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Abstract. The planform geometry of branching drainage networks controls the topography of landscapes and
their geomorphic, hydrologic, and ecologic functionality. The complexity of networks’ geometry shows signif-
icant variability, from simple, straight channels that flow along the regional topographic gradient to intricate,
tortuous flow patterns. This variability in complexity presents an enigma, as models show that it emerges inde-
pendently of any heterogeneity in the environmental conditions. We propose to quantify networks’ complexity
based on the distribution of lengthwise asymmetry between paired flow pathways that diverge from a divide
and rejoin at a junction. Using the lengthwise asymmetry definition, we show that the channel concavity in-
dex, describing downstream changes in channel slope, has a primary control on the planform complexity of
natural drainage networks. An analytic model and optimal channel network simulations employing an energy
minimization principle reveal that landscapes with low concavity channels attain planform stability only with
simple network geometry. In contrast, landscapes with high concavity channels can achieve planform stability
with various configurations, displaying different degrees of network complexity, including extremely complex
geometries. Consequently, landscapes with high concavity index channels can preserve the legacy of former
environmental conditions, whereas landscapes with low concavity index channels reorganize in response to en-
vironmental changes, erasing the former conditions. Consistent with previous findings showing that channel
concavity correlates with climate aridity, we find a significant empirical correlation between aridity and network
complexity, suggesting a climatic signature embedded in the large-scale planform geometry of landscapes.

1 Introduction

The planform structure of branching fluvial drainage net-
works has far-reaching implications for the geomorphic, hy-
drologic, and ecologic functionality of landscapes (Horton,
1945; Sharp and Malin, 1975; Perron et al., 2008; Willett
et al., 2018; Pelletier et al., 2018; Stokes and Perron, 2020;
Freund et al., 2023; Liu et al., 2024). This structure, which
can be expressed based on its geometric and topological
attributes, exhibits significant variation across different re-
gions. In some cases, networks exhibit simple flow paths
(Fig. 1a) that generally follow the regional topographic gra-
dient. These flow paths define main drainage basins, draining

the main water divide to the mountain front, that are overall
similar in shape and size and have a symmetric basin shape
with respect to their main trunk (sensu Ramsey et al., 2007).
Other networks appear more intricate. These complex net-
works display tortuous flow paths, asymmetric basin shapes,
and varying sizes and shapes of the main basins (Fig. 1b).

Differences in network planform complexity directly con-
trol the landscape’s 3D topography. For the same total relief,
longer and more tortuous flow paths have diverse slope as-
pects and shallower channel slopes, resulting in lower local
reliefs (DiBiase et al., 2010) and longer channel segments
per elevation range and associated ecoclimatic zone within
individual main basins. Conversely, shorter and simpler flow
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Figure 1. Variability of complexity. Examples and schematic representations of paired flow pathways (light blue) originating from two
channel heads (yellow squares), diverging from a common divide, and merging at a downstream junction (red square). Hillshade topographies
with drainage networks colored in white are displayed in panels (a) and (b). Panel (a) shows an example from Sierra Nevada, Spain, where
a simple network with sub-parallel trunk streams flows down the main topographic gradient. The median lengthwise asymmetry, 1L, over
all paired flow pathways in this mountain range is 0.19. The map projection is UTM zone 30S. Panel (b) displays an example from Sierra
Madre del Sur, Mexico, showcasing a complex drainage network with tortuous flow paths. The median 1L over all paired flow paths in this
mountain range is 1.00. The map projection is UTM zone 14Q. (c) A schematic basin with the same components as in panels (a) and (b). Lij
and Lji , used for calculating the 1L of paired flow paths, are measured along the two paired flow paths (light blue) from channel heads chi
and chj (yellow squares), respectively, to their common junction (red square). 1χ is determined by measuring the χ values of the channel
heads starting at the junction where they merge.

paths that conform to the regional gradient feature a nar-
rower distribution of slope aspects and greater local fluvial
relief, such that each main basin is expected to have shorter
channel segments within any given elevation range. These
characteristics affect water runoff, sediment transport capac-
ity, rate and pattern of erosion, and the distribution of eco-
logical niches (Rodríguez-Iturbe and Valdés, 1979; Whipple
and Tucker, 2002; Badgley et al., 2017; Pelletier et al., 2018;
Khosh Bin Ghomash et al., 2019; Beeson et al., 2021; Stokes
and Perron, 2020).

Some of the variability in network complexity could be
attributed to the level of heterogeneity in the environmen-
tal and boundary conditions affecting the landscape. Spatial
gradients in tectonics (Castelltort et al., 2012; Goren et al.,
2015, 2014; Habousha et al., 2023; Cowie et al., 2006; Braun
et al., 2013; Mudd et al., 2022), climate (Caylor et al., 2005;
Thomas et al., 2011; Abed-Elmdoust et al., 2016), and lithol-
ogy (including fabric and fracture density) (Strong et al.,
2019; Ward, 2019; Mudd et al., 2022) and discrete geologic
structures (Hamawi et al., 2022; Scott and Wohl, 2019) are
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likely linked to more complex network geometry (e.g., Abed-
Elmdoust et al., 2016). However, numerical studies of land-
scape evolution (Shelef and Hilley, 2014; Tucker and Whip-
ple, 2002; Howard, 1994; Rinaldo et al., 1992; Sun et al.,
1994b; Howard, 1990) show that variabilities in complexity
emerge even when environmental and boundary conditions
are spatially uniform. This means that drainage complexity
could emerge from autogenic network dynamics and be in-
dependent of any heterogeneity in the applied forcings.

The same modeling studies (Shelef and Hilley, 2014;
Tucker and Whipple, 2002; Howard, 1994; Sun et al., 1994b;
Howard, 1990) found that changing the channel concavity
index leads to variations in numerical network complexity,
where drainages that are characterized by a higher concav-
ity index are more complex. However, a similar relation was
not reported in natural drainage networks, and the reasoning
behind it remained elusive. The concavity index, θ , emerges
as the exponent of the globally documented empirical power
law relation between the drainage area, A, and slope, S,
known as Flint’s law (Flint, 1974; Howard, 1971; Whipple
and Tucker, 1999; Willgoose et al., 1991):

S =KsA
−θ , (1)

where Ks is referred to as the steepness index. The concav-
ity index describes changes in the slope of the river channel
along its longitudinal profile as it accumulates drainage area
downstream. Empirical studies have found that the concav-
ity index ranges between 0.1–1, with values between 0.3–0.7
being more common (Tucker and Whipple, 2002). A sub-
linear profile is characterized by concavity values close to
zero, where the channel slope is nearly independent of the
drainage area. In contrast, high θ values, closer to 1, indicate
that most of the elevation gain occurs at higher elevations and
small drainage areas (Whipple and Tucker, 1999). Channel
concavity has been shown to vary with formative processes,
which are primarily influenced by hydrologic conditions, i.e.,
the relationship between precipitation, discharge, and chan-
nel width (Whipple and Tucker, 1999; Stock and Dietrich,
2006), and by spatial gradients in tectonic uplift (Seybold
et al., 2021) and climatic conditions (Roe et al., 2002). No-
tably, several recent studies identified links between chan-
nel concavity and prevailing climatic conditions, particularly
aridity. These studies have consistently indicated that arid
regions tend to exhibit lower concavity indices (Zaprowski
et al., 2005; Chen et al., 2019; Getraer and Maloof, 2021;
Michaelides et al., 2022).

