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Abstract. Understanding the dynamics of slope instabilities is critical to mitigate the associated hazards, but
their direct observation is often difficult due to their remote locations and their spontaneous nature. Seismology
allows us to get unique information on these events, including on their dynamics. However, the link between
the properties of these events (mass and kinematics) and the seismic signals generated is still poorly understood.
We conducted a controlled rockfall experiment in the Riou Bourdoux torrent (southern French Alps) to try to
better decipher those links. We deployed a dense seismic network and inferred the dynamics of the block from
the reconstruction of the 3D trajectory from terrestrial and airborne high-resolution stereophotogrammetry. We
propose a new approach based on machine learning to predict the mass and the velocity of each block. Our results
show that we can predict those quantities with average errors of approximately 10 % for the velocity and 25 % for
the mass. These accuracies are as good as or better than those obtained by other approaches, but our approach has
the advantage in that it does not require the source to be localised, nor does it require a high-resolution velocity
model or a strong assumption on the seismic wave attenuation model. Finally, the machine learning approach
allows us to explore more widely the correlations between the features of the seismic signal generated by the
rockfalls and their physical properties, and it might eventually lead to better constraints on the physical models
in the future.
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1 Introduction

Slope instabilities are complex natural phenomena that pose
a threat to humans and infrastructures in many regions of
the world. Landslides, rockfalls, rock avalanches, and surface
collapses generating pit craters are natural disasters that can
affect our societies. They also play a major role in the Earth
surface dynamics as important erosion processes, whose oc-
currence might be caused by external factors such as earth-
quakes, intense precipitation, or the thawing of ice in the
joints and fractures of large rocky masses. Understanding
the triggering mechanisms and their dynamics and quanti-
fying and documenting their properties and their spatiotem-
poral occurrences are of paramount importance to mitigate
the associated risks but also to understand their contributions
to long- and short-term erosion processes. However, because
of their spontaneous and destructive nature, gravitational in-
stabilities are difficult to study.

Over the past 2 decades, these processes have been in-
creasingly studied through the use of approaches based
on seismology. Seismology makes it possible to augment
the source of information conventionally deployed to study
mass-wasting processes (e.g., direct testimony, remote sens-
ing, geomorphology, geodetic measurements) by its ability
to provide information on event properties, such as the ex-
act time of occurrence (to the second) and the localisation
(e.g., Norris, 1994; Deparis et al., 2008; Yamada et al., 2012;
Hibert et al., 2014; Dammeier et al., 2011, 2016; Gracchi
et al., 2017; Dietze et al., 2017; Allstadt et al., 2018; Yan
et al., 2019; Kuehnert et al., 2020b), with the possibility of
recording them over vast distances (up to 1000 km for the
largest events) (e.g., Kanamori and Given, 1982; Kanamori
et al., 1984; Ekström and Stark, 2013; Allstadt, 2013; Hibert
et al., 2019). More than providing spatiotemporal informa-
tion, sometimes in real time, seismology offers the possibil-
ity to retrieve the dynamics of an event through the infor-
mation carried by the seismic signal emitted during the trig-
gering and the propagation of the event. There are very few
other observational approaches that allow retrieval of impor-
tant insights on the dynamics. Hence, finding relationships
between seismic signals generated by gravitational instabil-
ities and their properties has been a major focus of recent
research in landslide and rockfall seismology.

For catastrophic landslides (volume over 1 × 106 m3), ap-
proaches based on the inversion of the long-period (low-
frequency, below 0.5 Hz) seismic waves have been proposed.
By retrieving the force exerted by the mass displacement on
the Earth, those approaches have successfully helped to de-
termine dynamic parameters (velocity, momentum, and ac-
celeration) and properties of these events (e.g., Kawakatsu,
1989; Ekström and Stark, 2013; Allstadt, 2013; Zhao et al.,
2012; Iverson et al., 2015; Hibert et al., 2015, 2017a; Moore
et al., 2017; Dufresne et al., 2019; Li et al., 2017; Moretti
et al., 2020; Chao et al., 2018; Zhang et al., 2019). How-
ever, most mass-wasting processes that occur worldwide do

not have a volume large enough to generate those long-
period waves, thus precluding the use of inversion methods
to retrieve their dynamic quantities, yet those mass-wasting
processes will generate high-frequency seismic waves (fre-
quency above 1 Hz). Being able to infer physical properties
from those high-frequency seismic waves will therefore al-
low us to characterise most mass-wasting processes, includ-
ing smaller-volume events, which is critical to have a bet-
ter understanding of the occurrence and the physics of those
phenomena and thus to mitigate the risks they generate.

Recent studies proposed scaling laws between high-
frequency seismic signal features and source properties of
rockfalls and landslides. These studies are mostly based on
laboratory experiments (e.g., Farin et al., 2015, 2016, 2019;
Arran et al., 2020), real-scale experiments (e.g., Bottelin
et al., 2014; Hibert et al., 2017b; Saló et al., 2018), and doc-
umented natural events (e.g., Norris, 1994; Deparis et al.,
2008; Dammeier et al., 2011; Hibert et al., 2011; Levy et al.,
2015; Hibert et al., 2017a; Le Roy et al., 2019). Among the
quantities studied, several correlations between the mass and
the velocity of the rockfall and the magnitude, the maximum
amplitude at the source, and the seismic energy of the seismic
signal have been observed and sometimes quantified. Several
scaling laws have been proposed (e.g., Norris, 1994; Deparis
et al., 2008; Hibert et al., 2011; Levy et al., 2015; Hibert
et al., 2017b; Saló et al., 2018; Le Roy et al., 2019), but they
all carry strong uncertainties, caused mainly by the simplic-
ity of the propagation models used (e.g., Le Roy et al., 2019;
Kuehnert et al., 2020a), the difference in contexts (soft soil
vs. hard rock and the influence of the seismic network geom-
etry), and the physics of the source (free-fall, granular flows,
single rockfall, and multiple rockfalls). However, all of those
studies demonstrated that there is a link between some seis-
mic signal features (maximum amplitude at the source, seis-
mic energy, and local magnitude) and some source properties
(mass, velocity, energies, momentum, force, or acceleration).
The difficulty now resides in understanding the fundamental
physics that explains those correlations and in increasing the
accuracy of the scaling laws proposed. This is deemed impor-
tant as it opens the perspective to quantify mass-movement
dynamics directly from the seismic signals they generate
(i.e., without inversion or modelling). This is critical for
the development of future methods aimed at their real-time
detection and characterisation using high-frequency seismic
signals. This can be achieved by improving both the source
physical model and the seismic wave propagation model,
which remains a strong challenge for high-frequency seismic
waves. These improvements require more high-quality ob-
servations to calibrate and validate the models. This is what
motivated the 2018 Riou Bourdoux controlled rockfall exper-
iment, which followed and improved upon a similar experi-
ment conducted in 2015 (Hibert et al., 2017b).

