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Abstract. The Stream Power Model (SPM) has become a cornerstone of quantitative geomorphology, widely
used to predict landscape evolution including the generation, moderation, and lowering of Earth’s topography,
sedimentary flux and biogeochemical processes. It is well known that landscape geometries predicted by the
SPM can be strongly influenced by noise. However, its impact on the uncertainties or probabilities of, for in-
stance, drainage planform geometries and widely used metrics is poorly understood. Noise can be incorporated
into SPM simulations in a variety of ways. For instance, random, low amplitude, topographic anomalies are
often inserted into starting conditions to enhance the realism of calculated drainage networks. Spatio-temporal
or quenched (frozen) noise also influence the trajectories of evolving landscapes. Our goal with this paper is
to establish how noise impacts the probabilities of landscape geometries and the reliability of tectonic and ero-
sional information recovered from them. A series of landscape evolution models are run in which different
arrangements, distributions, and implementations of noise are added to models evolving under the same tectonic
and erosional forcings to an equilibrium state. We quantify uncertainties that arise from incorporating different
arrangements of typical (uniform; white) and naturalistic initial, quenched and spatio-temporal noise. We fo-
cus on three conclusions. First, tectonic rates and values of erosional-geometric parameters (e.g., concavity and
steepness indices, Hack exponents) recovered via metrics-based approaches (e.g., slope-area, x, length-area) are
uncertain in the presence of noisy initial conditions. Recovered values from individual landscapes generated with
the same distribution but different specific arrangement of noise are at least as uncertain as ranges attributed to,
for instance, changes in aridity. In fact, even noise with amplitudes that are < 1 % of cumulative uplift can cause
tectonic rates to no longer be recoverable to within a factor of two of true values. These results emphasise the
sensitivity of metrics that rely on calculating derivatives (e.g., slope-area, x) to noise. Secondly, whilst noise can
make landscape geometries highly uncertain (different in different simulations), the distributions of their geo-
morphic properties (e.g., hypsometries, channel length-area relationships, Hack exponents) appear to have well
defined statistical properties (e.g., expected values and variance). Finally, we suggest that a useful way to assess
the impact of noise on SPM predictions is to generate ensembles of hundreds to thousands of models in which
different arrangements of the chosen distribution of noise are inserted. Doing so can provide means to quantify
uncertainty in predicted geometries and derived metrics, which can be substantial.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1004

1 Introduction

It is well established that processes acting to shape Earth’s
topography leave behind some record of their history. There-
fore interrogation of surface topography can, we hope, yield
insight into how these processes operate and intertwine. Var-
ious observational and theoretical approaches exist to make
such interrogations (e.g., Anderson and Anderson, 2010).
One family of approaches makes use of partial differential
equations (PDEs), often solved numerically, to predict evo-
lution of topography in space and time. The Stream Power
Model (SPM) is perhaps the most widely used (see e.g.,
Howard, 1994; Rosenbloom and Anderson, 1994; Whipple
and Tucker, 1999; Tucker and Hancock, 2010; Lague, 2014;
Salles, 2016; Hobley et al., 2017, and references therein).
A wide variety of metric-based, forward and inverse mod-
elling studies utilise the SPM to derive information about up-
lift, erosion, climate and biogeochemical processes from real
and synthetic landscapes (e.g., Howard, 1994; Whipple and
Tucker, 1999; Baldwin et al., 2003; Zaprowski et al., 2005;
Roberts and White, 2010; Roberts et al., 2012a; Ferrier et al.,
2013; Croissant and Braun, 2014; Forte et al., 2016; Harel
et al., 2016; Mitchell and Yanites, 2019; Campforts et al.,
2020; Lipp et al., 2020, 2021; Salles et al., 2023; DeLisle
and Yanites, 2024). However, one complication to this en-
deavour is the presence of noise, which we consider in two
categories.

The first category of noise, obfuscating the recovery of tec-
tonic information, we term as ‘“scientific”. By this we refer
to things which cannot be known, such as the many areas
within a landscape that have unknown or poorly understood
histories, where information necessary to recover tectonic in-
formation has been removed by erosion, for instance. This
category also includes noise that can be attributed to mea-
surement or observational uncertainties due to, for example,
fluctuations or changes in landscape form that are too rapid
or slow to be recorded directly (Lague, 2014; Ancey et al.,
2015; Forte et al., 2016; Chen et al., 2022; Roberts and Wani,
2024).

The second category of noise we consider, and the focus
of this paper, is computational. A usual strategy in landscape
evolution models is for computational noise to be inserted as
random elevations within a model starting condition to en-
able realistic drainage networks to form (see e.g., Willgo-
ose et al., 1991; Tucker and Slingerland, 1994; Braun and
Sambridge, 1997; Smith et al., 1997; Tucker et al., 2001;
Coulthard et al., 2012; Goren et al., 2014, and references
therein). Typically, initial topographic roughness is drawn
from a random uniform distribution (i.e., white noise). Other
types of noise have been incorporated into landscape sim-
ulations, such as those with normal distributions or gener-
ated using specific algorithms (e.g., Perlin noise; diamond
square algorithm), though they are less common (Fournier
et al,, 1982; Perlin, 1985, 2002; Perron and Fagherazzi,
2012; Mudd et al., 2018; Etherington, 2022; Ruiz Sinchez-
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Oro et al., 2024). The choice of noise (e.g., its distribution)
has important implications for landscape geometries, how-
ever the often assumed white noise is not necessarily repre-
sentative of observed topography or processes driving land-
scape evolution (see e.g., ljjasz-Vasquez et al., 1992; Per-
ron and Fagherazzi, 2012; Kwang and Parker, 2019; Wapen-
hans et al., 2021). Whilst specific details of palaeotopogra-
phy may not be knowable, spectral analysis of modern topog-
raphy provides insight into the distributions of elevations that
we might wish to replicate when deciding on the distribu-
tions of noise to be used within, for instance, model starting
conditions (Perron et al., 2008; Audet, 2011; Roberts et al.,
2019; Wapenhans et al., 2021). We note that alternative ap-
proaches to generate realistic channel planforms exist outside
of adding random elevations. One option is to randomise flow
directions (e.g., Salles, 2016; Salles and Hardiman, 2016).
However given the extensiveness of adding noisy random el-
evations to encourage LEMs to channelise, we focus our at-
tention of the consequences of doing so in this study.

The presence of noise within natural and modelled land-
scapes is known to complicate the recovery of geomor-
phic information. Roberts et al. (2012b) and Smith et al.
(2022) showed how solutions recovered from channel slope-
upstream drainage area data become unstable when noise is
added to longitudinal profiles. Castelltort and Yamato (2013)
highlight how the steepness of slopes present in noisy ini-
tial conditions added to LEMs can unsatisfactorily influence
the geometry of resultant drainage basins. Wapenhans et al.
(2021) demonstrate that adding white noise to longitudinal
river profiles extracted from a landscape evolution model
leads to changes in power spectra that increase their similar-
ity to power spectra of observed rivers. Addition of quenched
noise to landscape evolution models can have similar effects
(Birnir et al., 2001; Wapenhans et al., 2021). Several stud-
ies have sought to recover erosional parameter values us-
ing SPMs by maximising the similarity of predicted topog-
raphy to observed landscapes (Croissant and Braun, 2014;
Barnhart et al., 2020c). It is likely that the presence of noise
contributes to a range of acceptable values being recovered
(Willgoose et al., 2003). Inverse approaches such as these re-
quire the construction of a misfit function to quantitatively
compare observations to model predictions. However, in-
serted noise is known to impact drainage planforms, which
can persist throughout a model run time (Ijjasz-Vasquez
et al., 1992; Willgoose et al., 2003; Perron and Fagherazzi,
2012; Hancock et al., 2016; Kwang and Parker, 2019). An
important challenge is to generate misfit functions that are in-
sensitive to noise so that insight into the processes that drive
topographic change such as uplift can be recovered with ac-
curate assessment of uncertainties (Willgoose et al., 2003;
Morris et al., 2023).

In this study we seek to establish an understanding of the
role of noise within landscape evolution models and its con-
sequences for a variety of commonly used geomorphic met-
rics and tools. We design four scenarios to assess how dif-
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ferent distributions of noise and the way in which they are
inserted into the SPM impact the variance of basic geometric
properties: elevations, planforms, hypsometry, spectral con-
tent, and fluvial information: longitudinal profiles, slope-area
relationships, y-elevation profiles, length-area relationships.
We also assess the variance of erosional parameter values and
uplift rates calculated from widely used metrics (slope-area,
X ), quantifying the impact of noise on the reliability of infor-
mation recovered. Given the ubiquity of assumed steady state
in studies making use of the SPM, we focus on assessing the
impact of noise on landscapes that are demonstrably at, or
very close to, topographic steady state, which we define here
as (practically) no elevation change in any grid cell between
successive model time steps and explain further in Sect. 2.4
(Willett and Brandon, 2002).

2 Methodology

In this section we first describe how synthetic landscapes and
noisy functions are generated. We then describe how steady
state conditions are identified, and the modelling strategy
used to assess the impact of noise on geomorphic metrics.

2.1 Generating synthetic landscapes

In this study, landscape evolution is modelled using a widely
accepted grid-based framework in which we implement a
partial differential equation (PDE) governing the rate of
change, and evolution, of elevations. We make use of grid-
ding, flow routing, and numerical PDE solver libraries that
are part of the Landlab toolkit to generate synthetic land-
scapes (Hobley et al., 2017; Barnhart et al., 2020a; Hutton
et al., 2020). The erosional model and uplift rates are defined,
and noise is added, such that
9z m n 2
EZ_KA V" +kVz+U +n, (1)
where z is elevation, ¢ is time, and K, m, n, and k are ero-
sional constants. The erosional processes (first two terms
on RHS of Eq. 1) can be regarded as being a simple ver-
sion of the (advective) stream power model, and erosion
that, phenomenologically at least, mimics diffusion, for in-
stance “transport-limited” or hill-slope processes (see e.g.,
Howard, 1994; Rosenbloom and Anderson, 1994). For sim-
plicity — we seek to avoid the complexities that arise when
shocks are expected or thresholds are incorporated — and to
aid assessment of the impact of noise, we implement a lin-
ear version of the stream power model, i.e., the slope expo-
nent n = 1 (we include the n notation for completeness; see
e.g., Pritchard et al., 2009; Lague, 2014; Roberts and Wani,
2024). Upstream drainage area, A = A(x, y,t), uplift rate,
U=U(x,y,t), and noise, n = n(x, y,t) can vary as a func-
tion of space, (x, y), and time.

