



# Supplement of

## Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau

Jingjuan Li et al.

Correspondence to: John D. Jansen (jdj@ig.cas.cz) and Xuanmei Fan (fxm\_cdut@qq.com)

The copyright of individual parts of the supplement might differ from the article licence.

### Supplementary tables:

Table S1. The quartz single-aliquot regenerative-dose (SAR) optically stimulated luminescence (OSL) dating protocol used for equivalent dose

| Step | Treatment                      | Observed       |
|------|--------------------------------|----------------|
| 1    | Give dose, D <sub>i</sub>      | -              |
| 2    | Preheat to 260 °C for 10 s     | -              |
| 3    | OSL for 60 s at 125 °C         | Li             |
| 4    | Give test dose, D <sub>t</sub> | -              |
| 5    | Preheat to 220 °C for 10 s     | -              |
| 6    | OSL for 60 s at 125 °C         | T <sub>i</sub> |

(De) determination (Murray and Wintle, 2000; Wintle and Murray, 2006).

Table S2. 124 chronological data and 30 incision rate data from previous studies of the upper Minjiang River.

|     |        |                        |                            |              |              | Height                       |                  |          |                  |              |       |                                            |                       |
|-----|--------|------------------------|----------------------------|--------------|--------------|------------------------------|------------------|----------|------------------|--------------|-------|--------------------------------------------|-----------------------|
| No. | Area   | Reach                  | Site                       | Elev.<br>(m) | Depth<br>(m) | above<br>the<br>river<br>(m) | Terrace<br>level | Material | Dating<br>method | Ages<br>(ka) | Error | Incision<br>rate<br>(m/×10 <sup>4</sup> a) | Refers                |
| 1   |        | Gonggaling<br>- Gamisi | Doujitai                   | -            | -            | 246                          | T4               | -        | ESR              | 376.3        | -     | 6.5                                        | Yang et al.<br>(2003) |
| 2   |        | Gonggaling<br>- Gamisi | North of<br>Xiaoxitia<br>n | -            | -            | 40                           | Т3               | -        | TL               | 31.2         | -     | 12.8                                       | Zhao et al.<br>(1994) |
| 3   |        | Gonggaling<br>- Gamisi | Kakagou                    | -            | -            | 124                          | above T3         | cave     | ESR              | 322.67       | -     | 3.8                                        | Yang et al.<br>(2003) |
| 4   |        | Gamisi -<br>Zhangla    | Chuanpa<br>n               | -            | -            | 25                           | T2               | -        | ESR              | 287.27       | -     | 0.9                                        |                       |
| 5   |        | Gamisi -<br>Zhangla    | Chuanpa<br>n               | -            | -            | 25                           | T2               | -        | TL               | 30.2         | -     | 8.3                                        | Zhou et al.<br>(2000) |
| 6   | Up-    | Gamisi -<br>Zhangla    | Chuanpa<br>n               | -            | -            | 25                           | T2               | -        | TL               | 46.4         | -     | 5.4                                        |                       |
| 7   | stream | Gamisi -<br>Zhangla    | Chuanpa<br>n               |              | -            | 28                           | T2               | -        | ESR              | 642.7        | -     | 0.4                                        | Yang et al.<br>(2003) |
| 8   |        | Gamisi -<br>Zhangla    | Shanbaxi<br>ang            |              | -            | 150                          | T4               | -        | TL               | 134.8        | -     | 11.1                                       | Zhou et al.<br>(2000) |
| 9   |        | Gonggaling<br>- Gamisi | Qiming                     | -            | -            | 120                          | T2               | -        | TL               | 27           | -     | 44.4                                       | Zhou et al.<br>(2000) |
| 10  |        | Gamisi -<br>Zhangla    | Zhangla                    |              | -            | 45                           | top of T3        | loess    | 14C              | 10.116       | -     | -                                          |                       |
| 11  |        | Gamisi -<br>Zhangla    | Zhangla                    | -            | -            | 90                           | top of T3        | loess    | 14C              | 6.693        | -     | -                                          | Zhu (2014)            |
| 12  |        | Gamisi -<br>Zhangla    | Zhangla                    | -            | -            | 35                           | Т3               | -        | 14C              | 35.16        | -     | -                                          |                       |