Thanks to the deployment of a dense seismological net-
work close to the block impacts and an approach allowing an
accurate reconstruction of the trajectories (Noël et al., 2022),
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we tried to complete three objectives: (1) better understand-
ing and modelling the propagation of the seismic waves gen-
erated by the block impacts; (2) finding and trying to better
constrain the correlations between the kinematic parameters
of the impacts of the blocks and the features of their seismic
signals, and (3) exploring the use of an innovative approach
based on a machine learning algorithm to infer the mass and
the velocity of the block at each impact from the seismic sig-
nals generated.

2 Material and methods

2.1 Context: the Riou Bourdoux catchment

The Riou Bourdoux is a torrential catchment located in the
southern French Alps, approximately 4 km north of the city
of Barcelonnette (France). It formed in Callovo–Oxfordian
black marl whose high erosion susceptibility resulted in the
formation of numerous steep (> 30 °) gullies. The blocks
were launched in a gully located on the northern slope of
the torrent. The travel path had a length of approximately
200 m and slope angles ranging from 45° on the upper part
of the slope to approximately 20° on the terminal debris cone
(Fig. 1). The launched elements consisted of hard limestone
blocks selected in the torrent and brought to the launch pad
with a backhoe.

2.2 Block trajectories and properties measurements

Kinematic parameters of each launch were computed from
31 reconstructed rockfall trajectories using the ballistic equa-
tions of a free-falling object neglecting the drag from the air
(Volkwein et al., 2011; Wyllie, 2014; Loew et al., 2021). The
back-calculation method using 3D terrain models and video
footage (Noël et al., 2017, 2022) requires accurately measur-
ing the geometric features of each launched block and of the
terrain and to track their propagation with high-speed multi-
spectral cameras from different viewing angles.

A total of 31 limestone blocks were individually weighted
using a lift and a tension load cell. The density of the rocks
was determined in the laboratory from analysis conducted
on core samples taken from each block. The block shapes
were acquired using mobile handheld terrestrial laser scans
(mobile terrestrial laser scanning GeoSLAM ZEB Revo) and
from structure-from-motion photogrammetry (SfM) using
pictures acquired with a Panasonic GH5 camera and the soft-
ware Agisoft Metashape Pro v.1.4.4. The laser model served
as a reference for adjusting the scale of the photogrammet-
ric model, ensuring it remained undistorted, followed by
employing the ICP algorithm to align the photogrammetric
model with the laser model after manually excluding non-
overlapping areas. Additionally, to determine the final shape
and volume of the blocks, a flat base was added to each block
to align it with the surrounding terrain, enabling volume cal-
culation through mesh modelling, with mass deduced from

homogeneous density assumptions based on measured sam-
ples as detailed in Noël et al. (2022). The lidar model has
a spatial density of about 50 000 points per m2 at the block
level. The SfM model was built from 128 photos for each
block and has a density of about 5 million points per m2

when scaled (average: 4.93× 106 pts m−2; standard devia-
tion: 2.123× 106 pts m−2). Assuming a homogeneous distri-
bution of the mass, the moments of inertia of each block and
the main axes of inertia were identified from the 3D models
of each block and the density. Their dimensions were mea-
sured on the 3D models aligned on their main axes of inertia.
The mass of each block ranged from 39 to 468 kg.

A very high-resolution terrain model of the gully (Fig. 1)
was acquired using four acquisition methods to ensure proper
coverage of occluded faces, detailed texture of the surfaces,
and accurate scale and orientation relative to the horizon-
tal. A highly detailed terrain SfM model was generated from
georeferenced pictures acquired with a DJI Phantom 4 UAV
flying at an average altitude of 25.3 m. We use the software
Agisoft Metashape Pro v.1.4.4. The model was built from
167 photos with resolution of 5472× 3078 pixels and with a
selected overlap of at least 9 images. The initial model had
345 922 467 points with a ground resolution of 6.32 mm px−1

and was downscaled to 83 475 710 points spaced by 1 cm. Its
scale was then adjusted by less than 1 % using the iterative
closest point algorithm to match with a detailed terrain model
obtained from four locations (Fig. 1) with a terrestrial laser
scanning device (Optech ILRIS-LR) (Noël et al., 2022). The
main gully was also scanned with a mobile terrestrial laser
scanning while rappelling down to cover every part in detail.
Finally, evenly spread targets were painted in the upper and
lower part of the gully and were located using a laser theodo-
lite.

The blocks were pushed down manually one by one, sepa-
rated by about 5 to 10 min. There was no sliding in the early
stage of those triggered rockfalls. Their trajectories were
manually tracked from up to eight viewpoints: five view-
points had fixed framing, being installed on tripods (one in
the middle part of the travel path and four at the bottom of
the gully); two viewpoints were from the sky using two DJI
drones, with one flying in hover and one following the mo-
tion of the blocks; and the last viewpoint was from a camera
panned manually to track the rocks using a long-focus lens
and was located at the bottom of the gully. An exhaustive de-
scription of the experiment and the approach to reconstruct-
ing the trajectories, as well as videos showing the propaga-
tion of the blocks and the numerical approach to reconstruct-
ing the trajectories, is given in the paper by Noël et al. (2022),
companion to the present article.