Each synthetic landscape in this study is generated by the
following steps (Fig. 1). First, a uniform Cartesian (raster)
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grid with dimensions of 100 x 100km and cell size of
1 x 1km is generated. Elevations at the boundaries of the
domain are fixed at zero (i.e., Dirichlet conditions). Each
“east”, “west”, “south” or “north” boundary is individually
set to be open/active (i.e., flux across it is permitted) or
closedl/inactive (i.e., flux is forbidden; see Hobley et al., 2017
for details). An initial (noisy) topography is then added to
the grid. It is the choice of this initial topography, subsequent
additive noise, and their consequences on resultant landscape
evolution and associated metrics that are the foci of this pa-
per. Topographic depressions are then filled to permit contin-
uous flowlines and minimise the chance of internally drain-
ing regions forming (Barnes et al., 2014). Erosional param-
eters m = 0.5 and K = 1073 kyr~!. Erosional “diffusivity”
k = 100m? kyr~!. Diffusion is calculated using the explicit
finite-volume method within the Landlab model component
LinearDif fuser, with deposition turned off. The advec-
tion component of erosion is calculated using the FastScape
erosion scheme, and flow routing is performed with the
“D8” algorithm (O’Callaghan and Mark, 1984; Braun and
Willett, 2013). In other words, the basic modelling frame-
work is purposefully simple and designed to honour the as-
sumptions that underpin the calculation of many geomor-
phic metrics. Each synthetic landscape is evolved forwards
in time for 100 Myr, with uplift, flow-routing, erosion, and
diffusion taking place at each model time step. We use a
model time step, At = 10kyr, which satisfies the Courant-
Friedrich-Lewy (CFL) condition and is sufficiently large that
computational runtime is reasonable. This value provides nu-
merical stability and demonstrable convergence.

2.1.1 Three categories of landscape configuration

We generate three categories of relatively simple synthetic
landscapes designed to resemble widely studied natural and
computational end-members: a “block™ of topography up-
lifted at a constant rate, escarpment evolution, and evolu-
tion of a topographic swell/dome (see e.g., Beaumont et al.,
1992; Kooi and Beaumont, 1994; Tucker and Slingerland,
1994; Braun and van der Beek, 2004; Pelletier, 2007; Ander-
son and Anderson, 2010; Roberts and White, 2010; Braun
et al., 2013; Paul et al., 2014; Hobley et al., 2017; O’Malley
et al., 2021; Gasparini et al., 2024). The first category has
open boundary conditions along each edge of the model do-
main, for all other (core) grid cells uplift rate is constant,
U(x,y) =0.2mkyr~!. We henceforth refer to this category
as producing “square” landscapes. The second category has
open boundary conditions along the east and west edges
of the model domain only; no flux is permitted along the
north and south boundaries. Uplift is again as a “block”
with U = 0.2 mkyr~!. This category produces “escarpment”
landscapes. The third category has open boundaries and a
Gaussian uplift function, decaying from the centre of the do-
main towards its edges with the form
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B (x—x0)*  (y—y0)°
U(x, Y)—Umaxexpi_[ 20_3 + 203 :“, ()

where U (x, y) is uplift rate, xg = yp = 50 km are the central
coordinates of the dome, and o, = 0y, = 20 km are the stan-
dard deviations (spreads) in the x and y directions. The func-
tion is scaled by maximum uplift rate, Upmax = 0.2mkyr—!.
This category produces “domal” landscapes. Examples of the
“square”, “escarpment”, and “domal” landscape are shown in
Fig. 1. We maintain this nomenclature throughout to describe

the three categories of landscape configuration.

2.2 Generating noisy functions and their verification
2.2.1 Introduction to noise in landscape simulators

In this section we describe how different distributions of
noise can be produced and inserted into landscape evolution
models. The resultant functions are used to define starting
conditions and the additive noise inserted into the scenarios
examined. We then demonstrate how the spectral content and
characteristics, e.g., colours of noise, of such functions and
of evolved landscapes can be assessed.

We focus on examining the impact of “end-members” —
red, white and blue noise — for the following reasons. First,
topography and many other natural phenomena (e.g., mantle
convective support of Earth’s surface, potential fields) tend
to have red noise characteristics (see e.g., Bell, 1975; Rapp,
1989; Pelletier, 1999; Birnir et al., 2001; Turcotte, 2007;
Singh et al., 2011; Valentine and Davies, 2020; Holdt et al.,
2022, and references therein). For a landscape to have red
noise characteristics it would have amplitudes of elevation
that are inversely proportional to spatial frequencies, k (i.e.,
wavenumber), where k = 1/A, A is wavelength. Wavelength
can be thought of as broadly synonymous with scale. In other
words, as horizontal scales increase, so do vertical scales;
wide features have big amplitudes, and narrow features have
small amplitudes. Landscapes with red noise characteris-
tics have spectral power, ¢ (k) proportional to k~2, where
¢ = Z?* with Z = Z(k) being elevations in the frequency do-
main. We discuss how such signals can be identified in the
following section. In contrast, white noise (amplitudes are
scale-invariant; ¢ o ko), which appears to characterise some
long-timescale atmospheric temperature variations and fossil
records, for instance, is often assumed to be appropriate for
parametrising landscape evolution models (see e.g., Ijjasz-
Vasquez et al., 1993; Howard, 1994; Smith et al., 1997;
Kirchner and Weil, 1998; Pelletier, 1998; Yacobucci, 2005;
Castelltort and Yamato, 2013; Adams et al., 2015; Gray et al.,
2017; Lyons et al., 2020; Shen et al., 2021; Cullen et al.,
2022). Blue noise, which appears to be a property of (at least
some) systems that exhibit shockwave behaviour (e.g., per-
haps at small scales in fluvial landscapes; Wapenhans et al.,
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2021; Wang et al., 2022; Roberts and Wani, 2024) would in-
dicate that landscapes have vertical amplitudes proportional
to wavenumbers, i.e., narrow features have big amplitudes,
wide features have small amplitudes (¢ o k).

2.2.2 Generating white, red and blue noise

In order to generate a two-dimensional function, z(x, y), i.e.,
map of elevations, with a specific distribution (colour) of
noise we first create a random uniform (white noise) func-
tion of size Ny x Ny, where Ny and Ny are equal to the
number of cells in the x and y directions. Amplitudes are
setto 0 < z < 1 m. Such functions are straightforwardly gen-
erated using a variety of random number generators, such as
Python’s numpy . random. uniform, which we make use
of. Generating white noise in this way is standard procedure
in most simulations of two-dimensional landscape evolution
(see e.g., Braun and Sambridge, 1997; Tucker et al., 2001;
Goren et al., 2014; Gray et al., 2017; Lyons et al., 2020;
Morris et al., 2023). Many white noise functions with dif-
ferent specific arrangements of elevations can be generated
rapidly by re-running such algorithms with different “seed”
numbers. Seed numbers are sometimes set “under-the-hood”
using, for instance, computer clock time (see e.g., Press et al.,
1992 for extended discussion of random number generation).
In contrast, we define (and record) a unique seed number for
each model, ensuring reproducibility.

Maps of elevation (e.g., white noise) in the spatial domain
can be converted into the frequency domain using a two-
dimensional discrete Fourier transform, such that

Ny—1Ny—1

Zlkeky) = Y 3 2(x, ype ke Ntk Ny), 3)

j=0 k=0

where k, and k, are the wavenumbers in the x and y di-
rections, i = /—1, j and k are index positions in the two-
dimensional z(x,y) array (Cooley and Tukey, 1965; Press
et al., 1992; Perron et al., 2008).

We use the wavenumber content of white noise func-
tions, Zy(ky,ky), to generate other functions that have dif-
ferent distributions (colours of noise), Z;(ky,yy), in four
steps. First, Zy(kx, ky) is rearranged by shifting the zero-
wavenumber component to the centre of the array. Sec-
ond, the array is multiplied by the square root of the radial
wavenumber, ' = f(ky, ky), raised to the power p,

Zy(kx, ky) = Zy(kx, k) (f/ [P, “)

where f*=1km™! ensures dimensionality. The radial
wavenumber, f, is given by

f(kx,ky)=\/(kx—Nx/2)2+(ky—Ny/2)2~ (&)

The exponent p controls how rapidly elevations change
in the wavenumber domain. When p < 0 longer wavelength
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Figure 1. Introduction to geometries and power spectra of landscapes generated using the Stream Power model. (a) Initial white (“uniform”)
noise; typically used when parametrising landscape evolution models to ensure realistic looking drainage planforms emerge. (b) The white
noise function shown in panel (a) once sinks have been filled; a standard step that seeks to ensure drainage networks are continuous.
(¢) Normalised power spectrum — ¢(k), where ¢ is radially averaged (in the frequency domain) spectral power, and k is wavenumber, i.e.,
spatial frequency — of initial (a) and sink-filled noise (b), and of the three steady state landscapes shown in panels (d)—(f). Normalisation
is for visual purposes only. Note graticule showing power spectral slopes of theoretical blue (¢ o k), white (¢ o k9, pink (¢ k1) and red
(¢p x k2) noise. (d—f) Steady state landscapes generated with uplift rates that are constant in space and time, unless otherwise indicated (see
body text for details). (d) “Square” landscape generated with fixed, open, boundaries. (e) “Escarpment” landscape with closed north and

south boundaries. (f) “Domal” landscape generated with uplift rate modulated by a (spatial) Gaussian function (see Eq. 2).

signals have greatest amplitudes. The opposite is true when
p > 0. We generate red noise, Z;, using p = —2 , and blue
noise, Zy, with p = 1. White noise maps have p = 0. Third,
the Z, (Z; or Zy) array is converted from the frequency do-
main into the spatial domain by, first, reversing the shifting
of zero-wavenumber components, and then calculating the
inverse 2D discrete Fourier transform of the real components
of Z,(ky, ky).

Finally, we normalise the resultant function z;(x, y) to en-
sure that elevations are between 0 and 1 m. Normalisation is
achieved by adding the minimum elevation to the entire ar-
ray, and dividing through by the new maximum elevation:

|2y(x, ) + 20|
—_— (6)
2y

Zy(x,y) =
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These steps are repeated multiple times to generate M func-
tions with red, blue or white noise characteristics (Fig. 2). To
test the impact of different amplitudes of noise, z;(x, y) was
scaled by a factor « (see Table 1). Histograms of elevations
for these noisy functions are shown in Fig. S1 in the Supple-
ment.

2.2.3 Power spectra

The noise characteristics of these functions are verified by
first inserting them into Eq. (3) and then calculating their
power spectra,

Plhy, ky) = | Zy (ks ey 7)

NZN2

Since two-dimensional power spectra, ¢(ky, ky), can be
challenging to interpret they are usually visualised in one di-
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Table 1. Maximum amplitude of noise added to initial conditions,

or each time step as percentage of uplift rate, U = 0.2 mkyr_l, or

cumulative uplift after = 100 Myr.

Max. noise [m],« % of Udt % of ftT:OU dr
0.002 107! 10—5
0.2 10 1073
2 102 102
20 103 10~1
200 104 1

mension (i.e., ¢(k); see e.g., McKenzie and Bowin, 1976;
McKenzie and Fairhead, 1997; Perron et al., 2008; Watts and
Moore, 2017). There are two quite widely used methods. The
first approach calculates mean power between specific radial
frequencies (from the zero-shifted power spectrum) by aver-
aging within annuli, in our case we average within sequential
annuli of width§f =1 km~! (see e.g., McKenzie and Bowin,
1976). Figure 2 shows the power spectra of 100 red, white
and blue noise functions generated in this way. It demon-
strates that these functions have respective power spectra that
on average are proportional to k2, k¥ and k, as expected.

