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Abstract. Existing process-based models for simulating coastal foredune evolution largely use the same analyt-
ical approach for estimating wind-induced surface shear stress distributions over spatially variable topography.
Originally developed for smooth, low-sloping hills, these analytical models face significant limitations when the
topography of interest exhibits large height-to-length ratios and/or steep, localized features. In this work, we
utilize computational fluid dynamics (CFD) to examine the error trends of a commonly used analytical shear
stress model for a series of idealized two-dimensional dune profiles. It is observed that the prediction error of the
analytical model increases compared to the CFD simulations for increasing height-to-length ratio and localized
slope values. Furthermore, we explore two data-driven methodologies for generating alternative shear stress pre-
diction models, namely, symbolic regression and linear, projection-based, non-intrusive reduced-order modeling.
These alternative modeling strategies demonstrate reduced overall error but still suffer in their generalizability
to broader sets of dune profiles outside of the training data. Finally, the impact of these improvements on ae-
olian sediment transport fluxes is examined to demonstrate that even modest improvements to the shear stress
prediction can have significant impacts on dune evolution simulations over engineering-relevant timescales.

1 Introduction

Complex landforms are common features in sandy, subaerial
environments arising out of spatial sediment transport gra-
dients. Parabolic dunes, for example, develop at sites with
strong, unidirectional winds where spatially nonuniform veg-
etation stabilization can trigger a feedback cycle generating a
U-shaped morphological feature (Yan and Baas, 2015). Simi-
larly, barchan dunes are three-dimensional landforms arising
out of nonuniform sediment supply that initiates the feature
and is reinforced through flow–sediment interactions. Nu-
merous other types of landforms exist depending on wind
speed and directionality, hydrologic properties, local sedi-

ment supply and bed characteristics, vegetation effects, and
the presence of upwind obstacles. The ability to predict the
formation and evolution of such landforms is critical in many
sandy subaerial regions due to infrastructural and transporta-
tion risks associated with migrating sand (e.g., Bruno et al.,
2018; Khalaf and Al-Ajmi, 1993; Puy et al., 2018). This ap-
plied management need has partially driven the development
of a wide range of tools of various spatial resolutions, process
capabilities, and computational needs for synthesizing com-
ponents of the sediment transport processes and morphody-
namic feedbacks contributing to aeolian landform develop-
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2 O. Cecil et al.: Dune shear stress

ment (Diniega et al., 2010; Durán et al., 2010; Keijsers et al.,
2016; Luna et al., 2011; Sauermann et al., 2001).

The need for quantitative, predictive wind-driven morpho-
logical tools in the coastal zone, where small modifications
to the topography have important implications for flooding-
related hazards during storms (e.g., Figlus, 2022; Hanley
et al., 2014), is particularly pressing (Elko et al., 2016).
Specifically, coastal foredunes often represent the first line
of defense for such hazards and are therefore increasingly
being encouraged to grow or are being constructed in or-
der to add resilience to the system. However, beach-dune
systems are also commonly characterized by abrupt spatial
transport gradients due to moisture effects on the transport
field, sediment heterogeneity, vegetation, and steep topog-
raphy. Over the past decade, foundational tools for simu-
lating mesoscale landform development in desert environ-
ments have been ported to coastal environments, in part
through the incorporation of vegetation–shear stress interac-
tions (Durán and Moore, 2013), time evolution of the veg-
etation field (Charbonneau et al., 2022), improved repre-
sentation of multi-fraction transport effects (Hoonhout and
de Vries, 2016), and enhanced representations of groundwa-
ter and surface moisture effects (Hage et al., 2020; Hallin
et al., 2023).

While new process capabilities are critical for improved
representations of transport processes in supply-limited sys-
tems (van IJzendoorn et al., 2023) and ecological effects
controlling deposition patterns (Dickey et al., 2023; Okin,
2008), many of these process-based tools being developed
for coastal dune evolution utilize numerical representations
of the same analytical solutions to account for topographic
effects on wind-related spatial shear stress perturbations de-
rived from Kroy et al. (2002) and related works. For example,
the Coastal Dune Model includes a 2D bidirectional wind
solving capability based on the Kroy et al. (2002) solution
(hereby referred to as KSH) that has shown the ability to
account for flow–sediment–morphology interactions related
to the building of vegetated coastal foredunes and foredune
ridges (Duran and Moore, 2013; Moore et al., 2016). Simi-
larly, a 1D representation of this approach has been incorpo-
rated into the Duna Model (Roelvink and Costas, 2019), and
a wind-aligned grid rotation scheme has allowed 2D omnidi-
rectional winds for characterizing wind flow perturbations in
AeoLiS (van Westen, 2018).

Although the implementation of these routines differs, all
widely used process-based coastal dune growth models op-
erate from the same foundational assumptions and numerical
approximations for shear stress perturbations, as described
in more detail in Sect. 1.2. However, at sites characterized
by often steep topographic gradients, the validity of these
existing numerical expressions for topographically induced
flow (shear stress) acceleration patterns and separation bub-
ble behavior has not been widely assessed. As such numer-
ical tools move from mostly theoretical applications (Parteli
et al., 2014; Durán Vinent and Moore, 2015) to applica-

Figure 1. Distribution of H/Lbase for coastal foredunes along the
outer coast of the continental United States derived from Mull and
Ruggiero (2014) and Doran et al. (2017), as compiled in Cohn
(2022), where Lbase is assumed to be the length scale from the dune
toe to the dune crest.

tions of real-world dune dynamics (Kombiadou et al., 2023;
Strypsteen and de Vries, 2023; van Westen et al., 2024),
constraining errors in representations of physical processes
becomes particularly important. Dune systems in particular
have a broad range of forms and sizes depending on the
vegetation type and species (Zarnetske et al., 2012), sedi-
ment supply (Psuty, 2008), and disturbance history (Robin
et al., 2021), as partially represented by the wide range in
dune height (H ) to toe-crest length (Lbase) ratio shown in
Fig. 1. Given that mesoscale morphological changes are of-
ten the result of small sediment transport gradients that ag-
gregate over extended timescales, an incomplete representa-
tion of these complex wind dynamics limits the ability to suc-
cessfully predict dune evolution across relevant engineering
timescales (hours to decades) – posing limitations for quanti-
fying future risk from encroachment and increased flooding
potential, as well as engineering solutions to limit these haz-
ards.

In this work we aim to examine the limits and error trends
of analytical bed shear stress predictions by comparing to
computational fluid dynamics (CFD) simulations for a range
of idealized dune profiles. Furthermore, we explore alterna-
tive data-driven models through symbolic regression (SR)
methods and projection-based, non-intrusive, reduced-order
modeling (NIROM) techniques. Our goal is to provide in-
sight into the errors incurred by and subsequent sediment
transport effects of using traditional theoretical bed shear
stress predictions in dune evolution models, as well as to
explore the advantages and disadvantages of some possi-
ble alternative flow modeling strategies. We begin by pro-
viding a brief overview of analytical bed shear stress pre-
dictions, the use of CFD in modeling flow dynamics over
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Figure 2. Sketch depicting the important geometric dimensions and
regions for flow over simplified dune profiles.

dunes, symbolic regression methods, and projection-based
NIROM techniques in Sect. 2. In Sect. 3, we lay out our ap-
proach for using these methods to produce alternative bed
shear stress predictions. Results of CFD, symbolic regres-
sion, and NIROM predictions and their comparison to KSH
are examined in Sect. 4. Finally, an intercomparison of the
methods considered and the subsequent impact on dune evo-
lution models are discussed in Sect. 5.

2 Background

2.1 Analytical solutions for flow over low sloping dunes

One of the earliest analytical models for predicting the near-
surface flow over a low-sloping hill was developed by Jack-
son and Hunt (1975). Given the overall height, H , and the
characteristic length, L, defined as the half-length at half-
height, the slope is assumed to be on the order of the height-
to-length ratio, H/L, which is assumed to be small. Addi-
tionally, the characteristic length-to-roughness-length ratio,
L/z0, which is assumed to be large and uniform, also plays
a central role in the analysis. Jackson and Hunt (1975) split
the atmospheric boundary layer into two regions where the
outer layer is treated as inviscid, while flow in the inner
layer is driven by the induced pressure gradient and turbu-
lence effects. The various important dimensions and regions
are depicted in Fig. 2. The Reynolds-averaged Navier–Stokes
(RANS) equations are then linearized and a solution obtained
through a series of scaling arguments and matched asymp-
totic expansions.