The relationship between channel concavity and network
complexity is intriguing because it suggests that the con-
cavity index, θ , which characterizes the channel longitudinal
profiles, controls the planform properties of entire branching
drainage networks. One potential way in which θ may affect
the planform geometry of drainage basins is through its hy-
pothesized influence on junction branching angles (Howard,
1971, 1990; Sólyom and Tucker, 2007; Hooshyar et al.,

2017; Strong and Mudd, 2022). Larger θ values are as-
sociated with larger branching angles, potentially leading
to wider basins, while lower θ values are associated with
smaller junction angles and narrower basins. However, con-
sistent changes in the local metric of junction branching an-
gle, despite their potential effect on basin scaling (Yi et al.,
2018), do not necessarily correspond to variations in drainage
complexity.

To proceed, it is essential to establish a formal defini-
tion of drainage network complexity. The term complexity
has been used in association with drainage networks refer-
ring to various metrics and geometric properties, including,
for example, channel branching angle (Devauchelle et al.,
2012) and Horton–Strahler order (De Bartolo et al., 2016).
A formal mathematical definition was proposed by Ranjbar
et al. (2020), who used an entropy measure applied to se-
ries that describe the width and incremental area functions
within a basin (Ranjbar et al., 2020, and references therein).
These functions capture the variability in drainage density
(channel pixels) and incremental contributing area along the
catchment, from the furthest drainage divide to the outlet.
However, by reducing the two-dimensional geometry of the
drainage network to one-dimensional functions (Gangodaga-
mage et al., 2014), these measures cannot account for internal
basin asymmetry and the overall degree of channel tortuosity.

Ranjbar et al. (2020) further identified a significant cor-
relation between their complexity measure and the drainage
network topology, defined by the c-parameter of the self-
similar Tokunaga tree constructed based on the drainage net-
work (Pelletier and Turcotte, 2000; Zanardo et al., 2013)
and describing the properties of side branching. This sug-
gests that a topological description based on the Tokunaga
tree might also be informative for network complexity. Nev-
ertheless, the Tokunaga tree properties rely on average side
branching by order, which overlooks internal basin asymme-
try. Additionally, the Tokunaga-derived c-parameter assumes
topologically self-similar basins, a potentially restrictive as-
sumption.

Here, we adopt an alternative approach for defining and
quantifying network complexity based on the lengthwise
asymmetry between paired flow pathways that diverge from a
single divide and rejoin at a junction or a common base level
following Shelef and Hilley (2014) (Fig. 1c). The link be-
tween lengthwise asymmetry, capturing the multi-scale net-
work geometry, and drainage complexity can be understood
by considering two end-members. Extremely tortuous and
complex networks are linked to large lengthwise asymme-
try (Fig. 1b), as one tortuous flow pathway can be meaning-
fully longer than its across-divide pair. Conversely, simple
geometry is linked to small asymmetry (Fig. 1a). Follow-
ing this definition, we explore the associations between the
concavity index and the network complexity as reflected by
lengthwise asymmetry. We target observations from natural
drainage networks and process-based rationale to quantify
and better understand a climate-dependent, first-order con-
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trol on the 3D geometry of landscapes and the river networks
that drain them.

2 Quantifying the complexity and stability of
branching drainage networks

Drainage divides delineate drainage basins, and, conse-
quently, the planform geometry of a drainage network
is closely tied to the associated drainage divide network
(Shelef, 2018; Scherler and Schwanghart, 2020b; Habousha
et al., 2023). The stability of the drainage network planform
geometry is, therefore, tied to the stability of the divide net-
work. When the divides shift or jump, the drainage basin’s
geometry changes and the network geometry is not steady.
In contrast, as long as the divides remain stationary, the plan-
form geometry of the drainage system is stable and the net-
work topology is fixed. The stability of drainage divides can
be assessed using the gradient of the parameter χ in between
channel heads across divides (Willett et al., 2014), where χ
is proportional to the expected steady-state elevation and is
defined as (Perron and Royden, 2013)

χ (x)=

x∫
xb

(
A0

A(x′)

)θ
dx′. (2)

In Eq. (2), x is the spatial coordinates measured upstream
the channel, xb represents the base level, x′ is the integration
parameter, and A0 is a reference drainage area introduced to
ensure that the dimension of χ [L] is independent of the value
of θ .

Considering the χ values of channel heads (Fig. 1c), when
the environmental conditions are spatially uniform, a zero or
sufficiently small (Shelef and Goren, 2021) 1χ across a di-
vide indicates that the divide is stable (Willett et al., 2014;
Shelef and Hilley, 2014), while a large 1χ across a divide
could indicate a migrating divide (Willett et al., 2014; Beeson
et al., 2017; Habousha et al., 2023). To compare the stabil-
ity of divides and drainages of different scales, a normalized
χ difference (referred to as χ difference) across a divide is
defined for paired flow pathways, which originate from two
channel heads, i and j , across a single divide that join at a
downstream junction or base level (Fig. 1c):

1χij =1χji =
2|χij −χji |
χij +χji

, (3)

where χij (χji) is the χ value at channel head i (j ), where
χ is computed between the channel head and the common
junction of flow pathways i and j .

A formal quantification of network complexity is defined
in a similar manner as a measure of normalized lengthwise
difference (referred to also as asymmetry) between paired
flow pathways (Fig. 1c):

1Lij =1Lji =
2|Lij −Lji |
Lij +Lji

, (4)

where Lij and Lji are the along-flow distances from the two
channel heads to their common junction or base level.

These definitions offer valuable insights into how θ might
influence network complexity, 1L. In the extreme case of
θ = 0, χij = Lij , and χ differences across the divide reduces
to lengthwise asymmetry (Shelef and Hilley, 2014). In this
case, stable planform configurations with 1χij = 0 for all i
and j reduce to 1Lij = 0 for all i and j . Consequently, for
θ = 0, the only stable branching network is one with perfect
lengthwise symmetry, the simplest possible network. As θ in-
creases, the drainage area distribution along the flow path-
ways, Eq. (2), plays a growing role, such that equal χ across
divides could also be achieved when 1Lij 6= 0, as long as
the drainage area distribution compensates for the lengthwise
asymmetry.

3 Methods

We explore correlations between landscapes’ channel con-
cavity indices and their fluvial branching network complex-
ity while accounting for the networks’ stability. The analysis
targets natural drainage networks, numerical networks gen-
erated using the surface process model DAC (Goren et al.,
2014), and numerical optimal channel network simulations
(Rinaldo et al., 1992).

3.1 Elongated natural mountain ranges

To explore the correlation between channel concavity and
drainage network complexity in natural fluvial drainage net-
works, we independently quantify θ , 1L, and 1χ along
18 elongated mountain ranges across the globe. We choose
to focus on elongated ranges (rather than study general
networks) because (i) such ranges represent topographic
units, whose base-level boundaries are relatively well de-
fined; (ii) each of the ranges is relatively simple in terms of
its tectonic setting, where the main faults bound the range
rather than transect it; and (iii) for each range, θ and 1L
are quantified over a relatively large domain with an along-
range length between 10s–100s km. We further note that the
ranges we choose are situated in both extensional and com-
pressional settings, and, accordingly, some are bounded by
normal faults and others are bounded by reverse faults. De-
tailed information about the elongated ranges is listed in Ap-
pendix A.

