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Abstract. Earthquake-triggered landslides can be mapped using optical satellite images, but assessing how they
evolve during earthquake sequences is difficult due to cloud cover in these data. This information is crucial for
understanding their triggering conditions. Here we use Sentinel-1 amplitude and a new, coherence-based method
to characterise the evolution of rapid landslides during an earthquake sequence that occurred over a 23 d period
in 2018 in Lombok, Indonesia. While most new landslides were triggered during the largest earthquake in the
sequence on 5 August, we also identified landslide activity associated with other, lower magnitude earthquakes
on 28 July, 9 and 19 August, with around half of the landslides studied active in more than one earthquake. In
particular, many landslides triggered by the 5 August earthquake were then reactivated later in the sequence.
These reactivations were triggered by accelerations as weak as 0.1 g, while new failures generally did not occur
below 0.15 g, suggesting a post-seismic weakening effect driven by the landslides themselves rather than general
landscape weakening. We also identified an example where possible precursory motion detected during the first
earthquake in the sequence was later followed by larger scale failure. Overall, we demonstrate that, although they
are not sensitive to all landslides and are more likely to detect larger events, Sentinel-1 amplitude and coherence
are valuable tools to study how landslide hazard and mass wasting evolve during sequences of triggers.

1 Introduction

Earthquakes can trigger widespread landsliding, which rep-
resents a major secondary hazard and source of erosion.
As these landslides are often triggered across a large area,
remote sensing has emerged as a vital tool to quantify
earthquake-triggered landslides (Novellino et al., 2024). In
particular, earthquake-triggered landslide inventories are of-
ten compiled through manual mapping by the comparison
of pre- and post-seismic multi-spectral satellite images (e.g.
Ferrario, 2019; Ferrario et al., 2024; Tanyaş et al., 2022; Ti-
wari et al., 2017) or through automated methods that use
these data (Milledge et al., 2022; Scheip and Wegmann,
2021). These inventories can then be used to assess the im-

pacts on the landscape and the potential for further hazards
(Parker et al., 2011; Croissant et al., 2019), to further our
understanding of the triggering process, and to build and cal-
ibrate physical and empirical models that can then be applied
to future earthquakes (e.g. Godt et al., 2008; Nowicki Jessee
et al., 2018).

In many cases, landslide-triggering earthquakes are ac-
companied by foreshocks and aftershocks that are also large
enough to trigger landslides and remobilise co-seismic land-
slide deposits (e.g. Fan et al., 2021; Ferrario, 2019; Ferrario
et al., 2024; Martino et al., 2019; Tanyaş et al., 2022; Tiwari
et al., 2017). The evolution of triggered landslides during
such earthquake sequences is difficult to study as it requires
satellite images to be acquired between each earthquake, but
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aftershock-triggered landslides can represent a considerable
part of the total landslides for some events (Ferrario, 2019;
Tanyaş et al., 2022). Unfortunately, in many areas of the
world, multi-spectral satellite images are frequently obscured
by clouds, preventing their use in landslide mapping for days
or weeks at a time (Robinson et al., 2019). This can prevent
differentiation between mainshock- and aftershock-triggered
landslides and has been identified as a problem in many re-
cent studies, for example the 2015 Mw Gorkha, Nepal; the
2018 Mw 6.9 Lombok, Indonesia; the 2018 Mw 7.5 Papua
New Guinea; the Mw 6.8 Cotabato-Davao del Sur, Philip-
pines earthquake sequences (Tiwari et al., 2017; Ferrario,
2019; Tanyaş et al., 2022; Ferrario et al., 2024). In addition,
the reactivation or remobilisation late in the earthquake se-
quence of a landslide that failed early in the sequence may
not be visible in medium resolution optical imagery such as
Sentinel-2 or Landsat unless the shape of the scar noticeably
changes.

Satellite synthetic aperture radar (SAR) data may offer a
solution to this problem as these data can be acquired through
cloud cover and are sensitive to cm-scale movements at the
Earth’s surface including landslides. The Sentinel-1 SAR
satellite constellation has acquired data every 6–12 d on two
tracks globally since 2015. Differential interferometric SAR
(InSAR) techniques such as persistent scatterer interferome-
try can measure cm-scale deformation at the Earth’s surface,
but most earthquake-triggered landslides fail too quickly to
be measured using InSAR. However, these rapid landslides
change the scattering properties and 3D shape of the Earth’s
surface, altering the amplitude of SAR images and intro-
ducing noise and decreasing coherence in SAR interfero-
grams. A large number of studies have explored the potential
of these for detection of landslides in space (e.g. Burrows
et al., 2019, 2020; Ge et al., 2019; Goorabi, 2020; Handw-
erger et al., 2022; Jung and Yun, 2020; Mondini, 2017; Mon-
dini et al., 2021; Yun et al., 2015). Recently, several methods
have been proposed to use coherence or amplitude to con-
strain landslide timings (Burrows et al., 2022; Deijns et al.,
2022; Fu et al., 2024; Wang et al., 2024), taking advantage of
the regular image acquisition strategy of Sentinel-1.