Since the initial work of Jackson and Hunt (1975), the
theory has been extended to three dimensions (Mason and
Sykes, 1979), upstream velocity profiles with strong shear
(Hunt et al., 1988), and higher-order corrections (Weng et al.,
1991). However, the normalized bed shear stress perturba-
tion remains essentially the same and is given by Weng et al.
(1991) as

τ ′ =
τ

τ0
− 1 (1)

F
[
τ ′
]
=

2H/L
U2(l)

F
[
σ ′
][

1+
2ln |kL| + 4γ + 1+ iπ

ln(l/z0)

]
(2)

σ ′ =
1
π

∞∫
−∞

f ′(ξ ′)
ξ − ξ ′

dξ ′, (3)

where σ ′ is the leading order normalized pressure pertur-
bation given by the Hilbert transform of the hill slope, z0
the surface roughness length, k the Fourier wave number,
ξ = x/L a normalized streamwise coordinate, γ ≈ 0.57721
Euler’s constant, and l the length scale of the inner region
given by

l ln
(
l

z0

)
= 2κ2L. (4)

More recently, Kroy et al. (2002) further simplified the ex-
pression for a transverse dune, leading to

F
[
τ ′
]
= A(|k| + iBk)F[h(x)] (5a)

A=
ln(82/ ln8)2

2(lnφ)3 [1+ lnφ+ 2ln(π/2)+ 4γ ] (5b)

B = π [1+ lnφ+ 2ln(π/2)+ 4γ ]−1 (5c)

φ ≡ 2κ28/ lnφ (5d)
8= L/z0, (5e)

where h(x) represents the dune topography and κ = 0.41
is the von Kármán constant. It should be noted that we
have retained the terms involving the logarithmic dependence
on the characteristic length which stems from Eq. (2), i.e.,
2 ln(π/2), in contrast to the description in Kroy et al. (2002),
which indicates that these terms are neglected in their subse-
quent analysis.

As alluded to earlier, three inherent limitations exist with
these asymptotic-based analytical models when applying
them to realistic coastal dunes. First, linearization of the un-
derlying equations precludes the ability to capture separated
flow effects. Traditionally, this has been overcome by extend-
ing the dune surface with an empirical separation bubble pro-
file (Kroy et al., 2002; Schatz and Herrmann, 2006) or by ap-
plying a nonlinear correction to the predicted bed shear stress
based on numerical simulations of forward- and backward-
facing steps (Pelletier, 2009). However, it should be noted
that these ad hoc extensions do not account for the depen-
dence of the separating streamline and reattachment angle
on the upwind shear velocity (Araújo et al., 2013). Addi-
tionally, by setting the shear stress to zero in these regions
the potential for reverse transport in the lee is overlooked.
Secondly, the assumption of a small H/L and dune slope
can lead to issues when applying the model to dunes with
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sharp local features, such as scarps, that may otherwise sat-
isfy the H/L criteria and not exhibit separation on the lee
side. Again, while the shear stress perturbation can be lim-
ited to τ ′ ≥−1 in the case of separation at a scarp (Durán Vi-
nent and Moore, 2015), the presence of this locally steep to-
pography influences the shear stress across the crest and in
the lee of the dune as well (Bauer and Wakes, 2022), lead-
ing to additional errors. Additionally, the majority of dunes,
at least in the coastal domain (e.g., Fig. 1), do not conform
to the low-slope assumption, limiting the use of these ana-
lytical approaches to a small subset of morphological dune
types. Finally, while the surface roughness, z0, is assumed
to be constant over the dune, realistic coastal dunes rarely
exhibit a uniform surface roughness due to the inherent het-
erogeneity of vegetation growth. Nevertheless, these Fourier-
transform-based physical approximations are simple to im-
plement, provide rapid predictions, and have shown great
utility in capturing a range of dune phenomena (Durán et al.,
2010; Parteli and Herrmann, 2007), making them attractive
for incorporation into larger dune evolution models (Walms-
ley and Howard, 1985; Stam, 1997; Kroy et al., 2002; Duran
and Moore, 2013).

2.2 Computational fluid dynamics simulations of flow
over dunes

While analytical predictions for the shear stress perturba-
tion have played a major role in morphological studies, CFD
approaches have also been important in understanding the
flow dynamics over aeolian landforms (Smyth, 2016). One
of the earliest is Wippermann and Gross (1986) in which the
mesoscale meteorological model FITNAH, a nonhydrostatic,
Reynolds-averaged Navier–Stokes (RANS) model, was used
in lieu of a theoretical expression as discussed above to
simulate the development and migration of a barchan, thus
overcoming limitations of the linear predictions. Addition-
ally, numerical simulations have been used to study the ef-
fects of varying height and length of an idealized transverse
dune (Parsons et al., 2004a, b), varying roughness heights
(Wakes et al., 2010), flow separation on the lee side of dunes
(Schatz and Herrmann, 2006; Araújo et al., 2013), and air-
flow over scarps (Hesp and Smyth, 2021; Bauer and Wakes,
2022), as well as blowouts (Smyth et al., 2012), reversing
dunes (Jackson et al., 2020), and nebkha foredunes (Hesp
and Smyth, 2017; Furtak-Cole et al., 2022). Other example
works include Jackson et al. (2011), which compared several
turbulence models including RANS k−ω SST, several hy-
brid RANS–LES models without surface roughness effects,
and an LES–ABL model that included the surface roughness,
highlighting the importance of capturing surface roughness
effects, as well as Jackson et al. (2013), which presented
full 3D RANS simulations for a large dune field. Of par-
ticular relevance to the current study, Ferreira et al. (2013)
showed that CFD predictions achieve generally good agree-
ment with experimental measurements of shear stress dis-

tributions for single and tandem dunes. In general, (Open-
FOAM Ltd., 2020) has become a widely used CFD tool for
modeling wind dynamics and bed shear stress over topog-
raphy, including in coastal environments (e.g., Hesp et al.,
2015; Jackson et al., 2013).

2.3 Symbolic regression

Existing analytical solutions for the effective bed shear stress
distribution over dunes are relatively fast and easy to im-
plement but lack the accuracy and general validity of full
CFD simulations. One possible way to bridge this gap is
through data-driven techniques. For example, Wakes et al.
(2021) trained machine learning models, including random
forest and logistic regression approaches, on CFD model out-
put to generate flow predictors. However, there are a number
of methods which have yet to be explored or fully evaluated.
In particular, symbolic regression (SR) is a long-standing ap-
proach that has seen recent growth due to the emergence
of new machine learning tools and techniques (Koza, 1994;
Champion et al., 2020; Bakarji et al., 2023; Makke and
Chawla, 2024). As its name suggests, SR seeks to identify
a symbolic expression using a combination of provided input
features, symbolic operators, and constants which best cap-
tures the relationship between input and output. While SR
may lack the accuracy and training efficiency for large, multi-
dimensional datasets achieved by deep neural networks, the
resulting analytical expressions are more interpretable and
often more generalizable than their neural network counter-
parts.

Some of the most popular methods for discovering the op-
timal input–output mapping are the Sparse Identification of
Nonlinear Dynamics (SINDy) (Brunton et al., 2016), genetic
programming-based approaches (Koza, 1994), and more re-
cent efforts to incorporate neural network and deep learn-
ing techniques (Sahoo et al., 2018; Petersen et al., 2019). In
SINDy and its variants (Rudy et al., 2019; Champion et al.,
2019, 2020; Kaheman et al., 2020; Shea et al., 2021; Fasel
et al., 2022), a precomputed library of nonlinear terms along
with sparse optimization techniques such as the least absolute
shrinkage and selection operator (LASSO) (Brunton et al.,
2016) or sequential threshold ridge regression (STRidge)
(Rudy et al., 2017) are used to determine a sparse, optimal,
linear combination of nonlinear terms. While the SINDy ap-
proach is computationally efficient, it is known to struggle
with noisy data and is limited in the functional forms that it
is able to learn (Makke and Chawla, 2024).

On the other hand, genetic programming (GP) approaches
utilize data structures, such as expression trees (Koza, 1994)
or imperative representations (Brameier and Banzhaf, 2007)
that allow for more general functional forms. However, the
use of evolutionary strategies to search the space formed by
the combination of input features, operators, and possibly
real constants incurs a greater computational cost. In general,
GP approaches begin with a randomly seeded initial popula-
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tion of candidate expressions that is then evolved over several
generational cycles. Each cycle consists of evaluating the ex-
isting candidates, selecting candidates for mutation, and fi-
nally mutating expressions to create a new set of candidates
(Koza, 1994). The fitness of all candidates is tracked over the
course of many iterations and the best overall candidate is
selected as the solution.

One recent GP-based SR tool is PySR (Cranmer, 2023).
In addition to the basic GP formulation, it includes regular-
ized evolution for updating population members, a simplify–
optimize stage that aims to reduce the number of equivalent
but symbolically different expressions and reduce the burden
of discovering equations with floating point constants, and a
parsimony penalty which aims to maintain equal numbers of
candidate expressions at every level of complexity (Cranmer,
2023). In this paper, we apply PySR to CFD simulation data
(Cecil et al., 2024) and evaluate its performance compared
to the classical KSH functional and a class of reduced-order
modeling techniques that we describe next.