The selection of elongated mountain ranges for the current
analysis adhered to specific criteria: (i) the elongated range
has a single main divide from which basins drain to two op-
posite base levels. (ii) There should be a minimum of four
basins on each flank, with the basins’ outlets determined by
a common elevation contour surrounding the range. (iii) The
range should be free from prevalent volcanic characteristics
or systematic structural control on the internal drainage pat-
tern.
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The analysis of the natural elongated mountain ranges is
based on the SRTM 3 arcsec digital elevation model (DEM)
(NASA Shuttle Radar Topography Mission, 2013) using
the TopoToolbox topography analysis package (Schwanghart
and Scherler, 2014; Scherler and Schwanghart, 2020a). The
boundaries of each range were defined based on a minimum
elevation threshold, chosen visually to eliminate alluvial fans
and focus on bedrock rivers. Then, interstitial basins were
excluded from the analyzed area, such that the analysis was
based only on the main basins, draining the main divide to the
boundary contour. The drainage network was extracted based
on a predefined drainage area threshold, and we explore the
sensitivity of the results to the drainage area threshold in Ap-
pendix B.

A single, best-suited concavity index, θ , was determined
for each elongated mountain range based on the extracted
drainage network and using the disorder scheme (Gailleton
et al., 2021; Hergarten et al., 2016; Mudd et al., 2018). The
disorder scheme assesses the extent to which the elevation-
based order of channel pixels aligns with their χ -value or-
der. The scheme involves calculating a normalized measure
of pixel disorder, D∗(θ ), for predefined values of θ (Gail-
leton et al., 2021). The most probable θ value (referred to as
the best-suited θ ) is the one that minimizes the D∗(θ ) met-
ric. For each value of θ , the calculation involves calculating
R(θ )=

∑n
i=1|χi+1(θ )−χi(θ )| when χ is sorted by eleva-

tion. Then, because the absolute value of χ depends on θ ,
R(θ ) is normalized by χmax(θ ) to define D(θ )= (R(θ )−
χmax(θ ))/χmax(θ ) (Hergarten et al., 2016; Gailleton et al.,
2021). Finally, D∗(θ ) is defined as D∗(θ )=D(θ )/Dmax
(Gailleton et al., 2021).

The uncertainty in θ is derived based on the uncertainty
in D∗ following Gailleton et al. (2021). To evaluate it, a set
of D∗(θ ) values was generated through bootstrapping itera-
tions, with the number of iterations being 1.5 times the num-
ber of main basins in each range. In each iteration,D∗(θ ) was
computed based on the drainage network of a random se-
lection of 90 % of the main basins. The specific parameters
used in the bootstrapping iterations were chosen heuristically
for their relatively consistent results. The identification of the
best-suited θ using the disorder scheme does not assume any
specific functional dependency between the elevations and
χ values but does assume that the parameters affecting the
elevation along the drainage network, such as tectonic, cli-
mate, and lithology, might vary as a function of χ .
1L and 1χ were computed for all divide points with dis-

tance from divide endpoints exceeding 1000 m (Scherler and
Schwanghart, 2020a). For each of these divide points, 1L
and 1χ were calculated based on the L and χ values of
the two opposing (across the divide point) nearest drainage
network pixels along the D8 flow routing raster and the L
and χ values of the junction (or base level) of the two op-
posing pathways. To eliminate the influence of overall range
asymmetry (which could stem from orographic effects on cli-
mate, tectonic advection, or tectonic tilting), the main divide

points from which flow diverges to the two opposite base lev-
els of the elongated range were excluded from the analysis.
The calculation of χ values employed the best-suited θ value
of the range. In cases where the two nearest network pixels
were not at the same elevation, a correction was applied to
1L and 1χ . This correction adds the values of Aθ01zij/Ks

and 1zij/KsA
−θ
i to the χ and L of the lower pixel, respec-

tively, thus estimating the χ and L values for channel heads
that are at exactly the same elevation. Here, 1zij represents
the elevation difference between the two nearest network pix-
els, Ks is the best-fit steepness index (derived from the slope
of the χ–z data of the range), and Ai denotes the drainage
area at the lower nearest network pixel (assuming it is labeled
as i).

3.2 DAC simulations

The DAC landscape evolution model is a process-based
model presented in Goren et al. (2014). DAC implements an
implicit solver of the stream power incision model (Howard,
1994; Whipple and Tucker, 1999), E =K(PA)mSn, where
E [L/T] is the erosion rate, K [L(1−3m)/T(1−m)] is the
erodibility coefficient, P [L/T] is the precipitation rate, A
[L2] is the drainage area, S [L/L] is the channel gradient,
and m and n are positive exponents. Upon identifying Ks =

(E/KPm)1/n and θ =m/n, the stream power model can be
shown to reduce to Eq. (1). The solver is built upon a tri-
angular, sparse, dynamically adjusting grid. Unlike previous
implementations (Goren et al., 2014, 2015; Habousha et al.,
2023) that solved for the divide location and identified cap-
tures following divide breaching, the DAC implementation
used here assumes a strict steepest descent algorithm for flow
routing. This choice allows better preservation of the initial
conditions (starting with a random subdued topography be-
tween 0–1 m) and facilitates the comparison of drainage net-
work complexity across values of the concavity index.

For the current analysis, we ran simulations over a do-
main size of 200 km× 60 km, producing elongated numer-
ical mountain ranges with a single main water divide. The
simulations apply a precipitation rate of P = 1 myr−1; an up-
lift rate of U = 0.5 mmyr−1; and a slope exponent, n, of 1.
The area exponent, m, was varied between the simulations
and was maintained spatially uniformly in each simulation.
The applied concavity index was calculated as θ =m/n. The
drainage density, a function of grid spacing, is independent of
the model parameters and similar across the simulations. To
maintain a consistent global relief despite the changes in θ ,
the erodibility coefficient K is adjusted across the simula-
tions. Table C1 lists the values of K .

The simulations were run for 100 million years, ensuring
topological stability by verifying that no alterations in flow
routing occurred during the final 10 million years of each
simulation. To ensure that the observed effects are indeed re-
lated to θ and not influenced byK , Fig. C1 replicates a subset
of the analysis while keeping K constant.
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In the DAC simulations, the calculation 1L and 1χ

across divides accounts for all grid-based channel head pairs
that share a divide. When a pair of channel heads does not
have the same elevation, a similar correction to the one de-
scribed for the natural elongated mountain ranges was used
with the applied steepness index, Ks.

3.3 Optimal channel network simulations

Optimal channel network (OCN) theory (Rodriguez-Iturbe
and Rinaldo, 2001; Rinaldo et al., 1992; Molnár and
Ramírez, 1998; Banavar et al., 2001) suggests that natu-
ral drainage networks self-organize in a way that minimizes
global energy expenditure during water flow down the net-
work. In this general view of landscape organization, the en-
ergy is evaluated based on the network’s geometry and topol-
ogy, represented as sets of nodes and edges, where edges
represent the channel connections between nodes. Each in-
ternal node has a unique path leading to an outlet node, and
the flow paths are loopless. The total energy expenditure, de-
noted as P , for any network defined over the node set is de-
termined by the sum of the local energy expenditures, Pi ,
along each edge, i (Sun et al., 1994b):

P =
∑
i

Pi ∝
∑
i

QiSi li ∝
∑
i

A
γ

i li = Peq. (5)

Si is the slope across edge i, Ai is the upstream drainage
area (proxy for discharge Q) of node i from which edge i
originates, and li is the length of edge i. The term on the
right-hand side of Eq. (5) is referred to as the energy equiv-
alent, Peq. The area exponent, γ , is expected to correlate
inversely with θ , the concavity index (Eq. 1) (Strong and
Mudd, 2022). However, the interdependence of these two ex-
ponents as a function of environmental conditions and net-
work hydrology, and their consequent functional relation, re-
mains debated (Strong and Mudd, 2022). Here, we follow the
formulation of Sun et al. (1994b) and define γ = 1− θ .