2.3 Seismic network and data

The seismic network was deployed along the gully. The net-
work comprised 16 three-component geophones (4.5 Hz 3C
connected to a DAQlink seismic camera at a sampling rate of
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Figure 1. Orthophotography of the Riou Bourdoux gully, with the reconstructed trajectory of all the blocks, and the location of the geophones
used in this study indicated by coloured dots. The colour of the trajectory scale represents the absolute translational velocity of the block.
The raw seismic signals recorded at each geophone for the first launch are represented on the right in the colour corresponding to the one of
the dots, indicating the location of the sensor.

1000 Hz). The exact positions of the sensors were measured
by differential GNSS (Fig. 1). In this analysis, we used only
the vertical components of the geophones as we observed
the best signal-to-noise ratio on this component. Data from
geophone numbers 14 and 16 were discarded as the records
exhibited high-amplitude noises and spikes probably related
to a faulty connection or a bad installation. Before analysis,
each record was deconvolved from the instrument response
to get the ground velocity. No filtering was applied to the raw
data.

2.4 Trajectory and kinematics reconstruction

The impact locations of each block were pointed on the 3D
textured detailed terrain model (Fig. 1). The task was eased
by using custom-developed software (Noël et al., 2022) in
which the terrain can be visualised from the same viewpoints
as the corresponding video footage and in which the recon-
structed trajectories offset by the radius of each rock are up-
dated in real time following the cursor mouse or manually
entered impact coordinates. The position and time of each
impact can thus be accurately defined until obtaining visu-
ally matching trajectories with those visible in the camera
footage. With non-optimal viewing angles or terrain texture
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with little contrast, screenshots of the terrain model and video
footage were aligned with the Handle Transform Tool in the
GIMP software using the surrounding elements of texture in
order to find the exact location of the impact.

The trajectories were exported with their velocities and
vectors normal to the terrain, and the centre of mass of the
blocks was extrapolated from the impact position on the
ground. All trajectories were further visually inspected in
the CloudCompare software. The angular velocities were ob-
tained by averaging the number of block revolutions per-
formed during the period in between each impact. The av-
erage axis around which the block rotated was identified to
estimate the angular momentum based on the geometric fea-
tures of each block. We removed from our dataset every im-
pact that resulted in a breaking of the block. We have kept
only the impacts for which the block did not undergo ma-
jor changes according to our visual observations. We cannot
exclude a marginal change in the mass of the block due to
successive impacts, but this should not have a major impact
on our results.

In total, 376 impacts were available from 25 trajectory seg-
ments composed of many parabolas. The impacts at the ex-
tremities of each segment are missing because of missing in-
coming/outcoming velocities. Therefore, 326 impacts were
reconstructed with their incoming and outgoing translational
and angular velocities, kinetic energy changes, and momen-
tum.

2.5 Trajectories and seismic records synchronisation

While the seismological data could be time-stamped by a
GNSS, the clocks of the different cameras used during the
experiment were not all set to the absolute time. To deter-
mine the lag between the two time series (time of impact
from the direct observations and seismic records) with a pre-
cision below the second, we performed a cross-correlation
analysis. The timing of the impacts was transformed into a
time series of zeros and ones, with zeros indicating the times
with no impact and ones indicating the time of each impact.
We then normalised the seismic records by the maximum of
the envelope and computed the cross-correlation between the
impacts time series and the normalised envelope of the seis-
mic records, with lags ranging from minus 10 to plus 10 s.
The lag for which the best normalised correlation was ob-
served was selected. A manual control and final adjustment
of the results was performed. After this first step we manu-
ally picked the beginning and the end of each seismic signal
on each station. We selected only the signals associated with
impacts that did not result in the fracturing of the blocks and
that were not generated by parts of fragmented blocks. This
was verified for each impact on the videos of the launches.
We also selected only impacts for which it was possible to
pick clearly the beginning and the end of the seismic signal
and therefore discarded all intricate and low-amplitude seis-
mic signals. An example of the seismic signals recorded at

Figure 2. Seismic signal (a) and spectrogram (b) generated by im-
pacts of Block 1 and recorded on Geophone 1. The selected seismic
signals used in our analysis are indicated in blue. The impact times
derived from the camera-based workflow for this launch are indi-
cated by red lines in panel (a).

one station and of the selected impact seismic signals is pre-
sented in Fig. 2. This resulted in a dataset of 384 seismic
signals of impacts.

2.6 Seismic source parameter computation

There are essentially two properties of high-frequency seis-
mic signals generated by mass movements that have been
studied in correlation with the physical parameters of the
source dynamics: the maximum amplitude of the seismic sig-
nal corrected for propagation effects A0 and the energy of
the seismic signal at the source Es (e.g., Norris, 1994; De-
paris et al., 2008; Dammeier et al., 2011; Schneider et al.,
2011; Hibert et al., 2011; Bottelin et al., 2014; Levy et al.,
2015; Farin et al., 2015, 2016; Hibert et al., 2017b, a; Saló
et al., 2018; Le Roy et al., 2019; Farin et al., 2019; Arran
et al., 2020). These two quantities are usually compared to
the source velocity and momentum and to its kinetic and po-
tential energies. Both quantities are computed from attenua-
tion parameters that allow us to account for the attenuation
of seismic waves caused by the propagation of waves in the
earth and which are caused by geometrical spreading and
anelastic attenuation. Determining an adequate attenuation
model is therefore critical.

Thanks to the reconstruction of the trajectories, in our
study we know the exact location of the impact and hence
the distances between the source and the receivers; thus we
could test several attenuation models and find the one that
better explains the observed decay of the amplitudes with the
distance. We consider the 3D point-to-point direct distance
without taking into account the topography. The best model
should be the one that allows the best regression of the max-
imum amplitude of each impact recorded at each station as
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a function of the distance of those stations to the location of
the impact.

We tested two simple attenuation models, one for surface
wave (Eq. 1) and one for body wave (Eq. 2), both proposed
by Aki and Chouet (1975), which consider the anelastic at-
tenuation of seismic waves through the use of the attenuation
factor β:

A(r)= A0
e−βr
√
r
, (1)

A(r)= A0
e−βr

r
. (2)

The maximum amplitude at the source A0 and the β factor
can be determined directly from the attenuation model for
each impact.

