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Abstract. Recent studies have shown that hydrophone sensors can monitor bedload flux in rivers by measuring
the self-generated noise (SGN) emitted by bedload particles when they impact the riverbed. However, experi-
mental and theoretical studies have shown that the measured SGN depends not only on bedload flux intensity but
also the propagation environment, which differs between rivers. Moreover, the SGN can propagate far from the
acoustic source and be well measured at distant river positions without bedload transport. It has been shown that
this dependency of the measured SGN data on the propagation environment can significantly affect the perfor-
mance of monitoring bedload flux by hydrophone techniques. In this article, we propose an inversion model to
solve the problem of the SGN propagation and integration effect. In this model, we assume that the riverbed acts
as SGN source areas with intensity proportional to the local bedload flux. The inversion model locates the SGN
sources and calculates their corresponding acoustic power by solving a system of linear algebraic equations, ac-
counting for the actual measured cross-sectional acoustic power (acoustic mapping) and attenuation properties.
We tested the model using data from measured bedload SGN profiles (acoustic mapping with a drift boat) and
bedload flux profiles (direct sampling with an Elwha sampler) acquired during two field campaigns conducted in
2018 and 2021 on the Giffre river in the French Alps. Results confirm that the bedload flux measured at differ-
ent verticals on the river cross-section correlates more with the inversed acoustic power than measured acoustic
power. Moreover, it was possible to fit data from the two field campaigns with a common curve after inversion,
which was not possible with the measured acoustic data. The results of the inversion model, compared to mea-
sured data, show the importance of considering the propagation effect when using the hydrophone technique and
offer new perspectives for the calibration of bedload flux with SGN in rivers.

1 Introduction

Bedload transport controls rivers’ morphodynamics and can
directly impact population safety, hydraulic structures’ sta-
bility and river ecological systems. Meanwhile, bedload
transport is a consequence of the morphology (Recking et
al., 2016) as it occurs at different rates across the channel
(Gomez, 1991) due to heterogeneity in riverbed grain size
distribution (GSD), riverbed geometry, flow depth and veloc-

ity (Whiting and Dietrich, 1990; Ferguson et al., 2003). Un-
derstanding the transport dynamics thus requires coupling of
water flow gradient, river bed adjustment and roughness con-
ditions (Ergenzinger et al., 1994). This explains why estimat-
ing bedload transport and its impact on the riverbed is not an
easy task. For instance, computation with bedload equations
usually considers the average shear stress τ , occulting the
non-linear effect of variability within the section (Ferguson et
al., 2003; Recking, 2013). On the other hand, direct monitor-
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ing of bedload transport (e.g., pressure difference samplers)
is expensive and time-consuming and does not permit high-
spatio-temporal-resolution sampling (Claude et al., 2012).

Given these difficulties, particular interest has been given
to indirect surrogate bedload monitoring using different sen-
sors (Gray et al., 2010). One category of these techniques
is the passive sensing technique, which measures the sig-
nals emitted by bedload impacts. These techniques permit
high-resolution monitoring even under extreme flow condi-
tions. Bedload particles can impact an object specifically de-
signed for this measurement; for instance, geophones are
used to measure the vibration generated by particles’ im-
pacts on steel plates (Rickenmann et al., 2014), and micro-
phones are used to measure the acoustic noise generated in-
side impacted steel pipes (Mao et al., 2016). Another ap-
proach directly measures the signal emitted when the trans-
ported grains hit the riverbed. For instance, seismometers
measure ground vibrations due to bedload impacts (Gim-
bert et al., 2019a; Bakker et al., 2020), whereas hydrophones
measure the bedload self-generated acoustic noise (SGN)
(Johnson and Muir, 1969; Barton et al., 2010). This paper
concerns this later technique.

Recent studies have shown that the measured SGN de-
pends not only on bedload characteristics but also on the
sound propagation properties of the river, which is controlled
by multiple factors such as slope, water level and bed rough-
ness (Wren et al., 2015; Rigby et al., 2016; Geay et al., 2017).
For example, in their attempt to derive a general calibra-
tion curve between bedload flux and acoustic power, Geay
et al. (2020) observed that the spectral content of SGN was
highly correlated with the riverbed slope, which is a param-
eter that significantly controls the propagation environment
of the river (Geay et al., 2019). Geay et al. (2020) then sug-
gest the significant impact of the local propagation effect of
the river on the measured SGN. This dependency of SGN
on the local conditions may have contributed to the general
scattering obtained between specific bedload flux and acous-
tic power in the mentioned work. On the other hand, this also
suggests that accounting for propagation effects should im-
prove the relationships between SGN and bedload character-
istics. Furthermore, an inversion method that estimates the
entire bedload GSD curve from the measured SGN spectrum
has been proposed by Petrut et al. (2018). However, the GSD
inversion model tested on five gravel-bed rivers has overesti-
mated the measured values, in particular for the finest mate-
rials (Geay et al., 2018). The latest suggested that the acous-
tic power measured in rivers may not adequately capture the
SGN of the finest materials contained in bedload due to sig-
nal attenuation at high frequencies.

The correction of signal attenuation due to propagation
can be achieved by using source inversion methods. The
inversion method uses propagation laws to reconstruct the
strengths and location of sources from the measured signal.
It is extensively studied and used in acoustical engineering
applications such as detecting noise sources for jet engines

using a beam-forming microphone array by manipulating
the phase and the amplitude of the wave form (Presezniak
and Guillaume, 2010), identifying acoustic emissions in ma-
chinery using the spectral analysis coupled with the time do-
main of acoustic signals (Arthur et al., 2017), and analyzing
vibrational patterns in automotive components using finite
element models to reconstruct the source and propagation
path (Madoliat et al., 2017). In seismology, inversion tech-
niques have been instrumental in locating seismic sources
using the amplitude source location (ASL) method (Battaglia
and Aki, 2003; Walter et al., 2017), investigating microseis-
mic events related to hydraulic fracturing using stochastic in-
version techniques (Maxwell, 2014) and understanding the
structure of Earth’s interior by determining the velocity dis-
tribution of the propagated waves (Rawlinson et al., 2010).
Regardless of the specific field, inversion methods inherently
involve modeling the propagation of signals in different envi-
ronments. However, the inverse parameters and the used al-
gorithm can widely vary depending the studied domain and
the specificity of each application.

In our work, the inversion is based on the spectral con-
tent of the measured bedload SGN signals propagated within
the river water column. To our knowledge, no studies have
dealt with bedload SGN source inversion in rivers. Nonethe-
less, the potential of inversion in providing better access to
the characteristics of SGN sources is evident. Such an ap-
proach would improve our comprehension of bedload dy-
namics and spatial distribution in riverine systems. Recently,
Geay et al. (2019) proposed a protocol to estimate the acous-
tic signal attenuation in rivers using a transmission loss (TL)
function calibrated with an active acoustic experiment.

In this paper, we use the work of Geay et al. (2019) for
developing an inversion model that gives access to the SGN
sources by correcting the attenuation of the measured SGN.
First, we define the bedload SGN source and the transmis-
sion loss function in the river. Second, we present the in-
version model adopted for SGN sources. Finally, we test the
proposed model’s performance in the field with two exper-
iments: (1) an active test (in the river and the lab) using a
known emitted signal and (2) a passive test using bedload
SGN measurements, where the inverse sources are compared
with bedload physical sampling.