Natural drainage networks were found to resemble numer-
ically generated networks in a state of a local energy min-
imum (Rodriguez-Iturbe and Rinaldo, 2001; Colaiori et al.,
1997). A commonly used criterion to identify and construct
such networks is to ensure that the total energy (i.e., Eq. 5)
is not reduced by a single-edge flip. An edge flip is an opera-
tion that redirects an edge that emerges from node i and used
to end at node j , an immediate neighbor of i, to one of its
other immediate neighbors, k 6= j , without creating loops. A
network configuration where any edge flip will only increase
its total energy content defines a local energy minimum and
corresponds to a topologically stable configuration.

We perform simulations using an iterative greedy algo-
rithm following Rodríguez-Iturbe et al. (1992) to explore the
effect of θ on networks’ evolution toward the local energy
minimum and the complexity of the emerging stable net-
works. The algorithm starts from a random network config-
uration, attempts a random edge flip in each iteration, and

accepts the new configuration only if the edge flip reduces
the total energy. Note that this approach differs from the sim-
ulated annealing algorithm (e.g., Sun et al., 1994a, b) that
defines a temperature-dependent probability to accept edge
flips that increase the total energy as a means to exit lo-
cal minima and identify a global minimum configuration.
Here, we use the greedy approach to eliminate probability-
dependent changes that obscure the topological relation be-
tween stable networks generated with different θ values from
the same initial random state (Rodríguez-Iturbe et al., 1992).

Optimizations with different θ are initiated from the same
random network with a domain size of 200 over 60 nodes.
Each node in the domain can drain to one of its eight neigh-
bors, leading edges to be longer in the diagonal than in the
rook directions. The nodes along the domain boundary are
defined as outlets. Each simulation performed an optimiza-
tion with a predefined θ value. The OCN approach lacks a
hillslope domain, resulting in a high drainage density. There-
fore, to avoid signal overwhelming by channel head pairs that
merge at a single node downstream, 1L and 1χ are calcu-
lated only for neighboring channel head pairs that drain to
different outlets (boundary nodes). Each simulation was run
for 3.6× 106 iterations.

4 Results – concavity correlates with lengthwise
asymmetry in natural and numerical mountain
ranges

Among the 18 natural elongated mountain ranges studied, a
larger θ correlates with a higher median 1L (Fig. 2a; blue
squares) and a wider spread of1L values (Fig. 2a; blue bars,
denoting the 25th and 75th percentiles of the 1L distribu-
tion in each range). Though the correlation is not necessar-
ily linear, we quantify it through Pearson’s linear correla-
tion. The correlation coefficient between the best-suited θ
and the median 1L is 0.92 (with a slope of 2.16 and a
P -value of 4.22× 10−8), and the correlation coefficient be-
tween the best-suited θ and the difference between the 75th
and 25th percentiles of the 1L distribution is 0.81 (with a
slope of 1.30 and a P -value of 5.54× 10−5). These trends
indicate that those natural networks that are characterized
by a higher value of θ are more complex (with a larger me-
dian 1L) and show greater variability in their level of com-
plexity. In contrast, low-θ natural networks have lower com-
plexity and complexity variation.

To explore the relation between planform stability and θ ,
Fig. 2a also shows the correlation between 1χ and θ (green
symbols and bars). The Pearson’s linear correlation coeffi-
cient between the best-suited θ and the median 1χ is 0.58
(with a slope of 0.33 and a P -value of 0.01). The correlation
coefficient relating θ to the difference between the 75th and
25th percentiles of the 1χ distribution is 0.61 (with a slope
of 0.43 and a P -value of 0.007). Therefore, the association
and sensitivity (i.e., correlation and slope) between 1χ and
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Figure 2. Complexity and concavity index. (a) Relations between lengthwise asymmetry, 1L (blue) and 1χ (green), and the concavity
index θ . The data represent 18 elongated mountain ranges, visualized as circles on the right-hand side of the map. The circles are color-coded
by the logarithm of the aridity index (AI) (Zomer et al., 2022), with yellower circles corresponding to more arid conditions. (b) Relations
between 1L, 1χ , and the concavity index θ for numerical ranges from the DAC process model (Goren et al., 2014). (c) Relations between
1L, 1χ , and the concavity index θ for numerical ranges derived from simulations using an optimal channel network model. In all panels,
the squares display median values and the vertical error bars indicate the 25th and 75th percentiles. The horizontal error bars in panel (a)
represent the uncertainty in θ , where the square is located at the best-suited θ value. A relatively high regression slope and significant
correlation is observed between θ and 1L and between θ and the spread of 1L in the natural and numerical ranges. A weaker (a, c) or
nonexistent (b) correlation is observed between 1χ and θ .

its spread to θ are weaker than those between 1L and its
spread and θ . Consequently, the degree of network instabil-
ity, as quantified by 1χ , cannot be invoked as a main driver
of the variability in complexity for the analyzed ranges.

We cannot fully exclude the possibility that heterogeneity
in the environmental conditions across the analyzed moun-
tain ranges affect both θ and 1L. To address this possibil-
ity, we apply a similar analysis over two types of synthetic,
steady-state landscapes of uniform environmental condi-
tions generated using (i) the DAC process-based landscape
evolution model (Goren et al., 2014) and (ii) the process-
independent greedy OCN model. In both models, we ran sim-
ulations with pre-defined θ values and measured1χ and1L
over the emerging drainage networks after they achieved
topological stability. For 1L, models’ results, Fig. 2b and c

(blue), show similar trends to those documented for the natu-
ral elongated mountain ranges. The median and the spread
of 1L increase with increasing θ . For 1χ (blue), model
results show constant and infinitesimal values, independent
of θ in the DAC simulations and with a weak dependency
on θ in the OCN simulations. Notably, while the range of1L
has the same order of magnitude in the natural elongated
ranges (Fig. 2a) and the numerical drainages (Fig. 2b and c),
the 1L values in the simulations are mostly smaller than the
natural 1L for the higher θ values, potentially revealing the
effect of environmental heterogeneity on the natural terrains’
complexity, consistent with the higher values of1χ for these
ranges.
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Figure 3. Changes in lengthwise asymmetry, 1L as a function of concavity index, θ with differing Hack’s law parameters; Eq. (6). 1L is
calculated for idealized sub-basins along paired flow pathways, i and j , sharing a stable divide (Fig. 1c). (a) The color map represents the
logarithm of Hack’s coefficient ratio, assuming that Hack’s exponents are identical, hi = hj = 2. (b) The color map represents the difference
between Hack’s exponents, assuming Hack’s coefficients are identical and hi = 2. In both panels, Li = 50 km, Lj ≤ Li , and xc= 0.25 km.
The black and gray curves represent fitted power laws to the 1L–θ trends based on the natural elongated mountain ranges shown in Fig. 2a.
For the median 1L, the fit is 1L= 2.12θ1.60 (black curves); for the 75th percentile, the fit is 1L= 2.49θ1.23 (upper gray curves); for the
25th percentile, the fit is 1L= 1.54θ2.14 (lower gray curves).