The second approach simply collapses the two-
dimensional spectra into one dimension, such that each
“pixel” ¢(ky,ky) can be plotted as ¢(k) (see e.g., Perron
et al.,, 2008; Watts and Moore, 2017). In practice, if ap-
propriate values of §f are chosen, the one dimensional
spectra from both approaches are very similar. We present
collapsed power spectra of elevations, following transfor-
mation z(x,y) = Z(kx,ky) — ¢(k) = Z2(k), in later figures
because they demonstrate the solutions to Eq. (7) directly.
Also shown in these figures is mean power,

p(k) = (p(k)), ®)

where the angle brackets denote the average value for a
wavenumber band centred on wavenumber k. We perform the
averaging within logarithmically equally spaced bands. The
Code and Data Availability statements explain where Python
scripts to generate and verify noise maps can be found.

2.3 Experimentation strategy

Figures 3 and 4 summarise our approach to experimentation.
Our goal with this strategy is to establish the impact of noise
on landscape evolution in a series of increasingly complex,
and perhaps more realistic, scenarios.

In scenario A, we examine the consequences of a widely
used approach — insertion of noise only into the starting con-
dition of a landscape evolution model (see e.g., Braun and
Sambridge, 1997; Tucker et al., 2001; Braun and Willett,
2013; Goren et al., 2014; Barnhart et al., 2020a, b, ¢). We
examine the impact of different distributions (i.e., red, white,
blue) and amplitudes of noise. Each ensemble examined
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(e.g., white noise, “square” landscape; white noise, “escarp-
ment” landscape; white noise, “domal” landscape; red noise
“square” landscape, etc.) contains M = 100 or M = 1000
individual models. Within an ensemble, each model has the
same boundary conditions, uplift function, erosional param-
eter values, and distribution of noise, but crucially they all
have different specific arrangements of noisy elevations; dif-
ferent “seeds” were used to generate noise in each model.
The resultant M landscape geometries were used to gain sta-
tistical insight into the impact of noise on landscape evo-
Iution, form and recovery of geomorphic metrics. Figure 4
summarises the ensembles tested (scenario A: ensembles 1—
18).

In scenario B we test the impact of quenched (i.e.,
“frozen”) noise. For an individual model, a noisy function is
added to its starting condition (as in scenario A), then the ex-
act same arrangement of noisy elevations is inserted at every
subsequent time step (Fig. 4: ensembles 19-21). A rationale
for testing such a scenario arises from the work presented
in Birnir et al. (2001) and Wapenhans et al. (2021), which
demonstrate the need for landscape evolution models to in-
corporate additive noise to avoid artificial spectral redden-
ing of landscapes, i.e., unrealistic reductions in topography at
short wavelengths (small scales). Incorporating noise in this
way is loosely related to modelling studies that seek to assess
the impact of substrate on landscape evolution by changing
erodibility (see e.g., Sklar and Dietrich, 2001; Haviv et al.,
2010; Forte et al., 2016; Campforts et al., 2020).

Scenario C again includes noise added to the starting con-
dition. However, in contrast with scenario B, different ar-
rangements of the same underlying distribution (colour) of
noise are added to each model at every time step. In other
words, noise varies as a function of space and time. Arguably,
this approach is more realistic than scenarios A and B, and
probably more appropriate when specific arrangements of
noise are likely to be unknown. Figure 4 (ensembles 22-24)
summarises this experimentation.

The noise added throughout models within Scenarios B
and C has amplitudes of 0—1 m. We choose to incorporate
additive noise for two reasons. First, to maintain consis-
tency with the amplitude of noise added to the starting con-
dition, and second, to avoid cases in which regions of inter-
nal drainage may arise, thus potentially requiring additional
(ad hoc) sink-filling steps. However we acknowledge that this
may not necessarily represent noisy surface processes which
act to alter topography. Instead, such processes may also re-
duce elevations. Whilst it is generally unclear what an ap-
propriate mean elevation might be in order to represent these
processes, we also perform an additional set of simulations
in the style of Scenarios B and C with noise of —0.5to 0.5 m
amplitude (i.e. mean elevation = 0). Results for these tests
are shown in Supplement Fig. S9 and S10.

Scenarios A—C have flow routing and erosion applied in
their final time step, after noise has been inserted. Thus, in-
serted noise is eroded for 10kyr (i.e., the length of the time

https://doi.org/10.5194/esurf-13-1003-2025
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Figure 2. Noise functions (maps) used to generate initial conditions for landscape models. (a—c) Examples of functions with red, white
and blue noise characteristics. (d) Thin red lines = radially averaged (in the frequency domain) power spectra, ¢(k), of the 100 red noise
functions used in this study (see body text for details). Thin grey and blue lines = respective power spectra of the 100 white and blue noise
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slopes for red (¢ o k=2, where k = wavenumber), white (¢ ko), and blue (¢ « k) noise.

step) before metrics are extracted. In actuality, noise could be
inserted into a landscape at any time. Thus, we test scenario
D in which noise is inserted into synthetic landscapes at the
end of model run time. We take the steady state landscapes
(at 100 Myr) generated by scenario A with 1 m of noise and
insert noise with the same arrangement. The impact of insert-
ing final noise with scaled maximum amplitudes of 2, 20 and
200 m is assessed (see Table 1). For clarity, metrics are ex-
tracted from the noisy landscapes using drainage planforms
determined before final noise is added, i.e., no additional flow
routing or sink filling is performed. This approach is a gen-
eralisation, to two dimensions, of that presented in Roberts
et al. (2012b) and Smith et al. (2022), in which noise is added
directly to the longitudinal profiles of rivers (Fig. 4: ensem-
bles 25-27).

https://doi.org/10.5194/esurf-13-1003-2025

2.4 |dentifying steady state landscapes for

experimentation

The assumption of topographic steady state remains widely
used in quantitative studies of fluvial geomorphology (see
e.g., Snyder et al., 2000; Istanbulluoglu and Bras, 2005; At-
tal et al., 2008; Perron and Fagherazzi, 2012; Theodoratos
et al., 2018; Leonard and Whipple, 2021; Fisher et al., 2022;
Clubb et al., 2023; Hoskins et al., 2023; Zhou et al., 2024). It
underpins the use of a variety of geomorphic metrics used to
generate quantitative estimates of erosional parameter values
and uplift rates (see e.g., Wang et al., 2017). Thus, we run
our models until they are demonstrably at, or get as close as
reasonably possible to, steady state and then examine the im-
pact of noise on calculated metrics. A variety of criteria can
be used to define steady state topography in both natural (ob-
served) and synthetic landscapes (see e.g., Willett and Bran-
don, 2002; Gasparini et al., 2024, and references therein). For
clarity, in this paper steady state means dz/d¢ = 0, i.e., rate

Earth Surf. Dynam., 13, 1003—1038, 2025
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Figure 3. Schematic summarising the scenarios tested and approach to extracting metrics. In scenarios A-D forward models are initialised
with starting conditions that include noise (white, blue or red in this study), they are then run for a specified number of time steps, evolving
to steady state. Geomorphic metrics are extracted from steady state topography. Each scenario is run multiple (M) times using different
arrangements of noise to generate statistical insights and assess stability of calculated metrics. The example demonstrated here is for the
“square” landscape shown in Fig. 1d. Note that we also assess the impact of changing boundary conditions and uplift function, and scenarios
when no noise is explicitly incorporated. Scenario A: Noise is only incorporated into the starting condition; the quintessential landscape evo-
lution modelling strategy. Scenario B: Noise used in the starting condition is incorporated at each time step; testing the impact of quenched,
“frozen”, noise. Scenario C: Different arrangements (but same distribution) of noise are incorporated at each time step. Scenario D: Uneroded
noise is added to the landscape at the end of model run time.
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of change of elevation is invariant everywhere in the land-
scape.

As Gasparini et al. (2024) explain, demonstrating that a
synthetic landscape is at topographic steady state is not nec-
essarily trivial, we extend their approach here. A useful at-
tribute of landscape evolution modelling is that it is straight-
forward to extract and visualise distributions of topographic
change over consecutive time steps, which can be used to as-
sess topographic (in)transience. Figure 5 shows three statis-
tics used to assess topographic steady state. First, following
Gasparini et al. (2024), we extract the maximum local change
in elevation, Az, across the entire model domain between
consecutive time steps
Azl, = max(|z} — szml), 9)
where i here indicates the index of all elevations (i =
1,...,NyNy), and t is the index of time steps. Similarly, the
change in mean elevation of the entire domain, from one time
step to the next, is calculated,

Az = 2" — 7!~ (10)

where Z is the mean elevation of a landscape. Change in max-
imum elevation between consecutive time step is also ex-

tracted,
AZl, = Imax(z") — max(z'~ ). (11)

Examples of these statistics are shown in Fig. 5 for three
landscapes generated with white noise only in their initial
conditions. Figures S7 and S8 similarly show statistics for
typical landscapes generated within scenarios B and C.

In addition to such statistical approaches, it is beneficial
to examine how distributions of elevation change evolve
as the synthetic landscapes mature. Consequently, Fig. 5
shows histograms of topographic change between succes-
sive time steps for all cells within the three example land-
scapes. The histograms summarise topographic change for
the individual landscapes when they are immature (time
steps 0.99 — 1 Myr), juvenile (4.99 — 5Myr), and mature
(i.e., have reached steady state; 14.99 — 15, and 79.99 —
80 Myr).

As Kwang and Parker (2019) discuss, planforms generated in
simulations with noise inserted into starting conditions tend
to be “burned” into simulated landscapes for the duration of
model run time. This result is intuitive for models in which
uplift rates tend not to vary as a function of time, or cannot
outpace erosion (cf. O’Malley et al., 2021). This behaviour
implies that long-lived planform geometries, at least at some
scales, are specific to the distribution and particular arrange-
ment of noise. We assess the consequences of inserting dif-
ferent distributions and specific arrangements of noisy topog-
raphy on the geometries of emergent landscapes, their plan-
forms and marginals by running multiple simulations (see
e.g., Figs. 1,6, 7).

We also make use of our model ensembles to assess the
impact of different distributions and arrangements of noisy
starting conditions on resulting drainage basin sizes. We ex-
tract the upstream drainage area from the outlet positions of
the ten largest drainage basins in each “square” model of sce-
nario A for 1000 simulations (ensembles 10-12) and show
this in Fig. 8.

Following Lipp and Roberts (2021), to develop statisti-
cal insights into the development of synthetic landscapes,
we ran 1000 simulations for each landscape configuration
within scenario A (i.e., “square”, “escarpment”, “domal”).
The same distribution of noise, but different specific arrange-
ments of topography (i.e., 1000 simulations initialised with
different “seed” numbers) with amplitudes O to 1 m were
used to define the initial conditions (model ensembles 10—
18). To establish the propensity of cells within landscapes to
host rivers, cells with upstream drainage areas > 5 x 107 m?
were extracted from each model. The probability of a river
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Figure 5. Identifying steady state landscapes. In each of these ex-
amples, white noise is only inserted in the starting condition, see
scenario A in Fig. 3. (a) Evolution of changes in elevation between
consecutive time steps (At = 0.01 Ma) for the “square” landscape
shown in Fig. 1d; green = maximum change in local elevation
(Azq); purple and orange = change in mean elevation (Azg) and
change in maximum elevation across the entire domain (Azy ), re-
spectively (see Egs. 9-11). Grey dashed vertical lines correspond
to histograms shown in panels (c¢)—(e). (b) As (a), on logarithmic
scale. (c¢) Histogram of elevation change, Az, for all grid cells
between 0.99 and 1Myr. (d, e) As per (c), from 4.99 — 5Myr,
14.99 — 15Myr and 79.99 — 80 Myr, respectively. (f=j) As above
for “escarpment” landscape shown in Fig. le. (k-0) As above for
“domal” landscape shown in Fig. 1f.

being in a cell is calculated by dividing the number of times
a cell met this criteria by the total number of simulations
(i.e., N/1000), which results in a probabilistic drainage map
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(Fig. 9). These maps also help to establish expected locations
of drainage divides, i.e., where calculated probability is low.
Similar maps are shown for 100 “square” landscapes gener-
ated in scenarios B and C in Fig. S6.