2.4 Non-intrusive reduced-order modeling

Another possible way to bridge the gap between classical an-
alytical techniques and full CFD simulations is to build a
surrogate (or reduced-order) version of the CFD model it-
self. If successful, this approach can combine the physical
fidelity of a RANS or LES approximation with the speed
of a closed-form analytical expression. A vast and growing
body of literature exists on reduced-order modeling (e.g.,
Hesthaven et al., 2016; Benner et al., 2015; Lee and Carlberg,
2020; Brunton et al., 2020). The fundamental idea underly-
ing these approaches is that high-fidelity simulation data of-
ten exhibit dynamics with low-dimensional structure. One of
the most popular ways to exploit this structure is through the
method of snapshots and projection-based model reduction
(Carlberg et al., 2017; Benner et al., 2015). In this case, one
first generates a set of high-fidelity simulation data (or snap-
shots) and identifies a low-dimensional approximation to the
solution subspace (or manifold) through a dimension reduc-
tion step. Reduced-order solutions are then expressed as an
expansion in a basis that spans the solution subspace (Dutta
et al., 2021a). Traditional techniques like proper orthogonal
decomposition (POD) use linear dimension reduction, while
nonlinear techniques based on deep neural network architec-
tures are becoming increasingly popular for problems with
complex, multi-scale dynamics (Wan et al., 2018; Lee and
Carlberg, 2020; Maulik et al., 2021; Dutta et al., 2022).

If the governing equations are known and accessible
through the high-fidelity model, one can use Galerkin or
Petrov–Galerkin projection to create a rigorous, interpretable
reduced-order model (ROM) (Carlberg et al., 2013; Lo-
zovskiy et al., 2016, 2017). Often, this is not practical (or
possible) due to design of the high-fidelity model or re-
strictions on access to its source code. For these cases,
purely data-driven methods that do not require intrusive ac-

cess to the high-fidelity model have become popular (Xiao
et al., 2017; Dutta et al., 2021b). Rather than using Galerkin
or Petrov–Galerkin projection, these non-intrusive ROMS
(NIROMs) use black-box interpolation (or regression) to ob-
tain expansion coefficients for the approximate solution in
the reduced basis. A wide array of interpolation techniques
and strategies have been tested including Gaussian process
regression (Guo and Hesthaven, 2019), dynamic mode de-
composition (Tu et al., 2014; Wu et al., 2021), radial ba-
sis functions (RBFs) (Walton et al., 2013; Xiao et al., 2015;
Dutta et al., 2021a), and neural networks (Hesthaven and Ub-
biali, 2018; Salvador et al., 2021; Dutta et al., 2021c). In each
case, data for the NIROM interpolation are provided by the
projection coefficients of the original simulation snapshots.
As a result, the success of the resulting ROM depends heavily
on balancing accuracy with over-fitting and having training
data that adequately represent the problem space of interest
(Dutta et al., 2021a).

Below, we will employ well-established NIROM tech-
niques based on linear dimension reduction and RBF interpo-
lation to build reduced-order approximations of high-fidelity
CFD simulations over various dune profiles. These results
will serve as benchmarks to evaluate the accuracy and gener-
alizability of our SR approximations.

3 Methodology

3.1 Prescribed dune shapes for modeling

In real-world systems, dunes take on a wide range of shapes
and sizes (e.g., Fig. 1). To examine the influence of variable
topography on bed shear stress patterns, for this study we
examined four types of dune profiles that have been param-
eterized to allow for consistent specification of the height H
and characteristic length L given by the half-length at half-
height. These include a quadratic cosine, Gaussian, quartic,
and bump profile given by the following.
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Figure 3. Comparison of prototype dune profile (a) and slopes (b).
Note that the bump profile slope uses the right y axis in panel
(b) due to the large difference in scale between it and the other pro-
files.

Cosine: h(x)= accos2
[bc(x− σ )]; ac =H ;

bc =
1
L

arccos
(√

1
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)
; x ∈
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π
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(6a)

Gaussian: h(x)= ag exp
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−
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(6b)

Quartic: h(x)=
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1+ bq(x− σ )4 ; aq =H ;

bq =
1
L4 (6c)

Bump: h(x)= ab exp
[

−1
1− bb(x− σ )2

]
; ab =He;
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1+ [1/ ln( 1

2 )]
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[√
1
bb
+ σ, −

√
1
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+ σ

]
(6d)

Here, σ specifies the x location of the dune peak and h

represents the local bed elevation. When applying symbolic
regression in Sect. 3.2.3, the shift, σ , becomes important
for recovering both real and imaginary parts of the Fourier-
transformed expression in Eq. (5).

The profile elevations and slopes are plotted in Fig. 3 for
H/L= 0.1. It should be noted that while all of the profiles
can be controlled to have a small height-to-length ratio as
shown in Fig. 3a, only the Gaussian and quartic profiles ful-
fill the small slope requirement (i.e., h′(x)=O(H/L)) as de-
picted in Fig. 3b. The cosine profile represents a moderate
departure from this constraint and the bump profile a more
extreme case that is representative of a scarp. Thus, these
profiles allow us to explore not only the effect of increasing
H/L ratios on the accuracy of the KSH model, but also the
limitations of the underlying small slope assumption when it
is not implicitly imposed by a small height-to-length ratio.

For all cases considered, the length-to-aerodynamic-
roughness ratio, L/z0, is held constant at8= L/z0 = 25000
by choosing L= 25m and z0 = 1× 10−3 m, leading to the
KSH model coefficients A= 5.1952 and B = 0.2793 (AB =

1.4510) that remain constant across all cases. Three sets of
H/L ratios are considered, namely a small set with H/L ∈
[0.01,0.1], medium with H/L ∈ [0.1,0.3], and large with
H/L ∈ [0.3,0.5]. In reference back to Fig. 1, the bump pro-
file has Lbase = 37.57m, leading to a maximum H/Lbase
of 0.3, and for the cosine profile Lbase = 50m, yielding a
maximum H/Lbase of 0.25. This captures ∼ 35 % of the
coastal foredune aspect ratios presented in Fig. 1 assuming
Lbase ≈ 2.5L to account for the quartic and Gaussian pro-
files. A summary of the case properties is given in Table 1.

3.2 Modeling of shear stress perturbations

3.2.1 CFD simulations

Computational fluid dynamic simulations were run for the
medium and large case sets described in the previous section
using the open-source solver OpenFOAM. Specifically, the
Reynolds-averaged Navier–Stokes (RANS) equations were
solved with the RNG k−ε turbulence model using the incom-
pressible SimpleFOAM solver. Second-order accurate dis-
cretization schemes were used throughout. More precisely,
the least-squares method was applied for determining cell-
centered gradient values with a cubic limiter for the veloc-
ity components and turbulence quantities. The linear up-
wind scheme was chosen for divergence terms and the lin-
ear scheme for Laplacian terms. At the inlet, an atmospheric
boundary layer (ABL) profile (Richards and Hoxey, 1993;
Yang et al., 2009) was specified according to

u=
u∗

κ
ln
(
z− d + z0

z0

)
(7)

v = w = 0 (8)

k =
(u∗)2√
Cµ

(9)

ε =
(u∗)3

κ(z− d + z0)
(10)

u∗ =
urefκ

ln( zref+z0
z0

)
, (11)

where u∗ =
√
τ/ρ is the friction velocity, Cµ = 0.09 is

a model constant, k the turbulent kinetic energy, and ε

is the turbulent kinetic energy dissipation rate. In order
to maintain the inlet profile over the approach stretch, a
constant shear stress condition was applied to the veloc-
ity at the top boundary (Richards and Hoxey, 1993; Har-
greaves and Wright, 2007; Richards and Norris, 2019). At
the surface, a wall function specific to ABL simulations
(Richards and Hoxey, 1993; Parente et al., 2011) as imple-
mented in OpenFOAM’s atmEpsilonWallFunction
was used, and the turbulent viscosity was constrained by the
atmNutkWallFunction. A reference velocity of uref =

10m s−1 at a reference height of zref = 10m was used for all
cases.
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Table 1. Details of base case sets.

Case set Profiles H/L ratios 8 A AB

Small Cosine, Gaussian, quartic, bump 0.01 – 0.1 25 000 5.1952 1.4510
Medium Cosine, Gaussian, quartic, bump 0.1 – 0.3 25 000 5.1952 1.4510
Large Cosine, Gaussian, quartic, bump 0.3 – 0.5 25 000 5.1952 1.4510

The computational domain consisted of a rectangular area
that was 425 m long with a total height 200 m greater than
the height of the dune crest H . The dunes were positioned
such that their crest is located at x = 30 m, while the compu-
tational domain was symmetric about x = 0 m, resulting in
the crest being 242.5 m downwind of the inlet and 182.5 m
from the outflow boundary. A uniform base discretization of
1 m was created using blockMesh and subsequently refined
near the surface to between 0.0625 and 0.125 m using Snap-
pyHexMesh. Additionally, approximately 20 anisotropic sur-
face layers were inserted with the first cell height adjusted
per case to maintain y+ values between approximately 30
and 200. This corresponds to a minimum first cell height of
5.138× 10−3 m obtained for the quartic profile with H/L=
0.5. Simulations were run to steady state with convergence
established when all residuals had fallen to at least 1× 10−8

and the iteration-to-iteration change of the calculated drag
over the hill profile was less than 1× 10−8.