5 Discussion

5.1 Hack’s law explains the relation between θ and ∆L

To explain the observed correlation between θ and land-
scape complexity as quantified by 1L, we turn to an anal-
ysis of idealized channels. We set two coordinate systems, x,
that follow paired flow paths from their common junction or
base level to their common divide, such that x = 0 is at the
junction and x = Li (x = Lj ) is the common divide when
measured along channel i (j ) (Fig. 1c). We assume that the
channels obey Hack’s law (Rigon et al., 1996), such that the
drainage area distribution along the sub-basins whose outlet
is the common junction are expressed as follows:

Ai(x)= kai (Li − x)hi for 0≤ x ≤ Li − xc = Lij

Aj (x)= kaj (Lj − x)hj for 0≤ x ≤ Lj − xc = Lji, (6)

where kai and kaj are Hack’s coefficients and hi and hj are
Hack’s exponents. The hillslope length, xc, measured be-
tween the divide and the channel heads, is assumed to be uni-
form. We further assume that the channels obey a power law
relation between the slope and the drainage area with a con-
cavity index θ , Eq. (1), and, consequently, that the χ values
at the channel heads could be defined by combining Eqs. (6)
and (2):

χi(Li − xc)=

x′=Li−xc∫
x′=0

Aθ0dx′

Ai(x′)θ

=


Aθ0

(1−hiθ )kθai

(
L

1−hiθ
i − x

1−hiθ
c

)
for hiθ 6= 1

Aθ0
kθai

ln
(
Li
xc

)
for hiθ = 1,

(7)

χj (Lj − xc)=

x′=Lj−xc∫
x′=0

Aθ0dx′

Aj (x)θ

=


Aθ0

(1−hj θ )kθaj

(
L

1−hj θ
j − x

1−hj θ
c

)
for hj θ 6= 1

Aθ0
kθaj

ln
(
Lj
xc

)
for hj θ = 1.

(8)

Requiring the channels to be in a topological steady state
(stable divide and stable planform configuration), the chan-
nel head χ values across the divide must be equal. For gen-
erality and simplicity, we consider the case where hiθ 6= 1
and hj θ 6= 1 and write the divide stability criterion, equating
χi(Li − xc) to χj (Lj − xc):

1
(1−hiθ )kθai

(
L

1−hiθ
i − x1−hiθ

c

)
=

1
(1−hj θ )kθaj

(
L

1−hj θ
j − x

1−hj θ
c

)
. (9)

If Hack’s coefficients and exponents are identical for the
two sub-basins, i.e., kai = kaj and hi = hj , then the only
solution to Eq. (9) is lengthwise symmetry, Li = Lj and
1L= 0 for all values of θ .

To explore the possibility of stable topological configura-
tions that respect equal χ across a divide while permitting
1L 6= 0, we relax the restricting assumption of an identical
Hack’s coefficient or exponent. Firstly, we consider the case
where kai/kaj is not necessarily 1, whereas hi = hj = h. Fig-
ure 3a shows the value of kai/kaj needed to ensure equal χ
across a divide, Eq. (9), as a function of θ and 1L. Without
the loss of generality, we assume that Lj < Li and consider
values of kai/kaj < 10, approximately a factor of 3 larger
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than the range of reported natural values (Montgomery and
Dietrich, 1992; Mueller, 1972; Willemin, 2000; Dodds and
Rothman, 2000; Shen et al., 2017; Sassolas-Serrayet et al.,
2018). Considering a fixed1L, the figure shows that, for low
values of θ , there are no kai/kaj values within the range for
which Li 6= Lj . As θ increases, 1L 6= 0 could be achieved
with high kai/kaj values. As θ further increases, the kai/kaj
values ensuring stable configurations with any particular1L
become smaller. This analysis reveals that, for small θ val-
ues, stable topologies can be achieved only with small 1L,
but, as θ increases, small differences in Hack’s coefficients
permit stable topological configuration with large lengthwise
asymmetry.

Next, we consider the case where hi 6= hj , whereas kai =
kaj = ka . Here, Eq. (9) becomes independent of ka, and, for
a fixed value of hi , the value of hj for different 1L can be
solved only implicitly. Figure 3b shows the value of the dif-
ference hi −hj as a function of θ and 1L for hi = 2. The
difference is used rather than the ratio, as with ka (Fig. 3a),
because the h exponents vary by a factor, whereas the ka co-
efficients can vary by orders of magnitude. We only consider
solutions where 0< hi −hj < 0.5, again representing a dif-
ference larger by a factor of approximately 3 with respect to
the range of h exponents reported for natural terrains. Here,
as well, for low values of θ , a solution exists only for very
small 1L, and, as θ increases, smaller differences in the
Hack’s exponents allow a stable configuration with a large
lengthwise asymmetry.

This analysis reveals that the widely documented geomor-
phic relationships of Hack’s law, Eq. (6), and Flint’s law,
Eq. (1), are consistent with and can explain natural and
numerical observations (Fig. 2) of the relations between θ
and1L. More specifically, the analysis shows that, when θ is
large, stable configurations with zero 1χ across divides can
be achieved even when 1L� 0, facilitated by small varia-
tions in Hack’s exponent and coefficient. When θ is small,
topological stability necessitates high lengthwise symmetry
(small 1L).

The curves that overlie Fig. 3 show the best-fit power law
relation between the best-suited θ and the median (black
curve) and the 25th and 75th (gray curves) percentiles of1L
based on the elongated mountain ranges shown in Fig. 2a.
The relation between the curves and the color map that un-
derlies them reveals that high-θ natural networks achieve
large 1L by exploiting small variations in Hack’s expo-
nent or coefficient. In contrast, low-θ networks require
greater variability in Hack’s parameters to achieve a much
smaller 1L.

5.2 Optimal channel network (OCN) perspective

While the analysis based on Hack’s law, Sect. 5.1, explains
the observed correlation between concavity and complexity
from a geomorphic scaling relations standpoint, the OCN
framework helps conceptualize this correlation based on en-

ergy considerations. Figure 4a shows the evolution of the
normalized energy equivalent, Peq/Peqinit , as a function of
iteration number during the energy optimization process un-
der different values of θ and starting from the same initial
random network, with equivalent energy Peqinit . The figure
shows that, as θ decreases, the normalized energy equivalent
reduction is greater. Figure 4b shows the evolution of the
median 1L during the optimization procedure, displaying
a similar trend to that of the normalized energy equivalent,
with a greater reduction in 1L with decreasing θ . Notably,
while the greedy algorithm ensures a monotonous energy re-
duction with an increasing number of iterations (Fig. 4a), the
1L trends are non-monotonous (Fig. 4b). The 1L values of
the final energy-minimum networks are depicted in Fig. 2c.
Appendix D discusses the trend of1χ through the optimiza-
tion iterations.

Examples of network topology optimized using the greedy
algorithm with different values of θ are shown in Fig. 5. High
θ values result in complex, tortuous networks that do not sig-
nificantly differ from the random initial conditions, consis-
tent with the low number of accepted edge flip operations
(Fig. 4c). As θ decreases, the networks become less complex
and the legacy of the initial conditions is gradually erased
(Fig. 5c and d). A similar behavior was recorded in surface
process model simulations (Shelef and Hilley, 2014; Kwang
and Parker, 2019; Howard, 1994).