| 13  | Gami<br>Zhan | si -<br>Zhangla<br>gla | ı -    | -   | 20  | Т3         | -          | 14C  | 22.555 | -     | -    |              |
|-----|--------------|------------------------|--------|-----|-----|------------|------------|------|--------|-------|------|--------------|
|     | Gami         | si - North of          | f      |     |     |            |            |      |        |       |      | Kirby et al. |
| 14  | Zhan         | gla Zhangla            | -<br>1 | -   | 60  | T2         | -          | 14C  | 7.75   | -     | 77.4 | (2002)       |
|     | Gami         | si - North of          | f      |     |     |            |            |      |        |       |      |              |
| 15  | Zhan         | gla Zhangla            | -<br>1 | -   | 35  | T2         | -          | 14C  | 6.12   | -     | 57.2 |              |
|     | Gami         | si -                   |        |     |     |            |            |      |        |       |      | Zhu (2014)   |
| 16  | Zhan         | Zhangla<br>gla         | ı -    | -   | 15  | 12         | -          | 14C  | 18.565 | -     | -    |              |
| 1.7 | Gami         | si -                   |        |     | 1.5 | <b>T</b> 2 |            | 0.07 | 10.2   |       |      |              |
| 17  | Zhan         | Zhangla<br>gla         | ı -    | -   | 15  | 12         | -          | OSL  | 19.2   | -     | -    |              |
| 10  | Gamisi -     | si -                   |        |     | 40  | <b>T</b> 2 |            | T    | 15.2   |       | 26.1 | Zhao et al.  |
| 18  | Zhan         | gla                    | ı -    | -   | 40  | 12         | -          | IL   | 15.3   | -     | 26.1 | (1994)       |
| 10  | Gami         | si -                   |        |     | 80  | TO         |            | TI   | 22.6   |       | 22.0 |              |
| 19  | Zhan         | gla                    |        | -   | 80  | 12         | -          | IL   | 23.0   | -     | 55.9 |              |
| 20  | Gami         | si -<br>Zhonglo        |        |     |     | TO         |            | TI   | 21.2   |       |      | Gao and Li   |
| 20  | Zhan         | gla                    |        | -   | -   | 12         | -          | IL   | 31.2   | -     | -    | (2006)       |
| 21  | Gami         | si -<br>Zhonglo        |        |     |     | TO         |            | 140  | 22.28  |       |      | Kirby et al. |
| 21  | Zhan         | gla                    |        | -   | -   | 12         | -          | 14C  | 22.78  | -     | -    | (2002)       |
| 22  | Gami         | si -<br>Zhangla        |        |     |     | Т1         |            | TI   | 15.2   |       |      | Gao and Li   |
|     | Zhan         | gla                    |        | -   | -   | 11         | -          | IL   | 15.5   | -     | -    | (2006)       |
| 23  | Gami         | si -<br>Zhangla        |        | _   | _   | Т1         | _          | 14C  | 9 231  | 6 49  | _    | Kirby et al. |
| 25  | Zhan         | gla                    |        | -   | -   | 11         | -          | 140  | 9.251  | 0.49  | -    | (2000)       |
| 24  | Gami         | si -<br>Zhangla        |        |     | 10  | Т1         |            | 14C  | 2.81   |       | 35.6 |              |
| 21  | Zhan         | gla                    |        |     | 10  |            |            | 110  | 2.01   |       | 5510 |              |
|     | Gami         | si - Zhangla           | L      |     |     |            |            |      |        |       |      | Kirby et al. |
| 25  | Zhan         | gla Chuanzh            | 1 -    | -   | 35  | T2         | -          | 14C  | 12.94  | -     | 27   | (2002)       |
|     |              | usi                    |        |     |     |            |            |      |        |       |      |              |
|     | Gami         | si - Linpo-            |        |     |     |            |            |      |        |       |      |              |
| 26  | Zhan         | gla chuanzig           | g -    | -   | 200 | T2         | -          | 14C  | 23.46  | -     | 85.3 |              |
|     |              | ou                     |        |     |     |            |            |      |        |       |      |              |
| 27  | Gami         | si - Chuanzi           | i -    | -   | 80  | upper T4   | -          | IRSL | 157    | 28    | 5.1  | Kirby et al. |
|     | Zhan         | gla gou                |        |     |     |            |            |      |        |       |      | (2000)       |
| 28  | Gami         | si - Chuanzi           | i -    | -   | 300 | lower T4   | -          | IRSL | 254    | 35    | 11.8 |              |
|     | Zhan         | gla gou                |        |     |     |            |            |      |        |       |      |              |
| 29  | Gami         | si - Chuanzi           | i<br>- | -   | 160 | T4         | -          | TL   | 157.6  | -     | 10.2 | Zhao et al.  |
|     | Zhan         | gla gou                |        |     |     |            |            |      |        |       |      | (1994)       |
| 30  | Gami         | si - Chuanzi           | i<br>- | -   | 250 | upper T4   | -          | TL   | 830    | -     | 3    |              |
|     | Zhan         | gla gou                |        |     |     |            |            |      |        |       |      |              |
| 31  | Gami         | si - East of           | -      | -   | 80  | top of T3  | -          | ESR  | 107    | -     | -    | Yang         |
|     | Zhan         | gla Songpan            | 1      |     |     |            |            |      |        |       |      | (2005)       |
| 32  | Gami         | si - East of           | -      | -   | 20  | bottom of  | -          | ESR  | 25     | -     | -    |              |
|     | Zhan         | gla Songpan            | 1      |     |     | T2         |            |      |        |       |      |              |
| 33  | From Die     | xi Taiping             | -      | 1   | -   | -          | Lacustrine | OSL  | 9.5    | 0.5   | -    | Zhong        |
| 34  | downstre Die | xi Taiping             | -      | 2.1 | -   | -          | Lacustrine | 14C  | 13.395 | 0.209 | -    | (2017)       |
| 35  | am to Die    | xi Taiping             | -      | 4.1 | -   | -          | Lacustrine | 14C  | 14.327 | 0.192 | -    |              |
| 36  | upstream Die | xi Taiping             | -      | 4.2 | -   | -          | Lacustrine | OSL  | 10.3   | 0.5   | -    |              |