The spectral characteristics of the synthetic landscapes can
be assessed by transforming them into the frequency domain
using Eqs. (3) and (7) (see Fig. 10). It is also straightfor-
ward to extract other geometric properties from the land-
scapes (e.g., longitudinal river profiles, hypsometry, channel
length-area relationships) that can be directly compared or
used to calculate geomorphic metrics that can be compared
in turn (Fig. 11).

2.6 Geomorphic metrics

We examine the impact of noise on widely used geomor-
phic metrics. The metrics extracted from landscapes in this
study include: concavity indices, erosional parameter val-
ues and uplift rates from slope-area and x (chi) analyses. In
most landscape evolution models the typical order of a sin-
gle time step, which we follow, is add noise (if desired) —
uplift — flow routing — erode. For efficiency, slopes and
drainage areas are calculated as part of the flow routing step.
However, an obvious issue is that we want to calculate met-
rics for steady state landscapes, which requires knowledge
of landscape geometries once erosion has been performed.
Therefore, just prior to extracting metrics (i.e., at time step
N = 100 Myr) we run a single additional flow routing step.

Hack exponents are calculated from channel lengths and
basin areas. Hypsometry is calculated using elevations and
cell areas. Longitudinal river profiles are extracted from the
synthetic landscapes using a version of the code within the
ChannelProfiler component of Landlab (modified for
data manipulation and visualisation). We note that metrics
are often derived, via slope-area or x analyses, for instance,
from profiles alone.

2.6.1 Slope-area analysis

Expectations of power law scalings of channel slope and
upstream areas were discussed by Gilbert (1877), and later
quantified in a few settings by Hack (1957), Morisawa (1962)
and Flint (1974), and subsequently by many others. Slope-
area analysis remains a widely used tool to estimate up-
lift rates and erosional parameter values (e.g., Schoenbohm
et al., 2004; Kirby and Whipple, 2012; Adams et al., 2020;
Marder and Gallen, 2023). It is typically applied to informa-
tion about local changes in slope, dz(x)/dx, and upstream
drainage areas, A(x), extracted from the longitudinal profiles
of individual rivers, where x here indicates streamwise dis-
tance. There are many explanations of the approach in previ-
ously published work (see e.g., Tarboton et al., 1989; Mont-
gomery and Foufoula-Georgiou, 1993; Kirby and Whipple,
2001). For completeness we summarise it as follows.

https://doi.org/10.5194/esurf-13-1003-2025



M. J. Morris and G. G. Roberts: Impact of noise on geomorphic metrics

Square, Red

Square, White

@
S

Distance [km]

Yok

S 2

_W/ ((2/2)

}f{{}s*}\“

Square, Blue

frxo;i ft\/f»

20 40 60
Distance [km]

Escarpment, Red

z x1(]2 [m)

0 20

Distance [km)] zx 102 [m]

Escarpment White

o

Distance [km] z ><102 [m)

Escarpment, Blue

- 1200

- 1000

=3
3
=3

@
3
3
Elevation [m]

400

200

1013

Distance [km]

20 40 60 80 510 20 40 60 80 510 20 40 60 80 0510
Distance [km] 2z x10% [m] Distance [km] zx102 [m] Distance [km] z x102 [m]
Domal, Red

Distance [km]

20

0

0510
z x102 [m]

0o =2 0 e
Distance [km]

80 40

Domal, White

60

Distance [km]

Domal, Blue

80 0510
2 x102 [m]

0510 0 20
2 x102 [m]

80
Distance [km]

Figure 6. Steady state landscapes generated with different initial conditions. (a—c) Steady state “square” landscapes generated with red,
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topographic transects are between grey triangles at x = 50 km. (d—f) As above, for “escarpment” landscapes. (g-i) As above, for “domal”

landscapes.

If a river is assumed to be at topographic steady state,
dz/dt = 0, k =0, and there are no additional sources of el-
evation (e.g., noise), the one dimensional version of Eq. (1),
predicting evolution of the longitudinal profile of the river,

0 az\"

D ganr (2t (12)

ot 0x
can be rearranged such that

1

dz U\~ _m U=k"K
—l==] A ", 13 s
o ( K) ) (13)

By substituting ks (the “channel steepness index”) for
(U/K )%, and 6 (“concavity index”) for the exponent ratio

https://doi.org/10.5194/esurf-13-1003-2025

m/n, Eq. (13) can be rewritten as

log(S) = log(ks) — B 1og(A). (14)

Equation (14) takes the form of a straight line in a plot of
log(S) against log(A), with gradient 8, and log(ks) at the y-
intercept. In turn, because we know the values of n and K
in the experiments we run, we can, in principle, recover the
values of uplift rate and erosional parameter m,

m=0n. (15)

The black line in Fig. 11e shows the analytical relationship
(from Eq. 14) between slope and area expected for all rivers
within steady state landscapes generated with “block” uplift

Earth Surf. Dynam., 13, 1003—1038, 2025
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Figure 7. Differences in elevations and drainage network planforms due solely to changing arrangements of initial noise. (a=b) Steady
state “square” landscapes (at 100 Myr) generated with the same uplift rate histories, boundary conditions, and distributions (but different
arrangements) of white noise. (¢) Landscape in panel (a) subtracted from that in panel (b). (d) Black dotted, dashed, solid lines = elevation
along transect indicated in panel (a) at 1, 5 and 100 Myr. Purple line = landscape at 100 Myr along transect indicated in panel (b). (e) as for
(d) for transects shown in panels (b) and (a). (f=j) Same as panels (a)—(e) for “escarpment landscapes”.

LLIT)

(see Fig. 4: “square”, “escarpment”) in this study given the
values of erosional parameters and uplift rate used. We re-
strict slope-area analysis of river profiles extracted from the
two-dimensional landscapes to cells with upstream drainage
areas > 4km?, a value often used in studies of real land-
scapes as indicative of overland flow (e.g., Whipple and
Tucker, 1999; Roberts and White, 2010). Slope is calculated

Earth Surf. Dynam., 13, 1003-1038, 2025

between adjacent cells in the streamwise distance down-
stream.

2.6.2 Chianalyses

Metrics estimated from slope-area analysis can be extremely
sensitive to noise and thus calculated parameter values can

https://doi.org/10.5194/esurf-13-1003-2025
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be highly unstable (see e.g., Roberts et al., 2012b; Smith
et al., 2022). This result is unsurprising because even small
amounts of noise can dramatically change local slopes. For-
tunately, a variety of integral-based techniques exist that
avoid the need for differentiation of elevations when attempt-
ing to recover information from fluvial landscapes (e.g.,
erosional parameter values, uplift rates; see e.g., Harkins
et al., 2007; Pritchard et al., 2009; Roberts and White, 2010;
Roberts et al., 2012a; Perron and Royden, 2013).

Here, we focus on examining impact of noise on geomor-
phic metrics calculated using the widely used “x” (chi) anal-
ysis (Royden et al., 2000; Harkins et al., 2007; Perron and
Royden, 2013). Like slope-area analysis, yx-analysis can, in
principle, be used to estimate uplift rates and values of ero-
sional parameters from the geometries of longitudinal river
profiles providing certain assumptions hold. There are many
published explanations of the approach available (see e.g.,
Perron and Royden, 2013; Mudd et al., 2014, 2018; Smith
et al., 2022; Marder et al., 2023). For completeness, we sum-
marise it as follows. First, Eq. (13) is rearranged and inte-
grated in the upstream direction such that

X

2(x) =z +/ Lmdx, (16)
A(x)

Xb

where z is elevation, xp is a downstream position on the chan-
nel often assumed to be base level (though not always), with
elevation zp. A reference drainage area A, (here = 1 m?) is
often incorporated, such that

X

kK [ Ar
) = 25+ 2 dx. a7
ar ) aw”

Xb
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Thus y is defined,

m

(2 "d 18
X“”‘/(A(x)) - (18)

Xb

Making use of Eq. (15),

ks 1/n
Z(X)ZZb+—mX(x)=Zb+< ) X (x). (19)

AL K Am

Various techniques exist to find the optimal values of m /n
from the construction of z(x) profiles (e.g., Perron and Roy-
den, 2013; Mudd et al., 2014; Hergarten et al., 2016; Mudd
et al., 2018; Gailleton et al., 2021). If the landscape is at
steady state then elevation is expected to be a linear function
of x. By systematically sweeping 0 < m/n < 1, the optimal
value can be identified, i.e., as one that results in the z(x)
profile with the highest linear correlation coefficient, R? (see
e.g., Perron and Royden, 2013). In the experiments run in
this study, we of course know the true values of m and n.
As Fig. S4 shows, if an incorrect value of m/n is assumed,
z(x) profiles are not linear. Correlation coefficients are cal-
culated for the main channel in each simulation to identify
the “optimal” value of m/n as if we were studying a real
landscape for which no independent information about the
erosional parameter values exists. Once armed with an opti-
mal value for m/n it is straightforward to estimate the uplift
rate from the slope of the z(x) profile (because we know the
values of n = 1 and K here),

U=KA"-=. (20)

Earth Surf. Dynam., 13, 1003—-1038, 2025
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Figure 9. Probability of drainage within landscapes generated by different arrangements of initial noise. (a—c) Colours indicate probability of
a grid cell in 1000 “square” landscapes containing a channel with upstream drainage area > 5 x 107 m2 generated with initial red (a), white
(b), or blue (c) noise. (d-f) As above, for “escarpment” landscapes, and (g—i) for “domal” landscapes. Examples of individual landscapes
that feature in this suite are shown in Fig. 6. Associated power spectra are shown in Fig. 10.

Figure 11f shows an example of a relationship between x and
elevation for the main channel and tributaries of the largest
drainage network in a single simulation.