The reduction in the minimum normalized energy equiva-
lent and network complexity observed in Fig. 4a and b and
the gradual deviation from the random initial network with
decreasing θ (seen in Fig. 5) could be rationalized analyti-
cally. In the limit of θ = 0 and when the edge length is uni-
form, the energy equivalent, Eq. (5),

∑
i

A1−θ
i li , becomes pro-

portional to
∑
i

Li (here, li is the length of a single edge and

Li represents the distance to the outlet node) (Colaiori et al.,
1997). In this case, the global minimum is attained when each
node drains to an outlet along the shortest path, contributing
its local area to the minimal number of nodes. This ensures
that, in the limit of θ→ 0, the emerging topology is such
that each Li is minimal and therefore equal across all divides
and 1L→ 0. Such an optimal network exhibits an excep-
tionally simple geometry that differs significantly from any
random network, explaining the low-complexity configura-
tions that characterize low-θ OCNs (Fig. 5), the many edge
flips needed to achieve such configurations, and the associ-
ated large normalized energy equivalent reduction (Figs. 4a
and 2c).

In the θ→ 1 limit, the energy equivalent becomes inde-
pendent of the drainage area. Assuming uniform li , the en-
ergy equivalent is a function of the number of nodes in the
domain and is independent of the specific drainage configu-
ration. Consequently, all networks, including any random ini-
tial complex network, have the same minimal energy. This,
in turn, explains the low number of edge flips when θ→ 1,
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Figure 4. Optimal channel network (OCN) dynamics as a function
of concavity index. Transient response and steady-state values from
OCN simulations (see Sect. 3.3 for details) showing the effect of the
concavity index, θ , on the reduction trends of (a) the normalized en-
ergy equivalent, Peq/Peqinit , Eq. (5); (b) the median1L; and (c) the
acceptance ratio of edge flip operations that reduce the total energy,
i.e., the quotient of edge flips and the total number of iterations.

the small reduction in normalized energy equivalent, and the
similarity of the final optimal OCN to the initial random net-
work.

For 0< θ < 1, our analysis reveals a monotonous rela-
tion between θ to the normalized energy equivalent reduction

Figure 5. Topologies emerging from OCN simulations with dif-
ferent concavity indexes. Random initial conditions (top) and final,
steady optimal channel networks following the application of the
greedy algorithm with different θ values. Note the great complexity
and the similarity to the initial conditions of the high-θ networks
relative to the simple geometry of the low-θ networks that signifi-
cantly differ from the initial conditions. Edges are plotted only for
drainage areas greater than five nodes, and edge width scales with
the number of draining nodes.

(Fig. 4a), the final 1L (Fig. 2c), and the acceptance ratio
of edge flips (Fig. 4c). Overall, the OCN analysis indicates
that θ determines the multiplicity of stable topologies. Net-
works with a high θ value can achieve stability across a wide
range of 1L values, allowing many possible stable topolo-
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gies. This includes the formation of complex networks with
large 1L values, similar to random networks. In contrast, to
attain stability, networks with a low θ value are restricted to
simple topologies with smaller 1L values.

5.3 Climate aridity controls network complexity

Large data compilations of river profiles revealed that chan-
nel concavity correlates with climatic and hydrologic fac-
tors. More specifically, mean annual rainfall and rainfall in-
tensities correlate positively with the concavity index (Za-
prowski et al., 2005). Likewise, the degree of aridity as quan-
tified by the aridity index (AI), the quotient of precipitation
and evapotranspiration potential (Zomer et al., 2022), corre-
lates with channel concavity, such that in arid regions (with
a low aridity index) rivers are less concave (Chen et al.,
2019; Getraer and Maloof, 2021). Combining these estab-
lished relations between climate and concavity index and the
correlation identified here between the concavity index and
drainage complexity implies that the climatic conditions at
which drainage networks develop could be encoded in their
complexity and thus in the large-scale planform geometry
of landscapes. Consequently, arid climates, characterized by
low channel profile concavity, likely favor the development
of low-complexity networks, whereas a more humid cli-
mate, characterized by high-concavity channels, is expected
to result in variable complexity, including high-complexity
drainage networks.

We examine the relationship between the complexity,1L,
and the aridity index across the elongated natural mountain
ranges. The aridity index for each elongated range is calcu-
lated based on pixel statistics of the global aridity index raster
(Zomer et al., 2022). A mask based on the analyzed area in
each elongated range is used to extract the relevant pixels
from the AI raster. The median and 25th and 75th percentiles
of the pixel values within each such mask are used in the
analysis.

Figure 6 shows a positive correlation between climate arid-
ity index (AI) and network complexity for the elongated
mountain ranges. The Spearman’s rank correlation coeffi-
cient for this correlation is 0.59 with a P -value of 0.01, in-
dicating, that consistent with the expectations, higher com-
plexity tends to be associated with a higher AI, represent-
ing more humid climates. It is worth noting the significance
of this correlation, considering that the correlation between
the concavity index and the aridity index is found to be in-
significant (see Appendix E for details) and that our dataset
comprises only 18 mountain ranges. This could be seen as
another support for the strong link between the network plan-
form complexity and the formative concavity index (Eq. 1),
which is expected to strongly depend on the hydrologic con-
ditions (i.e., rainfall–discharge, and discharge–channel width
relations) (Whipple and Tucker, 1999; Freund et al., 2023)
and could differ from the measured concavity (Seybold et al.,
2021).

Figure 6. Complexity and aridity. The relation between drainage
complexity,1L, and aridity index, the quotient of precipitation and
evapotranspiration potential (Zomer et al., 2022), for the 18 elon-
gated mountain ranges analyzed in Fig. 2a. The box symbols repre-
sent the median values, and the bars show the 25th and 75th per-
centiles. A significant correlation (P = 0.01) with a Spearman’s
rank correlation coefficient of 0.59 indicates that more complex net-
works (high 1L) are associated with more humid climatic condi-
tions and their corresponding hydrology.

5.4 Concavity controls planform landscape evolution

The results so far reveal that high-concavity landscapes
can achieve topological stability with variable complexity,
whereas the stability of low-concavity landscapes is condi-
tioned by low complexity. These findings are consequential
for landscape evolution, which we further investigate and
quantify using landscape evolution simulations in DAC.

5.4.1 Changing climate

A first simulation set is designed to examine how the
drainage network adjusts to changes in the concavity in-
dex, reflecting changing climatic, hydrologic, and geomor-
phic conditions. Previous studies have linked the concavity
index to channel-forming processes, where debris flow chan-
nels typically exhibit lower concavity compared to fluvial
channels (Stock and Dietrich, 2006). Therefore, a decrease
in the concavity index can represent aridification or a tran-
sition to a debris-dominated landscape, while an increase in
concavity may indicate a transition to a more humid climate
or a fluvial-dominated regime.

The simulation set starts with a topologically stable land-
scape of high concavity (θ = 0.9) and high complexity
(brown frame in Fig. 7). We then gradually decrease the con-
cavity index by steps of 0.1. Following each step, we let the
landscape re-equilibrate until no further topological changes
are observed. We measure the median value of 1L for this
equilibrated landscape and then use this landscape as the ini-
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Figure 7. The effect of changing concavity on network complexity. Simulation results from the DAC process model (Goren et al., 2014)
showing the relation between the complexity,1L, and the concavity index, θ , during a two-stage scenario. Firstly, the concavity is gradually
decreased by steps of 0.1 (left-pointing arrow), and, secondly, the concavity increases in steps of 0.1 (right-pointing arrows). The network and
topography of the initial θ = 0.9 conditions are depicted in the brown-framed topography; the θ = 0.1 landscape, corresponding to the end
of the first stage and the beginning of the second stage, is shown with a black-framed topography; and the final θ = 0.9 landscape is shown
with a purple-framed topography. Note (i) the hysteresis response of1L, showing different trends depending on the directional change in the
concavity index, and (ii) the difference in topographic complexity between the two θ = 0.9 maps. For the current analysis, 1L is calculated
only for channel heads that drain to different outlets, such that the shared junction is the base level. Measuring 1L over this longer length
scale emphasizes the hysteresis signal.

tial condition for the next step. The procedure continues until
reaching a low concavity value of θ = 0.1. Subsequently, we
gradually increase the concavity index by 0.1, following the
same re-equilibration procedure, until returning to the initial
concavity value of θ = 0.9.

