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Abstract. Machine learning is a powerful yet underutilised tool in geomorphology, commonly used for image-
based pattern recognition. Analysing new high-resolution (1–10 m) elevation datasets, we investigate its useful-
ness for detecting discrete geomorphological features. This study develops a machine-learning-based method
for identifying ribbed moraines in digital elevation data and progresses to test its performance versus time-
consuming, manual methods. Ribbed moraines share geomorphometric characteristics with other glacial land-
forms, hence representing a valuable test of our new methodology in terms of differentiating between similar
features, and for detecting landforms with similar characteristics. Furthermore, mapping ribbed moraines may
provide valuable indications of their origin, a topic of debate within glacial geomorphology. To automatically
detect ribbed moraines, we extract simple morphometrics from high-resolution digital elevation model data and
mask regions where ribbed moraines are unlikely to form. We then test several machine learning algorithms be-
fore examining the best performer (K-means clustering) for three study areas of 15 km2 in Norway. Our results
demonstrate a balanced accuracy of 65 %–75 % when validating versus ground-truthing. The performance de-
pends on the availability of high-resolution elevation data in Norway that are needed to resolve the spatial scale
of the target (10–100 m). We find the method effective at detecting both fields of ribbed moraines, as well as
individual ribbed moraines. We propose pathways for the future implementation of this method on a large scale
and for increasing the detail of information gained about detected landforms. In conclusion, we demonstrate
K-means clustering as a promising method for detecting ribbed moraines, with great potential to reduce the time
needed to produce landform maps.

1 Introduction

1.1 Geomorphological mapping

Mapping of landforms has traditionally been a manual pro-
cess, either through direct field observations or manual analy-
sis of remotely sensed data (Smith and Clark, 2005; Verstap-
pen, 2011; Evans, 2012; Sommerkorn, 2020). More recently,
semi-automated methods have been developed, where com-
putational analysis of remote sensing data is interpreted by
the operator (Guitet et al., 2013), giving rise to subjectiv-
ity and human error (Saha et al., 2011; Eisank et al., 2014;
Sommerkorn, 2020). Often, the restriction of data availabil-
ity, quality, and resolution have been the primary limitations
leading to the maintenance of traditional approaches, as the

resolution of digital elevation models (DEMs) has typically
been limited to 30–300 m (Saha et al., 2011; Iwahashi et al.,
2018), thus inhibiting the detection of metre-scale features.
Additionally, until recently, sub-10 m datasets have been af-
flicted with patchy coverage (UKEA, 2023), limiting large-
scale, high-resolution digital mapping of smaller (sub-data-
resolution) landforms.

1.2 Machine learning as a solution

In recent years, automated landform mapping has taken a
machine-learning-based pattern recognition approach, start-
ing with a DEM and extracting morphometrics from input
data, such as slope, aspect, convexity, and surface texture
(Clubb et al., 2019; Eisank et al., 2014; Saha et al., 2011;
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Iwahashi et al., 2018). Thus far, machine learning approaches
focused on large-scale geomorphological feature detection,
such as sedimentary basins or terrain classification due to res-
olution restrictions (Kong et al., 2021; Iwahashi et al., 2018).
Yet, the increasing availability of high-resolution (< 10 m)
datasets (e.g. Kartverket, 2021b; UKEA, 2023) enables indi-
vidual feature mapping for large areas. Norway has a national
high-resolution (0.6–1 m) DEM and orthophotography data
coverage (Kartverket, 2021a, c). In conjunction with this, the
development of new and more robust machine learning meth-
ods, coupled with the effectiveness of older methods with
new, high-resolution data (clustering and segmentation; Gen-
tleman and Carey, 2008), suggests that new approaches for
small-scale landform detection are now possible.

As machine learning is fast, low on labour intensiveness
once set up, and minimises human error (Gentleman and
Carey, 2008), it is clear that it may be possible to address
prior limitations to landform mapping. However, as high-
resolution data availability is a recent development, only few
studies, for example, Corr et al. (2022), used a supervised
random forest (RF) algorithm to detect supraglacial lakes in
Antarctica. Aydda et al. (2020) detected dune forms using
three different unsupervised machine learning algorithms, in-
cluding K-means clustering (KM). Here, we propose com-
bining new, high-resolution data and machine learning to
overcome previous limitations in geomorphological map-
ping.

1.3 Study aims

In this study, we develop a machine learning algorithm to
detect specific small-scale geomorphological landforms in
high-resolution DEM data, more specifically ribbed moraine.
They usually have horizontal extents at a 10–100 m scale
and are common in Norway (Dunlop and Clark, 2006; Dun-
lop et al., 2008; Hättestrand and Kleman, 1999; Finlayson
and Bradwell, 2008). Furthermore, they typically form in
shallow depressions in inland regions close to the former
Fennoscandian ice divide (Sollid and Sorbel, 1994; Sar-
ala, 2006; Fredin et al., 2013; Sommerkorn, 2020; Patton
et al., 2016, 2017; Butcher et al., 2021). With this infor-
mation, we can define potential study regions and a vali-
dation dataset. Ribbed moraines are subglacial ridges trans-
verse to the glacial flow direction (Fig. 1) (Dunlop and Clark,
2006) and were documented across Canada and Fennoscan-
dia in the mid-1900s (Hoppe, 1952; Frödin, 1954; Cowan,
1968; Lundqvist, 1969). They also are known to be present
near morphologically similar landforms such as drumlins and
hummocks, suggesting related formational processes. This
spatial relationship raises the prospect of a “bedform con-
tinuum” present beneath ice sheets (Aario, 1977; Lundqvist,
1989, 1997; Dunlop and Clark, 2006; Ely et al., 2016; Möller
and Dowling, 2018). Furthermore, this spatial relationship
allows us to determine whether our approach can differen-
tiate between different landforms with similar morphologies

and spatial extents – this is possible through iteration with
ribbed-moraine-specific parameters across an area contain-
ing “ribbed moraine” and “non-ribbed moraine” landforms.
In addition, we note scientific interest in specifically map-
ping ribbed moraines, the origin of which is still a matter of
debate (Möller, 2010; Lindén et al., 2008; Boulton and Clark,
1990; Fisher and Shaw, 1992; Dunlop et al., 2008; Sollid and
Sorbel, 1994).

Here, we develop and test two simple machine learning al-
gorithms, KM and RF (Gentleman and Carey, 2008), applied
on new high-resolution datasets to design a computationally
efficient, accurate, and transferable method for automatically
mapping ribbed moraine (Fig. 1). We define our performance
metrics in terms of efficiency, the processing speed of the
method; effectiveness, the accuracy of the method; and trans-
ferability, how well the method performs in different terrain
types on a regional/country-wide scale. We further discuss
the potential extensions to detect other landforms such as es-
kers, drumlins, and megaripples.

