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Supplement

1 The Wind-Wave-Tidal Model
1.1 Hydrodynamic model

The hydrodynamic module solves the 2D depth-integrated shallow water equations, phase averaged over a representative

elementary area in order to deal with wetting and drying processes in very shallow and irregular domains (Defina, 2000):
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where ¢t is time, D/ Dt is the material time derivative, V and V- denote the 2D gradient and divergence operators, respectively.
In the continuity equation (Eq. 1), 1) is the free surface elevation, 9 is the wet fraction of the computational domain, which is
a function of water depth and local topographic unevenness (Defina, 2000), ¢ = (¢z,¢gy) is the depth-integrated velocity (i.e.,
discharge per unit width). In the momentum equations (Eq. 2), Y is the effective water depth (i.e., the water volume per unit
area), Ty and T, are the shear stresses at the bottom and at the free surface, respectively, p is water and g is gravity acceleration.
The Reynolds stresses Re are computed using a depth-averaged version of Smagorinsky’s model (Smagorinsky, 1963) and

they read:
Re = R;; = veY (u;;j +uj,) *

with 4, j denoting either the x or y coordinate, u = q/Y and the eddy viscosity v, is computed as

Ve = 203 A\ 2tt0 0)2 + (1t + ty0)% + 2ty ) @)

where the Smagorinsky coefficient Cs is set equal to 0.2 and A, is the area of the computational element.
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In the numerical scheme, the material time derivative in Eq. 2 is solved with the method of characteristics by expressing it
as the finite difference in time. This allows solving the continuity equation (Eq. 1) with a semi-implicit scheme, resulting in a
self-adjoint spatial operator, which is solved on a staggered triangular grid with the finite element method of Galerkin and flow

rates are obtained by back substitution.
1.2 Wind wave model

The wind-wave module (Carniello et al., 2011) solves the wave action conservation equation using the same computational
grid of the hydrodynamic module, which provides water depths and depth-averaged flow velocities, used to propagate the

wind-wave field. In the frequency domain, the wave action density, Ny, evolves according to (Carniello et al., 2005)

% + %C’QINO + (%c;yNo = So ®)
where c;w and c;y are the wave group celerity components used to approximate the speed propagation of Ny (Holthuijsen
et al., 1989), Sy denotes the wind-wave source terms, accounting both for positive (wind energy input) and negative (bottom
friction, whitecapping, and depth-induced breaking) contributions.

The wave-action conservation equation (Eq. 5) is solved with an upwind finite volume scheme based on the same compu-
tational grid of the hydrodynamic model. In each element at each time step, the wind-wave model computes the wave action,

from which the significant wave height is obtained by applying the linear theory.
1.3 Model calibration

The calibration of the model was performed for different periods, but here we focus as an example on the period 8-13 November
2004, for which not only water levels, but also flow rates at the inlets are available. This period was initially characterized by
quite low wind speeds (U,inqg =7.0 m/s between 8 and 10 November) followed by an intense Bora event with wind speeds up
to 18 m/s (Figure S2). Model capability to capture the process is evaluated by means of the Nash-Sutcliffe Model Efficiency
(NSE) (Allen et al., 2007). Figure S2 shows the comparison between measured and computed water levels at three tide-gauge
stations: Pagliaga, Punta della Salute and Brondolo, located in the northern, central and southern portions of the lagoon,
respectively. The comparison highlights a very good agreement between computed and measured water levels (NSEean =
0.970, NSEegian = 0.984, NSEgy = 0.040) Figure S3 compares computed and measured flow rates at the three inlets in the
same period. The comparison is quite favourable (NSEean = 0.853, NSE edian = 0.931, NSEgq = 0.184) and only when the wind
speed reaches the highest value of about 18 m/s the model slightly underestimates the maximum water discharge. The wind-
wave measurements within the Venice lagoon were performed only in 2002 and 2003, therefore, we focus as an example on the
period 11-14 February 2003. Figures S4 and S5 show the comparison between measured and computed wave peak periods and
wave heights, respectively, at the 1BF station, located in the northern lagoon, and the 2BF station located in the central lagoon
(see Carniello et al. (2011) for the location of the stations). The comparison between measured and computed wave heights and
periods confirms the capability of the coupled WWTM to reproduce the modulation of the wave height induced by water-level
oscillations and wind-speed variations (NSE .y = 0.627, NSEedian = 0.756, NSEgg = 0.357). In particular, Figure S4 shows
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the effectiveness of the suggested empirical correlation function relating the mean peak wave period to the local wind speed