Here we apply SAR-based landslide timing methods to a
sequence of six earthquakes that occurred over 23 d in Lom-
bok, Indonesia in 2018 in order to better characterise land-
sliding triggered during that event. We use the amplitude-
based method of Burrows et al. (2022) to constrain the fail-
ure timing of new landslides. We also explore an approach
based on InSAR coherence matrices, a technique that has
successfully been applied in landcover mapping (Giffard-
Roisin et al., 2022; Jacob et al., 2020), but not yet tested
for landslide timing. We found that for some landslides, this
method appears to identify multi-stage failure such as reacti-
vations (i.e. complete failure on one date followed by further
failure within or connected to the landslide at a later date)
and precursory motion (i.e. displacement on one date fol-
lowed by complete failure of the same area at a later date).

With this new information, we are able to draw conclusions
on how landslide activity evolved during the 2018 Lombok
earthquake sequence and discuss the implications this has for
hazard and mass-wasting during earthquake sequences.

2 Data and Methods

2.1 Landslides triggered by the 2018 Lombok,
Indonesia earthquake sequence

The 2018 Lombok, Indonesia earthquake sequence com-
prised 6 earthquakes of Mw 5.8–6.9 between 28 July and
19 August 2018 (Fig. 1). These earthquakes occurred along
the Flores Thrust Zone to the north of the island and trig-
gered widespread shallow landslides across this area, partic-
ularly on the steep slopes of Mount Rinjani (Ferrario, 2019;
Salman et al., 2020). The majority of the study area is cov-
ered by tropical forest, with grassland areas at high elevations
(> 2000 m) and the uppermost part of the volcano covered by
unvegetated volcanic deposits (Dossa et al., 2013). The ma-
jority of the population live along the coast.

Two landslide inventories have been published for the
event, both identifying approximately 10 000 rapid and pre-
dominantly shallow landslides by the end of the sequence
(Ferrario, 2019; Zhao et al., 2021). Ferrario (2019) also pro-
vide an inventory halfway through the sequence using im-
agery acquired on 8 August 2018, which allows the effects of
the two largest earthquakes (both Mw 6.9), which occurred
on the 5 and 19 August to be separated. Zhao et al. (2021)
provide a full inventory at the end of the sequence but were
only able to generate a partial landslide inventory following
the earthquake on the 5 August due to cloud cover in the
imagery used in that study. We therefore use the inventory
of Ferrario (2019) in this study, which was generated manu-
ally through comparison of pre- and post-event PlanetScope
satellite images.

In both studies, cloud cover prevented comprehensive
landslide mapping following the first earthquake in the se-
quence (Mw 6.4 on 28 July), but Ferrario (2019), Zhao et al.
(2021) and a preliminary report by Ganas et al. (2018) all
agree that few landslides were triggered by this earthquake.
The Mw 5.9 earthquake on 9 August, which resulted in rel-
atively weak shaking and would not ordinarily be expected
to trigger many landslides (USGS, 2018c) was not included
in these studies, but we include it here since similarly low
magnitude earthquakes have been shown to increase land-
slide activity (e.g. Alfaro et al., 2012; Hallal et al., 2024;
Martino et al., 2019, 2022). Furthermore, although this event
was small in magnitude, it occurred at only 15 km depth and
preliminary analysis with SAR appeared to show some land-
slide activity at this time. Overall, it is expected that the ma-
jority of landslides failed during one of the twoMw 6.9 earth-
quakes in the sequence on the 5 and 19 August, particularly
the 5 August event, which resulted in by far the strongest
shaking (USGS, 2018b).
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Figure 1. Landslides triggered in the first (purple) and second (green) halves of the 2018 Lombok, Indonesia earthquake sequence as mapped
by Ferrario (2019). Epicentral locations from USGS (2018a–d). (b) Earthquake dates and Sentinel-1 acquisitions throughout the earthquake
sequence in July and August 2018.