2 Theoretical definitions

2.1 Bedload SGN source

Acoustic noise corresponds to minute impulsive pressure
fluctuations initiated at the source position and propagated to
different positions. In underwater acoustics, the pressure is
typically measured in micro-pascals (µPa), which is the stan-
dard metric unit for this field and the unit of choice within
this work. By convention, the intensity of an acoustic source
is defined as the intensity measured at a distance of 1 m from
the source without being attenuated (Jensen et al., 2011).
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Multiple studies have examined the acoustic noise gener-
ated by objects impacting in the air (Koss and Alfredson,
1973; Koss, 1974; Akay et al., 1978). However, less research
has been dedicated to studying the acoustic noise generated
by underwater sediment impacts (Thorne and Foden, 1988;
Thorne, 1990). The physical model proposed by Thorne and
Foden (1988) suggests a frequency-based solution of sound
generated due to a sphere–sphere impact underwater. The
model computes the energy spectrum, which is the variation
in acoustic energy (µPa2) per unit frequency (Hz) over a fi-
nite period of time (in seconds). The model shows that the
energy spectrum e (µPa2 Hz−1) of acoustic noise generated
due to acceleration of a rigid body is dependent on multiple
parameters such as particle size, impact velocity, sediment
and water mechanical properties, and position of the record-
ing sensor with respect to the noise source.

Since the SGN corresponds to continuous random im-
pulses in the river (Geay, 2013), bedload SGN sources cannot
be considered scattered point impacts. Instead, bedload SGN
sources are here defined as separate areas on the riverbed
generating their own acoustic signal. Each area is considered
to be an independent acoustic source continuously depicting
all the noise generated by bedload impacts within the defined
area. Hence, the total SGN signal depends on the particle–
particle impact signal as well as the number of impacts in
each area.

In the presence of multiple acoustic waves emanating from
distinct sources, the coherent interaction of these waves tran-
spires through the fundamental principles of superposition
and interference, elaborately influenced by the amplitude and
phase characteristics of each contributing signal. Notably, the
amplitudes are linearly combined, ensuring that their contri-
butions adhere to the principles of linear summation (Kinsler
et al., 1999). When dealing with acoustic energy, which is
proportional to the square amplitude of the signal, the sum-
mation due to different sources will lead to non-linear rela-
tionships. However, in this work, we build our method on
the assumption of the additive effect of the acoustic energy
emitted by different impacting particles. The linear addition
of acoustic powers can be considered when dealing with
random signals in time, such as ambient noise or acoustic
emissions from various sources (Veìr and Beranek, 2007).
In our model, the linearity in adding acoustic energies stems
from numerous contributing sources of bedload SGN, where
each individual source linearly contributes its own energy to
the overall acoustic field. This assumption has been widely
supported and employed for coherent signal processing and
source localization in underwater acoustics (Jensen et al.,
2011; Etter, 2018).

The transported bedload is a mixture of sediments impact-
ing the riverbed with different impact rates and intensities
depending on the particles’ diameter, fractional bedload flux
and hydraulic conditions. The riverbed then acts as a surface
acoustic source, which emphasizes the spatial distribution of
bedload SGN noise at the surface of the riverbed. In this

case, the source power spectral density (PSD; the variation
in power with frequency) per unit area s (µPa2 Hz−1 m−2)
is computed using a linear system that weights the source
energy spectrum e (µPa2 Hz−1) generated (at a distance r =
1 m) due to impacts of particles of diameter Dk and impact
velocity Uc with the corresponding impact rate η (number of
impacts per second per unit area):

s (f,r = 1)=
ND∑
k=1

η (Dk,qs) · e (f,Dk, r = 1,Uc) (1a)

η(Dkqs)∝ qs.β(Dk), (1b)

whereND is the number of classes in the bedload mixture; qs
is the specific bedload flux (g s−1 m−1); and β is a coefficient
dependent on particle saltation trajectory, which is calculated
using different empirical equations as a function of particle
size, bedload grain size distribution and hydraulic conditions
(such as water depth and riverbed slope) (Auel et al., 2017;
Gimbert et al., 2019; Lamb et al., 2008). Equation (1) shows
a linear relation between SGN source s and the specific bed-
load flux qs through the impact rate term η. Then, bedload
SGN distribution on the riverbed can be considered to be a
proxy of the spatial variability in bedload flux in the river
cross-section.

2.2 Transmission loss function

Acoustic wave propagation refers to the mechanical trans-
mission of the wave and their corresponding energy through
a medium. Several processes in rivers are responsible for
acoustic waves’ attenuation and power losses. The acoustic
waves can be attenuated by geometric spreading; refractions
or diffractions, depending on the geometry of the propaga-
tion medium (Geay et al., 2017; Rigby et al., 2016); riverbed
roughness (Wren et al., 2015); and riverbed impedance (Et-
ter, 2018). Moreover, the presence of water turbulence and
entrained air bubbles induce significant attenuation of acous-
tic waves (Field et al., 2007).

In shallow water columns such as in rivers, low-frequency
acoustic waves are trapped and undergo reflection between
the riverbed and the water surface as in a Pekeris waveguide
(Pekeris, 1948). In this case, acoustic waves with low fre-
quency are scarcely propagated with a limit frequency, called
the cut-off frequency (fcutoff), below which waves do not
propagate well (Rigby et al., 2016; Geay et al., 2017). This
cut-off frequency is inversely proportional to the riverbed
materials, water depth and sound celerity. For example, for a
river section with 0.5 m and 2000 m s−1 as the average celer-
ity of sound in sediments (Hamilton, 1987), the cut-off fre-
quency is approximately 1.1 kHz, which is lower than the
bedload SGN frequency range for particles with diameters
less than 100 mm (Thorne, 2014).

For frequencies above the cut-off frequency, a dimension-
less transmission loss (TL) function is defined to assess the
attenuation of the bedload SGN acoustic signal in the river.
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The TL function depicts the power losses of an acoustic
signal propagated from an acoustic source position to any
position in the river. Based on experimental work, Geay
et al. (2019) proposed that the propagation function is a
combination of a geometrical spreading function TL1 and a
frequency-dependent function TL2 that describes the losses
of acoustic waves due to the scattering and absorption effects
of the river:

TL(f,r)= TL1(r)TL2(f,r). (2)

The function TL1 depicts the decrease in the acoustic power
as the waves spread and diverge away from the source. This
dimensionless geometrical spreading function reflects the ra-
tio of acoustic intensity (the power per unit area) at a given
distance to the intensity at the source (r = 1). For this func-
tion, a simplified rectangular geometry of a river section
with constant water depth is considered. Depending on the
riverbed and water surface interface behavior, two propa-
gation models can be defined. First, if the interfaces act as
perfect absorbers (no reflections), the acoustic waves propa-
gate in a spherical mode as in free space (Eq. 3a). Second,
if the interfaces are perfect reflectors, the acoustic waves are
trapped between the two interfaces and propagate in a cylin-
drical way (Eq. 3b).