2 Methods

2.1 Machine learning

There are several machine learning approaches used previ-
ously in geomorphological research that may be useful for
automatic feature detection. Many others exist, including
U-net, a deep-learning image segmentation method (Ron-
neberger et al., 2015); however, a main consideration of this
study is to improve the time efficiency of landform detec-
tion. Despite rapid segmentation once trained, U-net takes
large amounts of time to train compared to random forest and
K-means clustering (KM). Thus, we identify random for-
est and KM as two simple and lightweight methods that are
used for similar image segmentation problems. The first and
simplest approach is unsupervised machine learning (Gentle-
man and Carey, 2008). Unsupervised machine learning pro-
duces a segmented output from input data and does not re-
quire training data (a dataset designed to describe what the
algorithm should look for). The algorithm identifies clusters
based on the similarity of data properties (Gentleman and
Carey, 2008). One such method is KM, often used in image
segmentation (Burney and Tariq, 2014). Second, supervised
machine learning methods such as random forest (RF) re-
quire a training dataset consisting of labelled data to provide
a true reference for training the algorithm (Gentleman and
Carey, 2008). RF has been used with great success, for in-
stance, to map supraglacial lakes from satellite imagery (Dis-
cherl et al., 2020; Corr et al., 2022). Random forest has ad-
ditionally been proven as a valuable method for glacial and
geomorphological work, for example, mapping the glacier
change at high latitudes (Ali et al., 2023) and, more directly,
in geomorphological mapping of the glacial and hillslope
process to produce landforms in Switzerland (Giaccone et
al., 2022).
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Figure 1. Aerial imagery of ribbed moraine at the Vinstre study area site (Fig. 3d), with panel (a) showing a general overview and panel (b)
showing a close-up view of ribbed moraine landforms. Ribbed moraines at this site appear to be partially anastomosed and form in a linear
track (Dunlop and Clark, 2006). Aerial imagery is from Norwegian national mapping data (Kartverket, 2021a, c).

As ribbed moraines typically have spatial scales of tens to
hundreds of metres (Hättestrand and Kleman, 1999; Dunlop
and Clark, 2006), we select both RF and KM as suitable can-
didate methods for detecting them in high-resolution digital
elevation model (DEM) data (Fig. 2). We will compare the
output from the RF approach, the KM approach, and a series
of more complex algorithms. We then compare the results to
manually derived ground truth data (Fig. 2b–d) to evaluate
the performance of each method.

2.1.1 Random forest

The RF algorithm uses a series of decision trees (i.e. a for-
est) for classification, aiming to optimise the agreement with
training data (Gentleman and Carey, 2008). Within each de-
cision tree, sequences of Boolean questions subdivide the
data (Breiman, 2001); the exact sequence and starting point
of these questions are randomly altered for each tree of the
forest. In this study, we test the RF method with 500 iter-
ations using a majority vote method for final classification.
Our RF method is trained on a small area of the known
ribbed moraines to the north of the Vinstre study area. Train-
ing data here have not been used in any other component of
the study and are derived from ribbed moraines mapped by
Sommerkorn (2020).

2.1.2 K -means clustering

As an unsupervised algorithm, KM infers the defining pa-
rameters of each cluster based on the input data and a series
of “K-centroid” points randomly scattered throughout the
dataset. The algorithm clusters the most alike points around
centroids through repeated iterations of the model (Fig. 3;

Gentleman and Carey, 2008). KM is commonly applied in
fields such as photography and medicine (Burney and Tariq,
2014; Ng et al., 2006) but, so far, has been rarely used in ge-
omorphology (Lv et al., 2019). The ideal number of K cen-
troids is determined after the first iteration of the model
(Likas et al., 2003) by plotting the sum of squared distances
within the dataset against cluster count on a chart and se-
lecting the “elbow” point in the plotted line (Marutho et al.,
2018). After the defining of the optimal number of K cen-
troids, the model is ready for data output (Fig. 3).

2.1.3 Outline of composite methods

We use different combinations of the above-described algo-
rithms for three additional “composite” methods. These are
designed to determine whether the limitations of individual
algorithms can be overcome by combining RF and KM at the
expense of time efficiency. Combined approaches are com-
mon within machine learning studies, as they can often im-
prove performance while avoiding the micromanagement of
the hyperparameters (Liu et al., 2021; Bhattacharjee et al.,
2022).

The first composite method takes the output of a KM it-
eration to train the RF algorithm rather than providing man-
ually delineated training data. This method was selected as
one of three combination methods with the aim of minimis-
ing subjectivity from outputs, allowing RF to determine fea-
tures from an automated output rather than a human-defined
input. We term this method “KM-trained RF”.

The second method is defined as the “OR” method, where
both KM and RF are independently performed, and the re-
sulting classifications are merged by union; i.e. the final clas-
sification is positive if either KM or RF or both yield a posi-
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Figure 2. (a) Map showing the location of the study areas throughout mainland Norway. Karasjok (b) is shown in blue, Femundsmarka (c)
is shown in green, and Vinstre (d) is shown in magenta. Each location shows a submap (b–d) displaying outlines of ribbed moraines (yellow)
used as ground truth in this study (Sommerkorn, 2020). Additionally, we used an area bordering the north of the site displayed in panel (d) for
training the supervised methods. The basemap is made of Eurostat’s GISCO administrative borders for Norway (GISCO, 2020). All maps
projected in UTM 33N, EPSG:5556, and the grid projection in panel (a) uses decimal degrees while panels (b–d) use UTM 33N.

tive result. This method is designed to increase functionality
if one or both methods are particularly strict on feature detec-
tion or if each method functions more effectively in different
areas.

The third method is defined as the “AND” method, where
both KM and RF are independently performed, and the re-
sulting classifications are merged by intersection; i.e. the fi-
nal classification is positive only if both KM or RF agree. We
designed this method to increase functionality in situations
where one or both methods have high rates of false positives.

2.2 Method application

2.2.1 Study areas

We selected three study areas representing different land-
scapes present in Norway for evaluation (Fig. 2). The land-
scapes included are high mountain (Vinstre), heath/moor-
land (Karasjok), and semi-mountainous marshland (Femu-
ndsmarka). Each study area covers 15× 15 km, with data at
a 1 m resolution (Kartverket, 2021b). The first study area is
south of lake Vinstre in central southern Norway (Fig. 2d).
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Figure 3. Flow charts describing (a) the basic principles behind
the RF algorithm. (b) The basic principles behind the operation of a
KM methodology. The model is first run to determine the number of
K points required to represent the input data and then run a second
time to produce an output.