3.2.2 CFD data preparation

The geometry representations and shear stress results of
the CFD simulations provide a dataset to which data-driven
model discovery tools can be applied. To begin, the surface
topography and total shear stress were extracted using Open-
FOAM’s sampling utilities. Even spacing between samples
for subsequent Fourier transforms was ensured by resam-
pling the data at an equivalent number of points using cubic
spline interpolation. Furthermore, some of the leading and
trailing ends of the domain (i.e., 150 points, ∼ 9 m, at either
end of the 6800 total samples, ∼ 425 m) were truncated to
avoid spurious boundary affects. The bed shear stress pertur-
bation was then recovered using Eq. (1) where the value at
the leading edge of the truncated domain was used for nor-
malization. Furthermore, the results were filtered to remove
high-frequency noise in both the topography and shear stress
and downsampled toN = 650 samples to obtain a reasonably
sized, high-fidelity dataset for performing SR and reduced-
order modeling.

3.2.3 Symbolic regression

Using the processed CFD data, discrete Fourier transforms
(DFTs) were taken of the topography and shear stress per-
turbation. These along with the Fourier wave numbers were

provided to PySR to solve the minimization problem,

min
f ()

∣∣∣∣F[τ ′]− f (F[h(x)
]
,k
)∣∣∣∣

2, (12)

in complex Fourier space where f () denotes an unknown
function residing in the space of operators consisting of ad-
dition, subtraction, multiplication, and absolute value as well
as additional complex constants. PySR’s regularized evolu-
tion algorithm was run for 100 iterations where each itera-
tion consists of multiple rounds of tournament selection and
mutation (Cranmer, 2023). Several of the default hyperpa-
rameters were adjusted in order to obtain consistent results
across all cases for several different levels of synthetic noise
(see Sect. 4.2.1). A listing of non-default options that were
supplied to PySR is available in Table A1 located in Ap-
pendix A. Finally, after obtaining the optimal expression f (·)
from PySR, the bed shear stress perturbation in real space is
given by

τ ′ = F−1[f (F[h(x)
]
,k
)]
, (13)

where F−1
[·] indicates the inverse Fourier transform.

3.2.4 Non-intrusive reduced-order modeling

In addition to the CFD and symbolic regression approaches,
we also explore predictions based on linear NIROM tech-
niques. As discussed earlier, this basic approach relies on se-
lecting a low-dimensional, data-driven basis for the approxi-
mate solution that ideally captures essential solution behav-
ior at much reduced computational cost. That is, we write the
approximate solution ỹ in RN on the downsampled CFD grid
as

ỹ =

m∑
j=1

zjuj , (14)

where {uj }mj=1, uj ∈ RN is the basis and ideally m�N .
Next, a regression model is constructed to capture the pa-
rameterized relationship between the input topography and
output surface shear stress perturbation. To do this, we repre-
sent the topography, h ∈ RN , on the downsampled CFD grid
as

h=

m∑
j=1

cjdj , (15)

where {dj }mj=1, dj ∈ RN is a low-dimensional basis for the
topography space. A regression metamodel G : c→ z then

https://doi.org/10.5194/esurf-13-1-2025 Earth Surf. Dynam., 13, 1–22, 2025



8 O. Cecil et al.: Dune shear stress

maps the discrete input to output coefficients {zj }, and the
approximate solution is given by Eq. (14).

For an alternative basis, we explore either a truncated
Fourier basis in which the original theoretical model resides
or a POD expansion (Rathinam and Petzold, 2003). There
are pros and cons to each reduced space approximation. POD
provides an optimal representation of the training (snapshot)
data in terms of the Euclidean 2-norm (Quarteroni et al.,
2016) and hence better data compression, while a Fourier
basis requires more modes for smooth reconstruction (≈ 80
modes for the simulations considered below) but provides
better generalization to unseen data.

Below, for the POD basis we combine both the input to-
pography profiles and resulting CFD-based shear stress per-
turbations into a composite dataset and generate a single ba-
sis for both. That is, we perform ns training simulations and
compute a singular value decomposition:

S= U6WT , (16)

where the columns of the snapshot matrix S ∈ RN×2ns hold
both the input topographies {dj }

ns
j=1 and shear stress pertur-

bations {yj }
ns
j=1. The firstm columns of U, {uj }mj=1 form the

solution and topography basis (i.e., dj = uj ∀j = 1, . . .,m).
Then for a given topography input evaluated on the CFD grid,
h, we compute the projection c = DT h, where D ∈ RN×m is
a matrix holding the basis elements {dj } as columns and sim-
ilarly for the shear stress perturbation to obtain z.

For the Fourier basis, dj and uj are obtained through
DFTs, which are truncated by zeroing elements beyond
the selected number of modes. Subsequently, the complex
Fourier representations are split into real and imaginary parts
and individual metamodels constructed for R(G) :R(c)→
R(z) and I(G) : I(c)→ I(z). The final predictions are then
generated via

ỹ = F−1[R(G)+ I(G)
]
. (17)

For constructing the regression metamodels in the latent
space we use RBF interpolation to capture the input–output
mapping with either a Gaussian kernel using a shape param-
eter of 0.1 and additional linear polynomial (for the POD ba-
sis) or a multi-quadric kernel using a shape parameter equal
to 0.1 and a zero-degree polynomial (for the Fourier ba-
sis). While we proceed here by choosing either a random set
across all four profiles or all cases of two profiles to construct
the POD basis and train the metamodel, there are alternative
selection criteria that could be considered such as the stan-
dard and greedy approaches found in Dutta et al. (2021a).
Furthermore, there is still significant flexibility within the
above framework for how the input parameter space is sam-
pled to generate snapshots and how these are used to gen-
erate the reduced bases and regression mappings. For exam-
ple, a separate POD basis could be constructed for the input
and output or regression performed in complex space for the
Fourier-based approach.

3.3 Model skill metrics

To assess differences between the various models, we exam-
ine the mean square error (MSE) defined by

MSE= (1/N )
N∑
i=0

(yi − ỹi)2, (18)

where the CFD results are taken as the target values, yi , and
the KSH, SR, or NIROM results as the predictions, ỹi , as
well as the maximum error across all spatial locations. In the
results presented below all errors are calculated for the shear
stress perturbations and are therefore analogous to a relative
error for the total bed shear stress.

4 Results

4.1 CFD predictions

We begin by examining the results of the CFD simulations
compared to the theoretical predictions of Eq. (5) in Fig. 4.
Representative results for the surface shear stress distribution
are provided for the bump and Gaussian profiles for twoH/L
ratios in Fig. 4a–d. Our CFD simulations predict separation
in the lee for H/L≥ 0.3 for the bump profile, H/L≥ 0.38
for the quartic, and H/L≥ 0.5 for the cosine, while the flow
remains attached for all of the Gaussian cases considered.

In what follows, it should be noted that we have com-
pared our CFD results to unmodified predictions from the
other models. In practice, the shear stress perturbation pre-
diction from KSH is usually limited to values greater than
or equal to −1 in recognition of validity constraints imposed
by the underlying assumptions. On the lee side, separation
streamlines are typically defined using phenomenological fits
of either a cubic polynomial (Kroy et al., 2002) or ellipse
(Schatz and Herrmann, 2006) based on the dune geometry
to improve prediction on the stoss slope. However, these ap-
proaches prove difficult to implement when a clear brink or
separation location cannot be identified, as in the case of the
current profiles, and fail to account for additional factors con-
trolling the extent of the separating streamline such as the
upwind shear velocity (Walker and Nickling, 2002; Araújo
et al., 2013). For these reasons, and in an effort to produce a
consistent comparison among all models, we have used the
unmodified predictions of τ ′ over the actual idealized pro-
files.

The MSE and maximum error are plotted for each of the
four profiles and 21H/L ratios in Fig. 4e and f. Here we can
clearly see that the error increases with increasing H/L as
is to be expected from the assumptions present in the KSH
model. Additionally, the errors for the bump profile, which
drastically violates the low-slope assumption while satisfy-
ing a small H/L, are greater than the other profiles for each
value of H/L. In fact, referring back to Fig. 3b, the MSE
increases for increasing max slope except for the quartic
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Figure 4. Comparison of CFD simulation results and KSH predic-
tions. Bed shear stress perturbation predictions for selected cases
are presented in panels (a–d). The mean square error for each case
is given panel (e) and the maximum absolute error in panel (f).

case, which is roughly equivalent to the cosine profile un-
tilH/L≈ 0.4, at which point the MSE for the quartic profile
begins to increase at a faster rate.

Next, we examine the spatial distribution of absolute er-
ror in Fig. 5. Interestingly, the error in maximum shear stress
prediction (just ahead of the dune crests situated at x = 30 m)
from the KSH model either stays relatively constant or de-
creases for increasing H/L. The most drastic increase in
prediction error comes on the lee side of the dune profiles
where separation is most likely to occur. Again, considering
the slope of the different profiles, the bump profile exhibits
two distinct regions of higher error just fore and aft of the
main dune body where the slopes are highest. This effect is
drastically reduced in the other profiles which exhibit much
gentler slope characteristics.