2.6.3 Hack exponent

Hack’s law is an empirical relationship between the length of
rivers and their upstream drainage areas, both of which are
straightforward to extract from synthetic landscapes and dig-

Earth Surf. Dynam., 13, 1003-1038, 2025

ital elevation data. It has been used to relate changes in chan-
nel sinuosity to basin shapes, to develop an understanding of
fractal (scale-dependent) characteristics of basins, and of en-
ergy expenditure in drainage basins, for example (Langbein,
1947; Hack, 1957; Robert and Roy, 1990; Ijjasz-Vasquez
et al., 1993; Rigon et al., 1996; Turcotte, 1997; Willemin,
2000). The law can be expressed as

L=CA" thus log(L)=1og(C)+ hlog(A), (1)

https://doi.org/10.5194/esurf-13-1003-2025
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Figure 10. Spectral (two-dimensional Fourier) analysis of steady state landscapes generated with noise in the initial condition. (a) Small
red dots = power at positive frequencies from the two-dimensional Fourier transform collapsed into one dimension for a single “square”
landscape generated with a red noise initial condition (see body text for details). Open circles = mean power within logarithmically equalled
spaced bins (see Eq. 8). Thin lines show the mean values for the other 99 models with same distribution but different arrangement of initial
noise. (b—c) As per (a), for a steady state landscape generated with a white noise (b), and blue noise (c) initial condition. (d—f) As per (a—c)
for the “escarpment” landscapes such as that shown in Fig. 1d. Arrow indicates power for regions on north and south boundaries. (g—i) Power

spectra for “domal” landscapes (e.g., Fig. le).

where L is the length of the longest river in a basin, A is up-
stream drainage area, and C and & are known as the Hack co-
efficient and exponent, respectively. Their values can be es-
timated from the respective intercept and slope of regressed
log(L) and log(A) data. We show how noise impacts the val-
ues of Hack exponents calculated from the maximum lengths
and upstream drainage areas of the longest channels in the
forty largest drainage basins (by area) in each model run.

https://doi.org/10.5194/esurf-13-1003-2025

2.6.4 Hypsometry

Hypsometry summarises area-elevation relationships of a
landscape, including topography not necessarily incorpo-
rated into the other geomorphic metrics examined (see e.g.,
Langbein, 1947; Strahler, 1952, 1957; Harrison et al., 1983;
Lifton and Chase, 1992; Willgoose and Hancock, 1998;
Hurtrez et al., 1999; Montgomery et al., 2001). We calculate
hypsometry for the entire domain of each steady state land-
scape by generating normalised cumulative density functions
(the simple algorithm used is available; see the Code and
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Data Availability statement). Hypsometry is also produced
for select landscapes during their evolution (e.g., Fig. 11g).

We have now introduced each of the geomorphic metrics
extracted from synthetic landscapes in this study. Our pri-
mary aim is to assess how changing the colour, amplitude,
timing, and arrangement of noise affects these metrics. We
synthesise results for each scenario as follows.

3 Results

3.1 Scenario A: noise only inserted into the initial
condition

3.1.1 \Verification of topographic steady state

The boundary conditions and uplift rates — producing
“square”, “escarpment”, or “domal” landscapes in this study
— influence the precise time taken to reach steady state. His-
tograms shown in Fig. 5 illustrate that, for the erosional
model used in this study, with noise only inserted into initial
conditions, landscapes are immature and topographic change
is driven by the imposed uplift until ca. 1 Myr. By 5 Myr, the
landscapes are maturing as drainage networks develop; topo-
graphic change is largely centred around zero by this time.
By 15Myr drainage networks have matured such that ero-
sion rates balance the imposed uplift rates across most of the
domain. For most intents and purposes these landscapes can
be regarded as being at steady state at this time. However, we
note that true numerical steady state is achieved where topo-
graphic change within a single time-step across all cells is
zero within computer precision, which is typically achieved
by 40-90 Myr.

3.1.2 Spectral power of initial, sink-filled, and steady
state landscapes

Figure 1c shows examples of the spectral content of single
models. It demonstrates how landscapes with initial white
noise (¢ o< k%) quickly “redden” due to sink-filling, which
reduces local roughness, resulting in such sink-filled land-
scapes having pink noise (¢ o k~!) characteristics. Figure 2d
shows the spectral content of 100 initial conditions for each
distribution of noise (red, white, blue) used in this study.
Examination of the power spectra of evolving landscapes
shows that the spectral signature of all (red, white, blue) ini-
tial noise conditions with amplitude 0—1 m evolve to have
red noise characteristics within 2Myr of model run time
(¢ < k=2). We attribute spectral reddening of topography
in these landscape evolution models to the smoothing ef-
fects of sink-filling and erosion, and the imposed uplift.
Figure 10 shows radially-averaged power spectra for typi-
cal steady state landscapes in ensembles 1-9. The escarp-
ment landscapes (ensembles 2, 5, 8) contain above-average
spectral power at a few intermediate to high wavenumbers
(107" <k <5 x 10~ km™1), highlighted with the black ar-
row in Fig. 10d. This pattern is attributed to the high el-
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Figure 11. Geomorphic metrics for an example “square” landscape
generated with white noise only in the initial condition. All metrics
are for the steady state landscape (at 100 Myr) shown in Fig. 6b
unless otherwise indicated. (a—d) Longitudinal profiles of rivers,
including tributaries, within four largest drainage basins shown in
Fig. 6b. (e) Grey points show slope-area relationship for grid nodes
of rivers in four largest basins with drainage areas exceeding 4 km?.
Black line = linear regression: calculated intercept = ks (steep-
ness index); Urec = recovered uplift rate; slope = 6 =m/n (con-
cavity index). True values, used to generate LEM: U = 0.2 mkyr™ L
6 = 0.5. See body text for details. (f) Yellow = y-elevation profiles
for the main channel and tributaries of the largest drainage basin
(d); open circles = main channel. Inset shows R? values for dif-
ferent assumed concavity indices for main channel; red dashed line
= true value. Black solid line in main panel illustrates linear re-
lationship for 6 = 0.5. (g) Coloured/black circles show maximum
length-drainage area relationships for longest rivers from four/forty
largest drainage basins, respectively. # = Hack exponent. (h) Hyp-
sometry (i.e., landscape area-elevation relationships) at 1, 5, 15, 80
and 100 Ma.

evations at the closed north and south boundaries of these
landscapes. The domal landscapes exhibit a flattening in the
power spectrum at intermediate wavenumbers (5 x 1072 <
k <1x10~"km™"). The flattening corresponds to a white
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noise signal at these wavenumbers. We attribute this spectral
power to the areas of low elevation (few meters) between the
uplifted dome and the edge of the domain.

Overall, Fig. 10 shows that whilst landscape configuration
can influence the details of the power spectrum, the steady
state landscapes produced in this study tend to exhibit red
noise characteristics and are insensitive to the colour of noise
used to generate the initial condition.

3.1.3 Impact of noise on geometries and planforms

In contrast, Fig. 6 illustrates how those initial conditions
can lead to very different drainage planforms. This result
emerges even for landscapes that are generated with the same
erosional model parametrisations and uplift histories. Fig-
ure 7 extends this demonstration by showing how different
arrangements of the same distribution of noise (e.g., white)
in the initial condition results in formation of very different
drainage planforms. Inevitably, the dissimilarity of planform
arrangements is consistent with elevations being very differ-
ent locally, resulting in substantial differences in the posi-
tions of valleys and interfluves. These differences are illus-
trated using topographic transects from identical locations in
the two landscape models shown in Fig. 7.

As a further demonstration of the impact of noisy initial
conditions on the geometries of landscapes, Fig. 8 shows
drainage area of each of the 10 largest fluvial networks in
the 3000 simulations generated with either red, white, or blue
noise as a percentage of the total area of the model domain.
The are ordered by rank: largest to smallest drainage area.
Landscapes initialised with red noise tend to create, on av-
erage, fewer, larger drainage basins. The upstream area of
the largest drainage basin in a landscape initialised with red
noise can be up to 2 times that of the median white noise
equivalent, and on average is approximately 20 % larger. A
consequence is that smaller drainage basins (rank 4 and be-
low) in landscapes initialised with red noise are smaller than
their white and blue noise counterparts. Drainage basins in
landscapes generated by white and blue noise conditions are
similar in size to each other.

Figure 9 shows calculated probabilities of channel loca-
tions for steady state landscapes generated with different
distributions of initial noise. We emphasise three features
of interest in the probability maps of “square” landscapes
(Fig. 9a—c). First, all three distributions of noisy initial con-
ditions have regions of low probability within a “cross” that
extends from the four corners of the domain to its centre. Sec-
ondly, in between those regions the probability of drainage is
broadly equal, and relatively high. Thirdly, landscapes with
red noise initial conditions (panel a) have a more uniform
probability of drainage across the domain. The escarpment
landscapes initialised with red noise also have a higher prob-
ability of drainage across the domain than those initialised
with white or blue noise (Fig. 9d—f).

https://doi.org/10.5194/esurf-13-1003-2025
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The domal landscapes exhibit probabilistic drainage pat-
terns with a radial “spoke” pattern for all three colours of
noise. We interpret this pattern as being a consequence of
the interaction of D8 flow routing on a Cartesian raster grid
and the distribution of inserted uplift. We suggest that the
lower number of spokes for landscapes generated with red
noise initial conditions are a result of longer wavelength to-
pographic roughness reducing the propensity for a flowpath
to be diverted locally as frequently as they are for white or
blue noise. In other words, channels in a landscape initialised
with red noise are more likely to drain along a continuous az-
imuth without being interrupted by local topographic rough-
ness. We note that the structure of probability in these maps
is similar to drainage networks produced in models with no
added noise (see Supplement Fig. S2).

3.1.4 Slope-area analysis

Slope-area data shown in Figs. 11e, 12a and 13a are clustered
around a single line with a slope and intercept that permit
reliable uplift rates, Usa, and m/n ratios (6sa) to be recov-
ered (Eq. 15). These results demonstrate the utility of slope-
area analysis for landscapes that are demonstrably at topo-
graphic steady state and subject to spatially invariant uplift;
the “square” and “escarpment” landscapes we study. Lines of
best fit are shown in Figs. 12a and 13a for each of the 3 x 100
simulations generated with 0—1 m of red, white or blue noise.
They are largely indistinguishable from each other, demon-
strating the insensitivity of slope-area relations to the colour
of noise in the initial conditions. We note that changing the
amplitude of noise increases the spread of calculated Usp
and 6s (Fig. S5). However, changing the amplitudes of ini-
tial noise, even by many orders of magnitude, has a small
impact (few percent compared to true values) on the recov-
ered values of Usa and 6ga.

3.1.5 ) analysis

Figures 11f, 12b and 13b show z()) profiles for the main
channel and tributaries of the single largest drainage basin
for simulations in which uplift rate is spatially invariant
(“square” and “escarpment”). Results are shown for each of
the 100 simulations generated with red, white or blue noise
initial conditions. In theory, z() profiles in such steady state
landscapes should be straight and collinear, i.e., collapse to
a single line (see Section 2). Whilst individual profiles are
linear, we demonstrate that when the models are initialised
with noisy conditions, families of profiles do not collapse to
a single line, even when they have the same distribution of
noise in their initial conditions.

The inset panels in Figs. 11f, 12b and 13b show R? val-
ues for the suite of z(x) profiles generated by systematically
testing different concavity values (6, ; see Sect. 2). Highest
R? values are generated when 0.4 <6, < 0.6 (note: actual
value used to produce the landscapes is 0.5). These results
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Figure 12. Comparing geomorphic metrics from “square” steady state landscapes initialised with red, white or blue noise. Each panel shows
metrics from 100 landscapes initialised with red, white or blue noise. (a) Upstream drainage area vs. channel slope for all grid cells in rivers
of four largest drainage basins with drainage area > 4km?; black line = linear regression. Outlined circles show examples of relationships
for the main channel in the largest drainage network in single, typical, simulation for each colour of noise. (b) Elevation as a function of
for the main channel and tributaries of the largest drainage basin in each simulation, produced using 8 = 0.5. Inset shows the R? value of
different reference concavities. Dashed line marks true value of 0.5 used to parametrise models. (¢) Maximum upstream drainage area vs.
maximum channel length for the longest (trunk) channels in the forty largest drainage networks in each landscape. Inset histogram shows
Hack exponent for the 4000 rivers generated for each colour of noise. (d) Hypsometries of the 300 landscapes.

highlight the variability in best-fitting x transformations in-
troduced by different noisy initial conditions.