This region is representative of inland Norway, with a high-
mountain plateau interspersed with deep glacially formed
valleys (Strøm, 1948). Furthermore, high-quality ribbed
moraine mapping exists in and around the Vinstre study site
(Figs. 2 and 4; Sollid and Sorbel, 1994; Sommerkorn, 2020),
which we use for training and validation of our methods.
The second study area covers a subsection of the Femu-
ndsmarka National Park, near the Norway–Sweden border
(Fig. 2c). This site is 30 km to the southwest of Lake Rogen,
where ribbed moraines were initially identified and described
(Lundqvist, 1969). A third study region lies in Finnmark,
north of Karasjok, which is situated in a heathland and thus
largely different to the former two both in form, with large
rolling hills (similar in morphology to ribbed moraines), and
in geology, with much less exposed bedrock.

We trained each supervised method on a small 15× 5 km
subregion bordering the north of the Vinstre study area to de-
termine the relevant parameters and morphometrics (Fig. 4).
We initially tested each method on the Vinstre study region,
as the terrain in the Vinstre region is highly complex and typ-
ical of inland Norway, making it useful for ensuring that the
algorithm functioned well in similarly complex regions.

2.2.2 Map data

We use Norway’s 1 m DEM and resample it to 10 m using bi-
linear interpolation for consistency instead of using an avail-
able 10 m product which was produced from various and un-
certain sources (Fig. 2) (Kartverket, 2021b). We resample
data for three purposes (a) because ribbed moraine occur at
the scale of tens of metres, so sub-10 m data are unneces-
sarily detailed; (b) because without resampling the 1 m data
capture too much detail in the ground surface, leading to un-
necessarily detailed morphometrics; and (c) because, to limit
processing time, we aim to produce a time-efficient method-
ology. The surface geology data are obtained as vector data

from the Norwegian Geological Survey, NGU (NGU, 2022)
and lake vector data from the Norwegian Water Resource and
Energy Directorate, NVE (NVE, 2023). We used the nearest-
neighbour interpolation to convert these vector datasets into
10 m raster data, matching our resampled DEM. We obtained
orthophotographs from Norway in pictures (NiB) (Kartver-
ket, 2021a, c) and use this for ground-truth production and
qualitative output validation. In addition, we use existing ge-
ological maps and mapped ribbed moraine ridges from Som-
merkorn (2020).

2.2.3 Derived data

We use our raw data for two purposes, namely to produce
training/testing datasets and to generate morphometric and
mask attributes for our machine learning algorithms. We
manually delineated training/testing ground truth data using
a combination of previous moraine maps, the 1 m DEM, and
orthophotographs. We find that ribbed moraines in marsh ar-
eas are easily identifiable in orthophoto imagery due to their
distinct contrast in colour to their surroundings; however, in
forests they are not detectable due to tree cover (Dunlop and
Clark, 2006).

We derived morphometric and masking data from the
DEM using several modules: the RichDEM Python module
(Horn, 1981; Zevenbergen and Thorne, 1987; Barnes, 2016),
SAGA (Conrad et al., 2015), and the opencv Python mod-
ule (Bradski, 2000). We also produced several filtered DEMs
from the input 1 m DEM including a 400 m low-pass filter,
a 30 m high-pass filter, and a 30–400 m bandpass filter de-
signed to isolate the size scale of ribbed moraines as defined
by Dunlop and Clark (2006). For our topographic wetness
index (Böhner et al., 2001) data, we calculated indices using
local values derived from the input DEM rather than global.

2.3 Morphometrics

We first select morphometrics based on the basic observ-
able characteristics of ribbed moraines. In addition to the
filtered elevation data (30–400 m; Hättestrand and Kleman,
1999; Dunlop and Clark, 2006), we generated the slope, gen-
eral slope, curvature, planform curvature, profile curvature,
spatial distribution (wavelength), and aspect. In addition, we
derived the topographic wetness index (Böhner et al., 2001;
Conrad et al., 2015) and topographic position index (Guisan
et al., 1999) as metrics with the potential to add value to the
segmentation algorithm. Each morphometric was identified
from prior literature (e.g. Eisank et al., 2014) and qualita-
tively tested for its ability to isolate ribbed moraine. With the
combination of the best-performing morphometrics, we sug-
gest the possibility of differentiating ribbed moraines from
other landforms.

Second, we selected masking values to remove as much
noise from the input data as possible and avoid obvious mis-
classifications. This also aids our accuracy metrics by im-
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Figure 4. Illustration of morphometrics used in this study, with the red line indicating the transect taken for subchart figures. Panels (a)–
(f) show clustering values, while panels (g)–(i) show masking values. (a) Elevation from the 1 m resampled to 10 m DEM data (Kartverket,
2021b). (b) Elevation with kilometre-scale features filtered out. (c) The output of the general slope (low-frequency slope) filter. (d) The local
slope values used for clustering. (e) Curvature values used for clustering. (f) Topographic wetness index (TWI). (g) Masking values used
for excluding regions where ribbed moraine cannot form. (h) Curvature derived from a Laplacian of the Gaussian-filtered DEM for masking
mountain peaks. (i) A similar plot at 1 km resolution for excluding large-wavelength features.
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proving the balance of our data, as both RF and KM work
most successfully on balanced data rather than unbalanced
data (Pedregosa et al., 2011). Here, the best-balanced data
are defined as data for which there is roughly a 50/50 split in
the count of pixels per binary output category. Hence, mask-
ing values are used to remove as many pixels as possible
in situations where ribbed moraines do not or cannot form,
balancing the dataset somewhat. From consulting the litera-
ture, we defined areas where ribbed moraines cannot form
as mountain peaks (Hättestrand and Kleman, 1999), steep
slopes (Sommerkorn, 2020), and where surface bedrock is
present (Sommerkorn, 2020). We also defined lakes as ar-
eas in which ribbed moraines are not detectable using DEM
data. For each of these limitations, we produced a mask layer.
Large-scale (over 1 km) peaks and ridges are masked from
the dataset by setting a threshold on a Laplacian of Gaussian
filter. The Laplacian of Gaussian is a second-order deriva-
tive edge detection filter which identifies regions that show
sudden steep changes in intensity (Kong et al., 2013). We
mask steep slopes using a generalised slope layer generated
from a low-pass filtered DEM (over 400 m); slopes with in-
clines greater than the thresholding value (e.g. Table 2) were
masked out of the dataset. The low-pass filtered DEM is used
together with a slope angle threshold to mask out the gen-
eral valley slope angle. Additionally, we mask mountains
of a set wavelength from the testing to omit plateau edge
convex surfaces from the analysis using a simple sinusoidal
Laplacian filter (Kong et al., 2013) referred to as a “moun-
tain wavelength mask”. In this case, mountains with a wave-
length of greater than the threshold value were filtered out of
the dataset. To mask out areas of exposed bedrock, we used
the national surface geological map of Norway (NGU, 2022)
and masked all areas defined as exposed bedrock. Finally, we
used NVE’s lake database to mask out lakes (NVE, 2023).