Finally, the differences in the surface shear stress pertur-
bation extrema predicted by CFD and KSH are tabulated in
Table 2. The difference in the local minima near the dune
toe consistently increases with increasing H/L. However,
the differences in maxima near the crest and local minima
near the heel exhibit more nuanced behavior depending on
the profile. For example, the cosine, Gaussian, and quartic
profile difference magnitudes in maximum τ ′ increase un-
til H/L≈ 0.26 before decreasing as H/L continues to in-
crease. However, for the bump profile, the absolute value of
the difference in maximum τ ′ increases consistently for the

Figure 5. Spatial distribution of absolute difference between Open-
FOAM and KSH bed shear stress perturbation predictions. Note that
the x domain has been limited to highlight the area of interest im-
mediately surrounding the dune.

range ofH/L considered. A similar observation can be made
for the minima in the lee, except for the cosine profile, which
exhibits a consistent increase in difference as well. Consider-
ing this in light of Figs. 5 and 4e, which show a consistent in-
crease in absolute error and MSE, respectively, suggests that
the overall errors are due not only to differences in magni-
tude but also differences in the phase prediction with respect
to the topography and overall distribution of τ ′.

4.2 Symbolic regression predictions

4.2.1 Symbolic regression on KSH

To begin exploring the use of symbolic regression via PySR,
we first applied the methodology to data directly generated
by the KSH model. After generating shear stress perturba-
tion predictions for each of the hill profiles and height-to-
length ratios using Eq. (5), we applied Gaussian noise at sev-
eral signal-to-noise ratios (SNRs) to the shear stress pertur-
bations. This was done in order to evaluate PySR’s robust-
ness to noise in measured output data in anticipation of deal-
ing with the potentially noisy CFD predictions. PySR was
trained on each of the small, medium, and large case sets
using 8 cases for training and the remaining 36 cases for val-
idation.

The average MSEs for each of the sets and SNRs consid-
ered are depicted in Fig. 6. In nearly all cases, PySR was
able to learn the KSH model form and coefficient values. For
those cases in which agreement of the symbolic form was
not exact, e.g., the large set with SNR= 20, the resulting ex-
pression still exhibited very low error. A table of each of the
discovered expressions is supplied in Appendix A. Having
determined that the PySR symbolic regression package was
capable of discovering the underlying expression for analyti-
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Table 2. Differences in surface shear stress extrema predictions between CFD and KSH. Values are reported for local minima near the dune
toe and heel, as well as the maximum near the dune crest for each profile and H/L considered.

Cosine Gaussian Quartic Bump

H/L Toe Crest Heel Toe Crest Heel Toe Crest Heel Toe Crest Heel

0.100 0.088 −0.144 0.092 0.052 −0.143 0.052 0.066 −0.141 0.060 0.249 −0.141 0.269
0.120 0.107 −0.165 0.112 0.062 −0.163 0.061 0.079 −0.160 0.071 0.308 −0.165 0.336
0.140 0.126 −0.184 0.131 0.072 −0.180 0.071 0.092 −0.176 0.080 0.369 −0.189 0.406
0.160 0.146 −0.200 0.150 0.083 −0.195 0.080 0.104 −0.190 0.089 0.434 −0.211 0.479
0.180 0.166 −0.213 0.170 0.093 −0.206 0.090 0.117 −0.201 0.096 0.502 −0.232 0.554
0.200 0.186 −0.225 0.191 0.103 −0.215 0.099 0.130 −0.208 0.102 0.572 −0.253 0.631
0.220 0.207 −0.233 0.211 0.113 −0.221 0.108 0.142 −0.213 0.107 0.645 −0.271 0.712
0.240 0.228 −0.239 0.231 0.123 −0.224 0.117 0.155 −0.217 0.109 0.720 −0.289 0.796
0.260 0.249 −0.243 0.251 0.133 −0.224 0.125 0.167 −0.218 0.109 0.798 −0.306 0.885
0.280 0.271 −0.244 0.269 0.143 −0.221 0.133 0.179 −0.217 0.105 0.877 −0.321 0.979
0.300 0.293 −0.243 0.287 0.153 −0.216 0.140 0.192 −0.215 0.099 0.959 −0.336 1.079
0.320 0.316 −0.239 0.303 0.164 −0.207 0.146 0.205 −0.212 0.089 1.042 −0.350 1.179
0.340 0.339 −0.232 0.317 0.173 −0.196 0.151 0.217 −0.205 0.077 1.128 −0.363 1.278
0.360 0.362 −0.225 0.330 0.184 −0.183 0.153 0.230 −0.198 0.064 1.214 −0.376 1.381
0.380 0.386 −0.214 0.340 0.194 −0.167 0.154 0.242 −0.190 0.050 1.302 −0.388 1.483
0.400 0.410 −0.202 0.348 0.204 −0.148 0.152 0.255 −0.184 0.035 1.392 −0.400 1.584
0.420 0.435 −0.189 0.353 0.214 −0.127 0.147 0.268 −0.178 0.017 1.482 −0.411 1.683
0.440 0.460 −0.174 0.357 0.224 −0.104 0.139 0.280 −0.175 0.013 1.574 −0.423 1.785
0.460 0.485 −0.158 0.360 0.234 −0.078 0.127 0.293 −0.174 0.011 1.667 −0.434 1.898
0.480 0.511 −0.143 0.362 0.245 −0.051 0.111 0.306 −0.176 0.000 1.761 −0.446 2.015
0.500 0.537 −0.128 0.363 0.255 −0.023 0.092 0.318 −0.177 0.005 1.856 −0.458 2.128

Figure 6. Average MSE across all profiles for each set of H/L
ratios in Table 1 and several SNRs.

cally generated data in the Fourier domain and was robust to
noise in the output variable, we turned our attention to apply-
ing SR to the CFD-generated data.

4.2.2 Symbolic regression on CFD

Having shown that PySR is capable of discovering the KSH
model from directly generated data, we next applied PySR to
the processed CFD results for the medium set ofH/L values
for which the flow remains attached for all cases. For this set,

PySR returned a symbolic expression that nearly matches the
form of the KSH model, differing only in the value of the
multiplicative constants with AB picking up a negligible real
part given by

F
[
τ ′
]
=

(
3.29|k| +

(
1.62i− 1.8× 10−6)k)F[h]. (19)

It should be noted that physics-based constraints were not ex-
plicitly enforced in the SR training that led to Eq. (19). How-
ever, physics considerations are implicitly included since the
training data were provided by physics-based CFD mod-
els and we have performed the regression on the Fourier
transform of the input–output features in following with the
asymptotic solutions. We believe this emphasizes the appli-
cability of the linearized, asymptotic predictions to cases
where separation is not present as well as the potential for
SR to discover generalized expressions from data reflecting
the underlying physics in some scenarios.

Being of the same form as KSH, Eq. (19) essentially repre-
sents an optimization of the model coefficients. The discov-
ered value for A= 3.29 is significantly lower than suggested
by KSH, while B = 0.492 is greater. It is known that the
asymptotic expressions in Eq. (5) overpredict the value of A
while underpredicting the value of AB (Charru et al., 2013).
The results presented in Charru et al. (2013) obtained us-
ing a full numerical solution to the turbulent boundary layer
predict A between 3 and 4 depending on the closure model,
while AB is less than 2, which is in agreement with our re-
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Figure 7. Comparison of CFD and symbolic regression predictions
on the medium case set, i.e., Eq. (19). Selected bed shear stress
perturbation profiles are shown in panels (a–d) with the MSE and
max absolute error in panels (e) and (f), respectively.

sult of A= 3.29 and AB = 1.62. It should also be noted that
the error between the full solution and asymptotic predictions
for A decreases as L/z0 increases, while the error for AB re-
mains relatively constant (Charru et al., 2013). This suggests
that our CFD results, and thus SR predictions for A and B,
would be closer to the KSH predictions for higher values of
L/z0.

Results using Eq. (19) are summarized in Fig. 7. As can be
seen in Fig. 7a–d, the PySR model tends to underpredict the
maximum shear stress perturbation in contrast to the standard
KSH predictions while still overpredicting the minima just
fore and aft of the dune. However, overall the PySR discov-
ered model results in roughly an order of magnitude improve-
ment in MSE for H/L values between 0.1 and 0.3 as shown
in Fig. 7e. However, results are more muted when extending
this model to the largerH/L values for which separation may
occur. This can largely be attributed to the limitations of the
linearized KSH model, and thus the SR learned model with
an identical functional form, to be able to capture separation
effects without ad hoc corrections. Additionally, when con-
sidering the spatial distribution of absolute error in Fig. 8, the
error near the dune crest increases with successively higher
values ofH/L, in contrast to results for KSH in Fig. 5. Also,
the shape of the shear stress perturbation near the peak of the
bump profile is better captured, while the largest error still
occurs just fore and aft where the slopes are steepest.

Figure 8. Spatial absolute difference between CFD and symbolic
regression trained on select cases from the medium case set, i.e.,
Eq. (19).