An approximation of the seismic energy for body waves
can be computed as per Crampin (1965):

Es =

tf∫
ti

4πr2ρcuenv(t)2eβrdt, (3)

with

uenv(t)=
√
u(t)2+Ht(u(t))2, (4)

where Ht is the Hilbert transform of the seismic signal u(t)
used to compute the envelope uenv(t), ti and tf are the times
of the beginning and the end of the seismic signal respec-
tively, ρ is the density of the layer through which the gen-
erated surface waves propagate, and c is their phase veloc-
ity. The average velocity of body waves in black marl is
approximately 450 m s−1 (Hibert et al., 2012; Gance et al.,
2012). The density ρ of dry black marl is approximately
1450 kg m−3 (Maquaire et al., 2003). For each impact we
computed the seismic energy at each station and kept the
mean over all stations.

2.7 Machine learning: using random forests as a
regression tool

Random forest (Breiman, 2001) (RF) is a machine learning
algorithm based on the computation of a large number of de-
cision trees. Decision trees are top-down structures consist-
ing of nodes and branches. At each node a statistical test is
performed on the value of one feature of the input data. The
outcome of this test tells which branch to use to get the next
node. The final nodes of the tree give the decision of the tree.
The randomness comes from the use of a random subset of
events from the dataset and of features used to characterise
the events to build each tree. Each decision tree in the “for-
est” is therefore different, and the model combines hundreds
(if not thousands) of decision trees.

Random forest is now successfully used in seismology for
automated source classification (Provost et al., 2017; Hibert

et al., 2017c; Maggi et al., 2017; Malfante et al., 2018; Hibert
et al., 2019; Ao et al., 2019; Pérez et al., 2020; Wenner et al.,
2021; Chmiel et al., 2021). However, the random forest algo-
rithm can also be used to estimate continuous values and thus
perform regression analyses. The model will then not give a
class (e.g., an integer) but an estimation of a value that exists
on a continuum. A random forest classifier is able to iden-
tify the origin of a seismic source (for example landslides,
earthquakes, mining blasts), while a random forest regressor
is able to predict (in a statistical machine learning sense) the
time of occurrence of laboratory-triggered earthquakes (e.g.,
Rouet-Leduc et al., 2017). For a classification application of
the random forest algorithm, the predicted class is given by
the majority vote of all the trees. For a regression, the mean
of the predicted values by each tree is the final result.

In this study, we chose to work with random forests as a
regression tool to predict the mass and the velocity of the
rockfalls from the features of the seismic signal generated by
each impact on the ground. We decided to work with Random
Forests for several reasons. First of all, there are the inherent
qualities of this machine learning model for classification and
regression as demonstrated in previous works. These quali-
ties are the good accuracy generally achieved; the fact that
RF is not a black box as you can fully explore the model (the
decision trees) visually; and, most importantly for us, it is
possible to test a large number of features without the bad
features unduly influencing the prediction result. Moreover,
RF offers the possibility to easily estimate the importance of
these features. In our case, as we are as much interested in
whether we can predict quantities as in why we can (which
features are the most linked to the physical properties), this
essential quality of the RF algorithm is critical. Finally, RF
has been successfully used for many applications to detect
and classify signals related to mass-wasting processes, and,
for operational purposes, one can imagine a future system
capable of detecting, identifying, and characterising slope in-
stabilities using the same RF-based model.

The methodology of our implementation consisted of
(1) defining relevant seismological features to characterise
the data, (2) defining a subset of the dataset to train the ran-
dom forest model, (3) training the model, and (4) testing the
model on a subset of the dataset (the test set) not selected for
the training. To assess the robustness and estimate associated
uncertainties, steps 2 to 4 are repeated hundreds of times by
increasing the number of events in the training set from 10 to
100.

When selecting seismic signal features, we must find those
that might carry the most relevant information on the source
properties. We chose 57 features proposed by Provost et al.
(2017) and Hibert et al. (2017c) and given in Appendix A.
Those features are used for many applications of random
forests as an automated seismic source classifier. They can
be categorised into three families: (1) waveform features
(temporal), (2) spectral (frequency) features, and (3) pseudo-
spectrogram (evolution of the frequency content with time)
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features. When analysing a dataset from multiple stations, it
might be complicated to merge the information carried by
all signals in the same set of features. To extract information
about the mass and velocity of the source, we computed each
feature value for a given impact at each station and took the
mean value across all stations. We also calculated the stan-
dard deviation of each feature value across all stations, as
we believe that information about mass and velocity may be
present in the differences or, conversely, in the closeness of
the observed values of the features. These standard devia-
tions are included in our feature table. Therefore, we have a
total of 114 features for each impact, comprising 57 mean
values and 57 standard-deviation values. Each impact seis-
mic signal is regarded as a sample in our dataset. As for the
A0 and ES computation, we considered only the impact for
which the attenuation regression model yields a determina-
tion coefficient above 0.6. The maximum amplitude at the
source A0 and the seismic energy ES are not included in the
features used.

By analysing the machine learning model produced, we
can determine which features of the seismic signals carry the
important information that the model is using to successfully
predict the value of the mass and the velocity of the block at
each impact. This might provide insights on the link between
the dynamics of the block and the seismic source. This is
made possible by computing the importance score of each
feature, which accounts for the relative contribution of each
feature to the success of the regression. The value of the im-
portance of each feature is computed by permuting the values
of a given feature in the feature array and assessing how this
permutation impacts the regression results. If the permuta-
tion of a given feature value results in a worse overall fitting
of the real values than the predicted ones, then the feature is
important in the regression process. Conversely, if the pre-
diction accuracy remains the same while permuting a feature
value, then this feature has little impact in the regression pro-
cess. The importance is given by a normalised score. The
higher the score of the feature, the higher its importance in
the prediction process.

In this work we set the number of decision trees in the for-
est to 1000. We choose a split criterion based on the Gini
index. We set the number of predictors (features) considered
for each split as the square root of the total number of fea-
tures. We trained and tested the machine learning model with
an increasing number of samples from 10 to 100 with a step
of 10. For each case (10 to 100 samples), we repeated the
process of training and testing the algorithm 100 times to as-
sess the robustness of the model.