Figure 7 shows that, during the decreasing concavity stage,
the median 1L gradually decreases, consistent with the re-
sults shown in Fig. 2b. However, in the increasing concavity
stage, a hysteresis response is observed. The median 1L in
the increasing concavity stage is lower than that of the same
concavity value in the decreasing concavity stage and overall
shows only a slight increase compared to the median 1L of
the landscape with θ = 0.1 (black frame in Fig. 7). Conse-
quently, when the concavity index returns to its initial value
of θ = 0.9 (purple frame in Fig. 7), the median 1L of the
landscape is smaller by a factor of 2.4 with respect to the
median 1L of the initial conditions with the same concavity
index.

The dynamics depicted in Fig. 7 suggest that, when arid-
ification or a transition to a debris-flow-dominated regime
takes place, there is a significant autogenic reorganization

of the drainage network towards a lower-complexity con-
figuration. In contrast, when transitioning to a more humid
climate or a fluvially dominated regime, minimal reorgani-
zation is expected, and the resulting landscape may retain
the complexity of the antecedent more arid or debris-flow-
dominated state. This implies that the complexity of a given
landscape, as reflected by1L, is influenced by the lowermost
concavity experienced by this landscape. For example, a low-
complexity landscape, currently located in a humid climate
(and exhibiting high concavity), might suggest a formation
or modification history under drier (i.e., low-concavity) con-
ditions. Differences in past aridity can therefore be invoked
to explain the variability in 1L with aridity (Fig. 6) and the
increased variability in 1L with concavity in the elongated
mountain ranges (Fig. 2a).

5.4.2 Fingerprints of antecedent lithologic conditions

To explore another scenario in which the complexity records
the legacy of past conditions, we focus on the effect of lithol-
ogy in a second set of simulations. Here, drainage networks
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Figure 8. Preservation of antecedent conditions as a function of concavity index in a DAC (Goren et al., 2014) process model simulation
series. In these simulations, drainage networks evolve primarily through the incision of spatially uniform rocks, except for a narrow, elongated
slab with a higher erodibility (100 times greater), a width of 1 km, and a depth that extends from the surface to 5 km into the crust. The slab
is located 15 km from the southern base level. The south-draining basins originally incise into the slab-containing rocks, and the drainage
network locally aligns with the high-erodibility slab, forming longitudinal channels regardless of the concavity index (topographies at the
top of the figure). Following a 5 km exhumation, the slab is fully eroded away and rivers incise into uniformly erodible strata. Drainage
network response to the removal of the slab depends on the concavity index. In simulations of low concavity (topographic maps on the left; a
and b), significant drainage reorganization removes the longitudinal segments (topography at the bottom left; b). In contrast, high-concavity
landscapes (topographic maps to the right; d and e) preserve the antecedent longitudinal segments after the slab is eroded (topography at the
bottom right; e). The central graph (c) presents the preservation ratio by counting the number of longitudinal segments at 100 Myr (after slab
removal by erosion) and dividing it by the number of longitudinal segments at 10 Myr (while the high-erodibility slab is still present) for all
south-draining basins.

evolve from a subdued, random topography, similar to the
simulations depicted in Fig. 2b. However, in this case, a nar-
row, 1 km wide slab protrudes into the surrounding rocks.
The slab extends down to a depth of 5 km into the crust and is
positioned midway between the center of the domain and the
southern base level of the evolving range, as shown in Fig. 8.
The slab’s erodibility is higher by a factor of 100 compared to
that of the surrounding rocks. This high-erodibility slab can
be conceptualized as a fault zone containing crushed, more
erodible rocks.

During the initial period of approximately 10 Myr (with
an imposed uplift rate of 5× 10−4 myr−1), the developing
channel networks incise into the layers of rock protruded by
the higher-erodibility slab. Once the slab is fully removed
by erosional exhumation of 5 km, the networks continue to
incise into rocks with a uniform erodibility.

The simulation results reveal distinct behaviors of the
drainage networks over time, depending on the concavity
index and the presence of a high-erodibility slab. In the
first 10 Myr, south-draining channel segments favor the high-
erodibility slab, resulting in channel segments that develop
on top of the slab (Duvall et al., 2020), parallel to the moun-
tain range, with an east–west orientation. However, beyond
this period, after the high-erodibility slab has been eroded,

the response of the drainage networks diverges based on the
concavity index.

To quantitatively assess this response, we analyze the
number of slab-parallel channel longitudinal segments whose
orientations are within 10° of the slab’s orientation, where a
segment connects two neighboring numerical nodes. Figure 8
illustrates the ratio of longitudinal segments after 100 Myr
(post-slab removal by erosion) to the number of longitudi-
nal segments at 10 Myr, prior to the complete exhumation of
the slab, for south-draining basins. As the concavity index
increases, a greater preservation of longitudinal segments
is observed, although the slab is completely eroded. In the
case of a landscape with θ = 0.9 (right-hand side of Fig. 8),
the drainage pattern predominantly retains the legacy of the
high-erodibility slab, resulting in a preservation ratio of lon-
gitudinal segments close to 1. Conversely, a landscape with
θ = 0.2 (left-hand side of Fig. 8) is characterized by lower
preservation of longitudinal segments after the removal of
the high-erodibility slab, leading to a low preservation ratio.

The slab simulation set reveals that environmental con-
ditions that sustained a high concavity index over long
timescales resulted in drainage networks that recorded the
cumulative effect of spatially varying heterogeneities (e.g.,
lithology) even long after these heterogeneities were re-
moved. In contrast, environmental conditions associated with
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a low concavity index might eliminate traces of past spatial
heterogeneities.

The two simulation sets indicate that landscapes with high
concavity indexes are less sensitive to variations in exogenic
forcing. As a result, high-concavity-index landscapes can
preserve the original drainage patterns (Kwang and Parker,
2019), their specific complexity, and the legacy of the en-
vironmental conditions in which these landscapes initially
formed. Conversely, networks with low concavity indexes
undergo reorganization to attain a configuration of lower
complexity in response to any environmental, climatic, and
tectonic changes. Consequently, they possess a limited ca-
pacity to retain the legacy of the previous environmental con-
ditions.

6 Conclusions

The current analysis reveals that the channel concavity index,
θ , reflecting the channel longitudinal profile, sets a first-order
control on the planform complexity of drainage networks as
quantified by the statistics of asymmetry in the length of
paired flow pathways, 1L. The variability in concavity in-
dices thus explains the observed variability in complexity
across the globe. Specifically, θ controls the multiplicity of
stable planform configurations available to a drainage net-
work. When θ is small, the number of stable configurations is
small, and they are all characterized by high lengthwise sym-
metry, producing simple-looking drainage networks. When
θ is large, the number of stable planform configurations in-
creases, and they include configurations with a large de-
gree of lengthwise asymmetry, producing complex geometry.
Consequently, high-θ drainages can be found in topological
stable configurations that are characterized by high length-
wise asymmetry (i.e., high complexity), whereas the stabil-
ity of low-θ drainages is conditioned by a smaller length-
wise asymmetry (i.e., low complexity). These findings can
be theoretically explained based on an energy minimiza-
tion principle or by combining two empirical power laws
that are readily documented across the globe: Hack’s law,
Eq. (6), and Flint’s law, Eq. (1), describing the relation be-
tween drainage area and, respectively, channel length and
channel slope. The multiplicity of steady configurations of
high-θ landscapes further means that the planform geometry
of these networks more readily preserves the legacy of for-
mer conditions (Kwang and Parker, 2019).