| 37 | or Study | Diexi                | Taiping       | -           | 5.3  | -   | -  | Lacustrine | OSL     | 8.9    | 0.6   | -    |                       |
|----|----------|----------------------|---------------|-------------|------|-----|----|------------|---------|--------|-------|------|-----------------------|
| 38 | area     | Diexi                | Taiping       | -           | 7.5  | -   | -  | Lacustrine | OSL     | 11.1   | 0.5   | -    |                       |
| 39 |          | Diexi                | Taiping       | -           | 8.6  | -   | -  | Lacustrine | OSL     | 10.2   | 0.7   | -    |                       |
| 40 |          | Diexi                | Taiping       | -           | 8.7  | -   | -  | Lacustrine | 14C     | 14.688 | 0.23  | -    |                       |
| 41 |          | Diexi                | Taiping       | -           | 8.9  | -   | -  | Lacustrine | OSL     | 18.9   | 3.5   | -    |                       |
| 42 |          | Diexi                | Taiping       | -           | 9.6  | -   | -  | Lacustrine | OSL     | 10.1   | 0.7   | -    |                       |
| 43 |          | Diexi                | Taiping       | -           | 10.1 | -   | -  | Lacustrine | 14C     | 14.173 | 0.153 | -    |                       |
| 44 |          | Diexi                | Taiping       | -           | 11.3 | -   | -  | Lacustrine | OSL     | 8.4    | 0.8   | -    |                       |
| 45 |          | Diexi                | Taiping       | 2239.<br>5  | 1.1  | -   | -  | Lacustrine | OSL     | 25     | 3.2   | -    | Guo<br>(2018)         |
| 46 |          | Diexi                | Taiping       | 2239.<br>3  | 1.3  | -   | -  | Lacustrine | OSL     | 19.6   | 2.7   | -    |                       |
| 47 |          | Diexi                | Taiping       | 2232        | 8.6  | -   | -  | Lacustrine | OSL     | 20.7   | 2.4   | -    |                       |
| 48 |          | Diexi                | Taiping       | 2231.<br>6  | 9    | -   | -  | Lacustrine | OSL     | 22.8   | 3.6   | -    |                       |
|    |          | Maovian -            | North of      |             |      |     |    |            |         |        |       |      | Kirby et al           |
| 49 |          | Zhangla              | Jiaochan<br>g | -           | -    | 56  | T2 | Lacustrine | IRSL    | 14.2   | 1.7   | 39.4 | (2000)                |
| 50 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 162 | T5 | Lacustrine | 14C     | 9.483  | 0.21  | -    | Wang et al.<br>(2007) |
| 51 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 180 | T2 | Lacustrine | 14C     | 10     | -     | 198  | Duan et al.<br>(2002) |
| 52 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 90  | T2 | Lacustrine | 14C     | 14     | -     | 64.3 |                       |
| 53 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 35  | T2 | Lacustrine | 14C     | 6.3395 | 0.16  | -    | Wang et al.<br>(2007) |
| 54 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 30  | T2 | Lacustrine | 14C     | 22     | -     | 13.6 | Duan et al.<br>(2002) |
| 55 |          | Maoxian –<br>Zhangla | Jiaochan<br>g | -           | -    | 196 | T2 | Lacustrine | ESR     | 390    | -     | 5    | Yang et al.<br>(2003) |
| 56 |          | Maoxian -<br>Zhangla | Jiaochan<br>g | -           | -    | 180 | T2 | Lacustrine | ESR     | 504.74 | -     | 3.6  |                       |
| 57 |          | Diexi                | Tuanjie       | 2254.<br>97 | -    | -   | T5 | Lacustrine | 14C     | 8.3755 | 0.12  | -    | Wang et al.<br>(2020) |
| 58 |          | Diexi                | Tuanjie       | 2213.<br>84 | -    | -   | T4 | Lacustrine | 14C     | 4.8105 | 0.07  | -    |                       |
| 59 |          | Diexi                | Tuanjie       | 2185.<br>68 | -    | -   | Т3 | Lacustrine | 14C     | 3.7015 | 0.27  | -    |                       |
| 60 |          | Diexi                | Tuanjie       | -           | -    | -   | -  | Lacustrine | AMS 14C | 24.445 | 0.653 | -    | Wang et al.<br>(2007) |
| 61 |          | Diexi                | Tuanjie       | -           | -    | -   | -  | Lacustrine | AMS 14C | 27.35  | 0.977 | -    |                       |
| 62 |          | Diexi                | Tuanjie       | -           | -    | -   | -  | Lacustrine | AMS 14C | 24.447 | 0.519 | -    |                       |
| 63 |          | Diexi                | Tuanjie       | -           | -    | -   | -  | Lacustrine | AMS 14C | 9.735  | 0.712 | -    |                       |
| 64 |          | Diexi                | Tuanjie       | -           | -    | -   | -  | Lacustrine | AMS 14C | 13.602 | 0.128 | -    |                       |