TL1,s(r)=
1
r2 (3a)

TL1,c(r)=
2
rd

(r > h) , (3b)

where TL1,s and TL1,c are the geometrical spreading func-
tions for spherical and cylindrical models, respectively; r is
the source–hydrophone distance (in m); and d is the water
depth (in m). The attenuation and losses induced by all other
effects and processes, such as water turbulence, are estimated
by an exponential propagation function (TL2):

TL2 (f )= e−2α(f )r , (4)

where α(f ) is a frequency-dependent attenuation coefficient
(m−1), assumed to vary linearly with the frequency above the
cut-off frequency (Jensen et al., 2011), and can be

α(f )= αλ
f

cf
, (5)

where αλ is a dimensionless attenuation coefficient constant
characterizing the propagation in the river, with high values
corresponding to poor propagation conditions (or higher at-
tenuation of the signal), and cf is the celerity of sound in
water. Geay et al. (2019) proposed a protocol for in situ char-
acterization of αλ, which consists of emitting a known cal-
ibrated acoustic source (with a loudspeaker) from a fixed
point of the river cross-section and measuring the losses of
acoustic power per frequency band with distance. The di-
mensionless attenuation coefficient can then be fitted using

the measurements for both the spherical (αλs ) and cylindrical
(αλc ) models. They applied this protocol to seven rivers and
concluded that αλ is mainly correlated, positively, with the
riverbed slope and roughness. Thus, more attenuation is ex-
pected in steep and rough rivers where more flow turbulence
is induced.

The accuracy of acoustic inversion is highly contingent
on the precise description of the environment and its cor-
responding propagation model. In oceanic acoustics, these
propagation models have been rigorously investigated and
are well understood, allowing for precise prediction and con-
trol of acoustic signals (Roh et al., 2008). Remarkably, the
principles of these propagation models bear notable similar-
ity to the seismic wave attenuation phenomena used in seis-
mology (Müller et al., 2010), further demonstrating their va-
lidity and utility across different disciplines. For a source in a
waveguide, spherical spreading is dominant in the near field.
It then transits toward cylindrical spreading when moving
away from the source, and cylindrical spreading is dominant
in the far field (Jensen et al., 2011). These physical prop-
erties have been poorly investigated in rivers, but Geay et
al. (2019) showed consistent results with TL calibrated us-
ing the spherical and cylindrical model converging at the far
field. Because we measure the bedload SGN as close as pos-
sible to the noise sources (see Sect. 4.2), we assume in the
following that our acoustic measurements are more domi-
nated by spherical propagation from the near field. This hy-
pothesis is supported by the results of Nasr et al. (2021),
which showed a better performance of the spherical propa-
gation model when compared to the cylindrical one for the
majority of the tested rivers.

2.3 Bedload SGN source

Consider an acoustic signal generated from a given point
source on the riverbed, with a power spectral density s (PSD;
µPa2 Hz−1) that propagates to different positions in the river.
The signal with PSD p(r) (µPa2 Hz−1) measured at a dis-
tance r from the point source is calculated as the product
between the acoustic source spectral power s and the trans-
mission loss function TL (Eq. 6a). However, in the case
of surface acoustic sources distributed on the riverbed s

(µPa2 Hz−1 m−2), as defined for SGN, propagation is cal-
culated as a function of the double integral with variable r
(Eq. 6b).

p(f,r)= s(f ) ·TL(f,r) (6a)

p(f xhyd,yhyd,zhyd)=

xs2,ys2∫∫
xs1,ys1

s (f,x,y)

·TL(f,r (x,y))dxdy, (6b)

where s (x,y) is the source power function, which de-
fines the spatial variability in the source in the river, and
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r (x,y,z)=
√(
x− xhyd

)2
+
(
y− yhyd

)2
+
(
z− zhyd

)2 is the
distance function between any point on the riverbed with co-
ordinates (x,y,z) and the hydrophone positioned at coordi-
nate (xhyd, yhyd, zhyd). The integral limits (xs1,ys1,xs2 and
ys2) define the boundaries of the source in space.

To illustrate the attenuation of acoustic signal due to prop-
agation, Fig. 1 presents the acoustic signal for a uniform
square unit area acoustic source s (µPa2 Hz−1 m−2) in ad-
dition to the propagated signals with spherical transmission
loss function to different distances. This realistic source s
was constructed with the Nasr et al. (2021) model for a bed-
load mixture composed of grains uniformly distributed in the
range of 1–100 mm, with a specific flux of 1000 g s−1 m−1,
and for a river with 1 % slope and 1 m water level. A value
of αλs = 0.1 is used, and two additional values αλs = 0.01
and 0.001 are also considered for r = 2 m. Figure 1b presents
the power spectral density PSD (obtained by Fourier trans-
form) of the source s and the propagated signal p. The losses
with increasing distance due to the geometrical transmission
loss function TL1,s are evident when comparing the differ-
ent curves at r = 2, 5 and 10 m. Simulations at r = 2 m with
different αλs values also illustrate different losses at higher
frequencies, captured by the TL2 function (Eq. 5).

Moreover, we observe a total shift in spectrum to the
lower frequencies with distance due to the TL2 function
and the increasing attenuation coefficient with frequency
(Eq. 5). The central frequencies fc (defined by the condition∫ f c

0 |p(f )|2df =
∫
∞

f c |p(f )|2df ) calculated for each power
spectrum p are plotted as a dashed green line in Fig. 1b. Be-
tween the source position and 10 m, the central frequency
decreases from 4.5 to 1.5 kHz. This result illustrates, in par-
ticular, how the estimation of transported grain size, which
depends mainly on the spectral content, can be misleading
without considering the propagation effect.

The physical model of Nasr et al. (2022) calculates the
acoustic source of bedload SGN as in Eq. (1) starting from
the hydraulic conditions of the river and bedload character-
istics (flux and GSD). The latest then modeled the distribu-
tion of the propagated SGN in the river (p) and compared
it to measured values. Nasr et al. (2022) concluded that the
comparison of the modeled SGN with the measured values
is highly dependent on the chosen empirical formula for im-
pact rate (η) and velocity (Uc) (Eq. 1), which are parameters
difficult to validate and measure in the field. In our inversion
model, we use the measured SGN (p) and the transmission
loss function (TL) to calculate the bedload SGN source (s),
which is independent of the propagation characteristics of the
river. Equation (1) shows the dependency of the source s on
the bedload flux; however, following the results of Nasr et
al. (2022) and the limitations on measuring or estimating pa-
rameters such as bedload particle impact rate and velocity,
the inversion of Eq. (1) to estimate the bedload flux directly
from s is not covered in this article.

3 SGN source inversion method

This section presents the general formulation of the inverse
mathematical problem.

3.1 Problem formulation

The purpose of the inversion problem is to estimate the PSD
and the spatial distribution of bedload SGN sources in rivers.
The problem can be illustrated in Fig. 2, where M bedload
SGN sources of constant width WM are assumed to be dis-
tributed on the riverbed with total widthW . It is assumed that
the specific bedload flux (qs,x) is constant for each band in
the streamwise direction (along longitudinal line y); in other
words, source power is assumed uniform along a given lon-
gitudinal line. This simplifies the geometry of sources as pla-
nar strips with infinite lengths in the y direction (Fig. 2). The
PSD per unit area sm(f ) (µPa2 Hz−1 m−2) is defined for each
source, with m an integer 1≤m≤M . The vector S of di-
mension [M ,1] and with the elements sm (f ) represent all
the sources’ PSDs distributed in the river.