Method outputs were visually compared to the locations of
ribbed moraines as defined in Sommerkorn (2020). We made
qualitative visual comparisons here as the changes made by
different morphometrics were large, with numerical analysis
occurring as part of later predictor tuning. We made our vi-
sual comparisons against high-resolution orthophotography
(Kartverket, 2021a, c) and Norway’s 1 m resolution national
DEM (Kartverket, 2021b). We then adjusted the algorithm
to produce the most visually accurate output with the fewest
inputs. Hence, in developing the method, we removed the as-
pect as it made no notable contribution to the output. We also
conflated both planform and profile curvature into the total
curvature metric, as we observed no difference in the output
from any singular curvature parameter. In testing the value
of the literature-defined morphometrics, we found the topo-
graphic wetness index to be highly useful but also found the
topographic position index added no value to the output in
any combination.

Figure 5. Binary confusion matrix diagram showing actual vs. pre-
dicted values on a 2× 2 grid.

2.4 Workflow in practice

We implemented the series of segmentation algorithms on
the combination of raw and derived data. We began by pre-
processing the datasets to fit with each chosen study area
as defined by the borders of the associated 1 m resolution
DEM tile (Fig. 2). Once pre-processed, we ran each test
algorithm on the datasets for Vinstre, Femundsmarka, and
Karasjok. We also carried out a second iteration of RF using
KM-produced training data and combined outputs from KM
and RF to produce each of our composite method outputs.
Once we had completed each method, we prepared output
datasets for statistical analysis via a standard confusion ma-
trix (Fig. 5).

The first metric to test each method was efficiency – de-
fined as the required CPU time. Then, we measured the ef-
fectiveness of each method in detecting ribbed moraines. For
each of the five methods, we derived the confusion matrix,
stating the numbers of true positive, true negative, false pos-
itive, and false negative pixels and comparing model outputs
to the manually delineated ground truth data (Fig. 5; Hong
and Oh, 2021).

2.5 Comparative analysis

In addition to producing a visual representation of each
method’s effectiveness (Fig. 4), we calculated accuracy met-
rics of the balanced accuracy (BA; Eq. 4; Brodersen et al.,
2010) and F score (Sokolova et al., 2006), each of which
represents different sides of the confusion matrix and each
ranging between 0 and 1. We selected the BA and F score
over a standard accuracy metric (Eq. 1) as the standard ac-
curacy is skewed positively in unbalanced datasets. As our
dataset comprises regions where ribbed moraine do not make
up 50 % of the mapped area, our data can be considered un-
balanced; hence, we make use of BA. To calculate BA, we
use Eq. (4).
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Accuracy=

(true positive+ true negative)
(true positive+ false negative+ false positive+ true negative)

. (1)

Recall=
true positive

(true positive+ false negative)
. (2)

Specificity=
true negative

(true negative+ false positive)
(3)

BA=
(recall+ specificity)

2
. (4)

BA accounts for the imbalance between classes, and it works
effectively in identifying the influence that positives have on
the accuracy of a dataset; hence, a higher BA score repre-
sents a dataset with good positive returns versus ground truth.
The F score is computed as the harmonic mean of precision
(Eq. 5) and recall (Eq. 6).

Precision=
true positive

(true positive+ false positive)
. (5)

Fscore= 2 ·
(

(precision · recall)
(precision+ recall)

)
. (6)

The F score ignores true negatives and, like BA, works well
on imbalanced datasets. The F score typically will be higher
when there are lower false positive and false negative values,
as it pays less attention to true positives and true negatives
than BA. Therefore, in working with both metrics, we gain a
detailed understanding of the accuracy of our output.

2.6 Final algorithm adjustments

Once we identified which algorithm provided the best com-
bination of effectiveness and efficiency, we improved the per-
formance by adjusting the models’ parameters. We took two
approaches to make these adjustments: systematic and intu-
itive. For systematic improvements, we adjust parameter val-
ues in small increments over a physically plausible range;
the general slope mask threshold values are adjusted by 0.01
from 0.65–0.75, the Laplacian curvature mask threshold val-
ues are adjusted by 0.005 from 0.04–0.08, the general slope
kernel size is adjusted by 10 m from 300–400 m, and the
mountain wavelength masking is adjusted by 100 m from 1 to
2 km (Table 2). These tweaks thus provide an objective anal-
ysis of outputs based on pure accuracy scores.

For our intuitive approach, we changed inputs with the aim
to maximise the visual agreement between the classification
and the evaluation data. This approach served as a health
check of our dataset, ensuring that our method specifically
detected ribbed moraines rather than resorting to “detection
by accident”. We used both approaches as a means of per-
forming a robust sensitivity analysis, ensuring that specific
landforms were detected. In certain situations, many pixels of
ribbed moraines may be identified, but many conjoining pix-
els could also be detected as “ribbed moraine”, thus only de-
tecting ribbed moraine fields rather than discrete landforms.

Hence, while we aim to use the systematic analysis to deter-
mine the parameters with the highest statistical accuracy, we
used the intuitive analysis to determine the parameters which
lead to the highest accuracy scores while still detecting dis-
crete landforms rather than fields. The intuitive analysis in-
volved changing the same parameters as in the systematic
tweaks while also changing cluster counts by ±1 and mak-
ing minor adjustments at the scale of 10 m to the filtering
kernel size used on the DEM.

3 Results

3.1 Comparative method results

Our segmentation methods were quick to run (10–60 s) and
produced reasonable outputs on a mid-range laptop (Intel i5-
1135G7; 2.40 GHz, 2420 MHz, and quad-core processor; In-
tel Iris Xe Graphics; 16 GB and 3200 MHz RAM). However,
the outputs varied greatly between methods and study areas.
As such, we separated our results between each segmentation
algorithm and study area and then outlined the mean results
between each study area for each method.

3.1.1 Vinstre

In our test and evaluation of the five chosen methods at Vin-
stre, we find reasonable outputs for each method, thus show-
ing the capabilities of detecting ribbed moraines in the ter-
rain of this region (Fig. 6). However, each algorithm varies
through its false positive and false negative detection rates.
The standard accuracy (Eq. 1) values (Table 1) show accu-
racy to be over 88 % for all methods, with a mean of 0.926.
However, due to the natural imbalance of our data, this metric
is largely dominated by the abundance of negatives. We ex-
pected some exaggerated false positive detection, yet some
methods are better than others at omitting this. In addition,
some of the methods detect more false positives than oth-
ers, which is more difficult to exclude from the dataset. For
example, we can see that KM and OR outputs show consis-
tent false positives on the rounded peaks in the Vinstre study
area’s south, while the KM-trained RF algorithm shows a
widespread pattern of random false positive detection (Ta-
ble 1). The RF and AND methods yield fewer positive pixels
overall, which leads to lower accuracy scores, as only the
banks or ridges of ribbed moraines are detected rather than
full features.