Having established that different colours and arrange-
ments of noise in initial conditions contribute to uncertainty
in calculated best-fitting concavity, Fig. 14 demonstrates the
impact of using the best-fitting values on calculated uplift
rates. This test mimics calculation of 6 and U from yx-
transformation of rivers in the real world. In this demonstra-
tion the rivers with the largest upstream drainage area were
extracted from three typical landscapes initialised with dif-
ferent arrangements of white noise (scenario A: ensemble 1).
Each longitudinal river profile is transformed into a z( ) pro-
file using the best-fitting value of concavity. R? values for
each 6, value are shown. In the cases where the best-fitting
reference concavity # 0.5 (i.e., the true value), uplift rates
recovered from the slope of the regression line (see Eq. 20)
significantly differ — by more than 50 % when amplitudes of
initial noise are 0—1 m — from the true value of 0.2 mkyr~!.

Earth Surf. Dynam., 13, 1003—-1038, 2025

These results demonstrate that even though chosen values of
6, may result in z(x) profiles with high R? values (> 0.99),
they can yield inaccurate and misleading estimates of uplift
rates. The instability of calculated U, arises because of its
sensitivity to the derivative, dz/dy (see Eq. 20), and the sen-
sitivity of dz/dx to noise and the way in which it impacts the
geometries of landscapes.

3.1.6 Length-area relationships

Relationships between maximum channel lengths and up-
stream drainage areas are shown in Fig. 11g (black circles)
for the main channels within the forty largest basins ex-
tracted from a typical “square” landscape initialised with
white noise. A best-fitting non-linear regression, generated
using Eq. (21), is shown, and yields a Hack exponent value,
h (slope of regression in log-log space), of 0.574.
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Figure 13. Geomorphic metrics of steady state “escarpment” landscapes initialised with red, white or blue noise. See Fig. 12 for extended

notation.

Figures 12c, 13c and 15c collate lengths and areas for the
main channels in the forty largest drainage basins for each
ensemble in scenario A. The non-linear regression is shown
for each ensemble. The regressions are similar for landscapes
initialised with white and blue noise, However, a shallower
gradient (and hence lower h) is required for landscapes ini-
tialised with red noise. Each inset panel in these figures
show histograms of Hack exponent values calculated for each
model from its forty longest rivers. They demonstrate the
variability in Hack exponent values: 0.4 < h < (.75, with h
values in the landscapes generated with red noise initial con-
ditions tending to be slightly lower than those for the white
and blue noise initial conditions.

Figure 16a—c demonstrates that the amplitude of initial
noise has limited influence on the distributions of Hack ex-
ponents at the range of amplitudes tested (0.002 to 200 m).
Landscapes initialised with different amplitudes of red, white
or blue noise have broadly consistent trends. For instance, the
25th and 75th percentile, and median show little variation be-
tween ensembles 1, 4 and 7 (Fig. 16). These results demon-
strate that the distribution of Hack exponent values largely do
not depend on the amplitude of initial noise. They all show
considerable variance arising from noisy initial conditions.

https://doi.org/10.5194/esurf-13-1003-2025

3.1.7 Hypsometry

The history of hypsometry for a single landscape is shown in
Fig. 11h. A large proportion of the landscape has relatively
high elevations early in its evolution, whilst fluvial networks
are forming. As the landscape matures, an increasing propor-
tion of its area is at lower elevations. Figures 12d, 13d and
15d show the hypsometries of steady state landscapes within
scenario A. We emphasise two features. First, changing the
arrangement of specific distributions of noise (i.e., red, white,
blue) generates up to approximately 5 % variability in the
hypsometry, but the shape of the hypsometric curves remain
similar. This result is expected as hypsometry is largely in-
sensitive to the age or maturity of landscapes once they ap-
proach steady state. Secondly, there is little difference be-
tween the hypsometries of the landscapes initialised with red,
white or blue noise once they reach steady state. Figure 16d—
f show the hypsometries for ensembles 1, 4 and 7 in which
amplitudes of noise in the initial conditions is systematically
varied between 0.002 and 200 m. These results show that
hypsometries of steady state landscapes are largely insensi-
tive to the amplitudes of initial noise.

Earth Surf. Dynam., 13, 1003—1038, 2025
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Figure 14. Impact of noise on recovered uplift rates from z(x). (a) Topography and planform of longest single river channel for a steady
state landscape initialised with O—1 m white noise (scenario A). (b) Longitudinal profile of largest river channel. (¢) Longitudinal profile
transformed into x space (see Eqs. 16-19) using a best-fitting (highest R?) reference concavity value of 0.48 (black solid line) and the true
m/n value of 0.5 (orange solid line). Dashed black and orange lines show linear regressions. The slope of these lines, dz/dyx is used to
calculate an uplift rate (see Eq. 20). (d)—(f) and (g)—(i) show two additional landscapes, longitudinal profiles, and z( ) profiles for models in
scenario A with different arrangements of white noise and different best-fitting reference concavity values.

3.1.8 Spatially variable uplift

We now draw attention to the results for domal landscapes
(Fig. 15). Unsurprisingly, they tend to reach steady state ear-
lier than “escarpment” or “square” landscapes generated with
the same erosional model (Fig. 5k—o). Given that a funda-
mental assumption in slope-area and x analyses (i.e., that
uplift is spatially invariant) no longer holds, it is also unsur-
prising that the results shown in Fig. 15a-b have consider-

Earth Surf. Dynam., 13, 1003-1038, 2025

ably more scatter than the equivalent panels in Figs. 12 and
13. Decreases in slope as a function of upstream area are
not linear, clearly departing from the analytical solutions ex-
pected when uplift is spatially invariant. z() profiles are not
(col)linear when produced using the true concavity value of
0.5. Instead, the value of 6, that best linearised these profiles
is close to 1. Therefore, it is also unsurprising that calculated
values of uplift rate and concavity indices are wrong when
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uplift varies spatially. We discuss alternative approaches to
recovery of uplift histories and erosional parameter values in
Sect. 4.

3.2 Scenario B: quenched noise
3.2.1 Drainage planforms and steady state

The impact of adding quenched noise to the morphometry of
a single simulated landscape is shown in Fig. 17a-b. In this
typical example, both landscapes are initialised with identical
noisy starting conditions and evolve under the same forcing
except for the identical (quenched) noise that is added at each
time step to the model shown in panel (a). The landscape
with quenched noise contains a larger proportion of higher
elevations, as expected due to the additional noise. The mean
elevation of added noise is 0.5 m per time step (10kyr). In
essence, the addition of quenched noise in this way may be
considered as a noisy but spatially constant uplift rate of 0.2—
0.3 mkyr~!, with a mean uplift rate of 0.25mkyr~!. Thus,
added noise contributes mean cumulative uplift of 5km by
100 Myr. In comparison, when added noise has a mean el-
evation of Om per time step, the quenched noise landscape
has elevations which are similar to that of the landscape in
Scenario A (see Supplement Fig. S9).

This figure demonstrates that the geometry of the drainage
network in a landscape generated with quenched noise can
differ from that in a landscape generated with the same ar-
rangement of noise only in its initial condition. Landscapes
generated with the same distributions (but different arrange-
ments) of quenched noise tend to have drainage patterns that
are more similar to each other than those generated with
different arrangements of initial noise (cf. Figs. 3 and S6).
We attribute these results to the enhanced role noise plays
in determining the location of drainage networks when it is
quenched.

Figure 17c—e illustrates that landscapes with quenched
noise tend to have an early phase during which they tend
to move away from equilibrium (see increasing Az between
0-15 Myr) before moving towards equilibrium (Az — 0 at
T > 15Myr). Such trajectories have not been observed in
models in which noise is only inserted into initial conditions
(see black curves in Fig. 17c—e).

3.2.2 Slope-area, y, and length-area analyses

Figure 17f—g show that slope-area data becomes more scat-
tered when noise is quenched compared to when it is only
inserted into initial conditions. A consequence of this scat-
ter is that there is more variability in the lines of best fit
(shown in Fig. 17f), including their slopes and intercepts.
Consequently, recovery of the true uplift rate becomes more
unreliable, even when elevation added by quenched noise is
corrected (average: 0.05 mkyr~!; see arrow in Fig. 17g), or
when quenched noise has a mean elevation of O m (Fig. S9g).
Recovered rates are 25 % to 85 % higher than the true value
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of 0.2mkyr~!. Uplift rates recovered from landscapes with
quenched red noise have greater variance than those gener-
ated with quenched white or blue noise. We explore why
distributions of recovered values of U are not centred at
0.25 mkyr~! in the Discussion section.

To test the impact of quenched noise on uplift rates ex-
tracted from x analyses we examine the consequences of
fixing 6 to its true value (0.5; Eq. 20). Figure 17h shows that
z(x) profiles generated in this way are linear with some scat-
ter. Landscapes with quenched red noise tend to have higher
elevations as a function of x than those with quenched white
or blue noise. We note that, in contrast, noise inserted only
into initial conditions results in more similarly distributed
z(x) profiles (ensembles 1, 4, 7; cf. Figs. 12b and 17h). The
best-fitting concavity values are centred on the true value of
0.5 in both cases (see inset panels in Figs. 12b and 17h). The
black hashed region in Fig. 17h shows that scatter in z(x)
profiles is also present when quenched noise has elevations
of —0.5 to 0.5 m (and mean elevation of 0).

Figure 17i—k illustrates that there can be large variability in
Hack exponent, %, values when noise is quenched. The distri-
butions of & are broadly similar in simulations with quenched
noise and noise inserted only into the starting condition (cf.
coloured and black histograms in Fig. 17i-k).

3.3 Scenario C: spatio-temporal noise

There are two main differences in the results obtained
from landscapes generated with quenched or spatio-temporal
noise. The first unsurprising result is that landscapes with
spatio-temporal noise never reach true steady state (Fig. 18c).
Time series of maximum local Az show that, similar to mod-
els in scenario B, simulations with spatio-temporal noise
take up to 20 Myr to stabilise around a gradually decreas-
ing mean value. However, they do not reach true numerical
steady state (i.e., Az = 0) as a result of the arrangements of
added noise changing at each time step. The absence of spa-
tial consistency in added noise can prevent erosion from bal-
ancing the added elevations within a single time step. The
second main difference is that, unlike quenched noise, adding
spatio-temporal noise produces less scattered slope-area rela-
tionships (Fig. 18f). Consequently, uplift rates recovered via
linear regression are more tightly clustered than those gen-
erated in scenario B. However, they are offset from the true
value by the added noise (see arrow in Fig. 18g). This offset
is not present when spatio-temporal noise has a mean eleva-
tion of Om (Fig. S10g). A corollary is that recovering true
tectonic uplift rates requires information about the amplitude
and distribution of noise in a landscape. In contrast, the re-
sults from z(x) analyses, drainage probabilities, and channel
length-area relationships are all broadly similar to those ob-
tained for scenario B (Figs. 18h, i—k, and S6g-i).
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3.4 Scenario D: addition of un-eroded noise

The impact on geomorphic metrics of adding noise to a
steady state landscape such that the noise remains un-eroded
is shown in Figs. 19 and 20. Adding noise in this way acts
to “blur” topography, and increases the proportion of eleva-
tions which are between 20 %—50 % of the maximum height,
shown in Fig. 19c. Whilst the impact of adding 0-20 m of
noise is subtle on the longitudinal profiles shown in Fig. 19d,
this noise generates scatter in the slope-area data such that
recovered uplift rates are 50 % larger than the steady state
case. z(x) profiles are less affected by 0-20 m of un-eroded
noise, but become highly scattered when 0-200 m of un-
eroded noise is added to the landscape. Slope-area analysis
is demonstrably an inappropriate technique to use for re-
covering U and 6 from steady state landscapes containing,
say, 200 m of un-eroded noise. In fact, even 20 m of added
noise can result in calculated uplift rates being unreliable
(Figs. 20b, S11-S13).
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4 Discussion

4.1 Distributions of geomorphic metrics and

determinism

We synthesise the results obtained from scenarios A-D in
Fig. 20 and use this as a framework to discuss key findings
regarding geomorphic metrics.