To solve the inversion problem, the first parameter to be
considered is the PSD of acoustic measurements of the bed-
load SGN. Here, we consider a situation matching with drift
boat measurement, where a boat supporting the hydrophone
successively measures the associated acoustic SGN at N dif-
ferent positions. Measuring the SGN noise using a freely
drifted boat with the flow significantly reduces the hydraulic
noise generated by hydrophone resistance to the flow (Geay
et al., 2020). N acoustic measurements are thus assumed to
be distributed on the river cross-section (x direction Fig. 2),
from which we compute a PSD for each drift measurement.
The parameter pn (f ) corresponds to the PSD measured by
a hydrophone drift at the nth position, with n an integer
1≤ n≤N . The measured SGN profile is thus represented by
the vector P , with dimension [N ,1] comprising all measured
pn(f ).

Given all sources in the river, the measured PSD pn(f ) is
the contribution of all M acoustic sources propagated to the
nth measuring position. The contribution of all propagated
source signals to the measured PSD can be calculated using
the linear equation as follows:

pn(f )=
M∑
m=1

am,n (f )sm (f ) , (7)

where am,n is the attenuation factor that affects the propa-
gated signal of source m when measured by the hydrophone
at position n. The attenuation factor am,n is calculated for a
surface source using the frequency-dependent transmission
loss function TL:

am,n =

xm2,ym2∫∫
xm1,ym1

TL
(
f (k), rm,n(x,y,z)

)
dxdy, (8)
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Figure 1. (a) Representation of a unit surface acoustic source with multiple particle–particle impacts. (b) The power spectral density (PSD)
of the modeled source signal in blue (r = 1 m), with the propagated signals in red at r = 2, 5 and 10 m. Different red line styles correspond
to different dimensionless attenuation coefficients for the spherical model (αλs ). The green vertical lines represent the central frequency of
each PSD.

where rm,n is the function that defines the dis-
tance between any point within the source m

area and a hydrophone at position n with coordi-
nate (xhyd,nyhyd,nzhyd,n) such that rm,n (x,y,z) =√(
x− xhyd,n

)2
+
(
y− yhyd,n

)2
+
(
z− zhyd,n

)2, and z

depends on the geometry of the section (constant for rectan-
gular cross-section). The integral limits xm1ym1xm2 and ys2
define the boundaries of the source in space. The values of
ym1 and ym2 were chosen to be much greater than the river
width W (length= 10W ) to model the infinite length of the
source stripe. Finally, when Eq. (7) is applied to the whole
domain we obtain the matrix

P= A ·S (9a)

 p1(f )
.
.
.
pN (f )

=
 a1,1(f ) · · · aM,1(f )
.
.
.

. . .
.
.
.

a1,N (f ) · · · aM,N (f )

 ·
 s1 (f )
.
.
.
sM (f )

 ,
(9b)

where A is the attenuation. The multiplication of the nth raw
element of attenuation matrix A with the sources vector S
corresponds to the propagation of all sources in the river to
the nth hydrophone position.

3.2 Solution to the inversion problem

At this stage, we consider that we know the measured acous-
tic matrix P and assume that the attenuation matrix A is com-
puted (Eqs. 3 and 4) with a known (measured) attenuation
term αλ. We seek the solution Ŝ of the vector S, which allows
the modeled vector P̂ = A · Ŝ to best fit the measured acous-
tic P vector. A traditional approach for this type of problem
is the least square (LS) method, with an optimization algo-
rithm that works on the minimization of squared residual er-
rors between P and P̂ . The error vector ε can be written as

Figure 2. Comprehensive presentation of the inversion problem ge-
ometry, where sm corresponds to different bedload SGN sources on
the riverbed. The difference in color corresponds to different SGN
source intensities. The points pn correspond to SGN measurements
at different positions by the drifted hydrophone method.

in Eq. (10a), and the optimization of the problem solving Ŝ is
presented in Eq. (10b), where the argument of the minimum
of ε(argmin(ε)) is the value of Ŝ that minimizes ε.

ε = P − P̂ = P −A · Ŝ, (10a)

Ŝ = argmin(ε) (10b)

The relation between the number of sources M and mea-
surements N determines the type of algebraic system for the
problem in Eq. (9). If the number of sources exceeds the
number of measurements (M >N ), then the equation is con-
sidered under-determined. In this case, there are more un-
knowns than equations, and an infinite number of solutions
of Ŝ exists. On the other hand, if M <N , there are more
independent equations than unknowns, and the equation sys-
tem is considered over-determined. In the latest case, it is
shown by Nelson and Yoon (2000) that the optimal solution
for the acoustic source vector, which ensures minimization
of Eq. (10b), is

Ŝ = A+ ·P , (11)
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where A+ =
(
At
·A
)−1
·At is the pseudo-inverse of the ma-

trix A, and At is the transpose matrix.
The pseudo-inverse algorithm for non-square matrixes ex-

hibits a common drawback where the solution Ŝ may suffer
from divergence (instability) under slight variations in the
value of the elements of A or P . The problem’s ability to
estimate stable or unstable solution Ŝ is called conditioning
of the problem. The conditioning of the problem is quantified
by the condition number σ of the matrix A to be inverse. This
condition number is defined as σ (f)= ‖A‖·

∥∥A−
∥∥, where ‖A‖

is the 2-norm of the matrix A (Golub et al., 1996). A system
with a high value of σ is considered an ill-conditioned sys-
tem that generates high instability of the solution Ŝ, leading
to a situation where a small deviation or error in A and P can
lead to a large deviation in Ŝ. In contrast, a value σ closer to
1 is a well-conditioned system. A problem with a condition
number σ < 103 can be considered to be well conditioned
(Arthur et al., 2017).

When the number of hydrophone measurements (N ) is
significantly greater than the number of sources (M), or when
the measurements are closely spaced, the resulting matrix A
may have rows with attenuation factor values (am,n) that are
very similar to each other. This similarity in values can lead
to a matrix that lacks full rank, known as a rank-deficient
matrix. A classical solution for such instability problems is
the non-negative least square (NNLS) method, a constrained
least square problem where the values in the solution vector
Ŝ are strictly positive values.

In the case of the number of sources equal to the number
of measuring points (N =M), the pseudo-inverse matrix is
simply the algebraic inverse matrix of A and Ŝ = A− ·P .

The MATLAB function lsqnonneg (), which follows the
NNLS algorithm, is used for solving the inversion problem.