and water depth (Carniello et al., 2011).

2 Boundary conditions selection

To simulate the typical wave-driven BSS conditions in the Venice Lagoon, we carefully analyse the wind climate measured
in the period 2000-2020. In particular, we compared the wind velocity measured in each year with that of the whole period
2000-2020 by means of the two-sample Kolmogorov-Smirnov (KS) test and the Wilcoxon (W) test (Table S6). We selected the
wind velocity measured in 2005 because it does not significantly differ from that of the whole considered period according to
both the KS and W tests. A visual comparison of the cumulative distribution frequency F'(x) of wind velocity also confirms

this choice (Figure S6).
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Figure S1. Meshes used in the numerical model. Meshes of the six different configurations of the Venice Lagoon: (a) 1611, (b) 1810, (c)

1901, (d) 1932, (e) 1970, and (f) 2012. For the sake of clarity, the mesh portion representing the sea is shown only in panel (e) and (f), but it

is present in all meshes.
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Figure S2. Model calibration: water level. Comparison between observations and model results for the period 8-13 November 2004: (a)
Measured wind speed and direction; comparison of measured (circles) and computed (solid lines) water levels at the Pagliaga (b); at the

Punta della Salute (c); and at the Brondolo station (d) (adapted from Carniello et al., 2011).
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Figure S3. Model calibration: flow rate. Comparison between observations and model results for the period 8-13 November 2004: (a)
Measured wind speed and direction; comparison of measured (circles) and computed (solid lines) water discharges at the Lido Inlet (b); at
the Malamocco Inlet (¢); and at the Chioggia Inlet (d). Positive values refer to the food phase, negative values to the ebb phase (adapted from

Carniello et al., 2011).
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Figure S4. Model calibration: wave peak period. Comparison of measured (circles) and computed (solid lines) wave peak period at the

1BF station (a, c, e, g) and 2BF station (b, d, f, h) (adapted from Carniello et al., 2011).
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Figure S5. Model calibration: wave height. Comparison of measured (circles) and computed (solid lines) wave heights at the 1BF station

(a2, b2, 2, d2) and 2BF station (a3, b3, ¢3, d3) (adapted from Carniello et al., 2011).
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Figure S6. Wind climate for the period 2000-2020. Cumulative density function F'(x) of wind velocity for the period 2000-2020. Grey
lines represent F'(x) of every single year, the red dashed line is the year 2005, and the black thick line represents the whole period 2000-2020.



Table S1. Results of the Kolmogorv-Smirnov (KS) and Wilcoxon (W) tests on wind velocity.

Year KS test W test

p—value h p—value h

2000 <0.001 1 <0.001 1
2001  <0.001 1 <0.001 1
2002 <0.001 1 <0.001 1
2003 <0.001 1 <0.001 1
2004  <0.001 1 0.024 1
2005 0072 0 0283 0
2006 <0.001 1 <0.001 1
2007 0.002 1 0712 0
2008  <0.001 1 <0.001 1
2009 0.002 1 0.006 1
2010  <0.001 1 <0.001 1
2011 <0.001 1 <0.001 1
2012 <0.001 1 <0.001 1
2013 <0.001 1 <0.001 1
2014  <0.001 1 0.003 1
2015  <0.001 1 0.020 1
2016 <0.001 1 0055 0
2017  <0.001 1 0.033 1
2018 <0.001 1 <0.001 1
2019  <0.001 1 <0.001 1

