.
This upper limit is consistent with the characteristic beach
elevation 0.9 m estimated by Rinaldo et al. (2021) using a
digital elevation model (DEM) of the area (Fig. 11). In fact,
we expect a lower beach elevation at our site following the
large beach erosion after Hurricane Harvey in August 2017,
in agreement with the trend observed in Fig. 11.

Although we lack measurements of the actual beach el-
evation profile during our observation period, the value
Zc = 0.7 m, at which the predicted frequency matched the
measured value of λ= 2.5 per month obtained for a daily
timescale (τ = 24 h in Fig. 10c), is consistent with the hy-
pothesis that beach erosion can explain potential differences
between predicted and measured flooding frequencies. In-
deed, the scarp visible at the vegetation edge in Fig. 3a1, is
about 20 cm tall and could help explain the elevation gap.

4.2 Synchronicity of measured and predicted flooding
events

We also compared flooding predictions to the measurements
at the daily level by defining a rescaled daily time series
of the measured flooded area fraction (Rm) relative to the
2 % threshold and the predicted water elevation (Rp) above a
characteristic beach elevation Zc as follows:

Rm(t)=max
(
A|24 h(t)− 2%

Sm
,0
)
,

Rp(t)=max

(
ηd(t)−Zc

Sp
,0

)
, (2)
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Figure 11. Symbols show the frequency (λ) of coastal flooding
events predicted by high-water events above a characteristic beach
elevation, as a function of the characteristic beach elevation Zc (rel-
ative to MSL). The measured frequency (mean± 95 % confidence
interval) of flooding events at the daily timescale is shown for com-
parison (solid and dashed black lines). The solid red line is the
flooding frequency predicted by Rinaldo et al. (2021) for a char-
acteristic beach elevation around 0.9 m (dashed red line) estimated
from a digital elevation model (DEM).

where A|24 h is the excess water area fraction at the daily
timescale, 2 % is the threshold for flooding conditions, Sm =

7.5 % is the average size of the measured flooding events for
τ = 24 h (see Fig. 9c), ηd is the estimated daily maximum
of the total water level at the shoreline and Sp = 0.3 m is the
average size of the predicted HWEs (Rinaldo et al., 2021).
In both cases, the function max ensures Rm and Rp are pos-
itive. Due to lack of data, we could only generate predic-
tions for the first 130 d of our total 170 d measurement period
(Fig. 12).

In spite of the numerous uncertainties in the estimation of
the actual total water level from offshore wave data, the time
series given by Eq. (2) were remarkably similar for the char-
acteristic beach elevation Zc = 0.7 m at which the predicted
flooding frequency equals the measured one (Fig. 12). In-
deed, most measured events were accurately captured by the
prediction, including their relative intensity.

We evaluated the performance of the run-up model in pre-
dicting the measurements at the daily scale using the con-
ditional probabilities P (m|p) and P (p|m), where P (m|p)
is the probability of observing or measuring flooding (m)
during a day when flooding conditions were predicted (p)
and P (p|m) is the probability of predicting flooding condi-
tions during a day when flooding was observed or measured.
Figure 13 shows the rates of false positives P (¬m|p)=
1−P (m|p), when flooding was predicted but not measured,

and false negatives P (¬p|m)= 1−P (p|m), when flooding
was measured but not predicted, for the time series given by
Eq. (2) as function of the characteristic beach elevation Zc in
the model prediction.

As is already apparent in Fig. 12, at Zc = 0.7 m the rate of
false negatives is relatively low (∼ 25%), whereas the rate of
false positives is quite high (∼ 75 %). Since the predicted and
measured frequency of flooding events are equal, the large
rate of false positives implies the duration of the predicted
flooding events is much longer that the observed ones. As the
beach elevation increased, the rate of false negatives drasti-
cally increased, which supports our indirect estimation of the
characteristic beach elevation at our site by comparing the
predicted and measured flooding frequencies. However, no
similar improvement occurred for the rate of false positives,
as the run-up model consistently overpredicted the number
of flooding days at all beach elevations.