3.3 Numerical testing of the inversion model

Several numerical tests are presented here to illustrate the be-
havior and limits of the proposed inversion model. The tested
section is composed of a 10 m wide river, with a rectangu-
lar section and a water depth of 1 m. Bedload SGN sources
are assumed to be distributed on the riverbed in the form of
bands, as in Fig. 2. The total bedload active channel width
– the sections with bedload transport – equals 4 m. Within
the active bedload channel, the source PSD sm is computed
with Nasr et al. (2021); outside sm is zero. Three different
configurations of bedload transport distribution have been
tested (single, dual and triple channels); they correspond to
the number of separated bedload active channels in the river
cross-section (Fig. 3). The considered length of the sources
along the river direction is 100 m upstream and 100 m down-
stream of the section.

We consider the number of simulated acoustic measure-
ments equal to the number of sources (M =N ), and the mea-
surements are positioned above each source’s center (Fig. 2).
The simulated PSD pn values are calculated using the PSD of

the acoustic sources sm as in Eq. (7). The spherical propaga-
tion model is used with an attenuation coefficient αλs = 0.05
(equivalent to propagation environment for a river with slope
S ≈ 1 %).

Figure 3 shows the cross-sectional distribution of the
frequency-integrated source power Psm (µPa2 m−2, blue line)
and simulated measured power Ppn (µPa2, red line) for dif-
ferent configurations, such that

Psm =

∫ fmax

fmin

sm(f )df (12a)

Ppn =

∫ fmax

fmin

pn(f )df. (12b)

In the absence of hydraulic noise at low frequencies (Geay,
2013), fmin = 0 kHz, and fmax = 150 kHz, which is the max-
imum value of the simulated PSD.

In the first place, no extrinsic acoustic noise has been con-
sidered. Using the simulated acoustic profile P and Eq. (11),
the source PSDs are inverted by the NNLS method for differ-
ent tests. Figure 3 shows that the inverse source power pro-
files P ˆsm (black line) coincide with the generated profile (in
blue) for all tests, suggesting good prediction and solution of
NNLS under accurate measuring conditions.

To account for possible uncertainty in field measurements,
a noise has been added to the simulated pn. The noise was
added in the form of a white noise signal convolved with
the SGN signal. The resulting acoustic profiles are plotted
(dashed red lines) in Fig. 3. In the presence of noise, the in-
verse source power P ˆsm (dashed black lines) is distinct from
the generated source power profile (in blue). The results’ er-
rors are limited not only to the intensity of sources but also
the appearance of sources outside the bedload active chan-
nel. Nonetheless, the average cross-sectional power of the
inverse source profile (integration of the curve divided by
the width) is between 2.35–2.43 µPa2 m−1, which is close
to the corresponding value for that for the imposed source
(2.36 µPa2 m−1). This means that if we consider the total in-
verse power, the error is more limited to the localization of
these sources.

To numerically assess the results, a variance-explained ac-
curacy measure (VEcv) parameter is introduced (Li, 2017).
The advantage of this dimensionless accuracy measure VEcv
is that it is independent from data mean, and variance ac-
cording to its definition. A VEcv close to one means good
accuracy of the model. The VEcv is calculated as follows:

VEcv=

1−

M∑
m=1

(
Psm −P ˆsm

)2
M∑
m=1

(
Psm −P s

)2
 , (13)

where P ˆsm is the inverse source power, and Psm is the im-
posed source power, P s is the average of total imposed
source power. The values of VEcv have been calculated for
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each simulation and are presented in the titles of Fig. 3. The
VEcv values show that the inversion model can have good
performance even in the presence of noise (VEcv≈ 0.9 close
to 1). However, the VEcv values relatively decrease when
the number of bedload active channels increases, suggesting
a higher sensitivity of the model to field uncertainty under
complex bedload distribution.

4 Inversion model validation

In this section, we present two experiments for testing and
validating the inversion model.

4.1 Validation with active test measurements

This first experiment aims to test the inversion model under
controlled source conditions. It is technically challenging to
deploy a sound source with a scale comparable to the SGN
source in the river. Instead, in this experiment, we use a loud-
speaker in the river as a source with a known signal and loca-
tion. The test consists of measuring the emitted sound by the
loudspeaker at different locations in the river and then test-
ing the ability of the inversion model to retrieve the active
source’s location and PSD.

4.1.1 Isère river and experimental setup

This experiment was carried out in the Isère river in south-
eastern France. The measuring site is located next to Greno-
ble (45◦11′55.0” N, 5◦46′11.4" E) on a pedestrian’s foot-
bridge crossing the river. The local average slope for the mea-
sured section is 0.05 %, with a width of 60 m, and the an-
nual average flow is 180 m3 s−1. The riverbed is composed
of gravel, with average D50,bed = 23 mm measured with the
Wolman (1954) sampling protocol for the exposed riverbed.
During the time of measurement, on 25 August 2022, the av-
erage flow was 110 m3 s−1. Under this flow condition, the
Isère is characterized by low hydraulic noises generated by
the flow turbulence at low frequencies (Geay, 2013), as well
as no bedload SGN.

We used a waterproof piezoelectric Lubell loudspeaker
with a 23 cm diameter (model LL916H; http://www.lubell.
com/LL916.html, last access: 9 November 2023), character-
ized by a quasi-flat (±10 dB) frequency response between
500–21 000 Hz. The loudspeaker is connected to an emis-
sion RTSYS system (TR-SDA14), which controls the emit-
ted signal by a .wav file stored inside the RTSYS. The cho-
sen transmission signal is a logarithmic frequency modula-
tion between 500 and 21 000 Hz in 0.25 s. The .wav file for
the sound emitted by the loudspeaker is provided in the Sup-
plement. The loudspeaker signal was characterized in a lake
next to Grenoble in France. The water depth at the testing po-
sition was around 5.5 m. The source was positioned 3 m un-
der the water’s surface. The emitted signals were measured

at a 1 m horizontal distance from the source with an HTI-
99 hydrophone (High Tech, Inc., http://www.hightechincusa.
com, last access: 9 November 2023) with a sensitivity of
−199.8 dB and characterized by a flat frequency response
(∓ 3 dB) between 2 Hz and 125 kHz. The hydrophone was
connected to the EA-SDA14 card acquisition system (RT-
SYS company) recording the acoustic signal in .wav for-
mat with a sampling frequency of 312 kHz. Different ori-
entations of the loudspeaker in space have been tested. A
PSD (µPa2 Hz−1) was calculated for each measured chirp.
Finally, using Eq. (6b), the surface PSD of the loudspeaker
(µPa2 Hz−1 m−2) was calculated by dividing the measured
PSD by the TL function term. The TL function was calcu-
lated considering the dimension of the source for r = 1 m and
αλs = 0, attenuation being only due to geometrical spread-
ing in a lake. The result of the source power is presented in
Fig. 4c (green lines) with the 5 %, 50 % and 95 % percentiles.

In the Isère, the loudspeaker was deployed from the bridge
to the riverbed at the position xsource = 48 and ysource = 3 m
(in the downstream direction). At this position, the average
water column depth is 1.5 m. The signals were emitted from
the source in an endless loop. We measured the acoustic pro-
files every 2 m between x = 8 and x = 56, with the same hy-
drophone and acquisition system presented above. The pro-
tocol was identical to that of Geay et al. (2020), with the
hydrophone mounted on a floating river board (40 cm below
the water surface) and freely drifting from the bridge (drift
position between y = 2 m and y = 4 m from the bridge). The
acoustic measurements were carried out in N different po-
sitions on the river cross-section. For each drift n located at
xn, we measured the power spectrum of all signals’ impul-
sion during the drift and determined the median spectrum
PSDn. Each drift n is now characterized by its coordinate
(xnyn = 3 m) and a median spectrum PSDn.