Statistically, we find the KM and OR methods to have the
highest and most consistent accuracy metrics, suggesting that
these methods have the most use in ribbed moraine detection.
We see this with KM returning BA of 0.75σ (standard devia-
tions) above the mean and F scores of 0.89σ above the mean
(Table 1). The OR output echoes this with BA and F val-
ues of 1.16 and 1.00σ above the mean, respectively (Table 1;
Fig. 6). On the other hand, while the AND approach is the
second most effective method in terms of overall accuracy,

Earth Surf. Dynam., 12, 801–818, 2024 https://doi.org/10.5194/esurf-12-801-2024



T. J. Barnes et al.: A machine learning approach to the geomorphometric detection of ribbed moraines in Norway 809

Figure 6. Comparison of input to output in the three study regions. Panels (a), (c), and (e) show ground truth data, while panels (b), (d), and
(f) show accuracy maps denoting confusion matrix (Fig. 5) values for the clustered output of the KM method. Outputs are superimposed on
a hillshade of the input DEMs (Kartverket, 2021b).
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Table 1. Performance scores for each study area (Fig. 6); metrics
are rounded to three decimals. As the BA and F score are combi-
nations of recall and specificity (Eqs. 2 and 3), we only include the
BA and F score outputs in this table.

Vinstre

Method Accuracy F score BA

KM 0.915 0.229 0.679
RF 0.963 0.163 0.550
KM+RF 0.875 0.147 0.653
OR 0.913 0.244 0.698
AND 0.965 0.112 0.531
Average 0.926 0.179 0.622
SD 0.038 0.056 0.076

Femundsmarka

Method Accuracy F score BA

KM 0.925 0.214 0.639
RF 0.963 0.182 0.556
KM+RF 0.903 0.148 0.614
OR 0.925 0.238 0.661
AND 0.964 0.104 0.529
Average 0.936 0.177 0.600
SD 0.026 0.053 0.056

Karasjok

Method Accuracy F score BA
KM 0.881 0.059 0.666
RF 0.981 0.135 0.566
KM+RF 0.824 0.029 0.617
OR 0.881 0.059 0.666
AND 0.984 0.091 0.536
Average 0.910 0.075 0.611
SD 0.070 0.040 0.059

Averages

Method Accuracy F score BA Time (s)

KM 0.907 0.168 0.662 18
RF 0.969 0.160 0.558 1085
KM+RF 0.867 0.108 0.628 1103
OR 0.906 0.181 0.675 1433
AND 0.971 0.102 0.532 1493
Average 0.924 0.144 0.611 1026
SD 0.045 0.036 0.063 594

we see poor results in balanced metrics, giving values of
1.20σ below the mean value. Furthermore, the KM-trained
RF method shows the least promising visual output and the
least consistent and near-least promising accuracy output,
where accuracy= 1.34σ below the mean, BA= 0.57σ below
the mean, and F score= 0.41σ above the mean (Table 1).
Therefore, as an overall ranking, we rate the OR method as
the best performing in the Vinstre region, while the KM-
trained RF method returns the least successful results.

3.1.2 Femundsmarka

On comparing results from Femundsmarka, we find a similar
pattern to that of Vinstre, with high false positives and neg-
atives common between the KM-trained RF. Additionally,
RF and AND classifiers showed distinct features in qualita-
tive detection. The false positive detection of rounded hills
in the Femundsmarka region is reminiscent of the Vinstre
region in the KM and OR classifiers. We also rank each
method the same as for the Vinstre site, while also show-
ing that the variation in the performance from the mean is
similar between both sites. We find that major differences
are only present within the KM-trained RF method and the
RF method in terms of variability. For these, the KM-trained
RF returns values of 1.27, 0.55, and 0.25σ below the mean
for accuracy, F score, and BA, respectively. RF, on the other
hand, returns 1.04, 0.09, and 0.79σ above the mean. In this
case, we see that the KM-trained RF method consistently
trended towards below-mean performance, whereas RF con-
sistently performs above average.

3.1.3 Karasjok

Performance patterns in the Karasjok region depart from
those in the previous areas. There is greater variability be-
tween algorithms and a general increase in misclassifica-
tions. The RF and AND methods perform well in Femu-
ndsmarka and Vinstre, while the KM, KM-trained RF, and
OR methods produce outputs with speckled pixels. Many
false positives are present, particularly in the southern part of
the Karasjok region. It is likely that these false positives are a
result of different landscape morphologies between Vinstre,
Femundsmarka, and Karasjok, where the latter is a moorland
environment, which is different compared to the prior two
that are more typical of inland Norway (Hjort et al., 2014).
Statistically, we also see the poor performance of KM rates
below the mean standard accuracy and of F score metrics by
0.40σ , while maintaining a high BA score of 0.93σ above
average (Table 1). In short, this means that KM is effective
at detecting true positives but classifies too many false posi-
tives. RF is opposed to this, with the accuracy and F score re-
turning values of 1.01 and 1.50σ above average, respectively,
compared to 0.76σ below average for BA. The OR method
returns identical values to KM, as RF under-classifies fea-
tures in the Karasjok region, thus allowing KM to dominate
the OR output in this area.

Despite the differences in the Karasjok region, we still see
similarities between the Karasjok region and the prior two,
with both the KM-trained RF and AND approaches hav-
ing inconsistent variability from the mean, suggesting their
lack of value as methods. Due to the locality of the false
detections found in the KM and OR methods, it is possi-
ble that they are detecting features common to this region
which likely have a similar form to ribbed moraines found
elsewhere in Norway.
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3.1.4 Overall performance

Studying the overall performances of each method across the
different study sites, we find similar results in the first two
regions, where KM ranks consistently second in BA, and OR
ranks highest. KM performance scores are both above aver-
age by 0.38 and 0.81σ , while all other methods show some
inconsistency between accuracy metrics. For example, the
OR method ranks 1.02–1.03σ above the mean BA but ranks
0.40σ below the mean performance. Hence, while KM does
not rank as highly as OR in BA, its output is more consis-
tently accurate. As a result, we can discount the combined,
RF, and AND methods, as they all consistently rate third or
worse in accuracy metrics, showing their lack of segmenta-
tion effectiveness.

In addition to accuracy, we determined the CPU time
required for each method (Table 1) as a measure of effi-
ciency. On a mid-range laptop (Intel i5-1135G7; 2.40 GHz,
2420 MHz, and quad-core processor; Intel Iris Xe Graphics;
16 GB and 3200 MHz RAM), KM takes only 18 s on aver-
age per iteration, which is 1.67σ faster than the mean rate,
while every other approach takes 2 orders of magnitude more
time at over 1000 s. When considering our two most statisti-
cally effective methods, we find KM is notably faster than the
OR methodology. Due to its much lower computational cost,
we selected KM as the method of choice, despite its slightly
lower performance.