Across almost all scenarios we obtain distributions of re-
sults from model ensembles. In other words, slope-area rela-
tionships, x analysis, and length-area relationships are sen-
sitive to noise inserted into the models. These results empha-
sise the benefits of using model ensembles or probabilistic
approaches to landscape evolution modelling (rather than re-
lying on interpretation of singular, or small-batch, runs of
stream power-based models). An ensemble-based approach
permits characterisation of, for instance, uncertainty and de-
pendence on noisy (starting) conditions, model assumptions
or model parameter values. These results clearly indicate
that caution is required to avoid over-interpretation of re-
sults from single models (and the real world) which may be
outliers with geometries that depend on an arbitrary noisy
starting condition, which in reality represents (largely) un-
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knowable palaeo-conditions (topography, weather, climate,
biota, etc.) It emphasises the importance of embracing the
fundamental unknowability inherent to landscapes and thus
the importance of quantifying the impact of noise (and espe-
cially its distributions) on geometric predictions (e.g., of to-
pography, sedimentary flux) and calculated metrics (see e.g.,
Perron and Fagherazzi, 2012; Gray et al., 2017; Lyons et al.,
2020; Roberts and Wani, 2024; Thompson Jobe and Reitman,
2025).

4.1.1 Uplift rates and concavity indices recovered from

slope-area and y analyses

The sensitivity of slope data to added noise has previously
been discussed, for example in Roberts et al. (2012b) and
Mudd et al. (2018). In this study, we show that, when oper-
ating in a numerical steady state under spatially invariant up-
lift, slope-area analysis can be used to recover input values
of erosional parameters and uplift rates (see e.g., Figs. 11,
20a—b). However, we also show that this technique does not
yield accurate results under conditions of spatially variable
uplift (Fig. 15), or when noise is added during or at the end
of a simulation (Figs. 19, 20a-b). This finding is also true of
x analysis, which is impacted by noise in a different way.

https://doi.org/10.5194/esurf-13-1003-2025

The specific arrangement and distribution of noise used
as a starting condition can change the value of the reference
concavity which best linearises z(x) profiles. The sensitivity
of x to reference concavity values has also been shown by
Gailleton et al. (2021). Best-fitting reference concavity val-
ues are shown in Fig. 20c, and can vary from the true value
of 0.5 (in this study). The colour of noise has a minor im-
pact on the variance of the distributions. The distributions
become less centred on 0.5 when the amplitude of initial or
final noise increases, or when quenched noise is present. Fig-
ure 14 shows the impact of using different values of Or to
generate z(x) plots, and the resulting distributions of uplift
rate calculated from the slopes of these profile are shown
in Fig. 20e. Several clusters of distributions exist because of
the different best-fitting values of 6, with calculated uplift
rates varying between 0.5 and 1.5x the true uplift rate for
scenario A, and up to 2x the true uplift rate for scenarios
B-D. Even in the case of z(x) profiles calculated using the
true value of 6 = 0.5, rather than the best-fitting 9, recov-
ered uplift rates are distributed around the true uplift rate of
0.2mkyr~! (Fig. 20d). This result highlights the uncertain-
ties generated from noisy conditions in landscape evolution
models and thus the challenges associated with interpreting
outputs from single models.
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Figure 18. Comparison of geomorphic metrics for “steady state
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A further complication in recovering tectonic information
from slope-area and z(y) analyses arises in cases where up-
lift is spatially variable, e.g., for domal landscapes. In gen-
eral, Fig. 15a-b demonstrate that slope-area analysis is an in-
appropriate tool for recovering uplift rates and erosional pa-
rameter values from domal landscapes, or more broadly land-
scapes with spatially variable uplift. We extend this comment
to also encompass x analysis when used in this way, given
the absence of (col)linearity of z(x) profiles in Fig. 15b and
the best-fitting reference concavity being close to 1, rather
than the true value of 0.5. We acknowledge that modifica-

https://doi.org/10.5194/esurf-13-1003-2025

tions to x analysis exist to account for spatially variable up-
lift (see e.g., Mudd et al., 2014; Hergarten et al., 2016; Mudd
et al., 2018). In practice, both slope-area analysis and x anal-
ysis rely on an assumption of steady state, which we discuss
in Sect. 4.2. Our result, generated under steady state con-
ditions and different arrangements, distributions, or imple-
mentations of noise extend those of Mudd et al. (2018), who
generate examples of transient synthetic landscapes with spa-
tially variable erodibility or uplift rate, and calculate distri-
butions of best-fitting reference concavities from different
basins, across a range of calculation methods.

Earth Surf. Dynam., 13, 1003—1038, 2025
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Figure 19. Impact of un-eroded noise on metrics: An example. (a) Steady state “square” landscape generated with up to 1 m of white noise in
its initial condition (Fig. 4: ensemble 1), and with up to 20 m of white noise added after the final model time step. Filled grey transect shows
topographic profile of steady state landscape (without final noise). (b) Same landscape as in panel (a), but with up to 200 m of un-eroded
noise. Black outline shows location of the same (longest) river in landscapes with final noise added. (c—i) Yellow/orange = geometries and
metrics extracted from landscapes with up to 20 and 200 m of un-eroded noise. (¢) Black dashed curve = hypsometry of landscape shown
in panel (a); colours = hypsometries of landscapes with un-eroded noise. (d—f) Longitudinal profiles of rivers in largest drainage basin (see
panel (a)), slope-area and x analyses of rivers shown in panel (d) respectively, for steady state landscape and landscape with 0—20 m noise
added. (g-i) As above, for landscape with 0—200 m noise added. Metrics for un-eroded red and blue noise are shown in Figs. S12 and S13.

One could also argue that the uplift applied to the “square”
landscapes in scenario B is spatially variable, due to the
presence of quenched noise. A consequence of quenched
noise is to add scatter to slope-area data such that recovered
uplift rates are distributed between 0.26 and 0.37 mkyr~!
(Figs. 17g, 20b). Given that the mean elevation of noise

Earth Surf. Dynam., 13, 1003-1038, 2025

added per time step is 0.5m, and the maximum elevation
added is 1 m, it might be expected that quenched noise con-
tributes an additional mean and maximum uplift rate of 0.05
and 0.1 mkyr~!, leading to mean and maximum calculated
uplift rates of 0.25 and 0.3 m kyr~! respectively. We interpret
recovered uplift rates being up to 0.37 mkyr~! as the result

https://doi.org/10.5194/esurf-13-1003-2025
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of scattered data and trade-offs between the slope and inter-
cept (from which uplift rates are calculated) of the best-fitting
linear regression. The presence of quenched noise in models
tends to generate considerable spread in slope-area data, and
thus in calculated intercepts (and thus uplift rates). In con-
trast, uplift rates recovered from slope-area data in scenario
C are offset from the true uplift rate by 0.05 mkyr~!, i.e., the
mean amplitude of uplift added from noise. We note that it is
unlikely that the true amplitudes of noise are known for real
landscapes, meaning that it is not trivial and perhaps impos-
sible in some circumstances to correct uplift rates calculated
in this way for noise.

4.1.2 Variability in Hack exponent value

A consistent result across all model scenarios and ensembles
is the variability in Hack exponent value, %, due to different
arrangements and distributions of noise. Hack exponent val-
ues vary between 0.45 and 0.75, generally a larger range than
previous studies which calculate # based on data from natu-
ral landscapes across regional and global scales (Hack, 1957;
Mueller, 1972; Montgomery and Dietrich, 1992; O’Malley,
2020; He et al., 2024; Singer et al., 2024). Many of these
studies find 0.45 < h < 0.7, whilst dimensional analysis pre-
dicts & = 0.5. It has been suggested that Hack exponent val-
ues < 0.5 imply that drainage basins are widening and val-
ues > 0.5 imply elongating basins (Mueller, 1972). Many
of the distributions of % that we calculate from our models
have values > 0.5, indicating that, if we accept this reason-
ing, basins are elongating more than they are widening. Fig-
ure 20f demonstrates that on average, landscapes initialised
with red noise in Scenarios A—-D produce lower Hack expo-
nent values than their white and blue noise counterparts, im-
plying that their catchments are elongating at a slower rate.
However, it is unclear that the temporal evolution of drainage
basins can be related to length-area relationships obtained at
a single model time step, and in many cases the topography
is at a numerical steady state (i.e., dz/d¢t = 0 everywhere),
indicating no change in basin geometry. Prior studies have
recognised the potential for drainage basin scale to influ-
ence the calculation of 2 (Mandelbrot and Wheeler, 1983;
Robert and Roy, 1990). The drainage basins in our models
used to calculate Hack exponents range in size from 107—
10° m2. These sizes fall within the range of basin areas from
which Hack exponents have been calculated in previous stud-
ies, though are closer in size to those originally examined
by Hack (1957), who found % > 0.5. Extraction of channel
lengths and upstream areas from synthetic landscapes also
circumvents measurement errors encountered when calculat-
ing these metrics from field data or digital elevation models.

Climatic conditions have also been suggested to influence
Hack exponent values. For example, Yi et al. (2018) cate-
gorise drainage basins in the contiguous United States by
aridity index and find that & ~ 0.49 for basins in arid re-
gions, and & 2~ 0.59 for basins in humid regions. Conversely,

https://doi.org/10.5194/esurf-13-1003-2025

Singer et al. (2024) find from a global drainage dataset that
h increases with increasing aridity. Our findings suggest
that different arrangements and distributions of noise within
landscape evolution models produce at least as much vari-
ance in Hack exponent values as climatic variables. This re-
sult is similar to that of Sassolas-Serrayet et al. (2018) and
O’Malley (2020), who found a limited influence of (modern
day) mean annual precipitation (and lithology) on Hack ex-
ponent values calculated from observational data.

4.2 An assumption of steady state

A fundamental assumption underlying the recovery of uplift
rates and erosional parameter values from widely used tech-
niques such as slope-area or x analyses is that uplift rates are
balanced by erosion, i.e., there exists a topographic steady
state. When operating with synthetic landscapes it is straight-
forward to numerically verify that this condition is true (e.g.,
Fig. 5). Our results demonstrate that, even under conditions
of steady state, recovery of uplift rates and erosional infor-
mation is complicated by the choice of how noise is included
within models, which leads to distributions of recovered val-
ues, shown in Fig. 20.