Ferrario (2019) mapped 4823 landslides (with a total area
of 4.88 km2) following the 5 August earthquake increasing
to 9319 (10.25 km2) following the 19 August earthquakes
(Fig. 1a). This change in total area includes landslides poly-
gons mapped on 5 August that grew in size in the final
inventory, indicating landslides that failed more than once
during the sequence. The high resolution (3 m) of the Plan-
etScope imagery used for the mapping means that the inven-
tory includes landslides with areas as small as 50 m2. Such
small events are unlikely to be resolved by the Sentinel-
1 images used here, which have a resolution of 20× 22 m
and 60× 66 m for backscatter and coherence images respec-
tively (see Sect. 2.3 for details). For this reason, we limit the
amplitude analysis to landslides > 2000 m2 (following Bur-
rows et al., 2022, 991 events) and the coherence analysis to
landslides > 3960 m2 (the size of the coherence window in
Sect. 2.2, 371 events).

2.2 SAR data and processing

Sentinel-1 collected images every six days on two tracks
throughout the earthquake sequence (Fig. 1b). At least one
ascending and one descending track image was acquired be-
tween each earthquake (with the exception of the three earth-
quakes all on 19 August). In both the amplitude and coher-
ence analysis, we used images acquired over a 3-month pe-

riod from 5 June–5 September 2018. This amounted to 15
SAR images on the descending SAR orbit and 13 on the as-
cending orbit. Vertically polarised (VV) imagery was used
since these data are sensitive to land-cover changes in veg-
etated areas and have been widely used in coherence- and
amplitude-based landslide detection methods (e.g. Burrows
et al., 2022; Deijns et al., 2022).

The amplitude analysis described in Sect. 2.3.1 uses
ground range detected (GRD) images, which were accessed
through Google Earth Engine following the method de-
scribed by Burrows et al. (2022). These data have a resolu-
tion of 20× 22 m and were used to calculate the four metrics
listed in Sect. 2.3.1 for every landslide > 2000 m2 in the in-
ventory (991 events). For the coherence analysis, Sentinel-1
single-look complex (SLC) images were processed using the
GAMMA-based LiCSAR software package (Li et al., 2016).
SLC images were multi-looked by a factor of five in range,
resulting in a resolution of 20× 22 m (the same as the GRD
product). Coherence was then estimated using a 3× 3 pixel
moving window, giving a resolution of 60× 66 m. No at-
mospheric correction was applied, since interferogram atmo-
spheric effects are larger than the scale at which we processed
our data (Ding et al., 2008; Webb et al., 2020), and thus
do not cause phase variations within the coherence window.
The coherence maps were then reprojected from the range-
azimuth coordinate system in which SAR data are acquired
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to a geographic coordinate system. The average coherence
within each landslide polygon > 3960 m2 (371 events) was
then obtained from every coherence map (estimated for ev-
ery possible combination of SAR images) to generate the full
coherence matrix for each landslide.

2.3 SAR techniques for rapid landslide detection

2.3.1 SAR Amplitude

SAR images are acquired by active illumination of the
Earth’s surface by the satellite using microwave wavelength
electromagnetic energy. The amplitude of the signal returned
to the satellite depends on the scattering properties of the ma-
terial that this energy interacts with at the Earth’s surface.
The removal of vegetation and movement of material downs-
lope alters these scattering properties as well as the 3D shape
of the Earth’s surface, giving landslides a signal in SAR am-
plitude maps (Mondini, 2017).

Two methods have been published that use amplitude data
to constrain the timings of individual shallow landslides.
Burrows et al. (2022) used step changes in time series of sev-
eral amplitude metrics to indicate rainfall-triggered landslide
timings. Fu et al. (2024) combined SAR and optical image
time series to constrain the timings of 60 landslides, obtain-
ing an average accuracy of around 23 d. The 2018 Lombok,
Indonesia earthquake sequence has previously been studied
using optical satellite imagery, and it was found that cloud
cover during the sequence presented a significant limitation,
particularly in differentiating between landslides triggered
during the first two earthquakes (Ferrario, 2019). Therefore,
here we use the SAR-amplitude method of Burrows et al.
(2022), which uses time series of four metrics: (1) the dif-
ference in average SAR amplitude for pixels within the land-
slide polygon compared to nearby similar “background” pix-
els; (2) variability between pixels within the landslide poly-
gon; (3) geometric shadows cast by trees at the edge of the
landslide polygon; and (4) geometric bright spots caused by
dihedral scattering at the edge of the landslide polygon. Bur-
rows et al. (2022) then identified step changes in these met-
rics and used these to indicate landslide timings. These met-
rics, particularly those relating to geometric shadows and
bright spots work best in forested areas. The method is lim-
ited to landslides > 2000 m2 so that each polygon contains
enough pixels to calculate metrics (e.g. pixel variability) and
is more sensitive for larger landslides (Burrows et al., 2022).