3.2 K -means refinement

Upon producing a baseline set of predictors for the
KM methodology, we conducted many predictor adjustments
as a sensitivity analysis. These values aided in determining
two final “best-fit” methods based on statistics through a sys-
tematic approach and statistics combined with qualitative ob-
servations made on the output maps.

3.2.1 Systematic analysis

The systematic analysis yields optimal predictor values in
terms of average BA scores for each iteration per region.
For example, the optimal value of the general slope thresh-
old is 0.71, where BA values are 0.76, 0.61, and 0.72 for
the Vinstre, Femundsmarka, and Karasjok sites, respectively.
The optimum BA scores 1.7σ above average for the range of
tested values (Table 2).

In addition to our best outputs, we note interesting val-
ues and themes throughout the systematic analysis. In gen-
eral, we found each region to have similar patterns of maxi-
mal performance. The only commonality between our three
sites under the general slope kernel value tweaks was with
a parameter value of 300 m (where the kernel size for slope
smoothing is 300 m resolution), where all scores were above
0.64 BA. The pattern of scores calculated using 300 m gen-
eral slope kernel (0.74 Vinstre, 0.65 Femundsmarka, and

0.73 Karasjok) is common throughout this parameter’s out-
put. While Femundsmarka generally follows the pattern of
values in the other two datasets, changes are more muted,
with values ranging between 0.61 and 0.67 for the general
slope kernel, general slope threshold, and Laplacian cur-
vature threshold compared to changes that are double this
magnitude in the Vinstre and Karasjok regions. Furthermore,
while there is general agreement throughout the data, Vinstre
appears to be at odds with respect to the optimal values at
Karasjok for accuracy scores in Laplacian curvature thresh-
old tests, with the optimal values having no relation.

The tweaks made to the mountain wavelength mask
present much more varied results than the other tests, but a
consistent optimal or near-optimal value is seen. This lack
of consistency is likely due to the different wavelengths of
the mountains in each study area. But additionally, it appears
that a consistent wavelength for mountain features is roughly
1 km between the trough and peak. Our results clearly show
this, with maximum BA values of 0.79 (Vinstre), 0.76 (Fe-
mundsmarka), and 0.73 (Karasjok). This high performance
also means that the mountain mask parameter is the most
influential parameter on statistical detection, improving the
mean BA across the board by 0.10 (3.6σ above the mean im-
provement). On the other hand, the least influential param-
eter is the Laplacian curvature threshold, with an improve-
ment in accuracy of only 0.03, which is only 0.9σ above
the mean BA score. This result, however, is consistent with
the lack of agreement between datasets when tweaking the
Laplacian curvature threshold value.

3.2.2 Intuitive approach

Results from our intuitive analysis show several outputs with
high BA. Each of these approaches yields BA scores> 0.70
at Vinstre and a mean of > 0.69 across all regions. Yet, a vi-
sual evaluation reveals that settings in which the BA score
is > 0.70 can lead to moraine overclassification (Fig. 6).
Thus, despite the high BA, this validates our health check,
demonstrating that higher statistical performance does not
necessarily produce the best-performing output for discrete
feature detection. This potentially comes from the complex-
ity of the terrain in which we iterate the method, with ar-
eas of higher relief generally performing worse than lower
relief when using geomorphometric methods (Hjort et al.,
2014). In short, we find BA< 0.70 leads to a discrete detec-
tion of ribbed moraines, while BA> 0.70 delineates ribbed
moraine fields, filling the gaps between features. Hence, we
outline two potential approaches, namely (1) that high accu-
racy should be the focus, aiming to detect fields of ribbed
moraines as in previous studies, and (2) that discrete ribbed
moraines should be the focus, aiming to detect individual
ribbed moraines on a large scale.

We also note several patterns between our analysis ap-
proaches. First, we find less agreement between all three re-
gions in the statistical output of our trial-and-error intuitive
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Table 2. Table showing the predictor values from systematic analysis with BA as the key accuracy score. BA range shows the range from
minimum to maximum values of BA output. Each predictor was tested on an individual basis.

Location Value Value range BA global BA BA standard
average range deviation

General Vinstre 0.71
0.65–0.75 0.71

0.606
1.7σ above meanslope Femundsmarka 0.71 –

threshold Karasjok 0.71 0.757

Laplacian Vinstre 0.07
0.04–0.08

0.608
0.9σ above meancurvature Femundsmarka 0.07 0.67 –

threshold Karasjok 0.07 0.745

General Vinstre 300 m
0.3–0.4 km 0.71

0.601
1.8σ above meanslope Femundsmarka 300 m –

kernel Karasjok 300 m 0.774

Mountain Vinstre 1000 m
1–2 km 0.76

0.538
2.4σ above meanmask Femundsmarka 1000 m –

Karasjok 1000 m 0.791

approach versus the systematic approach. Despite this, we
also find that there is consistent agreement in our most effec-
tive discrete landform detection method, with scores varying
by < 1σ . Interestingly, we find that, again, Femundsmarka
shows the lowest variability in the BA score, with a standard
deviation of 0.29σ versus a standard deviation of 0.50σ for
Vinstre and 0.56σ for Femundsmarka.

4 Discussion

4.1 Pre-predictor tuning

The high level of agreement with the ground truth in the
Vinstre region shows the KM algorithm’s potential. Through
F score and BA, we find the KM method to be most suc-
cessful in the Vinstre study area, likely due to the method
being originally initiated on the complex mountainous ter-
rain of inland Norway. This is promising because it shows
that the method performs well at detecting ribbed moraine
in regions of high relief, which is one of the most common
areas for ribbed moraine to form (Sollid and Sorbel, 1994;
Sommerkorn, 2020). Hence, we assert that this method is
transferrable throughout central Norway and other similarly
mountainous regions. Yet, we find the main shortcoming of
the pre-tuning method in the Vinstre study region to be the
overdetection of riverbanks, palaeo-channels, and other mor-
phologically similar landforms. This is potentially in part due
to the interpolation of 1 to 10 m data averaging the morpho-
metric signals.

We additionally find good performance in the Femunds-
marka study area, with an F score of 0.21. This is most
likely due to the partial similarity to the Vinstre study area
with the presence of some high-mountain terrain. However,
complexity in the local relief increases, including three ter-
rain types, moorland, lake, and high mountain, versus the

consistent high-mountain terrain of the Vinstre study area.
While lakes are masked out, the mixed semi-mountainous
marshland of Femundsmarka likely contributes to the lower-
accuracy scores due to transferability issues between differ-
ent reliefs (Hjort et al., 2014), as Femundsmarka’s results
show the algorithm attempting to classify the lakeshore and
rounded moorland hills as ribbed moraine (Fig. 6d). This
reflects the riverbank detection in Vinstre and thus is most
likely due to the similarity of morphology, particularly in re-
lation to the slope and curvature (Dunlop and Clark, 2006;
Lindén et al., 2008; Möller, 2006). Additionally, Femunds-
marka shows greater rates of false negatives than Vinstre,
with many ribbed moraines in the south of the study area
(Fig. 6d) being unclassified. The cause of the false negatives
is unclear, but they could be attributed to the lower over-
all difference in elevation between the ribbed moraines and
their surroundings (30–40 m north, 20–25 m south) in south-
ern Femundsmarka. Despite some of the limitations, we con-
sider our initial results from Femundsmarka promising.