Inversion of the active acoustic source requires the defi-
nition of parameters presented in Eq. (9) (P and S vectors
and A matrix). For the measured acoustic profile, the vector
P is composed of the 25 measured median power spectra de-
fined above, pn (f )= PSDn(f ) (1< n < 25). We considered
that N =M = 25 and incorporate 25 square sources with
2 m sides distributed between 7≤ x ≤ 56, with unknown
source power spectra sm(f ). The transmission loss parame-
ters am,n(f ) have been calculated using Eq. (8) for the spher-
ical model. The attenuation coefficients presented in Eq. (4),
αλs = 10−4, have been estimated following the protocol pro-
posed by Geay et al. (2019) during the measurement day.
To reduce the computational load, the sources’ spectra sm(f )
have been calculated using the third-octave band of the mea-
sured spectrum.

The area of the inverse sources in this application is 4 m2

(2m side squares), which is different than that of the loud-
speaker area≈ 0.04 m2. In this case, an area correction factor
was applied to the inverse results in order to compare it with
the loudspeaker source signal measured in the lake. The area
correction factor was calculated as the ratio between the TL
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Figure 3. Numerical test results of the inversion model for (a) single-, (b) double- and (c) triple-bedload-active-width-channel configurations.
The figures compare the simulated SGN source acoustic powerP sm (in blue; µPa2 m−2) with the inverse source powerP ŝm (in black) without
noise (continuous line) and with noise (dashed line). The figure also compares the measured SGN acoustic power P pn (in red; µPa2) without
noise (continuous line) and with noise (dashed line).

function calculated as in Eq. (6b) for the inverse source area
and for the loudspeaker area.

4.1.2 Results

Figure 4b plots the measured acoustic power profile Ppn (red
line), calculated with Eq. (12) between frequencies of 500–
21 000 Hz. The measured spectra show different intensities
depending on the distance from the active source. No signif-
icant variation in the spectral distribution is observed with
propagation due to the relatively low attenuation coefficient
in the Isère.

The results of the inverse power profile (P ˆsm ) are plotted
in Fig. 4b (black line). The results show that the inversion
model successfully captures the active source location be-
tween x = 47 and x = 49 (m= 21). However, some residual
sources have been modeled mainly around the active source
location and at other locations in the river. As in the numeri-
cal test with noise (Sect. 3.3), it is suspectable that measure-
ment uncertainty contributes to such residual sources as they
coincide with the perturbation in the measured acoustic pro-
file (e.g., x = 26 and 35 m).

The spectra of each drift (pn (f )) are presented in Fig. 4c
(continuous faded lines), and the color index corresponds to
the distance of the spectrum from the deployed loudspeaker.
Figure 4c shows the inverse source spectrum in the proximity
of the loudspeaker location ŝn=21 (between x = 47 and x =
49). The results show that the inverse spectra are comparable
with the reference spectrum of the source characterized in
the lake, which fits within the 5 %–95 % percentiles at most
frequencies.

4.2 Validation with passive SGN measurements

4.2.1 Giffre river and experimental setup

In this part, we apply the inversion model to bedload
SGN measurements. An experiment was carried out in the
Giffre river located in the French Alps. The measured sec-
tion is under a pedestrian crossing bridge (46◦04′48.8′′ N,
6◦42′19.4′′ E). The average slope of the section is 0.3 %,
and the width is 29 m. Two measurements of SGN and bed-
load flux were carried out during the melting season on
13 June 2018 and 6 July 2021. On these dates, the flow dis-
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Figure 4. (a) Representation of the geometry of sources and acoustic measurements on the Isère. (b) Measured acoustic power Ppn (µPa2;
red line) and the inverse source power P ˆsm (µPa2 m−2; black line). (c) Measured spectrum at each position in the river Pn (µPa2 Hz−1; faded
color lines). The color index shows the distance of the measurement from the source, which increases from blue to red. The inverse spectrum
ˆsm (µPa2 Hz−1 m−2; black line) corresponds to the spectrum at 47–49 m (n= 21). The green spectrum corresponds to the median of the

measured lake spectrum, with the dotted line corresponding to 5 % and 95 % percentiles.

charges were 50 and 26 m3 s−1, respectively, with 0.9 and
0.7 m average water depth (d).

Acoustic measurements were obtained using HTI-99
hydrophones (with sensitivity: −200.1 dB in 2018 and
−199.8 dB in 2021) and the RTSYS acquisition system with
the drift protocol (Geay et al., 2020). The drifts were 20 to
30 m long (in the y direction) with the hydrophone set up
30 cm below the surface. Several repetitions of drifts have
been performed at each cross-sectional position xn to ac-
count for measurement uncertainty and temporal variability.
For each drift at the location xn, we computed the median
measured PSDn(f ). In the presence of repetition of drifts at
the same location xn, we averaged the PSDn.

Bedload particles were sampled from the bridge us-
ing a handheld Elwha sampler with dimensions of 203×
152 mm. Sampling was performed at various cross-section
positions following the procedures proposed by (Edwards
and Glysson, 1999) with variable repetitions. Each sample
was dried, sieved and weighed to calculate the transport rate
and grain size distribution (GSD). We calculated a specific
bedload flux qs,i (g s−1 m−1) as follows:

qs,i =
mi

ti ×Wsampler
, (14)

where Wsampler is the inlet width of the sampler, and mi and
ti are the mass and the duration of sampling, respectively.
The average bedload flux profile has been calculated within
N windows, each 2 m in width. Each window is centered on
an acoustic point measurement xn as for the acoustic source.
The average bedload flux qs,n (g s−1 m−1) for the window n

is calculated by averaging the values of qs,i contained inside
the spatial window n.

The geometry of the SGN sources used is similar to Fig. 2
with a length extended for each source between y =−150 m
and y = 150 m, which account for the infinite-length as-
sumption of the SGN sources.

Two active tests following the protocol of Geay et
al. (2019) have been carried out to characterize the prop-
agation environment in the Giffre during the two measure-
ment days in 2018 and 2021. The attenuation coefficients es-
timated for the spherical model are αλs = 0.006 and αλs =

0.004 for 2018 and 2021, respectively. The attenuation co-
efficients were measured up to a maximum frequency of
20 kHz and extrapolated at higher frequencies assuming a
linear regression.
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Figure 5. Measured bedload flux (a) in the 2018 experiment and
(b) in the 2021 experiment. The measured acoustic power (c) in the
2018 experiment (d) in the 2021 experiment.

4.2.2 Results

Figure 5 presents the averaged profile for bedload flux and
the measured acoustic power for both experiments. The left
and right riverbanks are located at x = 0 and x = 29, respec-
tively. In both measurements, the bedload flux profile is com-
posed of a main transported channel localized at the right
section of the river (peak at x = 20). The average specific
bedload flux calculated for both experiments shows that the
bedload transport intensity in 2018 was 15 times more than
that of 2021 (328 g s−1 m−1 compared to 22 g s−1 m−1). The
measured SGN profiles show a coherent variation in acoustic
power with the bedload flux in the river cross-section. How-
ever, the decrease in the acoustic power in the left part of
the river section (between x = 0 and x = 13) does not corre-
spond to the same intensity decrease in bedload flux.