Notwithstanding inconsistencies in how steady state to-
pography is defined, as outlined by Gasparini et al. (2024),
in general, observational evidence to confirm that landscapes
in the real-world are at topographic steady state is scant. In
fact, most continental topography appears to refute the steady
state assumption, which in general must be wrong because
geological observations (e.g., uplifted marine rock; sedimen-
tary isopachs indicating punctuated sedimentary flux; inci-
sion rates from radiometrically dated rocks) demonstrate that
topography increases and decreases in elevation on a variety
of spatial and temporal scales, and may horizontally advect
(e.g., Rust and Summerfield, 1990; Young and McDougall,
1993; Roberts and Kirschbaum, 1995; Willett and Brandon,
2002; Karlstrom et al., 2007; Stephenson et al., 2019; Racano
et al., 2020; Malatesta et al., 2022). These observations,
alongside the findings from our synthetic landscapes, and re-
sults from some analogue models, call into question the util-
ity of geomorphic techniques which rely on assumptions of
steady state (see e.g., Hasbargen and Paola, 2000).

4.3 Drainage planform variability and maximum
drainage sizes

Figures 7 and 9 demonstrate how different arrangements
and colours of noise can lead to different drainage plan-
form structures. This result extends that of Kwang and Parker
(2019), who interpret the lasting influence of initial condi-
tions in landscape evolution models as an absence of other
mechanisms that can remove initial network structure (e.g.,
lateral erosion and migration of channels present in natu-
ral environments; Kwang et al., 2021). Figure 7 emphasises
how landscapes that evolve with identical tectonic histories

Earth Surf. Dynam., 13, 1003—-1038, 2025
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Figure 20. Impact of noise on variance of geomorphic metrics from steady state landscapes. Series of histograms showing the distribution
of different geomorphic metrics under different noisy conditions for the “square” landscape (Scenarios A-D; see Figs. 3—4). Black dashed
lines = true values, used to produce the LEMs. For the quenched and spatio-temporal examples, up to 1 m of noise was added at every time
step. (a-b) Concavity index and uplift rate recovered from slope-area analysis. (¢) Value of concavity index that best linearises x-elevation
plots. (d) Corresponding uplift rate associated with the slope of the best-fitting line of y-elevation data, from the rivers of the four largest
basins transformed using 8 = 0.5. (e) As per (d), for a slope of the best-fitting line of y-elevation data from the rivers of the four largest
basins, transformed using the respective best-fitting values of 6. (f) Values of Hack exponent calculated from river length-upstream area

relationships.

can have different geometries due to noise. It is clear that
in such cases using Euclidean-based approaches to compare
modelled and observed elevations of entire landscapes may
lead to undesirable high misfit when tectonic histories are
in fact similar. Instead, minimising misfits (via inverse mod-
elling for instance) to recover tectonic (uplift) rates proba-
bly requires techniques that can “see through” the local com-
plexity of precise planform arrangements introduced by spe-
cific arrangements of noise (e.g., Morris et al., 2023). More
generally, broadly equal probabilities of channel locations
under the uplift and erosional conditions modelled (Fig. 9)
indicates that caution should be taken when interpreting
drainage planform structures, or related metrics, from sin-

Earth Surf. Dynam., 13, 1003—-1038, 2025

gle models, or observations. We note that the drainage plan-
form patterns of “square” landscapes containing quenched
or spatio-temporal noise (scenarios B, C) more closely re-
semble the general structure of probabilistic drainage maps
than landscapes containing only initial noise (scenario A).
For instance, landscapes generated with spatio-temporal or
quenched noise tend to have interfluves and high topography
with low drainage probability extending in a “cross” from the
centre of the domain to each corner; cf. Figs. 17a-b, 18a—
b, S6. Perhaps surprisingly, even landscapes with quenched
noise display this pattern. These results indicate that repeated
insertion of noise (i.e. at each time step), reduces the influ-
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ence of noisy initial conditions on the geometries of land-
scapes at large scales.

Similarly, the position of drainage divides can also de-
pend on noisy starting conditions, for example the areas of
low probability in the “escarpment” landscapes shown in
Fig. 9d—f. In particular, models initialised with red noise
have less well-defined regions of low drainage probability.
We interpret this result as a consequence of long wavelength
changes in topography permitting initial flow-lines to span
across more than half of the domain, even after sink-filling.
Conversely, the shorter wavelength topographic roughness
present in landscapes initialised with white or blue noise
means that the largest drainage basins usually terminate at
the centre of the domain, leading to consistent regions of
low drainage probability (see Fig. 9b—c). We also interpret
this as a mechanism for why the largest drainage basins in
“square” landscapes initialised with red noise are, on aver-
age, larger than those from landscapes initialised with white
or blue noise (Fig. 8).

4.4 Comparison to natural landscapes

4.41 The relevance of initial, quenched, and
spatio-temporal noise

The result that distributions in geomorphic metrics arise
from different arrangements, colours, and implementations
of noise within landscape evolution models is a finding sim-
ilar to that of Perron and Fagherazzi (2012), and empha-
sises that the application of noise is not an arbitrary model
choice. Whilst noisy initial topography enables the genera-
tion of realistic drainage planforms within models, it can also
be representative of natural processes or features. For exam-
ple, noisy starting conditions may be considered to represent
a palaeotopography. In some studies, it may be inappropriate
to solely implement random noise as a starting condition, for
example where it may be possible to guess palaeotopography
prior to volcanic eruption or ice cover, for instance (e.g., Pax-
man et al., 2019; Barnhart et al., 2020b; O’Hara et al., 2024).
Yet in many other studies and at different scales, palaeoto-
pography is unknowable and therefore assessing uncertain-
ties using ensembles of models with variable starting condi-
tions is probably a sensible, perhaps necessary, strategy.
However, it is questionable whether the application of
noise exclusively as an initial condition is a reasonable as-
sumption. Perhaps incorporating noise throughout model run
time is closer to reality. For instance, erosion of substrate
with constant (in time) erodibilities, or landsliding occurring
repeatedly in the same place, could be regarded as sources
of quenched (i.e., fixed for all time) noise. In general how-
ever, geomorphic noise in natural landscapes must vary as a
function of space and time. For instance, as lithologies with
different erodibilities are exposed. Thus, in scenarios B-C
we explore the consequences of adding quenched and spatio-
temporal red, white, or blue noise with amplitudes 0 to 1 m
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and —0.5 to 0.5 m throughout model run time. Figures 17g
and 18g show that noise generates uncertainty in recovered
uplift rates, which can be considerable (see also Figs. S9 and
S10).

4.4.2 Colour, scale, and metrics

The spectral content of synthetic steady state landscapes gen-
erated in scenario A is characteristic of red noise (¢ k).
Similar spectral characteristics have been identified in natu-
ral landscapes, across scales from centimetres to thousands
of kilometres (e.g., Balmino, 1993; Birnir et al., 2001; Per-
ron et al., 2008; Booth et al., 2009; Roberts et al., 2019).
Wavelet spectral analysis of longitudinal profiles for large
African rivers shows that their power spectra can be charac-
terised as pink noise (¢ k~1yat wavelengths S 100 km and
as red noise (¢ o k~2) at longer wavelengths (Roberts et al.,
2019). The transition from complexity at local scales to rela-
tive predictability at large scales emphasises why some geo-
morphic metrics are more sensitive to noise than others. For
example, it is unsurprising that the recovery of uplift rates or
erosional parameter values from derivatives (i.e., topographic
slopes, dz/dx, or gradients of z()) profiles, dz/dy) is ham-
pered by the addition of noise; Fig. 19. In these examples,
metrics which incorporate topographic information from re-
stricted spatial scales are likely to have lower signal to noise
ratios, and differentiation of noisy data accentuates uncer-
tainties. In comparison, geomorphic metrics which consider
the entire shapes of landscapes, such as hypsometry, appear
less sensitive to noise.

4.5 Limitations and recommendations

Obvious ways in which the work presented could be ex-
tended include assessing the impact of noise using other
landscape modelling software packages (e.g., Badlands,
CHILD, FastScape) or by randomising flow directions
(Tucker et al., 2001; Salles, 2016; Salles and Hardiman,
2016; Bovy, 2021). Secondly, we note that alternative ap-
proaches to defining noise could be examined. We briefly
explored the use of simplex noise (related to Perlin noise)
but found it to generate linear artefacts (Perlin, 2002). Third,
there are a host of additional geomorphic properties that we
have not examined that may be impacted by noise, e.g., sed-
imentary flux.

Our first recommendation concerns the application of
noise within landscape evolution models. Noise should be
expected to always be present, even if it is difficult to quan-
tify, in real landscapes (Birnir et al., 2001). We therefore
consider the application of noise as an important, and not
arbitrary, choice within models that seek to represent nat-
ural landscapes and underlying mechanisms which govern
their evolution. We have shown that two widely used tech-
niques (namely slope-area and y analyses) for recovering
uplift rates or erosional parameter values from topography
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can give results that are wrong but look correct, even when
a landscape is demonstrably at topographic steady state. If
such methodologies are used, our suggestions are to, first,
do more, for instance re-run models many times to test the
impact of uncertainties (noise), and to explicitly communi-
cate the distributions (colours) and amplitudes of noise used.
Second, do it better, i.e., find ways to ensure that fundamental
assumptions, such as topographic steady state, are appropri-
ate. One pragmatic way of doing so is to use independent
evidence (e.g., geologic evidence of uplift or erosion) to test
results. Third, above all else, acknowledge and communicate
uncertainties, e.g., in calculated uplift rates or concavity in-
dices from metrics-based approaches.

Our second recommendation is to use or develop other
methodologies that allow assumptions about topographic
steady state to be relaxed, and explicitly incorporate uncer-
tainties. Inverse modelling of landscapes for uplift rate his-
tories, for instance, allows one to avoid many of the pit-
falls associated with metrics-based approaches, in particu-
lar when probabilistic approaches are taken (e.g., Willgoose
et al., 2003; Croissant and Braun, 2014; Rudge et al., 2015).

5 Conclusions

Landscapes with the same uplift and erosional forcings
evolved to equilibrium conditions using the SPM can have
very variable geometries as a result of noise inserted into
their starting conditions or as models evolve. Extraction of
geomorphic information from such landscapes using com-
mon metrics-based approaches (slope-area, x), and subse-
quent recovery of uplift rates, erosional parameters values,
and Hack exponents, show that varying the arrangement, dis-
tribution, and implementation of even small amplitudes (<
1 % of cumulative uplift) of noise can produce results with
broad distributions. Adding quenched noise to models pro-
duces more uncertainty in recovered uplift rates than when
noise varies spatio-temporally. Observations of the spectral
content in natural landscapes indicates that features with red
noise are prevalent. The largest drainage basins produced
in modelled landscapes initialised with red noise tend to be
larger than those in landscapes initialised with white or blue
noise. Positions of drainage divides in landscapes initialised
with red noise are less predictable than those generated with
white or blue noise. All introduce considerable uncertainties
in the position of drainage divides and basin geometries. The
production of distributions in results arising from noisy con-
ditions illustrates the benefits of probabilistic or ensemble
approaches to modelling, and the peril of interpreting pre-
dictions from single models. We suggest that assessing the
impact of noise on SPM predictions benefits from two con-
siderations. First, utilising ensembles of models. Secondly,
assessment of the distributions of geometries including el-
evations, planforms, drainage divides, length-area relation-
ships, and metrics, e.g., concavity and steepness indices. Do-
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ing so provides insight into the uncertainties that arise solely
through the incorporation of noise, which can be consider-
able.
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