With an F score of 0.06, Karasjok has a greater rate of
false positives than other regions (Fig. 6). This may be a
result of the landscape being predominantly comprised of
rounded hills with a similar appearance to ribbed moraine
(similar to areas of Femundsmarka). BA is 0.67, in compari-
son to the 0.64 and 0.68 for Femundsmarka and Vinstre, re-
spectively. Hence, the primary issue with the Karasjok region
is overdetection (increased false positives). We propose the
issues of false positive detection that we observe in Karasjok
to be a result of inherent transferability issues that arise in
geomorphometry. Hjort et al. (2014) describe the difficulty in
extrapolating geomorphometric methods from high- to low-
relief areas, as region-specific conditions can have a strong
impact on the relative importance of different variables. In
the case of Karasjok, the change in relief likely leads to a
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greater influence of the curvature metric. Alternatively, this
could be a product of the interpolation between 1 and 10 m,
leading to an inaccurate curvature value for channel features.

The overdetection we observe in our study regions could
be limited by predictor tuning (Moradi Fard et al., 2020) or
through classifying detected features post-detection. For this
study, we choose to take a consistent approach and undergo
predictor tuning to improve our methodology, due to the ini-
tially promising output from our approach.

4.2 Finalised outputs

4.2.1 Computation considerations

For all iterations, we found that the relatively light com-
puting load opens the possibility of applying the method
to larger scales such as mapping ribbed moraines all over
Norway. In addition, the parallelised implementation of K-
means, named “minibatchkmeans” (used in this study) (Pe-
dregosa et al., 2011), further increases the processing speed
on multicore servers.

4.2.2 Performance

In computing BA, we find reasonable (0.59) to good (0.78)
scores, depending on iteration and location. Mean BA scores
vary by 0.11 (0.60 to 0.71), which we expect given the
varied terrain types. This outlines issues in transferring be-
tween terrain types and maintaining performance. For ex-
ample, during our systematic analysis, we set the general
slope threshold to 0.75 and find BA values of 0.63 (Vinstre),
0.62 (Femundsmarka), and 0.73 (Karasjok), demonstrating
better performance in the Karasjok moorland than in high-
mountain terrain. Due to discrepancies between what can be
considered valuable in qualitative versus quantitative results,
BAs below 0.75 do not suggest poor method performance,
as values between 0.65 and 0.70 show the greatest perfor-
mance in this study for detecting discrete ribbed moraines.
It is, therefore, important to consider that the algorithm is
not designed to detect ribbed moraine but “ribbed moraine-
like” features. This means that there will always be a degree
of over-/under-classification, particularly in complex post-
glacial and real-world landscapes due to the variability in
the ribbed moraine shape (Dunlop and Clark, 2006). We will
also see over-/under-classification due to geomorphological
features of a similar shape within our study areas, as ribbed
moraines do not develop in isolation (e.g. drumlins, channels,
and mega-scale glaciolineations; Ely et al., 2016). Hence,
over-/underdetection can be perceived positively, as output
features can be classified post-detection using parameters
such as orientation versus glacial streamflow, where ribbed
moraines are perpendicular and drumlinoid forms are paral-
lel to this (Dunlop and Clark, 2006; Ely et al., 2016).

Second, we find that BAs below 0.70 may be of greater
value than those above 0.70 if we are aiming to iden-
tify discrete features. Our results show that BAs of more

than 0.70 present more true positives, resulting in good statis-
tical results, but many more false positives are also present,
as spaces between ribbed moraines are detected as ribbed
moraine. This results in areas between ribbed moraine being
filled up, leading to a positive detection of moraine features,
but discrete ribbed moraines are poorly captured. Hence, we
consider a range of results as successful, i.e. BA 0.65 to 0.75,
depending on whether the aim is to classify fields or discrete
landforms. This is due to BA alone not being the ideal pa-
rameter for measuring the value of our output – but instead
we require complementary assessment, through qualitative
analysis as a means of determining output value, on top of
the ideal range of BA values. We thus believe both sets of
BA scores are reasonably accurate, particularly as our raw
accuracy never drops below 0.82, representing an 82 % per
pixel success rate.

4.2.3 Transferability

The transferability of this algorithm depends on one major
component: the widescale landscape type and relief, showing
similar issues with transferability to previous works (Hjort et
al., 2014). We find that the method works well when applied
to similar landscape types, as seen in Femundsmarka and
Vinstre. When transferred to different landscape types and
reliefs (i.e. between high-mountain, moorland, and mixed
marsh–mountain terrain), we observe a poorer detection of
ribbed moraines. As a result, this algorithm is transferable
for most landscapes where ribbed moraines occur in inland
Norway (high mountain); however, for regions exhibiting
differences to the high-mountain regions, such as moorland
and coastal regions, we can tune the model accordingly at
the scale of each DEM tile. This is relevant when consider-
ing expansion to other regions of the world, as much of the
Canadian shield is landscape close in format to Karasjok –
which would indicate a need for predictor tuning (Dunlop
and Clark, 2006; Dunlop et al., 2008).

4.2.4 Detection of new features

While analysing our outputs, we found evidence of ribbed
moraines detected by the algorithm that was not present in
the ground truth data. These ribbed moraines were com-
monly found in the Femundsmarka region, in areas adjacent
to manually marked ribbed moraine (Fig. 7). The detected
landforms occur in small clusters with a similar pattern to
ribbed moraine, as described in Dunlop and Clark (2006).
We suggest that this may be due to a series of factors, includ-
ing the presence of forest and farmland, obscuring ribbed
moraine in stereo-imagery or poor DEM data used for the
manual production of ground truth data. Hence, we suggest
that while the method has some limitations, there are also
clear advantages, as the method uses lidar data, which does
not exhibit the same issues in differentiating between land-
forms under forest cover as spectral imagery.
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Figure 7. Comparison of ground truth to detected pixels on (a) hillshade and (b) orthophoto imagery (Kartverket, 2021a, c). Here, GT refers
to ground truth.