Acoustic recording samples from both experiments are
presented in the Supplement. After analyzing and listening
to the recordings at different frequencies, bedload SGN can
be clearly heard above 800 Hz. At frequencies lower than
400 Hz, the main source of noise is the hydraulic noise in-
duced by the flow turbulence in the river and around the hy-
drophone. The mean measured PSDs are presented in Fig. 6a
and b. The central frequencies calculated for the mean PSD
are 5.6 and 10 kHz for 2018 and 2021, respectively. The dif-
ference in central frequency is mainly induced by the differ-
ent grain size distributions sampled during both experiments
(the average D50 sampled in 2018 was 6.8, and it was 3 mm
in 2021). In addition, the attenuation of the SGN signal is
more important during 2018 measurements due to more wa-
ter turbulence induced by the higher flow. The higher attenu-
ation contributes to the decrease in the measured central fre-
quency, as explained in Sect. 2.3.

Figure 6a and b also present the mean inverse PSD. The
central frequency calculated for the inverse PSD shows an in-
crease in both experiments compared to the measured value
(an increase from 5.6 to 11 kHz in 2018 and 10 to 19.1 kHz in
2021). A visual comparison shows that other than the power
value, the main difference is the slope of the PSD at higher
frequencies. In contrast, the PSD shape at lower frequencies
has not been significantly affected. This shows that the inver-
sion model corrects the attenuated signal at high frequencies,
as explained in Sect. 2.3 and Fig. 1.

Figure 6c and d present the inverse power profile
P ˆsm (µPa2 m−2), which can be compared to the measured pro-
file Ppn . The inverse power per unit area is 1 order of mag-
nitude less than the measured power since each source con-
tributes (by sound propagation and in a cumulative way) to
each measured value. Moreover, the source spectrum was
calculated for a distance of 1 m from the source, while the
measurements with the drift hydrophone were taken at a
smaller distance (∼ 30 cm below the water surface < 1 m).

To compare the measured and inverse power with the bed-
load flux profile, we scaled the signals by computing the
ratio between the local value and the total cross-sectional
value for each profile. Results are plotted in Figs. 6e and 6f,
which show a better synchronization of the bedload flux pro-
file with the inverse power profile than the measured profile.
This is particularly evident when considering the peaks and
the sharp transition to low transport at the side of the section.

To numerically compare the profiles, the VEcv value is
calculated for both the relative source and the relative mea-
sured profile in reference to the relative bedload flux profile.
The values of VEcv are presented in Figs. 6e and 6f, con-
firming that the inverse source profile better illustrates the
bedload flux than the measured SGN profile in both experi-
ments. However, the improvement of VEcv in the 2021 ex-
periment is less than that for the 2018 experiment.

To study the effect of inversion on the acoustic power–
bedload flux relation, the measured bedload flux value at
measuring position n is plotted against the corresponding
value of measured acoustic power and inverse acoustic power
for both the 2018 and 2021 experiments (Fig. 7). Depending
on the experiment, we can differentiate two different trends
for the measured acoustic power.

Power laws have been fitted in Fig. 7 to the measured data
by applying reduced major axis (RMA) regression, which
is used when data on both axes have uncertainties (Smith,
2009). The fitted power laws presented in Fig. 7 show two
very distinct trends, with more than 1 order of magnitude
of bedload flux for the same acoustic power values. On the
other hand, the relationships obtained with the inverse data
show a better continuation with less dispersion between the
two experiments, allowing a unique fit with a relatively good
Pearson correlation coefficient (R2

= 0.79).
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Figure 6. Mean measured PSD pn (in red) and inverse PSD ˆsm (in black) for 2018 and 2021 in (a) 2018 and (b) 2021. Mean measured
power P pn (in red) and inverse power P ˆsm (in black) for the (c) 2018 and (d) 2021 experiments. Relative profiles for (e) 2018 and (f) 2021;
the relative bedload flux profile qs,n is in magenta.

5 Discussion

5.1 Dealing with uncertainties

The numerical testing in Sect. 3.3 (Fig. 3) showed that the
comparison between the simulated and the inverse source
profile is impacted by the presence of acoustic noise in the
signal. In addition, the Isère experiment’s results (Fig. 4b)
have shown that extraneous noise sources appeared in differ-
ent positions with different intensities due to uncertainty and
perturbations in the measured acoustic profile. Meanwhile,
the data collected on the Giffre river show variabilities in
acoustic measurements as well as the bedload flux measure-
ments (Fig. 5). Thus, the inversion results of the Giffre ap-

plication should consider the potential errors due to measur-
ing uncertainties. These uncertainties have been calculated
following Geay et al. (2020), who estimated the relative un-
certainty in acoustic measurements at 8 % and 6 % and the
relative uncertainties associated with bedload flux at 29 %
and 32 % for 2018 and 2021, respectively. Several factors
can contribute to the variability in bedload flux measure-
ments, such as the efficiency of bedload samplers itself un-
der different hydraulic conditions (Childers, 1999; Bunte et
al., 2008). Moreover, the uncertainty in bedload sampling is
also affected by the position of the sampler on the river bed
(Vericat et al., 2006), where difficulties in controlling the ex-
act position of the Elwha sampler were reported during our
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Figure 7. Local values of bedload flux vs. local values of measured
acoustic power (in red) and inverse acoustic power (in black).

field measurements. Furthermore, in the 2021 experiment,
the number of bedload sampling repetitions was limited due
to unstable flow conditions generated by a rainfall event after
the beginning of the experiment. Then, the main difficulty in
comparing inverse acoustic measurements with the bedload
flux profile is mainly related to the quality of bedload flux
sampling. Additional uncertainties also concern the attenua-
tion coefficients obtained by fitting measurements of active
test data showing variability of up to a factor of 5 around the
best fit.

5.2 Improvement of the calibration curve

The hydrophone measures not only its close environment but
all sounds propagating in the river section. The cross-section
integration results depend on the local conditions, which can
change with discharge, as shown in Figs. 6c and 6d. This ex-
plains the two different fits between bedload flux and acous-
tic power obtained for the Giffre river in Fig. 7. In addition,
the high-power coefficients (1.4–3.4), greater than unity as
predicted by the theory (Nasr et al., 2022), are also a conse-
quence of the overestimation of the actual source energy. The
global calibration curve of bedload flux obtained by Nasr et
al. (2022) is based on the average cross-sectional acoustic
power values. The effects discussed here have probably con-
tributed to part of the variability obtained when they fit bed-
load flux as a function of acoustic power. More importantly,
the global calibration curve may also generate an overesti-
mation of bedload flux under certain conditions. For exam-
ple, this calibration curve has been tested on the Drac river (a
tributary of the Isère), which is characterized by good sound
propagation of SGN and a well-localized bedload channel.

The result was an overestimation of the annual average bed-
load flux by a factor of more than 3.