Differences in the τ ′ extrema predictions between CFD
and Eq. (19) are tabulated in Table 3. The differences in lo-
cal minima near the dune toe are consistently improved over
their KSH counterparts. However, the differences in maxi-
mum τ ′ are only improved for low H/L and exhibit a mono-
tonic increase for increasingH/L, showing degraded predic-
tions compared to KSH for H/L greater than approximately
0.28, except for the bump profile which exhibits consistent
improvement over KSH. In the lee, results are again more
nuanced depending on the profile considered. Improvement
over KSH is seen for the cosine, Gaussian, and bump pro-
files, while the results for the quartic are somewhat degraded.
Again, considering these results along with Fig. 8, it appears
that Eq. (19) captures the phase advance and overall distribu-
tion of τ ′ more accurately (particularly for the cosine, Gaus-
sian, and bump profiles) than KSH for the cases considered,
and hence the overall MSE can largely be attributed to differ-
ences in magnitude.

In an effort to obtain better generalizability to separated
cases, we next applied PySR to the large case set with some-
what unsatisfying results. Several trials were run using PySR
while varying the number of cases provided, the cases se-
lected for training, i.e., separated only or separated and at-
tached scenarios, and the operator space to search. The most
promising result obtained takes the form of the KSH model
with several additional terms that are quadratic in the wave
number given by

F
[
τ ′
]
=
(
− 2.32F[h]|k| +F[h]

)[(
3.26× 10−6

+ i2.20
)
k+ 4.84|k| − 0.0380+ i1.81× 10−7]. (20)

Note that Eq. (20) contains terms representing the second
derivative of the dune profile, thus increasing the model sen-
sitivity to the underlying topography representation. Results
obtained using Eq. (20) are summarized in Fig. 9. The trends
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Table 3. Differences in surface shear stress extrema predictions between CFD and Eq. (19). Values are reported for local minima near the
dune toe and heel, as well as the maximum near the dune crest for each profile and H/L considered.

Cosine Gaussian Quartic Bump

H/L Toe Crest Heel Toe Crest Heel Toe Crest Heel Toe Crest Heel

0.100 0.006 0.009 0.021 0.002 0.014 0.013 −0.002 0.015 0.011 0.035 −0.014 0.078
0.120 0.008 0.019 0.026 0.002 0.025 0.015 −0.003 0.028 0.011 0.051 −0.013 0.106
0.140 0.011 0.031 0.031 0.003 0.039 0.017 −0.003 0.043 0.010 0.070 −0.011 0.138
0.160 0.014 0.045 0.036 0.003 0.056 0.019 −0.004 0.060 0.009 0.092 −0.008 0.172
0.180 0.017 0.062 0.042 0.003 0.076 0.021 −0.006 0.081 0.007 0.117 −0.004 0.209
0.200 0.021 0.082 0.048 0.003 0.099 0.022 −0.007 0.104 0.003 0.145 0.001 0.248
0.220 0.025 0.104 0.054 0.004 0.124 0.023 −0.008 0.130 −0.003 0.175 0.008 0.290
0.240 0.029 0.129 0.060 0.004 0.153 0.025 −0.009 0.158 −0.010 0.208 0.015 0.336
0.260 0.034 0.156 0.065 0.004 0.183 0.026 −0.010 0.188 −0.021 0.242 0.024 0.388
0.280 0.040 0.185 0.070 0.004 0.218 0.026 −0.011 0.220 −0.034 0.279 0.034 0.443
0.300 0.045 0.217 0.073 0.004 0.255 0.025 −0.012 0.253 −0.051 0.318 0.044 0.504
0.320 0.051 0.251 0.075 0.004 0.295 0.023 −0.013 0.288 −0.070 0.359 0.056 0.566
0.340 0.058 0.289 0.075 0.004 0.337 0.020 −0.014 0.326 −0.092 0.401 0.068 0.627
0.360 0.065 0.327 0.073 0.004 0.382 0.015 −0.015 0.365 −0.116 0.445 0.081 0.691
0.380 0.072 0.368 0.069 0.004 0.429 0.008 −0.016 0.403 −0.139 0.491 0.094 0.755
0.400 0.080 0.411 0.062 0.004 0.479 −0.002 −0.017 0.441 −0.165 0.537 0.107 0.818
0.420 0.088 0.454 0.054 0.005 0.532 −0.014 −0.018 0.478 −0.192 0.585 0.121 0.879
0.440 0.096 0.499 0.044 0.005 0.586 −0.030 −0.019 0.513 −0.206 0.634 0.135 0.942
0.460 0.105 0.546 0.031 0.005 0.643 −0.049 −0.020 0.544 −0.218 0.685 0.149 1.017
0.480 0.114 0.593 0.020 0.005 0.702 −0.073 −0.021 0.573 −0.239 0.736 0.163 1.095
0.500 0.124 0.639 0.007 0.006 0.761 −0.100 −0.022 0.604 −0.244 0.788 0.176 1.170

in Fig. 9a–d are similar to the previous results; however, for
the bump profile, while the minimums appear to be predicted
better, some oscillatory behavior also appears in the results.
This could be attributed to the inclusion of second deriva-
tive terms and the large spikes in the second derivative of
the bump profile in those areas. Concerning the max error in
Fig. 9f, the bump and cosine profiles exhibit a slower increase
in maximum error untilH/L≈ 0.35. The spatial distribution
of error in Fig. 10 also exhibits trends similar to the previous
results.

The differences in τ ′ extrema predictions between CFD
and Eq. (20) are tabulated in Table 4. Results are generally
comparable to the results obtained using Eq. (19) in Table 3,
especially for the local minima near the toe and the maxi-
mum near the crest. For the minima in the lee, results are
more profile-dependent, with a decrease in accuracy seen for
the cosine and Gaussian cases, but improvements are gained
for the quartic and bump profiles. Overall, Eq. (20) provides
some modest improvement for errors over the bump profile,
while little is gained for the other profiles considered. This
could be attributed to the fact that the majority of the sep-
arated cases were obtained for the bump profile, thus bias-
ing the symbolic regression model. A more balanced future
dataset should include an expandedH/L range to accommo-
date additional separated flow cases for other profiles.

4.3 NIROM predictions

Due to difficulties with accurately fitting separated cases us-
ing PySR, an alternative approach was explored which turned
to non-intrusive reduced-order modeling techniques as dis-
cussed in Sect. 3.2.4. Results for these methods are illustrated
in Fig. 11. The DFT–RBF results are presented in Fig. 11c
and e and the POD–RBF in Fig. 11d and f. The Fourier basis
was limited to 80 modes after which changes in the recon-
struction were not visible for additional modes. For the POD
basis, 14 modes were retained for the scattered training se-
lection based on retaining 99.9 % of the energy, while only
8 modes were required for the two-profile training selection.
The normalized singular values for both training selections
are presented in Fig. 11a and b.

For the scattered training selection, a random sampling of
40 cases across all four profiles was chosen as the training
set. The training cases were used to build the POD basis as
well as train the RBF interpolator for both DFT–RBF and
POD–RBF. Results for this approach are given in Fig. 11c
and d. As to be expected, the highest errors occur for points
farthest from neighboring cases of the same profile and for
extrapolation at the edges of the case domain. Furthermore,
while the DFT–RBF approach achieves better reconstruc-
tion errors on average, the POD–RBF results offer a slight
improvement in predicting unseen values of H/L over the
DFT–RBF.
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Table 4. Differences in surface shear stress extrema predictions between CFD and Eq. (20). Values are reported for local minima near the
dune toe and heel, as well as the maximum near the dune crest for each profile and H/L considered.

Cosine Gaussian Quartic Bump

H/L Toe Crest Heel Toe Crest Heel Toe Crest Heel Toe Crest Heel

0.100 0.019 0.002 0.068 0.022 0.013 0.063 0.020 0.039 0.057 −0.026 −0.029 0.025
0.120 0.024 0.010 0.083 0.026 0.025 0.075 0.024 0.056 0.067 −0.022 −0.031 0.042
0.140 0.029 0.021 0.097 0.030 0.039 0.087 0.027 0.076 0.075 −0.015 −0.033 0.064
0.160 0.035 0.034 0.112 0.035 0.055 0.098 0.031 0.098 0.083 −0.005 −0.033 0.088
0.180 0.041 0.050 0.127 0.039 0.075 0.110 0.034 0.123 0.090 0.008 −0.032 0.114
0.200 0.047 0.068 0.142 0.043 0.097 0.121 0.038 0.151 0.095 0.024 −0.029 0.142
0.220 0.054 0.089 0.157 0.047 0.123 0.132 0.041 0.182 0.100 0.041 −0.025 0.173
0.240 0.061 0.112 0.172 0.051 0.151 0.144 0.044 0.215 0.101 0.062 −0.021 0.209
0.260 0.069 0.138 0.187 0.055 0.182 0.155 0.047 0.249 0.100 0.084 −0.015 0.250
0.280 0.076 0.166 0.201 0.059 0.216 0.165 0.051 0.285 0.096 0.109 −0.009 0.295
0.300 0.085 0.196 0.214 0.063 0.253 0.174 0.054 0.324 0.088 0.136 −0.001 0.345
0.320 0.093 0.229 0.225 0.068 0.293 0.182 0.057 0.364 0.078 0.165 0.008 0.396
0.340 0.103 0.265 0.234 0.072 0.335 0.188 0.061 0.405 0.066 0.195 0.017 0.446
0.360 0.112 0.302 0.242 0.076 0.380 0.194 0.064 0.449 0.051 0.227 0.026 0.500
0.380 0.122 0.342 0.247 0.080 0.427 0.197 0.067 0.492 0.037 0.260 0.037 0.554
0.400 0.132 0.383 0.250 0.084 0.477 0.196 0.071 0.536 0.021 0.295 0.047 0.606
0.420 0.143 0.426 0.250 0.088 0.528 0.194 0.074 0.577 0.002 0.331 0.058 0.657
0.440 0.154 0.468 0.250 0.092 0.581 0.188 0.078 0.616 −0.003 0.368 0.069 0.709
0.460 0.166 0.513 0.247 0.097 0.640 0.178 0.081 0.652 −0.005 0.405 0.079 0.773
0.480 0.178 0.560 0.245 0.100 0.699 0.165 0.085 0.684 −0.017 0.445 0.089 0.842
0.500 0.190 0.603 0.242 0.105 0.759 0.148 0.088 0.722 −0.013 0.485 0.101 0.905