The method was designed to be applied to rainfall-
triggered landslides in monsoon climates where landslide
timing can usually only be constrained to within a few
months. Here we modify the method since we can assume
that all landslides are concurrent with one of the earthquakes.
For each of the four metrics m, we calculate the mean sum
of the squares of the residuals R if each earthquake is used
to divide the time series into two sections Y and Z according

to Eq. (1), where m̂ represents the median value of m.

R =

∑nY
i=1(mYi − m̂

Y )2
+

∑nZ
i=1(mZi − m̂

Z)2

nY + nZ
(1)

The earthquake that minimises R is selected as the most
likely to have triggered the landslide. This is analogous to
the approach used in clustering algorithms, where the data is
divided in order to minimise within-cluster variance (Duda
and Hart, 1973). This modification resulted in a small im-
provement in terms of accuracy and the number of landslides
whose timing could be constrained compared to the origi-
nal method (Fig. A1). As in Burrows et al. (2022), the more
times an earthquake is selected (out of a maximum of 8: 4
methods× 2 tracks), the more confident we can be of the tim-
ing. Here, we require the same earthquake to be selected by
a minimum of 3 metrics before it is accepted.

2.3.2 InSAR Coherence

InSAR coherence, which is derived from SAR amplitude and
phase, can also be used to detect rapid landslides (Burrows
et al., 2019, 2020; Goorabi, 2020; Yun et al., 2015). Coher-
ence γ is a measure of InSAR signal quality that is estimated
for every pixel in an interferogram from its similarity to the
pixels within a neighbouring window. This is described by
Eq. (2) for an interferogram formed from two images A and
B and a coherence window containing n pixels.Ai andBi are
complex representations of the phase and amplitude of each
pixel i used in the estimation, with the overline representing
the complex conjugate.

γ =

1
n

∑n
i=1Ai ·Bi√

1
n

(
∑n
i=1Ai ·Ai

∑n
i=1Bi ·Bi)

(2)

In general, coherence is high when and where the acquisition
conditions for the two images used to form the interferogram
are similar. Changes in satellite position or Earth surface
properties result in decorrelation. Landslides, along with soil
moisture changes, movement of vegetation and other pro-
cesses that alter the scattering properties of the Earth’s sur-
face result in low coherence. Previous works have observed
InSAR coherence to (i) decrease for image pairs spanning the
occurrence of shallow landslides (Burrows et al., 2019, 2020;
Goorabi, 2020; Jung and Yun, 2020; Yun et al., 2015) and
other forms of erosion and deposition (Bertone et al., 2019;
Cabré et al., 2020, 2023; Liu et al., 1999) (ii) decrease for im-
age pairs that capture precursory motion prior to catastrophic
failures (Dini et al., 2022; Jacquemart and Tiampo, 2021) and
(iii) increase for interferograms formed from post-event com-
pared to pre-event image pairs due to the denudation of the
hillslope by the landslide (Burrows et al., 2020; Deijns et al.,
2022). This last effect reflects the strong influence of land-
cover type on coherence, with vegetated areas generally hav-
ing a lower coherence than bare rock and soil in Sentinel-1
interferograms (Jacob et al., 2020).
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Several studies have attempted to use coherence maps
from consecutive pairs of SAR images to constrain landslide
timings. The post-event coherence increase caused by hills-
lope denudation has previously been used to obtain the tim-
ings of seven very large (> 100 000 m2) landslides (Wang
et al., 2024) and to identify the timings of landslide inven-
tories, in the case where it can be reasonably assumed that
all the landslides were simultaneous (Deijns et al., 2022).
However, Wang et al. (2024) found that the method returned
multiple possible failure timings for some landslides. Fur-
thermore, when testing on individual, more moderately sized
(> 2000 m2) landslides, Burrows et al. (2022) found that
pairwise coherence time series were too noisy to provide ac-
curate landslide timings.