| . <b>.</b> |       |             |   |       |   |    |             |         |         |       |   | Wang         |
|------------|-------|-------------|---|-------|---|----|-------------|---------|---------|-------|---|--------------|
| 65         | Diexi | Tuanjie     | - | -     | - | -  | Lacustrine  | AMS 14C | 15.08   | 0.065 | - | (2009)       |
|            |       |             |   |       |   |    |             |         |         |       |   | Jiang et al. |
| 66         | Diexi | Tuanjie     | - | 0     | - | T2 | Lacustrine  | OSL     | 10.63   | 1.27  | - | (2014)       |
|            |       |             |   |       |   |    |             |         |         |       |   | Мао          |
| 67         | Diexi | Tuanjie     | - | 0.05  | - | T2 | Lacustrine  | OSL     | 15.9    | 1.1   | - | (2011)       |
|            |       |             |   |       |   |    |             |         |         |       |   | liang et al  |
| 68         | Diexi | Tuanjie     | - | 0.95  | - | T2 | Lacustrine  | OSL     | 18.17   | 2.66  | - | (2014)       |
|            |       |             |   |       |   |    |             |         |         |       |   | (2014)       |
| 69         | Diexi | Tuanjie     | - | 1.05  | - | T2 | Lacustrine  | OSL     | 18      | 1.1   | - | (2011)       |
|            |       |             |   |       |   |    |             |         |         |       |   | (2011)       |
| 70         | Diexi | Tuanjie     | - | 1.95  | - | T2 | Lacustrine  | OSL     | 21.88   | 4.58  | - | Jiang et al. |
|            |       |             |   |       |   |    |             |         |         |       |   | (2014)       |
| 71         | Diexi | Tuanjie     | - | 3.05  | - | T2 | Lacustrine  | OSL     | 13.7    | 1.9   | - | Mao          |
|            |       | -           |   |       |   |    |             |         |         |       |   | (2011)       |
| 72         | Diexi | Tuanije     |   | 3.85  |   | Т2 | Lacustrine  | OSL     | 13.88   | 1 39  |   | Jiang et al. |
| 12         | Diexi | ruunjie     |   | 5.05  |   | 12 | Lucustinie  | OBE     | 15.00   | 1.57  |   | (2014)       |
| 73         | Diexi | Tuanjie     | - | 4.05  | - | T2 | Lacustrine  | OSL     | 17.3    | 3.4   | - | Mao          |
| 74         | Diexi | Tuanjie     | - | 5.05  | - | T2 | Lacustrine  | OSL     | 14.4    | 1.5   | - | (2011)       |
|            |       |             |   |       |   |    |             |         |         |       |   | Jiang et al. |
| 75         | Diexi | Tuanjie     | - | 6.05  | - | T2 | Lacustrine  | OSL     | 14.19   | 1.91  | - | (2014)       |
|            |       |             |   |       |   |    |             |         |         |       |   | Mao          |
| 76         | Diexi | Tuanjie     | - | 6.05  | - | T2 | Lacustrine  | OSL     | 16.5    | 2.1   | - | (2011)       |
|            |       |             |   |       |   |    |             |         |         |       |   | Shi et al.   |