—

2020 <0.001 1 <0.001
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Figure S7. Number of upcrossings of the erosion threshold. Spatial distribution of the number of upcrossings of the threshold for erosion
7. = 0.4 Pa for the six different configurations of the Venice Lagoon: (a) 1611, (b) 1810, (¢) 1901, (d) 1932, (e) 1970, and (f) 2012.
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Figure S8. Over-threshold BSS events at the Lido inlet. Statistical analysis at SL station in the Lido inlet: time series of the computed

BSS (a-f); probability distributions of the interarrival times (circles) and exponential distributions (dashed lines) (g-I).
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Figure S9. Over-threshold BSS events at the Chioggia inlet. Statistical analysis at SC station in the Chioggia inlet: time series of the

computed BSS (a-f); probability distributions of the interarrival times (circles) and exponential distributions (dashed lines) (g-1).
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Figure S10. Spatial probability density function of interarrival time, intensity and duration of BSS over-threshold events. Probability
density function (left), mean (mean =+ standard deviation) and median value (right) of interarrival times ¢ (a), intensity e (b) and duration d

(¢) of BSS over-threshold events.
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Figure S11. Cross-correlation between intensity and duration of over-threshold BSS events. Spatial distribution of temporal cross-
correlation between intensity of peak-excesses and duration of over-threshold exceedances for the six different configurations of the Venice
Lagoon: (a) 1611, (b) 1810, (¢) 1901, (d) 1932, (e) 1970, and (f) 2012. Black identifies sites where the bottom shear stress cannot be modelled

as a marked Poisson process (i.e. the KS test is not verified for the interarrival time).
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Figure S12. Cross-correlation between duration and interarrival times of over-threshold BSS events. Spatial distribution of temporal
cross-correlation between duration and interarrival times of over-threshold exceedances for the six different configurations of the Venice
Lagoon: (a) 1611, (b) 1810, (¢) 1901, (d) 1932, (e) 1970, and (f) 2012. Black identifies sites where the bottom shear stress cannot be

modelled as a marked Poisson process (i.e. the KS test is not verified for the interarrival time).
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Figure S13. Cross-correlation between intensity and interarrival times of over-threshold BSS events. Spatial distribution of temporal
cross-correlation between intensity of peak-excesses and interarrival times of over-threshold exceedances for the six different configurations
of the Venice Lagoon: (a) 1611, (b) 1810, (c¢) 1901, (d) 1932, (e) 1970, and (f) 2012. Black identifies sites where the bottom shear stress

cannot be modelled as a marked Poisson process (i.e. the KS test is not verified for the interarrival time) .
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Figure S14. Spatial probability density function of cross-correlation between interarrival time, intensity and duration of BSS over-
threshold events. Probability density function (left) and mean value (mean =+ standard deviation, right) of cross-correlation between intesity

and duration p(e — d) (a), interarrival time and duration p(¢ — d) (b) and interarrival time and intensity p(t — e) (c).
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Figure S15. Erosion work computed as integral of over-threshold BSS events. Spatial distribution of erosion work computed with Eq. 2
for the six different configurations of the Venice Lagoon: (a) 1611, (b) 1810, (¢) 1901, (d) 1932, (e) 1970, and (f) 2012. Black identifies sites

where the bottom shear stress cannot be modelled as a marked Poisson process (i.e. the KS test is not verified for the interarrival time).
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Figure S16. Relative error of synthetic erosion work. Spatial distribution of the relative error between the erosion work calculated with
the integral formulation (Eq. 2) and the synthetic one (Eq. 3) for the six different configurations of the Venice Lagoon: (a) 1611, (b) 1810, (c)
1901, (d) 1932, (e) 1970, and (f) 2012. Black identifies sites where the bottom shear stress cannot be modelled as a marked Poisson process

(i.e. the KS test is not verified for the interarrival time).
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