3 Results

3.1 Attenuation models

Figure 3 shows the maximum amplitude recorded at each sta-
tion for each impact of the launch of Block 1. The maxi-

mum amplitude of the signal decreases with the distance r
of the sensor to the location of the impact as expected. For
each attenuation model we computed the regression line and
assessed the quality of the regression by computing the de-
termination coefficient R2. This was performed for each se-
lected impact. The mean of the R2 coefficient for the body
wave model and the surface wave model are 0.70 and 0.64
respectively. For 363 out of a total of 384 impacts, the best re-
gression model between the maximum amplitude and the dis-
tance between the impact and the sensors is model 2, which
assumes body wave propagation. We also observe no effect
of the distance between the impact and the geophones on the
best fit of the amplitude as a function of the distance. β values
are in the range of observed values from attenuation models
computed in a previous study (Hibert et al., 2017b). There-
fore for the computation of A0 and ES we chose to use the
body wave model. For the analysis of the correlation and the
test of the machine learning approach we selected the 298
impacts for which the attenuation model was able to fit the
real data with a coefficient R2 of at least 0.6. All the other
impacts were excluded to avoid including events that were
too peculiar. Low R2 values might be explained by irregular
kinematic behaviours such as the block hitting an obstacle
(trees or other rocks), multiple impacts in a very short time,
composite contacts or sliding of the block, or an impact being
too far from the seismic network.

3.2 Correlations between the seismic and
trajectography parameters

For 298 impacts we analyse the relationship between two
seismic quantities (A0 and ES) and nine kinematic param-
eters: the incident northbound, eastbound, and vertical ve-
locity and the incident velocity modulus (Vix, Viy, Viz, and
|Vi|); the incident and the rebound momentum (Pi and Pf);
the incident and rebound kinetic energy (Ei and Ef); and the
difference between those two energies (Ef−Ei). The x axis
is oriented east to west, and the y axis is oriented south to
north. For each pair, we tested simple linear regressions and
computed determination coefficients (Fig. 4).

The best correlations are observed between the incident
velocity modulus |Vi| and the maximum amplitude at the
source A0 and between the incident kinetic energy Ei and
the seismic energy Es, with a determination coefficient R2

of 0.43 and 0.39 respectively. The worst correlation is ob-
served between the northbound velocity and A0 with an R2

of 0.04.

3.3 Mass and velocity predictions

We assessed the quality of the predicted results by comput-
ing the difference in percent between the predicted and the
measured values of the block mass and of the modulus of
the velocity inferred from the kinematic reconstruction pre-
sented in Noël et al. (2022). Therefore a difference of 0 % is
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Figure 3. Maximum envelope amplitude as a function of the distance for each impact and each geophone for Block 1. The colour corresponds
to the colour of the geophones in Fig. 1. The black line indicates the best regression computed with the model assuming a signal dominated
by surface waves (Eq. 1), and the dark-grey line assumes a signal dominated by body waves (Eq. 2).

Table 1. Prediction results: percentage of error between the real and
the predicted values

Number of Average error Average error
training samples on velocity [%] on mass [%]

10 19.0 43.3
20 16.3 39.0
30 15.2 36.6
40 13.9 34.6
50 13.4 32.9
60 12.7 31.1
70 12.1 29.8
80 11.6 28.6
90 11.2 26.6
100 10.7 25.3

reached when the predicted value is equal to the real value.
In Table 1 we present the median error of the prediction on
the 100 instances of training and testing the algorithm as a
function of the number of samples used to train the model
(10 to 100). The median values, which are less impacted by
outlier values, are reported in Table 1. The mean, the median,
and the complete distribution of the error on the prediction of
the mass and the velocity for the cases of model training with
10 to 100 samples are presented in Fig. 5.

As shown in Table 1 and Fig. 5, with 10 samples used to
train the model, we reach a median of the prediction error of
43.3 % on the mass and 19.0 % on the velocity. Those val-
ues drop to 32.9 % and 13.4 % for 50 samples and to 25.3 %
and 10.7 % for 100 samples. When training the model with
10 samples we underestimate the mass (the predicted mass is
lower than the real mass) for 39.8 % of the events, and we un-
derestimate the velocity for 49.0 % of the events. When train-
ing the model with 50 samples we underestimate the mass for
37.6 % of the events, and we underestimate the velocity for
49.6 % of the events, and when training with 100 samples
we underestimate the mass for 38.0 % of the events, and we
underestimate the velocity for 48.9 % of the events.

3.4 Feature importance

Figure 6 presents the mean importance scores of the features
for models aiming at predicting the mass and the velocity
and trained with 100 samples. For the mass prediction, the 20
best features are based on the waveforms (8 features) and the
pseudo-spectrograms (11 features). Only 1 spectral feature
appears in the top 20. The 5 most important features are the
mean of the seismic energy in the 5–10 Hz frequency band
(no. 13), the mean of the seismic energy in the 10–30 Hz fre-
quency band (no. 14), the mean ratio between the envelope of
the maximum frequency over the envelope of the mean fre-
quency (no. 43), the mean ratio between the envelope of the
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Figure 4. Correlation between the seismic and trajectography properties of the blocks: (a) the eastbound incident velocity; (b) the northbound
incident velocity; (c) the vertical incident velocity; (d) the modulus of the incident velocity; (e) the incident total momentum; (f) the restituted
momentum as a function of the maximum amplitude at the source A0; and (g) the incident kinetic energy, (h) the restituted kinetic energy,
and (i) the difference of both as a function of the seismic energy Es. The black line indicates the best linear regression, with the coefficient of
determination R2 indicated in the panel. Dots of the same colour are from the same rockfall launch (i.e., identical block mass). Confidence
intervals are not shown as they are too large.

second quartile of the frequency spectrum over the envelope
of the first quartile of the frequency spectrum (no. 55), and
the mean ratio between the envelope of the third quartile of
the frequency spectrum over the envelope of the first quartile
of the frequency spectrum (no. 57).