| 77         | Diexi | Tuanjie     | - | 6.9   | - | T2 | plant       | 14C     | 14.6295 | 0.32  | - | (2020)       |
|            |       |             |   |       |   |    |             |         |         |       |   | liang et al  |
| 78         | Diexi | Tuanjie     | - | 7.05  | - | T2 | Lacustrine  | OSL     | 14.91   | 3.77  | - | (2014)       |
|            |       |             |   |       |   |    |             |         |         |       |   | (2014)       |
| 79         | Diexi | Tuanjie     | - | 8.05  | - | T2 | Lacustrine  | OSL     | 15.9    | 2     | - | Mao          |
|            |       |             |   |       |   |    |             |         |         |       |   | (2011)       |
| 80         | Diexi | Tuanjie     | - | 8.3   | - | T2 | plant       | 14C     | 16.48   | 0.18  | - | Shi et al.   |
|            |       |             |   |       |   |    |             |         |         |       |   | (2020)       |
| 81         | Diexi | Tuanjie     | - | 8.95  | - | T2 | Lacustrine  | OSL     | 16.6    | 2.67  | - | Jiang et al. |
|            |       | 0           |   |       |   |    |             |         |         |       |   | (2014)       |
| 82         | Diexi | Tuanjie     | - | 9.05  | - | T2 | Lacustrine  | OSL     | 19      | 1.7   | - | Mao          |
| 83         | Diexi | Tuanjie     | - | 10.05 | - | T2 | Lacustrine  | OSL     | 18.8    | 1.7   | - | (2011)       |
| 84         | Diavi | Tuonija     |   | 10.95 |   | T2 | Locustrine  | OSI     | 18.6    | 2.86  |   | Jiang et al. |
| 84         | Diexi | Tuanjie     | - | 10.95 | - | 12 | Lacustinie  | USL     | 18.0    | 2.80  | - | (2014)       |
| 85         | Diexi | Tuanjie I   | - | 0.5   | - | -  | Lacustrine  | OSL     | 10.9    | 0.6   | - | Zhong        |
| 86         | Diexi | Tuanjie I   | - | 1.5   | - | -  | Lacustrine  | OSL     | 17.7    | 0.8   | - | (2017)       |
| 87         | Diexi | Tuanjie I   | - | 2.5   | - | -  | Lacustrine  | OSL     | 12      | 0.7   | - |              |
| 88         | Diexi | Tuanjie I   | - | 3.5   | - | -  | Lacustrine  | OSL     | 9.8     | 0.7   | - |              |
| 89         | Diexi | Tuanjie I   | - | 4.5   | - | -  | Lacustrine  | OSL     | 17.8    | 0.9   | - |              |
| 90         | Diexi | Tuanjie I   | - | 5     | - | -  | Lacustrine  | OSL     | 11.1    | 0.9   | - |              |
| 91         | Diexi | Tuaniie I   | - | 6.1   | - | -  | Lacustrine  | OSL.    | 10      | 0.8   | - |              |
| 92         | Dievi | Tuaniie I   | - | 8 15  | _ | _  | Charcoal    | AMS 14C | 13 837  | 0.173 | - |              |
| 93         | Dievi | Tuanije I   |   | 85    |   | _  | Lacustrine  | 0.51    | 16.1    | 0.7   | _ |              |
| 04         |       | 1 adiijie 1 | - | 0.5   | - | -  | Lacustillic | OSL     | 10.1    | 0.7   | - |              |
| 74         | Diexi | i uanjie i  | - | 9     | - | -  | Lacustrine  | USL     | 12./    | 0.0   | - |              |