5 Towards a probabilistic model of low-intensity and
high-frequency flooding events

Summarizing our findings, flooding events obtained from the
daily time series of water area A|24 h(t) were uncorrelated
and their size followed an exponential distribution with aver-
age S = 7.5 % (Figs. 9 and 10). Therefore, the frequency of a
flooding event of at least a size Sc (in percent of water pixels)
is given by

λ (Sc)= λ2 %e
−(Sc−2 %)/S, (3)

where S = 7.5 % is the average size and λ2 % = (2.5±1) per
month is the frequency of all measured flooding events at
the daily scale. Note that λ2 % depends on the selected 2 %
threshold for the water area fraction (also appearing in the
exponent) separating flooding and non-flooding conditions.

Similarly, as was already mentioned in Sect. 1, Rinaldo
et al. (2021) found the overtopping (i.e., flooding) frequency
of an elevation Z, relative to MSL, can be approximated as
follows:

λ(Z)= λbe
−(Z−Zr)/S, (4)

where S ≈ 0.3 m is the approximated average size of HWEs
(it was found to be mildly site dependent) and λb = 1.5 per
month is the overtopping frequency at the reference elevation
Zr relative to MSL. This elevation was found to roughly cor-
respond to the characteristic beach elevation at a given site
and depends on the local tidal amplitude At and average pre-
dicted wave runup ηw as follows:

Zr ≈ At+ 1.6ηw. (5)

The average wave runup, predicted using the formulation
of Stockdon et al. (2006), can in turn be expressed in terms
of the deep-water significant wave heightHs and wavelength
L0 as follows:

ηw = a(β)
√
HsL0, (6)
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Figure 12. Daily time series of the rescaled measured flooded area (Rm) and the rescaled predicted water elevation (Rp) above a beach
elevation, Zc = 0.7 m, from 23 November 2017 to 31 March 2018 (see definition in Sect. 4.2, Eq. 2). At the selected elevation (Zc = 0.7 m),
the predicted flooding frequency from water elevation data equals the measured one from flooded area (see Fig. 11); however, the duration
of the predicted flooding events is much longer.

Figure 13. Performance of the model predictions when compared
to measurements for different beach elevations (Zc). False-positive
and false-negative rates are defined in terms of conditional proba-
bilities as the probability of flooding conditions being predicted but
not measured and the probability of flooding conditions being mea-
sured but not predicted, respectively (see Sect. 4.2 for a detailed
definition).

where the overline means average over the time period ana-
lyzed, L0 is calculated from the peak wave period Tp using
the deep-water dispersion relation L0 = gT

2
p /(2π ), and the

factor a(β) is function of the beach slope β and can be writ-
ten as follows:

a(β)= 0.033
(√

1+ 1.2β/βc+β/βc

)
, (7)

with constant βc = 0.087 (Rinaldo et al., 2021). Equa-
tions (4)–(7) provide a relatively simple and widely applica-

ble probabilistic model of low-intensity and high-frequency
flooding events.

Although our Eq. (3) only gives an indirect measure of
actual flooded area by using the fraction of water pixels in an
image and is only valid for our field site, it does support the
validity of Eq. (4) in describing actual flooding using HWEs.

6 Discussion and conclusion

We studied the stochastic properties of flooding events mon-
itored via 5 min time-lapse imagery for more than 160 d and
processed the results using CNN-based image segmentation.
We found the frequency of flooding events depended strongly
on the timescale at which data were analyzed and decreased
from about 6 events per month at the hourly timescale to a
plateau of 2.5 events per month at the daily timescale. Fur-
thermore, the correlation between consecutive events also de-
pended on the timescale. Following our statistical analysis of
event inter-arrivals, flooding events seem to be correlated for
timescales smaller than 10 h, while events are random and in-
dependent at larger timescales, thereby following a Poisson
process. This change in temporal correlation for timescales
around 10 h could be related to the tidal period (which is
about 12 h at this location) and the day–night cycle poten-
tially disrupting any local weather pattern behind the flood-
ing event.