For the velocity prediction, the 20 best features are also
mostly based on the waveforms (10 features) and the pseudo-
spectrograms (7 features), with only 3 spectral features ap-
pearing in the top 20. The 5 most important features are the
standard deviation of the seismic energy in the 100–200 Hz
frequency band (no. 74), the mean of the seismic energy in
the 100–200 Hz frequency band (no. 17), the standard devi-
ation of the values of the energy of the seismic signal in the
50–100 Hz frequency band (no. 72), the standard deviation
of the difference between the envelope of the maximum fre-
quency over the envelope of the median frequency (no. 111),
and the standard deviation of the values of the energy of the
seismic signal in the 30–50 Hz frequency band (no. 71).

We can note that (1) none of the best 5 features are the
same for the mass and the velocity prediction; (2) only 6
features are common in the top 20 for both quantities; and
(3) mass prediction uses none of the features computed from

the standard deviation of the features computed at each sta-
tion (features with numbers above no. 57), while the model
for velocity prediction uses 4 of them in the top 5. Finally,
most of the top 5 features for the mass and the velocity pre-
diction are based on a difference of energy in several fre-
quency bands.

4 Discussion

4.1 Correlations between the seismic and
trajectography parameters

Figure 4 shows qualitative correlations between the mo-
mentum, the kinetic energy, the maximum amplitude at the
source, and the seismic energy, as observed or modelled in
previous studies (Deparis et al., 2008; Vilajosana et al., 2008;
Hibert et al., 2011; Levy et al., 2015; Farin et al., 2015; Hib-
ert et al., 2017b; Farin et al., 2016; Saló et al., 2018; Le Roy
et al., 2019). Our results suggest that the kinetic energy be-
fore impact is better correlated to the seismic energy than the
loss of kinetic energy between the impact and the rebound
Ef−Ei. The block travel directions were mostly from west
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Figure 5. Distribution of the error (%) over 100 instances of train-
ing and testing the random forest model for the prediction of the
mass values when trained with 10 to 100 samples to predict (a) the
velocity and (b) the mass. The mean error is indicated by a black
line, and the median is indicated by a red line.

to east along the gully morphology. The lack of strong dis-
placement in the north–south direction, and hence the low ve-
locity values, might explain the poorest correlation observed
between Viy and A0.

However, most R2 values are low for all the correlations
investigated. Those weak quantitative correlations precluded
us from using the scaling laws to estimate the mass and the
velocity of the blocks at each impact as proposed in Hibert
et al. (2017b) because it would result in very high uncertain-
ties on the inferred masses and velocities. As demonstrated
by Kuehnert et al. (2020a), velocity–depth profile, 3D soil
heterogeneities, source direction, and the topography play a
major role in the modulation of the waveforms and the am-
plification of both the maximum amplitude and the energy of
the generated seismic signals. Those effects are not taken into
account in the simple attenuation models used in this study
and numerous previous ones. We are starting to have access
to complex models that can take into account some of these
effects for high-frequency seismic signals (Kuehnert et al.,
2020a), but they require high computational time and a com-
prehensive knowledge of the context physical properties (ve-
locity profile, 3D medium heterogeneities, etc.), which can
be difficult to get for real conditions. Having access to these
models to perform direct modelling or inversion of the source
parameters might be laborious and expensive to reproduce in
different contexts, preventing a hypothetical easy portability
of the approach for operational uses. This motivated the ex-
ploration of the machine learning approach to infer the prop-

erties of the rockfall without needing any attenuation model
or an a priori knowledge of the medium.

4.2 Seismic signal features importance and physical
model

The force imparted by an elastic sphere on a solid elastic
surface can be described by the Hertz contact theory (Hertz,
1882), as proposed by (Farin et al., 2015), and was demon-
strated to be relevant to model the force created by a block
impacting the ground in experimental and natural experi-
ments (Farin et al., 2015; Bachelet et al., 2018; Kuehnert
et al., 2020a). These studies have shown that, in the frame-
work provided by the Hertz theory, the seismic signal’s max-
imum amplitude, energy, corner frequency, or the variance of
the spectra is controlled by the velocity, the mass, the dura-
tion of the impact, and the physics and the geometry of the
contact of a single block with the ground. Therefore the seis-
mic signal’s maximum amplitude, energy, corner frequency,
or spectrum variance carries information on the dynamics
and properties of the impacting block and might be analysed
to retrieve those physical quantities and especially the force,
the velocity, and the mass of the impactor.

The random forest model we trained yields information on
which features of the seismic signal carry the most important
information to successfully predict the mass and the velocity.
We observe that the most important features used to predict
the velocity are not exactly the same as those used to predict
the mass. However, the absolute seismic energy in several
frequency bands (features 13–17 and 70–74) is an important
piece of information for both the prediction of the mass and
of the velocity. This is consistent with the works by, e.g.,
Huang et al. (2007); Farin et al. (2015); Hibert et al. (2017b)
and Kuehnert et al. (2020a), which have shown that the ra-
diated seismic energy and the frequency content of a seis-
mic signal generated by an individual impactor scales with
its mass and velocity. Hence, by including the energy of the
seismic signal filtered in different frequency bands as fea-
tures in our predictive model, we can retrieve this correlation
and allow the model to make accurate predictions.

We have observed a discrepancy in the importance of the
features used for predicting mass and velocity in a specific set
of features (13–17 and 70–74). While the standard deviation
of feature values has a significant impact on the prediction of
velocity, it does not affect the prediction of mass. This sug-
gests that differences in seismic energies recorded at differ-
ent stations are crucial for predicting velocity but not mass.
Additionally, energy in lower-frequency bands plays a sig-
nificant role in predicting mass, while energy in the highest-
frequency band is important in predicting velocity, as indi-
cated by features 37 and 94. Due to the attenuation of high-
frequency seismic waves during propagation, seismic signals
recorded at closer stations may be more important in deter-
mining velocity. However, the details of this process and why
it only affects velocity prediction are difficult to understand
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Figure 6. Importance score of the features for the prediction of (a) the mass and (b) the velocity. Colours indicate the family of features
(waveform, spectral, or pseudo-spectrogram). Bright colours correspond to the mean of the features, while dimmed colours correspond to
the standard deviation of the features. The description of each feature and their respective numbers can be found in Appendix A.

from our dataset and require further investigation, such as
through laboratory experiments. This observation is not in-
consistent with the Hertz theory.