| 95  |           | Diexi      | Tuanjie I     | -     | 10        | -   | -                                                | Lacustrine | OSL     | 19.2    | 3.4      | -      |             |
|-----|-----------|------------|---------------|-------|-----------|-----|--------------------------------------------------|------------|---------|---------|----------|--------|-------------|
| 96  |           | Diexi      | Tuanjie I     | -     | 10.5      | -   | -                                                | Lacustrine | OSL     | 19.5    | 1        | -      |             |
| 97  |           | Diexi      | Tuanjie I     | -     | 11.1      | -   | -                                                | Charcoal   | AMS 14C | 14.23   | 0.15     | -      |             |
| 98  |           | Diexi      | Tuanjie       | -     | 0.1       | -   | -                                                | Lacustrine | OSL     | 20.3    | 1.4      | -      |             |
|     |           |            | 11<br>Tuanije |       |           |     |                                                  |            |         |         |          |        |             |
| 99  |           | Diexi      | II            | -     | 0.6       | -   | -                                                | Lacustrine | OSL     | 12.1    | 0.7      | -      |             |
|     |           |            | Tuanije       |       |           |     |                                                  |            |         |         |          |        |             |
| 100 |           | Diexi      | II            | -     | 0.7       | -   | -                                                | Lacustrine | OSL     | 20.4    | 0.8      | -      |             |
|     |           |            | Tuanjie       |       |           |     |                                                  |            |         |         |          |        |             |
| 101 |           | Diexi      | II            | -     | 2.1       | -   | -                                                | Lacustrine | OSL     | 14.2    | 1.2      | -      |             |
|     |           | <b></b>    | Tuanjie       |       |           |     |                                                  |            |         |         |          |        |             |
| 102 |           | Diexi      | II            | -     | 2.4       | -   | -                                                | Lacustrine | AMS 14C | 14.67   | 0.23     | -      |             |
| 102 |           | D          | Tuanjie       |       | 2.0       |     |                                                  | <b>.</b>   |         | 14.420  | 0.176    |        |             |
| 103 |           | Diexi      | II            | -     | 2.9       | -   | -                                                | Lacustrine | AMS 14C | 14.439  | 0.176    | -      |             |
| 104 |           | Dimi       | Tuanjie       |       | 27        |     |                                                  | T          | 051     | 20.0    | 1        |        |             |
| 104 |           | Diexi      | II            | -     | 5.7       | -   | -                                                | Lacustrine | USL     | 20.9    | 1        | -      |             |
| 105 |           | Dimi       | Tuanjie       |       | 5.6       |     |                                                  | Locustrino | 130     | 15.5    | 1        |        |             |
| 105 |           | Diexi      | II            | -     | 5.0       | -   | -                                                | Lacustrine | USL     | 15.5    | 1        | -      |             |
|     |           |            |               |       | 2.30      |     |                                                  |            |         |         |          |        | Zhang et    |
| 106 |           | Diexi      | Tuanjie       | -     | (thicknes | -   | -                                                | Lacustrine | 14C     | 35.7815 | 0.37     | -      | al. (2009)  |
|     |           |            |               |       | s)        |     |                                                  |            |         |         |          |        |             |
|     |           |            |               |       | 4.55      |     |                                                  |            |         |         |          |        |             |
| 107 |           | Diexi      | Tuanjie       | -     | (thicknes | -   | -                                                | Lacustrine | 14C     | 31.1315 | 0.1      | -      |             |
|     |           |            |               |       | s)        |     |                                                  |            |         |         |          |        |             |
|     |           |            |               |       | 7.70      |     |                                                  |            |         |         |          |        |             |
| 108 |           | Diexi      | Tuanjie       | -     | (thicknes | -   | -                                                | Lacustrine | 14C     | 30.655  | 0.03     | -      |             |
|     |           |            |               |       | s)        |     |                                                  |            |         |         |          |        |             |
| 109 |           | Diexi      | TuanjieII     | 2158. | 4         | _   | ТЗ                                               | Lacustrine | OSL     | 19      | 1.9      | -      | Guo         |
|     |           |            | Ι             | 9     |           |     |                                                  |            |         |         |          |        | (2018)      |
| 110 |           | Diexi      | TuanjieII     | 2161. | 3         | -   | T2                                               | Lacustrine | OSL     | 22.9    | 2.7      | -      |             |
|     |           |            |               | 8     |           |     |                                                  |            |         |         |          |        |             |
| 111 |           | Diexi      | TuanjieI      | 2165. | 7.5       | -   | T1                                               | Lacustrine | OSL     | 23.7    | 3.2      | -      |             |
|     |           |            |               | 6     |           |     |                                                  |            |         |         |          |        |             |
| 112 |           | Diexi      | valley        | -     | -         | -   | T5                                               | Sand       | TL      | 90.446  | 3        | -      | Gao and Li  |
| 113 |           | Diexi      | valley        | -     | -         | -   | T3                                               | Sand       | TL      | 50.8    | 3.9      | -      | (2006)      |
| 114 |           | Diexi      | valley        | -     | -         | -   | T2                                               | Sand       | TL      | 12.7    | 1        | -      |             |
|     |           |            |               |       |           |     | bottom of                                        |            |         | ac      | <i>.</i> |        | Luo et al.  |
| 115 |           | Diexi      | valley        | -     | -         | -   | lacustrine                                       | Lacustrine | 14C     | 22.675  | 2.44     | -      | (2019)      |
|     |           |            | E · C         |       |           |     | seaiments                                        |            |         |         |          |        |             |
| 116 |           | Wenchuan - | East of       |       |           | 140 | 1975 - П. Т. |            | ECP     | 110.25  |          | 10.7   | Yang et al. |
| 110 | Down-     | Maoxiao    | 1 auguu,      | -     | -         | 140 | upper 15                                         | -          | LOK     | 110.23  | -        | 12.7   | (2003)      |
|     | stream    | Wenchuon   | Maoxian       |       |           |     |                                                  |            |         |         |          |        | Zhao et al  |
| 117 |           | Maovino    | Magyion       | -     | -         | 120 | T2                                               | -          | TL      | 20.7    | -        | 58     | (1004)      |
|     | 11100/100 | maunian    |               |       |           |     |                                                  |            |         |         |          | (1))+) |             |