We found the size of flooding events was exponentially
distributed with average sizes of about 4 % of the camera
field of view when data was analyzed at the hourly timescale
to a maximum 8 % at the daily or larger timescale. When
estimated at the highest 5 min resolution, we also found the
actual duration of flooding events typically varies between
10 and 100 min and seemed to follow a power law distribu-
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tion. The lack of events longer than 3 h in our nearly 6-month
period, during which there were no large storms, seems to
suggest a physical upper limit for sustained flooding con-
ditions perhaps related to high tides. However, in this re-
gion astronomical tides are relatively small and water lev-
els are mainly affected by waves, which would again point
to wave runup driving the observed flooding, as suggested
by the high-water event analysis. Furthermore, we found a
poor correlation between the size and the duration of flood-
ing events.

When focused on the daily timescale, we found that flood-
ing events can be modeled as a Poisson process with ex-
ponentially distributed sizes, in agreement with recent find-
ings using a run-up model to predict coastal flooding (Ri-
naldo et al., 2021). The main probabilistic properties of mea-
sured and predicted flooding events can thus be described by
Eqs. (3) and (4), respectively. One way to understand the sim-
ilar form of both equations is through the relation between
flooded area and water depth at the shoreline. Assuming the
beach slope in our field site is relatively constant, then we
would expect both to be proportional, in which case the frac-
tion of water pixels would also correlate with water depth at
the shoreline. Therefore, our agreement with Rinaldo et al.
(2021) suggests that the exponential distribution is robust
with respect to potential variations in the local beach slope
during the measurement period and alongshore variations in
the flooded area at the spatial scale defined by the camera
field of view.

Going beyond the statistical agreement pointed above, the
frequency of 1.5 events per month predicted by HWEs (Ri-
naldo et al., 2021) for natural beaches, albeit lower than
the 2.5 events per month measured, was within the confi-
dence bounds of our data, which were relatively large due to
the short time period analyzed. Nevertheless, a higher mea-
sured flooding frequency was expected because of beach ero-
sion induced by Hurricane Harvey, which would improve
the agreement with the model. When focusing on the daily
correlation of predicted and measured flooding, the predic-
tions from the analysis of HWEs (Rinaldo et al., 2021) cap-
tured most of the occurrence of daily flooding, although it
noticeably overpredicts them. The large fraction of false pos-
itives in the predicted flooded days (particularly at the end
of the measurement period), even after correcting for a dif-
ferent beach elevation, could result from the assumption of
a constant beach slope along the whole beach section cov-
ered by the camera and for the whole observation period.
Since run-up predictions using offshore data (Stockdon et al.,
2006, 2014) are essentially valid for a single transect and thus
neglect the alongshore variability of the bathymetry or the
details of wave shoaling (García-Medina et al., 2017; Atkin-
son et al., 2017), it would be difficult to capture the complex-
ity of the site-to-site variability of flooding over a relatively
large beach section. On the other hand, it could be that the
predicted flooding was taking place somewhere else along
the beach and was not captured by our local observations. A

final possibility is that our sampling frequency of one pic-
ture every 5 min is not high enough to capture all possible
large runup events (as predicted by the HWEs formulation),
in which case the false positive rate could be lower. This is
supported by the fact that the distribution function of the du-
ration of flooding events has a lower limit of 3 min.

Regardless of these sources of potential errors, and more in
line with the statistical nature of wave runup data and the un-
certainty in the calibration of the model parameters in the first
place (García-Medina et al., 2017; Atkinson et al., 2017), one
can argue that the prediction only indicates conditions favor-
able to flooding events somewhere along the shoreline and
not necessarily the actual occurrence of a flooding event at
a precise location. This statistical interpretation would agree
with our findings.

In addition to our findings characterizing the probabilis-
tic structure, including frequency, intensity and duration, of
coastal flooding at our field site, by validating the predic-
tions of Rinaldo et al. (2021), our work also demonstrates
the suitability of HWE predictions, based on relatively sim-
ple run-up models, for estimating the frequency and inten-
sity of events leading to coastal flooding and dune erosion.
Our results thus formalize, i.e., validate and expand, the first
probabilistic model of high-frequency low-intensity coastal
flooding events driven by wave run-up (e.g., Eqs. 4–7). After
further calibration of the model parameters for different lo-
cations, this probabilistic model can be very useful in coastal
risk management and landscape evolution models.
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