The second training selection criteria consisted of using all
cases from two profiles as training data while predicting on
the unseen profiles (see Fig. 11e and f). This allowed us to ex-
plore the generalizability of the NIROM methods to unseen
topography shapes rather than just unseen parameters as in
the first scenario. For this experiment, the DFT–RBF results
in Fig. 11e far outperform the POD–RBF results in Fig. 11f.
This is most likely due to the less universal nature of the POD
basis, which is constructed purely based on the training data
and is unable to accurately represent both the input topogra-
phy and shear stress perturbation for completely unseen pro-
files. On the other hand, since the DFT basis is not dependent
on the data being examined, it is capable of representing the
unseen topography and the error is due to extrapolating the
input–output relationship to unseen profiles.

5 Discussion

5.1 Intercomparison of shear stress predictions

Thus far we have analyzed the differences in surface shear
stress perturbation predictions between an established an-
alytical model, namely KSH, CFD simulations, and data-
driven approaches. We have shown that KSH generally over-
predicts the extrema compared to an RNG k− ε RANS for-
mulation for a range of two-dimensional dune profiles. Er-
rors increase with increasing H/L and have been shown to
be correlated with topography slope regardless of the over-

all dune dimensions. Furthermore, we have explored two
data-driven methodologies as avenues for improving com-
putationally efficient models compared to resource-intensive
CFD simulations. These various simulations and approaches
were compared through the lens of assessing existing capa-
bilities and alternative options for resolving spatial wind and
bed shear stress calculations within existing process-based
aeolian sediment transport models.

Having examined each of the shear stress perturbation pre-
diction models individually, all of the results are gathered in
Fig. 12 in order to discuss their relative performance. It can
be seen that KSH is outperformed by all of the trained models
for the range of H/L ratios and profiles considered, except
for the POD–RBF 2× 2 results. This result is not too sur-
prising since each of the alternatives was optimized for this
specific dataset during training. Concerning the SR results,
the expression trained only on the medium set of H/L val-
ues, i.e., PySR Med, outperforms that trained only on large
H/L values, i.e., PySR Large; however, the prediction error
becomes more similar as H/L increases, with PySR Large
gaining a slight advantage for the bump and quartic pro-
files. Overall, the SR results for the medium case set confirm
the validity of linearized, asymptotic representations such as
KSH while representing a modest improvement due to an op-
timized prediction ofA andB in agreement with Charru et al.
(2013). The impact of these modest differences on morpho-
logical predictions is discussed further in the following sec-
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Figure 9. Comparison of CFD and symbolic regression predictions
trained on the large case set, i.e., Eq. (20). Selected bed shear stress
perturbation profiles are provided in panels (a–d) with the MSE and
max absolute error for all cases in panels (e) and (f), respectively.

Figure 10. Spatial absolute difference between CFD and symbolic
regression trained on cases from the large case set, i.e., Eq. (20).

tion. However, as demonstrated by the PySR Large results,
work is still needed for reducing the error for larger values of
H/L and for capturing the distribution of surface shear stress
in regions of flow separation.

Linear, projection-based, non-intrusive, reduced-order
modeling approaches were able to further reduce the predic-
tion error at the cost of generalizability to unseen cases. For

Figure 11. Summary of results for the NIROM-based shear stress
perturbation prediction models. Panels (a) and (b) depict the nor-
malized singular values for the training data used to construct the
POD basis. Panels (c) and (d) show the MSE for the DFT–RBF and
POD–RBF models when using randomly selected cases as training
data. Panels (e) and (f) present the MSE when choosing all cases
from two profiles as training data. In panels (c–f) filled marks indi-
cate cases used for training where the reported MSE represents the
reconstruction error; empty marks represent test cases where the re-
ported MSE represents the prediction error compared to the CFD
results.

the NIROM approaches, scattered training, which covers the
entire data space, performs best. Prediction errors are largely
dependent on the distance from training cases, and in the case
of POD–RBF 2× 2, the model is unable to generalize to un-
seen profiles, which poses a challenge for real-world applica-
tions where topography evolves with time. Compared to the
SR results, the prediction errors are no worse and exhibit sig-
nificant improvement for high H/L values, especially when
unseen cases fall close to seen cases as is true for the bump
profile. The success of the simple NIROM approaches in this
region, and in particular the DFT–RBF variant, suggests that
data-driven methodologies may be able to provide fast pre-
diction models which accurately capture separation effects.

5.2 Error implications for morphological prediction

For theoretical applications of aeolian landform evolution,
the exact magnitude of transport rates matters less than cap-
turing the patterns that lead to sediment transport gradients
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Figure 12. MSE for all shear stress perturbation models grouped by profile. The POD–RBF 2× 2 and DFT–RBF 2× 2 results refer to the
two profile-trained models. Filled marks indicate cases used for training where the reported MSE represents the reconstruction error; empty
marks represent test cases where the reported MSE represents the prediction error compared to the CFD results.

that spur net landform changes. Numerical tools, largely
using the KSH approximation, have yielded the ability to
synthesize complex two- or three-dimensional topographic
change patterns and behaviors as observed in nature (e.g.,
Durán et al., 2010; Kombiadou et al., 2023). Yet, limited
field-scale validation exists in terms of these behaviors. In-
creasingly, there is a push for more engineering-oriented ca-
pabilities that rely on appropriately simulating relevant phys-
ical phenomena that necessitate accurate prediction of spa-
tiotemporal rates of sediment mobilization and transport. Ul-
timately, sediment transport rates are driven by excess shear
above a threshold to initiate grain motion. Numerous formu-
lations for aeolian sediment transport exist in the literature,
many but not all of which (Martin and Kok, 2017) express the
sediment flux (q) as a nonlinear function of u∗ or τ . For ex-
ample, the commonly used modified Bagnold equation (Bag-
nold, 1937) defines sediment flux as

q = C
ρa

g

√
d

D
(u∗− u∗,t)3, (21)

where ρa is the air density, g is gravity, d is the grain size,
and D is a reference grain size. u∗,t is the threshold shear
velocity for initial grain motion, which may be estimated as

u∗,t = A

√
ρg− ρa

ρa
gd, (22)

where A is a coefficient related to sediment distribution
spread and ρg is the grain density.

Given that τ and corresponding u∗ profiles over dune to-
pography are highly nonuniform resulting from flow accel-
eration, deceleration, and separation bubble effects and that
deviations in KSH from the CFD model results are often not

insignificant, this has important implications for the resulting
potential for aeolian transport across the dune face.

To directly assess rates of transport and corresponding bed
elevation change patterns, we use KSH and PySR outputs as
input hot-start files to the AeoLiS (Hoonhout and de Vries,
2016) model for select simulations. On the upwind end of the
domain, CFD and PySR outputs both indicate biased higher
τ relative to KSH at the base of the dune (e.g., Fig. 13e, f).
As spatial gradients in sediment transport result in net bed
elevation change, this local reduction in shear results in a
small zone of deposition. For the H = 6m, L= 25m case
for τ = 0.6Pa, KSH results in about a 75 % larger deposi-
tion height at the base of a Gaussian-shaped dune. As pre-
viously noted, deviations between KSH and PySR are gen-
erally larger on the dune itself, with maximum differences
occurring at the crest of the dune form. Assuming bare sand
conditions (i.e., no vegetation), spatial gradients in τ pre-
dicted by both KSH and PySR result in increasing q across
the dune face and therefore a net landward migration of the
landform. However, assuming the CFD-based PySR results
better represent the true wind flow dynamics, Fig. 14 shows
the excess net landward sediment transport across the dune
crest from the two spatial shear stress models. Notably, as
the wind conditions become more energetic or as the H/L
ratio increases, errors associated with the magnitude of sand
transport increase. For a given boundary τ , these H/L ver-
sus KSH–PySR model differences follow an exponential re-
lationship (Fig. 14).