Figure 7 shows that reducing these effects by inverting the
acoustic power gives access to a better adjustment of the
data obtained under different bedload transport conditions
between the 2018 and 2021 experiments. This offers good
potential for improving the global calibration curve (Geay et
al., 2020; Nasr et al., 2023) by adjusting a new function after
inverting their whole data set. We used the inversion model
on the data set of the global calibration curve presented by
Nasr et al. (2023), which consists of 42 experiments of simul-
taneous bedload flux and acoustic measurements collected in
14 different rivers, covering a wide range of properties (e.g.,
slope, bedload intensity and granulometry). The inversion
model has been applied to all rivers, similarly to the Giffre
river application. In the case of the absence of an active test
on some rivers, a slope-based empirical formula derived from
field data (Geay et al., 2019; Nasr, 2023) has been used to es-
timate the attenuation coefficient:

αs = 1720I 2.28, (15)

where αs is the dimensionless attenuation coefficient for the
spherical model presented in Eq. (5), and I is the local
riverbed slope measured 100 m upstream and downstream of
the section where the active test was conducted. The rela-
tion above is obtained from a data set on 14 different rivers
with slope varying between 0.02–2.5 %. The correlation co-
efficient (R2) of this relation is 0.87, which shows that the
local riverbed slope is a good proxy for characterizing the
propagation environment in the river. The data supporting
Eq. (15) are presented in the Supplement (Table S2).

Figure 8 shows the global calibration curve using the
cross-sectional average measured acoustic power and the
inverse calibration curve using the corresponding cross-
sectional average inverse acoustic power. Comparing both
calibration curves shows that, when using inverse acoustic
power, there is a minor decrease in variability (an increase
in R2 from 0.72 to 0.74) and a change in the fitted function
with a lower power coefficient (decrease from 0.72 to 0.67).
However, the main differences between these two calibra-
tion curves on bedload flux estimation cannot be concluded
from the change in the correlation coefficientR2. It should be
noted that using the different global calibration curves will
lead to different bedload flux estimation for the same exper-
iment (Fig. 8). The main difference between these two cali-
brations will require investigations with field measurements.

5.3 Grain size detection

In lab experiments, the frequency content of the SGN has
been well correlated with particle diameter (Thorne, 1985,
1986). However, in rivers, the attenuation of the SGN sig-
nal at high frequency is responsible for the underestimation
of bedload GSD using acoustic measurements (Geay et al.,
2018). The results in Fig. 8 show a noticeable correction of
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Figure 8. Comparison of global calibration curve fitted with cross-
sectional average acoustic power (in red; Nasr et al., 2023) and the
readjusted curve fitted with cross-sectional average inverse acoustic
power (in black).

Table 1. Comparison of measured bedloadD50 with estimated bed-
load equivalent diameter using measured and inverse PSD.

Experiment 2018 2021

Sampled D50 (mm) 6.8 3
Deq from measured PSD (mm) 26.8 12.2
Deq from inverse PSD (mm) 11.6 5.8

the inverse PSD at high frequencies. To quantify the effect
of inversion on bedload GSD estimation, the equivalent di-
ameter Deq is computed by the regress empirical formula of
Thorne (1985) as a function of central frequency:

Deq =
430
f 1.136 . (16)

Table 1 shows the computed Deq compared to the measured
D50 values, which show that the estimated diameters using
SGN measurements overestimated the measured bedload di-
ameter. This overestimation is reduced when using the in-
verse source PSD. No definitive conclusion can be made
on the effect of the inversion model on GSD estimation us-
ing Eq. (16) as this experimental law has been carried out
in controlled conditions using uniform grain size mixtures.
However, the results in Table 1 suggest a real improvement
with the inverse signal. Additional effort can be made into
GSD estimation by testing the model proposed by Petrut et
al. (2018) for a bedload mixture using the inverse signal;
however, it is beyond the scope of this article.

6 Conclusions

In this article, we present a new approach for the treatment
of hydrophone measurements for bedload flux monitoring in
rivers. This approach considers an inversion model for the
measured acoustic profile of bedload self-generated noise
(SGN). The model seeks to locate the sources of SGN and
calculates their power spectral density using a system of lin-
ear algebraic equations which combines acoustic measure-
ments with acoustic signal transmission loss functions de-
scribing the propagation environment of the river.

Numerical testing shows good performance of the model
with variable degrees depending on the number of separated
bedload active channels in the river cross-section and uncer-
tainty in the measured acoustic profile. Field testing of the
model on the Giffre river during two very different hydraulic
conditions shows that the inversion model successively cor-
rected the attenuation of the signal PSD. The signal correc-
tion by inversion compensates for loss of acoustic power due
to the propagation mainly at high frequencies. Direct bedload
measurements better correlate with inverse acoustic power
profiles than measured acoustic power.

The methodology presented in this paper offers new
perspectives for continuous bedload monitoring with hy-
drophones fixed on the riverbank. Because they measure
SGN for both near field and far field, they are directly im-
pacted by propagation effects, and consequently calibration
is required. This calibration is possible with a reliable qs(P )
function associated with the drift measurement and acoustic
inversion protocol.
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Appendix A: Notations

α Frequency-dependent attenuation coefficient m−1

am,n Attenuation factor –
αλ Dimensionless attenuation coefficient –
αλc Dimensionless attenuation coefficient for the cylindrical model –
αλs Dimensionless attenuation coefficient for the spherical model –
A Attenuation matrix –
A+ Pseudo-inverse of the matrix A –
A−− Inverse of the matrix A –
At Transpose of the matrix A –
cf Celerity of sound in water m s−1

D Particle diameter m
d Water depth m
Deq Bedload equivalent diameter m
D50 Bedload median diameter m
e Energy spectrum density µPa2 s Hz−1

ε Model error vector –
f Frequency Hz
fc Central frequency Hz
fmax Maximum integration frequency Hz
fmin Minimum integration frequency Hz
I Riverbed local slope Hz
i Bedload sample index –
k Diameter class index –
qs Specific bedload flux g s−1 m−1

qs Average specific bedload flux g s−1 m−1

M Number of sources –
m Measurement index –
N Number of measurements –
n Measurement index –
Pp Integrated measured power Pa2

Ps Integrated source power Pa2 m−2

P ˆsm Integrated inverse power Pa2 m−2

Ps Average of all source power in the river Pa2 m−2

p Measured PSD µPa2 Hz−1

P Measured PSD vector Pa2 Hz−1

P̂ Modeled PSD vector Pa2 Hz−1

r Source–hydrophone distance m
s PSD for a point source Pa2 Hz−1

s Source PSD per unit area Pa2 Hz−1 m−2

ŝ Inverse PSD per unit area Pa2 Hz−1 m−2

S Source PSD vector Pa2 Hz−1 m−2

Ŝ Inverse PSD vector Pa2 Hz−1 m−2

σ Condition number –
TL Transmission loss function –
TL1 Geometrical spreading function –
TL2 Scattering and absorption function –
VEcv Variance-explained accuracy measure –
W Width of the river m
WM Width of the sources m
xhyd Hydrophone x coordinate m
yhyd Hydrophone y coordinate m
zhyd Hydrophone x coordinate m
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