Regarding the frequency content, according to the feature
importance, the full spectrum (FFT) of the whole signal car-
ries less information than the spectrograms and the filtered
waveforms. This is unexpected, as, according to the Hertz
theory, the full spectrum of the signal (maximum amplitude,
variance, and corner frequency) should all be highly depen-
dent on the mass and the velocity of the impactor. This sug-
gests that the temporal variation in the seismic signal spec-
trum (i.e., spectrograms) is more important in the prediction
process and hence carries more information on the source
properties than the information we can obtain from the full
frequency spectrum itself.

We found that with the 114 selected features, our ma-
chine learning model more accurately predicts the velocity
of the block at impact than its mass. According to a study
by Kuehnert et al. (2020a) on real rockfalls at the Piton de la
Fournaise volcano, the maximum impact force and the result-
ing seismic signal amplitude are highly sensitive to variations
in impact speed, while the frequency content of the seismic
signal is most sensitive to the density and Young’s modulus
of the impactor and impacted plane. Given that all blocks and
impacted zones had similar elastic properties in our study, it
is likely that the variability in impacted forces and the result-
ing seismic signals were primarily influenced by changes in
velocity rather than mass. This could help to explain why fea-
tures based solely on the frequency spectrum of the seismic

signals appeared to be less important in our regression analy-
sis than those containing information on the amplitude of the
seismic signals. Therefore, we think that in our case the seis-
mic signal feature range is primarily influenced by changes
in velocity rather than mass, making it easier for our machine
learning model to predict velocity and potentially explaining
some of our earlier findings.

5 Conclusions and perspectives

From the experimental single-block controlled launches con-
ducted in the Riou Bourdoux torrent, we demonstrated that a
machine learning model based on the random forest algo-
rithm is able to provide an estimate of the mass and the ve-
locity of the block at each impact with an average error of
around 25 % for the mass and 10 % for the velocity. With
this new approach, we obtain a prediction accuracy on these
two quantities equivalent to or better than all previous studies
focusing on the high frequencies of the seismic signals gen-
erated by mass movements, which gave errors ranging from
20 % to 400 % of the target values (e.g., Hibert et al., 2011;
Dammeier et al., 2011; Farin et al., 2015; Hibert et al., 2017b;
Le Roy et al., 2019).

The machine learning model solely uses the features of the
recorded signals and does not require an attenuation model to
estimate the source properties conversely to the approaches
based on the computation of the seismic energy and the max-
imum amplitude at the source. This removes the need to
make assumptions which are necessary in the classical ap-
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proaches used until now but which carry strong uncertain-
ties, such as the velocity of the seismic waves, the density of
the soil, the anelastic attenuation factor, and the attenuation
model used. The machine learning approach also removes
the need to know the exact localisation of the impacts and
to correct for site effects. Those are major advantages for an
operational implementation of such methods for rockfall risk
assessment and mitigation. An implementation in any con-
text will only require us to perform several well-monitored,
controlled launches of rockfalls to produce a dataset to train
the machine learning model, which will then be able to pre-
dict the mass and the velocity of future rockfalls. Another
strength of the random forest approach is its ability to per-
form well even with few events used to train the algorithm.
Finally, we use the same seismic signal features to predict
the mass and the velocity of rockfalls that are already used
to detect and identify seismic sources associated with mass-
wasting processes (Provost et al., 2017; Hibert et al., 2017c;
Maggi et al., 2017; Wenner et al., 2021). This opens the
possibility of building a detection system, based on seismic
waves, which is able to tell when a rockfall occurs and what
its mass and velocity and possibly its localisation are, all at
the same time and even in near-real time, given the possibil-
ity to easily record and broadcast seismic data.

It is further important to note that this experiment was
performed in a controlled context with an ideal setup, with
simple mono-block rockfalls which travelled roughly along
the same path, and with a seismic network very close to the
sources. The transferability of the machine learning model
trained in our experiment may pose challenges, but the trans-
ferability of the approach itself is relatively straightforward.
In our study, we utilised an extensive array of sensors to
gather precise data on the dynamics of the blocks and their
seismic signals. However, for practical implementation for
monitoring purposes, one would only need to deploy a seis-
mic sensor network and launch 10 to 30 blocks into the net-
work to acquire sufficient data for training a model capable of
predicting the mass of the blocks. To predict velocity, addi-
tional field work would be required, such as utilising a mobile
GNSS to determine the impact positions of each block and
calculating their velocities. Alternative approaches based on
physical models would demand similar efforts, especially in
calibrating scaling laws, but would also necessitate a robust
attenuation model of the medium through seismic tomogra-
phy and an accurate method of localising impacts for each
new event, potentially resulting in lower accuracy. One of the
advantages of the random forest approach is that it does not
rely on an attenuation model or impact localisation to esti-
mate block mass and velocity. Our approach shows its ability
to retrieve source properties for a wide range of geophone
impact distances. However, the influence of network geome-
tries and the minimum number of stations needed to get ac-
curate estimates have to be assessed in future experiments.
Those future experiments will also help to study the transfer-
ability of trained models and eventually lead to proposing an

operational system for detecting, classifying, and character-
ising the properties of rockfalls that would integrate machine
learning approaches for near-real-time monitoring.

The machine-learning-based approach must now be ex-
perienced with more complex sources, such as multi-block
rockfalls and even granular flows, and with more distant seis-
mic stations. The station distances might hinder the ability of
the machine learning model to estimate source properties, as
the farthest we are from the source, the more we lose infor-
mation due to propagation effects on seismic waves. How-
ever, the recent successes (Provost et al., 2017; Hibert et al.,
2019; Wenner et al., 2021; Chmiel et al., 2021) in identifying
mass-wasting sources at medium to long distances, with the
same approach and the same features, suggest that even when
recording seismic signals far from the source, seismic sig-
nals retain information on the source properties in the higher-
frequency band (above 1 Hz) that could allow us to determine
those properties using the same approach. This would be a
major breakthrough, as it would allow us to determine source
properties for most landslides which do not generate seismic
waves with enough energy in the lowest-frequency bands to
allow for an inversion of the properties of the source. This
will be the subject of future work.