| 118 | Wenchuan - | Maoxian  | _ | - | 100 | upper of T3 | loess | FSR | 62     | _ | _   | Yang        |
|-----|------------|----------|---|---|-----|-------------|-------|-----|--------|---|-----|-------------|
| 110 | Maoxiao    | Waoxian  |   |   | 100 | upper of 15 | 10033 | LSK | 02     | - | -   | (2005)      |
| 110 | Wenchuan   |          |   |   | 00  | 6772        | 1     | ECD | 100.5  |   |     |             |
| 119 | – Maoxiao  | Maoxiali | - | - | 90  | upper of 15 | loess | ESK | 100.5  | - | -   |             |
| 120 | Wenchuan - | Maavian  |   |   | 80  | bottom of   |       | 081 | 20.0   | - |     | Zhu (2014)  |
| 120 | Maoxiao    | Waoxian  | - | - | 80  | Т3          | -     | USL | 59.9   |   | -   |             |
| 121 | Wenchuan - | Manian   |   |   | 25  | TO          |       | 140 | 27.84  |   |     |             |
|     | Maoxiao    | Maoxian  | - | - | 55  | 12          |       | 14C | 27.04  | - | -   |             |
| 122 | Wenchuan - | Maavian  |   |   | 20  | T2          | -     | 140 | 24.68  | - |     |             |
| 122 | Maoxiao    | Maoxian  | - | - |     |             |       | 14C |        |   | -   |             |
|     | Wanaharan  | Yantouz  |   |   |     |             |       |     |        |   |     | Yang et al. |
| 123 | wenchuan - | hai,     | - | - | 160 | lower T3    | -     | ESR | 279.99 | - | 5.7 | (2003)      |
|     | Maoxiao    | Maoxian  |   |   |     |             |       |     |        |   |     |             |
| 124 | XX 1       | North of |   |   |     |             |       |     |        |   |     |             |
|     | wenchuan - | Wenchu   | - | - | 160 | T4          | cave  | ESR | 370.5  | - | 4.3 |             |
|     | Maoxiao    | an       |   |   |     |             |       |     |        |   |     |             |