Taken in sum, mis-characterization of the shear distribu-
tion across the dune profile has important implications for ac-
curately simulating coastal landform change in terms of both
the shape and rate of change. CFD is generally too compu-
tationally demanding to couple with aeolian transport mod-
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Figure 13. Example differences in predicted aeolian sediment
transport fields (g–i) and bed elevation change (j–l) from KSH and
PySR for τ = 0.6 Pa for H/L ratios of 0.01 (a, d, g, j), 0.12 (b, e,
h, k), and 0.24 (c, f, i, l) Gaussian-shaped profiles.

Figure 14. Net differences in simulated sediment flux past the
dune crest between KSH and PySR for various H/L conditions
(Gaussian-shaped dune) and boundary τ . Dots represent simulated
AeoLiS cases and lines reflect the best-fit exponential curve through
data points. For linkage to Fig. 1, Lbase = 2.5L is assumed.

els, requiring surrogate or simplified modeling. Given that
SR shows the ability to recreate the KSH form for simpli-
fied geometries and improve upon flow errors, SR-type ap-
proaches could potentially play an important role for im-

proving process-based numerical modeling tools for land-
form evolution that are required for engineering and design
needs. Such approaches are particularly important given that
∼ 99 %, 93 %, and 63 % of coastal dunes from the database
in Fig. 1 have H/L ratios exceeding 0.1, 0.2, and 0.5, re-
spectively, assuming Lbase = 2.5L. However, these findings
are likely to also have broad implications for landform mod-
eling in other arid (e.g., Tsoar, 2001; Parteli et al., 2014)
or extraterrestrial settings (e.g., Atwood-Stone and McEwen,
2013; Parteli and Herrmann, 2007) where slope angles can
similarly locally approach the angle of repose.

5.3 Synthesis and remaining challenges

Symbolic regression was able to discover an expression sim-
ilar to KSH that offers an order of magnitude improvement in
prediction error when compared to CFD; however, it still suf-
fers from many of the same issues as KSH, namely, that the
error increases with increasing H/L, and is unable to cap-
ture the effects of separation. Linear, projection-based, non-
intrusive, reduced-order modeling approaches were able to
further reduce the prediction error at the cost of generaliz-
ability to unseen cases. While we were able to obtain mod-
est prediction improvements, we recognize that several chal-
lenges remain.

First, in this study we only considered a single value of
L/z0 which controls the value of the model constants in KSH
and would most likely play a role in any alternative discov-
ered model. Future efforts should extend the dataset to in-
clude a range of L/z0 in order to try to extract a relation
governing the SR-discovered model coefficients. Only then
could the expression be incorporated into existing coastal
dune evolution models in a general sense.

Second, we have not considered the effects of vegetation
within this study. Steeper coastal foredunes are often veg-
etated, resulting in reduced shear at the sand surface. This
somewhat reduces the concern of errors for steep dunes as the
surface shear often drops below the transport threshold; how-
ever, in many models the effect of vegetation is applied as a
correction factor to the topographically driven shear stress
perturbation as in Durán and Moore (2013). Therefore, seek-
ing to increase the accuracy of predictions of τ ′ over the
equivalent unvegetated surface for steep dunes is still war-
ranted.

Third, while the NIROM approaches show promise, espe-
cially if data are available that sufficiently cover the range of
dune topographies expected for a given scenario, concern for
their ability to generalize to unexpected topographies which
may arise over the course of a dune evolution simulation re-
mains. However, other techniques, such as the use of non-
linear auto-encoders to determine the reduced basis repre-
sentation and deep learning methods for capturing the latent
space mapping from input to output, may provide viable al-
ternatives with improved generalization (Maulik et al., 2021;
Dutta et al., 2022).

Earth Surf. Dynam., 13, 1–22, 2025 https://doi.org/10.5194/esurf-13-1-2025



O. Cecil et al.: Dune shear stress 17

Finally, we have focused exclusively on simple, idealized
two-dimensional dune profiles and have not considered more
complex transects that may experience multiple areas of sep-
aration such as can occur with severely scarped profiles.
Furthermore, real-world coastal dunes are inherently three-
dimensional and experience a variety of wind directions and
complex, three-dimensional flow effects such as topographic
steering and recirculation (e.g., Smyth et al., 2012; Piscioneri
et al., 2019). A not insignificant amount of work would be
required to extend these approaches to three-dimensional
dunes considering the increased computational expense for
generating 3D CFD simulation data, as well as considering
topographic variations in an additional dimension. However,
the methodologies themselves should be directly applicable
given data availability.

6 Conclusions

Coastal dunes represent an important line of defense against
storm-related flooding hazards. As such, accurate mod-
els for predicting their evolution over relevant engineering
timescales is paramount for future risk assessments and the
development of engineering solutions. Current process-based
models make use of linearized analytical solutions to the un-
derlying governing equations which, while easy to imple-
ment and computationally efficient, have known deficits for
steep topographies. This work highlights that the KSH form
widely used in existing tools performs well for the low-slope
dune shapes for which the analytical formulation is designed.
On dune forms with steeper topography and higher H/L ra-
tios, errors in the magnitude of bed shear stress predictions
– compared to CFD model predictions – increase across the
dune face. These errors are typically largest at the dune crest,
the ramification of which is that existing formulations re-
sult in a faster net landward migration of the dune form in
morphological models than would be expected. Overall, we
have provided an analysis of the limitations of existing ana-
lytical prediction models for airflow over coastal dunes and
presented two data-driven approaches for constructing alter-
native fast prediction methods that reduce error relative to
the KSH approach. The various newly presented approaches
reduce the global error of stress predictions and/or improve
on the ability to simulate patterns in complex flow dynam-
ics not fully resolved by the analytical solution. While the
improvements presented do not yet provide a complete so-
lution for flow predictions across all dune forms, this work
both highlights existing limitations in current dune modeling
frameworks and demonstrates new methodologies that could
enable more reliable predictions of spatial bed shear stress
patterns in the full range of H/L conditions observed in nat-
ural coastal systems.

Appendix A: Symbolic regression details

This appendix provides additional details for symbolic re-
gression results. PySR hyperparameters that were changed
from their default values are provided in Table A1. These
values were tuned to provide robust results across all of
the noisy KSH-generated data and used in subsequent PySR
runs.

An exhaustive list of the expressions returned by PySR
when provided KSH-generated data with Gaussian noise is
provided in Table A2. In some cases, some basic simplifica-
tion or regrouping of the expressions has been performed.

Table A1. Robust parameters for PySR.

Parameter name Description Value

niterations 100
ncyclesperiteration 300
populations 40
maxsize 20
population_size 500
fraction_replaced 0.0001
fraction_replaced_hof 0.0001
annealing false
batching true
binary_operators +,×,−

unary_operators abs()
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Table A2. Simplified PySR discovered expressions for various SNRs. In the interest of space ·̂ symbols indicate Fourier-transformed values.

SNR Small Medium Large

20 ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) (1.451ik+ |k− 2k (3.087− 0.236i) |)
30 ĥ(1.451ik+ 5.195|k|) ĥ[k(−1.087× 10−6

+ 1.451i)+ 5.195|k|] ĥ(1.451ik+ 5.195|k|)
40 ĥ(1.451ki+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)
50 ĥ

[
k(1.0+ 1.451i)+ |k− 5.195|k||

]
ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)

60 ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)

70 2ĥ(0.7255ik+ 2.598|k|) ĥ(1.451ik+ 5.195|k|) ĥ
[
1.451ik+

(
5.195+ 4.326× 10−6i

)
|k|
]

80 ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)
90 5.195ĥ(0.2793ik+ |k|) 1.451iĥk+ 5.195ĥ|k| ĥ(1.451ik+ 5.195|k|)
100 ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)
110 ĥ(1.451ik+ 5.195|k|) ĥ(1.451ik+ 5.195|k|) 1.451iĥk+ 5.195ĥ|k|
120 ĥ(1.451ik+ 5.195|k|) 5.195ĥ(0.2793ik+ |k|) ĥ(1.451ik+ 5.195|k|)
∞ ĥ(1.451ik+ 5.195|k|) ĥ(k(1× 10−6

+ 1.451i)+ 5.195|k|) ĥ(1.451ik+ 5.195|k|)

Code availability. OpenFOAM v2006 was used for all CFD sim-
ulations as distributed by OpenCFD Ltd. Final PySR (Cranmer,
2023) results were generated using version 0.14.3 available at
https://github.com/MilesCranmer/PySR (last access: 27 July 2023)
(Cranmer, 2023). Version 2.1 of the AeoLiS model (de Vries
et al., 2023), used for the aeolian sediment transport calculations in
this work, is preserved at https://doi.org/10.4121/22215562, avail-
able via GPL-3.0, and developed openly at https://github.com/
openearth/aeolis-python (last access: 17 December 2024). Fig-
ures 2–11 were prepared using the Batlow color scheme provided
by Scientific Color Maps (https://doi.org/10.5281/zenodo.1243862,
Crameri, 2023).

Data availability. The processed CFD results (Cecil et al., 2024)
used to produce the figures and train the symbolic regression and
non-intrusive reduced-order models in this study are available at
https://doi.org/10.17603/ds2-4w1m-7998.
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