Drainage network complexity of elongated mountain
ranges correlates with the aridity index, a measure of climate
dryness. The correlation emerges despite the relatively small
number of natural ranges we analyzed and is intuit through
the effect of climate on channel formative concavity (Whip-
ple and Tucker, 1999). Therefore, the geometric complexity
of drainage networks over entire mountain ranges records in-
formation about prevailing climatic conditions.

Appendix A: Elongated mountain ranges

Comprehensive details of the 18 elongated mountain ranges
and the data utilized for generating Figs. 2a and 6 are listed
in Table A1. The ranges’ relief and drainage networks are
depicted in Fig. A1.
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Figure A1.
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Figure A1. Relief and drainage networks of the 18 elongated mountain ranges used in the analysis of Figs. 2a and 6 in the main text. The
downstream extent of the drainage networks is plotted starting at a common elevation contour.
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Appendix B: θ – ∆L insensitivity to threshold
drainage area in natural mountain ranges

Channels of small drainage areas are sometimes associated
with a low concavity index, reflecting the dominance of de-
bris flows (Stock and Dietrich, 2006). Therefore, we explore
the sensitivity of the results to the threshold drainage area
used for network extraction. Figure 1a shows the relation be-
tween θ and1L for 18 elongated mountain ranges across the
globe. The figure is based on drainage network extraction us-
ing a drainage area threshold of 145 pixels, corresponding to
≈ 1 km2. Figure B1 shows that, when the drainage network is
defined based on different thresholds, the distributions of θ ,
1L, and1χ vary, but the emerging trends between these pa-
rameters are generally independent of the threshold drainage
area.

Figure B1. The effect of threshold drainage area, A0, used for the extraction of the drainage network on the relations between 1L or 1χ
and the concavity index, θ . The choice of A0 affects the calculated values, but the positive relation between1L and θ and the less significant
correlation between 1χ and θ are reproduced in all cases. The three panels (a–c) show data for the same elongated ranges, except the
Taiwanese Central Mountain Range, which is omitted from the left panel because the concavity estimation with A0 ≈ 0.34 km2 produced a
bimodal distribution of values.

Earth Surf. Dynam., 12, 1347–1369, 2024 https://doi.org/10.5194/esurf-12-1347-2024
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Appendix C: θ – ∆L and the erodibility in the
numerical DAC simulations

The erodibility coefficients used in the DAC simulations, as
shown in Fig. 2b, were varied along with the value of θ to
maintain an approximately equal range relief (Willett, 2010).
These values are listed in Table C1.

Table C1. Concavity index and erodibility in the DAC
simulations∗.

θ K [L(1−3m)/T(1−m)]

0.1 9.2828× 10−4

0.2 1.5273× 10−4

0.3 2.5936× 10−5

0.4 4.562× 10−6

0.5 8.3312× 10−7

0.6 1.5811× 10−7

0.7 3.1152× 10−8

0.8 6.3577× 10−9

0.9 1.3392× 10−9

∗ Parameters used in the simulations
depicted in Fig. 2b.

To ensure that the erodibility itself does not control 1L,
we repeat a subset of the simulations, where the concavity
index varies, and the erodibility is kept constant, resulting
in numerical ranges of drastically different relief. Figure C1
shows the same trend as in Fig. 2b in the main text, indicat-
ing that this trend is independent of changing the erodibility
index.

Figure C1. Relation between 1L (blue) and 1χ (green) and the
concavity index, θ for a subject of θ values. Here, the erodibility,K ,
is maintained constant; however, the relations observed in Fig. 2b
remain the same.

Appendix D: The evolution of ∆χ during OCN
simulations

The main text shows the evolution of the normalized energy
equivalent and 1L as functions of iteration number during
the greedy OCN optimization application. Here, the behavior
of 1χ is shown throughout the iteration process to highlight
the parallelism between the two definitions of stable net-
works: achieving minimal1χ across divides and minimizing
the normalized energy equivalent. Figure D1 shows that the
energy minimization process also decreases the median 1χ .
However, compared to the normalized energy equivalent and
the 1L trends (Fig. 4a and b in the main text), the 1χ de-
crease is more uniform across values of θ , as also seen in
Fig. 2c in the main text. Furthermore, the decrease in 1χ is
non-monotonous.

OCNs can be linked to drainage network evolution over to-
pography (Banavar et al., 2001). Banavar et al. (2001) found
that any edge flip resulting in a reduction in the network’s
total energy indicates that the flip occurred towards a steeper
immediate neighbor. While such a flip aligns with a decrease
in1χ between the pre- and post-flip channel heads, the non-
monotonic trends of1χ depicted in Fig. D1 indicate that the
median 1χ of the network, encompassing the entire model
domain, does not necessarily decrease following an edge flip.
This is likely because a single flip changes the drainage area
distribution along the two affected basins, which can also
change the 1χ across other channel head pairs.

Figure D1. Evolution of median 1χ during the optimal channel
network (OCN) simulations (see Sect. 3 in the main text) for differ-
ent values of the concavity index θ .
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Appendix E: Aridity index (AI), concavity index, and
complexity

Figure E1 depicts the relationship between the concavity in-
dex, θ , and the aridity index, AI, for the 18 elongated moun-
tain ranges we studied. Although a positive trend is apparent,
the Spearman’s rank correlation coefficient for this correla-
tion is 0.37, and the correlation is statistically insignificant
with a P -value of 0.13. In contrast, the data shown in Fig. 6
for the relationship between complexity, quantified with 1L
and the aridity index, are statistically significant.

Figure E1. The relation between the concavity index, θ , and the
aridity index, the quotient of precipitation and evapotranspiration
potential (Zomer et al., 2022), for the 18 elongated mountain ranges
analyzed in Fig. 2a. The box symbols represent the median values,
and the bars show the 25th and 75th percentiles. Despite the positive
trend, the Spearman’s rank correlation is statistically insignificant
(P = 0.13).

This raises the question of why the aridity index better cor-
relates with complexity than with the concavity index, par-
ticularly since previous studies, which used larger datasets,
identified a correlation between θ and climate (Zaprowski
et al., 2005; Chen et al., 2019; Getraer and Maloof, 2021).
A possible interpretation is that the measurement of chan-
nel concavity in natural settings and a particular point in
time might encompass several environmental factors, includ-
ing variations in tectonics (i.e., Seybold et al., 2021) and
rock types, introducing noise into the relationship between
concavity index and aridity index. In contrast, our analyses,
based on Hack’s law and OCN theory, demonstrate that net-
work complexity,1L, is contingent on the channel formative
concavity index. This index is expected to depend on hydro-
logic conditions (Whipple and Tucker, 1999) and therefore
to exhibit a more robust correlation with climate (assuming
the relative aridity of the analyzed sites did not meaningfully
change since network formation).
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found in Goren (2024) (https://doi.org/10.5281/zenodo.13934906).
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