Finally, this approach based on machine learning algo-
rithms might be applied to the analysis of other environ-
mental processes for which classical seismological source
inversion methods are not suitable. This could be used for
the determination of properties (mass, velocity, flux, volume,
forces, momentum, etc.) of sources that generate tremors
(volcanic eruptions, debris flows and intense storms), com-
plex high-frequency and even low-frequency signals (ice-
calving events and hydro-acoustic signals), or even anthro-
pogenic noises (vehicles and pumps). However, as for ev-
ery machine-learning-based approach, sets of calibrated and
well-known examples are necessary to train the models.
Physical models can also help by producing physically based
synthetic seismic signals. Regression of seismic source prop-
erties using machine learning approaches is a new comple-
mentary and interesting tool for the community interested in
exotic or environmental seismic sources relevant for improv-
ing our understanding of these processes.
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Appendix A

Table A1. Feature table.

Number Name Formula

Waveform attributes

1 (58) Duration T = te− ts
2 (59) RappMaxMean max[e(t)]/mean[e(t)]
3 (60) RappMaxMedian max[e(t)]/median[e(t)]
4 (61) AsDec (tmax− ts)/(te− tmax)
5 (62) KurtoSig Kurt[s(t)]
6 (63) KurtoEnv Kurt[e(t)]
7 (64) SkewSig Skew[s(t)]
8 (65) SkewEnv Skew[e(t)]
9 (66) CorPeakNumber Number of peaks in a(τ )
10 (67) Energy1/3Cor

∫ T/3
0 a(τ )dτ

11 (68) Energy2/3Cor
∫ T
T/3a(τ )dτ

12 (69) int_ratio
∫ T/3

0 a(τ )dτ/
∫ T
T/3a(τ )dτ

13–17 (70–74) ES1 to ES5 ESi = log10
∫
ei(t)dt

18–22 (75–79) KurtoF1 to KurtoF5 Kurt[si (t)]

23 (80) RMSDecPhaseLine

√
e(t)− l(t)2

Spectral attributes

24 (81) MeanFFT mean[|S(ν)|]
25 (82) MaxFFT max[|S(ν)|]
26 (83) FMaxFFT νmax
27 (84) MedianFFT median[|S(ν)|]
28 (85) VarFFT var[|S(ν)|]
29 (86) FCentroid centroid[|S(ν)|]
30 (87) Fquart1 centroid

[
|S(ν)|1

]
31 (88) Fquart3 centroid

[
|S(ν)|3

]
32 (89) NPeakFFT Number of peaks in |S(ν)|> 0.75|S(ν)|max
33 (90) MeanPeaksFFT mean

[
|S(ν)|at peaks

]
34–37 (91–94) E1FFT to E4FFT EiFFT=

∫
|S(ν)|idν

38 (95) gamma1 γ1 =
∑
ν|S(ν)|2/

∑
|S(ν)|2

39 (96) gamma2 γ2 =
√∑

ν2|S(ν)|2/
∑
|S(ν)|2

40 (97) gammas
√
|γ 2

1 − γ
2
2 |

Pseudo-spectrogram attributes

41 (98) KurtoMaxDFT Kurt[max[|DFT(t,ω)|]]
42 (99) KurtoMedianDFT Kurt[median[|DFT(t,ω)|]]
43 (100) MaxOverMeanDFT mean[max[|DFT(t,ω)|]

mean[|DFT (t,ω)|]]

44 (101) MaxOverMedianDFT mean[max[|DFT(t,ω)|]
median[|DFT (t,ω)|]]

45 (102) NbrPeaksMaxDFT Number of peaks in max[|DFT(t,ω)|]
46 (103) NbrPeaksMeanDFT Number of peaks in mean[|DFT(t,ω)|]
47 (104) NbrPeaksMedianDFT Number of peaks in median[|DFT(t,ω)|]
48 (105) Ratio between 45 and 46 −

49 (106) Ratio between 45 and 47 −

50 (107) NbrPeaksCentralFreq Number of peaks in median[|DFT(t,ω2)|]
51 (108) NbrPeaksMaxFreq Number of peaks in median[|DFT(t,ωmax)|]
52 (109) Ratio between 50 and 51 −

53 (110) DistMaxMeanFreqDTF mean[max[|DFT(t,ω)|] −mean[|DFT(t,ω)|]]
54 (111) DistMaxMedianFreqDTF mean[max[|DFT(t,ω)|] −median[|DFT(t,ω)|]]
55 (112) DistQ2Q1DFT mean[centroid[|DFT(t,ω)|2] − centroid[|DFT(t,ω)|1]]
56 (113) DistQ3Q2DFT mean[centroid[|DFT(t,ω)|3] − centroid[|DFT(t,ω)|2]]
57 (114) DistQ3Q1DFT mean[centroid[|DFT(t,ω)|3] − centroid[|DFT(t,ω)|1]]

Number for standard deviation of feature is given in parentheses. Waveform- and spectrum-based features, with s(t) as the windowed raw
seismogram; e(t) as its envelope; l(t)= emax −

emax
tf−tmax t , a(τ ) as its auto-correlation function; si (t) as the windowed seismograms filtered in the

5–10 Hz (i = 1), 10–30 Hz (i = 2), 30–50 Hz (i = 3), 50–100 Hz (i = 4), and 100–199 Hz (i = 5) frequency bands; ei (t) as their corresponding

envelopes; ts and te as the start and end times of the window; tmax as the time of the maximum amplitude; Kurt(X)= µ4(X)
σ4(X)

as the Kurtosis of

distribution X where µ4(X) indicates the fourth moment of X and σ indicates its standard deviation; Skew(X)= µ3(X)
σ3(X)

as the Skewness of

distribution X where µ3 indicates the third moment of X; S(ν) as the fast Fourier transform of s(t); νmax as the frequency at which |S(ν)| is at its
maximum; |S(ν)|i as the ith quartile of |S(ν)|; DFT(t,ω) as the discrete Fourier transform of s(t); ω2 as the central frequency of DFT(t,ω); ωmax
as the frequency at the maximum of DFT(t,ω); and |DFT(t,ω)|j as the j th quartile of |DFT(t,ω)|.
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