#### Supplementary figures:



**Fig. S1.** Regeneration dose (15.5 Gy) optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) decay curves of samples IEE5543 (**a**) and IEE5550 (**b**).



Fig. S2. Quartz OSL IR depletion ratio (with IR/without IR **a**), recuperation ratio (recuperated/natural, **b**), and recycling ratio (repeated/regenerated, **c**) for all the 222 aliquots (used for  $D_e$  determination) of the 19 luminescence samples.



**Fig. S3.** Quartz OSL  $D_e$  determination for sample IEE5543. (a) Natural and regenerative-dose OSL decay curves from one of the 15 aliquots used for  $D_e$  determination. (b) Dose-response curve and  $D_e$  determination for the aliquot in (a). (c) Probability density distribution of  $D_e$  and mean  $D_e$ .

#### References

- Duan, L., Wang, L., Yang, L., and Dong, X.: The ancient climatic evolution characteristic reflected by carbon and oxygen isotopes of carbonate in the ancient barrier lacustrine deposits, Diexi, Minjiang River, The Chinese Journal of Geological Hazard and Control, 13, 91-96, <u>https://doi.org/10.3969/j.issn.1003-8035.2002.02.019</u>, 2002.
- Gao, X. and Li, Y.: Comparison on the incision rate in the upper and middle reaches of Minjiang River, Resources and environment in the Yangtze Basin, 15, 517-521, <u>https://doi.org/10.3969/j.issn.1004-8227.2006.04.020</u>, 2006.
- Guo, P.: Grain Size Characteristics and Optically stimulated luminescence Geochronology of Sediments in Diexi palaeo-dammed Lake, Upper Reaches of Minjiang River, China University of Geosciences, Beijing, 85 pp., 2018.
- Jiang, H., Mao, X., Xu, H., Yang, H., Ma, X., Zhong, N., and Li, Y.: Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, East Tibet, Geomorphology, 204, 518-531, <u>https://doi.org/10.1016/j.geomorph.2013.08.032</u>, 2014.
- Kirby, E., Whipple, K. X., Burchfiel, B. C., Tang, W., Berger, G., Sun, Z., and Chen, Z.: Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau, Geological Society of America Bulletin, 112, 375-393, <u>https://doi.org/10.1130/0016-7606(2000)112</u><375:NOTMSC>2.0.CO;2, 2000.
- Kirby, E., Reiners, P. W., Krol, M. A., Whipple, K. X., Hodges, K. V., Farley, K. A., Tang, W., and Chen, Z.: Late Cenozoic evolution of the eastern margin of the Tibetan Plateau Inferences from <sup>40</sup>Ar/<sup>39</sup>Ar and (U-Th)/He thermochronology, tectonics, 21, 1-20, <u>https://doi.org/10.1029/2000TC001246</u>, 2002.
- Mao, X.: Preliminary study on lacustrine sediments at Diexi in the upper reach of the Minjiang River during the last deglaciation, China university of Geosciences, Beijing, 71 pp., 2011.
- Shi, W., Jiang, H., Mao, X., and Xu, H.: Pollen record of climate change during the last deglaciation from the eastern Tibetan Plateau, Plos One, 15, <a href="https://doi.org/10.1371/journal.pone.0232803">https://doi.org/10.1371/journal.pone.0232803</a>, 2020.
- Wang, L., Wang, X., Xu, X., and Cui, J.: What happened on the upstream of Minjiang River in Sichuan Province 20,000 years ago, Earth Science Frontiers, 14, 189-196, <u>https://www.earthsciencefrontiers.net.cn/CN/Y2007/V14/I6/189</u>, 2007.
- Wang, L., Wang, X., Shen, J., Xu, X., Cui, J., Zhang, Z., and Zhou, Z.: The effect of evolution of Diexi ancient barrier lake in the upper Mingjiang River on the Chengdu Plain in Sichuan, China, Journal of Chengdu University of technology, 47, 1-15, <u>https://doi.org/10.3969/j.issn.1671-9727.2020.01.01</u>, 2020.
- Wang, X.: The Environment Geological Information in the Sediments of Diexi Ancient Dammed Lake on the upstream of Mingjiang River in Sichuan Province, China, Chengdu University of Technology, Chengdu, 116 pp., 2009.
- Yang, N., Zhang, Y., Meng, H., and Zhang, H.: Study of the Minjiang River terraces in the western Sichuan Plateau, Journal of Geomechanics, 9, 363-370, <u>https://doi.org/10.3969/j.issn.1006-6616.2003.04.008</u>, 2003.
- Yang, W.: Research of Sedimentary Record in Terraces and Climate Vary in the Upper Reaches of Minjiang River, China, Chengdu University of Technology, Chengdu, 2005.
- Zhang, Y., Zhu, L., Yang, W., Luo, H., Jiang, L., He, D., and Liu, J.: High resolution rapid climate change records of lacustrine deposits of Diexi Basin in the eastern margin of Qinghai-Tibet Plateau, 40-30 ka BP, Earth Science Frontiers, 16, 91-98, 2009.
- Zhao, X., Deng, Q., and Chen, S.: Tectonic geomorphology of the Minshan uplift in western Sichuan, southwestern China, Seismology and Geology, 16, 429-439, https://doi.org/CNKI:SUN:DZDZ.0.1994-04-017, 1994.
- Zhong, N.: Earthquake and Provenance Analysis of the Lacustrine Sediments in the Upper Reaches of the Min River during the Late Pleistocene, Institute of Geology, China Earthquake Administration, Beijing, 193 pp., 2017.
- Zhou, R., Pu, X., He, Y., Li, X., and Ge, T.: Recent activity of Minjiang fault zone, uplift of Minshan block and their relationship with seismicity of Sichuan, Seismology and Geology, 22, 285-294, <u>https://doi.org/CNKI:SUN:DZDZ.0.2000-03-009</u>, 2000.
- Zhu, J.: A preliminary study on the upper reaches of Minjiang River Terrace, Chengdu University of Technology, Chengdu, 73 pp., 2014.