4.2.5 Last Glacial Maximum (LGM) ice flow direction
proof of concept

To explore possibilities for further refinement, we calcu-
lated the orientation of each detected polygon using a sim-
ple bounding box method and determined the orientation of
its longest axis. We compare these orientations with mod-
elled flow direction of the FIS (Fennoscandian Ice Sheet)
by comparing feature orientation to the mean flow direction
of the ice sheet between 11 and 25 ka (Patton et al., 2016,
2017). Figure 8 shows polygons perpendicular or stream-
lined (±25°) to glacial flow, which are helpful in distinguish-
ing landforms oriented the along flow direction (drumlinoid)
from those oriented transverse (ribbed moraines) to the flow
direction. Yet, we note limitations with hummock forms (Ely
et al., 2016), as they have no dominant orientation and could
end up in any group, demonstrating a need for a more robust
classification method potentially based on the feature aspect
ratio. We also note that this method has challenges in de-
tecting the orientation of anastomosing features, a common
type of ribbed moraine (Dunlop and Clark, 2006). Another
potential limitation of this method is the low resolution of
modelled glacial flow, which is of the order of kilometres
and wider than many glacial valleys.

4.3 Avenues for method improvement

We identified two areas of improvement. First, we suggest
improving automation, which would allow scaling to larger
areas. For example, through the inclusion of automated pre-
dictor tuning for landscape types in the model parameters
(parameter profiles). Automation would allow for applica-

tion on a country scale with minimal input through the im-
plementation of these parameter profiles, thus minimising
false positive and false negative identification in varied land-
scapes. We envision four landscape types for Norway: high
mountain (our original approach), low mountain, moorland
(Karasjok), and coastal. We believe that these four categories
would cover the main landscape types common across re-
gions where ribbed moraines are present. These categories
would likely prove sufficient in the regions outside Norway
where ribbed moraines are known to exist (e.g. Canada, Ire-
land, United Kingdom, Sweden, and Finland); however, re-
gional differences in scale and geology may require the pa-
rameterisation of the landscape type.

Second, we identify the importance of implementing a
post-detection classification of landforms. Our results show
that overclassification is common, particularly as there are
many landforms with similar geomorphological properties to
ribbed moraines (Fig. 6). We suggest future works include an
investigation into landform classification, as it would allow
identifying specific landforms including drumlinoid forms,
ribbed moraine, and others, thus improving the value of the
methodology. This would potentially aid the continuum hy-
pothesis of Ely et al. (2016) by showing landform transitions
from ribbed moraine. Hence, we consider this as the next
logical step in method development. In addition, we suggest
that, with post-detection classification, this method could be
used on a wider basis than only ribbed moraine, due to its
ability to easily detect specific geomorphologies based on
relatively basic morphometric traits.
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Figure 8. Detected features versus LGM ice flow direction in the Karasjok region. Panel (a) shows values± 25° from orientation perpen-
dicular to the mean flow direction (blue arrows) during the FIS (Fennoscandian Ice Sheet) (Patton et al., 2016, 2017), and panel (b) shows
values not oriented perpendicular to the average flow angle during FIS (Patton et al., 2016, 2017). Both figures are superimposed on 10 m
DEM and hillshade (Kartverket, 2021b).

5 Conclusions

To develop a method for automated mapping of landforms
throughout Norway, we tested two machine learning al-
gorithms and three composite approaches. We determined
ribbed moraine as a suitable example landform which would
also be scientifically interesting to identify. Through test-
ing, we settled on using an unsupervisedK-means clustering
algorithm for moraine detection, thus requiring no training
data. Ground truth data for our testing were produced through
manual analysis of high-resolution elevation model (Kartver-
ket, 2021b) derivatives and high-resolution aerial/satellite
imagery (Kartverket, 2021a, c).

Our results demonstrate unsupervised machine learning as
sufficient for the automated detection of geomorphological
features through a simple KM approach, rather than the need
for complex supervised machine learning methods. We also
demonstrate that minimal data are needed for this approach,
with only high-resolution DEM derivatives, superficial geol-
ogy, and a lake mask required for our methodology to func-
tion. We evidence this in the initial testing, where a super-
vised RF method averaged poorer performance than an un-
supervised KM approach. In addition, we find that we can
differentiate between the identification of discrete landforms
and fields of landforms. Hence, we find this method to be
scalable in that different output resolutions are possible.

This study indicates the value of automated machine learn-
ing for landform detection as a means of minimising time
spent delineating features manually and in-field. We detect

ribbed moraines throughout our study areas in relation to
ground truth data and detect a small number of previously
unmapped ribbed moraines in one of these. Thus, we show
the value of an objective and systematic method using new,
high-resolution data in detecting features. Furthermore, we
detect many additional features in all study areas which have
similar morphologies to ribbed moraine, but powerful refine-
ment can be achieved by considering orientation with respect
to the former ice flow direction.

In summary, this study demonstrates that unsupervised
machine learning is a viable and efficient method for the
automated detection of ribbed moraines and similar features
based on modern high-resolution DEM (Kartverket, 2021b).
With our promising results, we identify a future path for such
methodologies in geomorphology as a means of updating ge-
omorphological maps and producing new geomorphological
maps where we have high-resolution data to input (e.g. dune
mapping on Mars). Thus, we intend to develop this work
into mapping ribbed moraine and adjacent features through-
out Norway, so as to aid in developing our understanding of
the geological history of Fennoscandia.

Code availability. The finalised code is available in the repository
Aeteia/Ribbed-Moraine at https://doi.org/10.5281/zenodo.7991094
(Barnes and Filhol, 2023).

Data availability. The supporting data produced for this
paper are openly available in the repository Aeteia/Ribbed-
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Moraine at https://doi.org/10.5281/zenodo.7991094 (Barnes
and Filhol, 2023). The input data for this paper are
freely available and can be found in the Norwegian na-
tional geospatial data archive at the following links: NiB
(http://opencache.statkart.no/gatekeeper/gk/gk.open_nib_utm33_
wmts_v2?SERVICE=WMTS&REQUEST=GetCapabilities,
Kartverket, 2021a; http://data.europa.eu/88u/dataset/
dcee8bf4-fdf3-4433-a91b-209c7d9b0b0f, Kartverket, 2021c)
at http://opencache.statkart.no/gatekeeper/gk/gk.open_nib_utm33_
wmts_v2?SERVICE=WMTS&REQUEST=GetCapabilities,
national 1 m DEM (Kartverket, 2021b) at http://data.europa.
eu/88u/dataset/dcee8bf4-fdf3-4433-a91b-209c7d9b0b0f
(Kartverket, 2021b), lake database at https://www.nve.
no/kart/kartdata/vassdragsdata/innsjodatabase/ (NVE,
2023), surface geology map (NGU, 2022) at https:
//gisco-services.ec.europa.eu/distribution/v2/countries/
(GISCO, 2020), and administrative borders (GISCO, 2020)
at https://gisco-services.ec.europa.eu/distribution/v2/countries/.
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