In order to improve the signal strength, here we increased
the number of coherence maps used in the analysis by calcu-
lating the coherence of every possible image pair in our time
series. By taking the average coherence within a landslide
polygon from every coherence map, we could then produce
a full coherence matrix for each landslide (e.g. Fig. 2a). This
allows us to better differentiate between coherence loss due
to earthquake-induced landslide activity and coherence loss
due to other factors, such as acquisition geometry. All inter-
ferograms formed from images spanning the time when the
landslide failed will have low coherence, providing a signal
that is distinct from other possible causes of noise such as
variations in soil moisture and acquisition geometry. A previ-
ous study by Jung and Yun (2020) found this approach to per-
form poorly in forested areas, but their aim was emergency
response, so they only used a single post-event SAR image.
Furthermore, the method has been successfully applied to
landcover mapping (Giffard-Roisin et al., 2022; Jacob et al.,
2020), which suggests it should be able to detect at a mini-
mum the denudation of the hillslope caused by landslides. Fi-
nally, previous studies have shown that coherence is sensitive
not only to the denudation of the hillslope that can be cap-
tured by the amplitude method described in Sect. 2.3.1, but
also to precursory movements and to movement of material
in unvegetated areas (Bertone et al., 2019; Cabré et al., 2020;
Dini et al., 2022; Jacquemart and Tiampo, 2021). Thus, co-
herence might be able to reveal multiple failure stages, with
the matrix approach providing a more reliable indicator of
landslide activity than pairwise coherence time series

Figure 2a shows an example of a coherence matrix for a
landslide in a forested part of the study area that failed dur-
ing the 5 August earthquake. This is a square matrix of di-
mensions defined by the number of SAR images in the times
series (e.g. 15 in Fig. 2). Diagonal elements are the coher-
ence of each image with itself (i.e. maximum coherence =
1.0). Lower off-diagonal elements (x,y) record the coher-
ence between the xth and yth image. Thus element (12,3) in
Fig. 2a shows coherence between the 12th SAR image (ac-
quired after all earthquakes) and 3rd (acquired prior to all
earthquakes). Since the landslide occurred between these two
SAR images, coherence is low. Element (13,12) shows co-

herence between the 12th and 13th SAR images. Since both
were acquired after the earthquake sequence had ended, and
thus after the landslide had denuded the hillslope, coherence
is high. In Fig. 2a, coherence is generally highest whenever
both images were acquired after 5 August (matrix entries
above row 9) and lowest for image pairs that span 5 August,
with one image before and another after the earthquake (en-
tries right of column 9 and below row 9). Pairs where both
images were acquired before 5 August (left of column 9) typ-
ically have intermediate coherence higher than those span-
ning the earthquake but lower than those after it. Other fac-
tors that affect coherence such as changes in soil moisture
and acquisition geometry are more variable in time and as
such do not result in distinct patches of high and low co-
herence in the matrix. Upper off-diagonal elements are left
blank because the coherence map for image pair (x,y) and
image pair (y,x) will be identical, so these elements would
duplicate those already plotted.

Similarly to Sect. 2.3.1, we can automatically detect when
the landslide failed by using each earthquake to divide the
matrix into pre-event, co-event, and post-event sections, and
identify which division minimises the residuals according to
Eq. (1). We found several cases like Fig. 3 where the coher-
ence matrix indicates that a landslide location has failed more
than once. In this example, coherence is reduced for image
pairs spanning 5 August, but is not consistently high after this
event. Instead, coherence is high for image pairs acquired af-
ter the 19 August earthquake and is briefly high at element
(11,10), where both images were acquired between the 9
and 19 August earthquakes. This perhaps indicates three fail-
ures in this location: first on 5 August, evidenced by reduced
coherence for co-event relative to pre-event pairs; then on
9 August, evidenced by lower than expected post-5 August
coherence but high coherence post-9 August and pre-19 Au-
gust; and finally on 19 August, evidenced by low co-event
and high-post-event coherence. This is supported by multi-
spectral satellite imagery acquired over this landslide during
the earthquake sequence, in which we first see the loss of
vegetation within the landslide scar following the 5 August
earthquake (Fig. 3c) and then see the extent of this denuded
area grow following the 19 August earthquake (Fig. 3d).

To allow for detection of multi-stage landslide failure, we
carried out our analysis in two separate stages: first identify-
ing the first failure timing that minimises the residuals (Eq. 1)
when dividing the pre-event and co-event image pairs and
then repeating this with the co-event and post-event image
pairs to identify the final failure timing. In order to estimate
the quality of the selected division, we calculated the stan-
dard deviation of pixels in the co-event area and then calcu-
lated how many standard deviations apart the co-event and
pre-event or post-event sections were. In the case where the
ascending and descending tracks select different timings, we
choose the one with the largest separation between the sec-
tions. We chose a minimum threshold of 1.5 standard devia-
tions in order to maximise the accuracy of the method. Rais-
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Figure 2. A coherence matrix (a) for a landslide in a vegetated area that failed during the 2nd earthquake (5 August 2018) alongside
(b) pre-event (c) co-event and (d) post-event coherence maps for 6 d interferograms and (e) post-event optical satellite imagery (copyright
planetlabs). The matrix shown in (a) corresponds to the landslide polygon indicated in blue in (d). The matrix pixel each coherence map (b–
d) corresponds to is marked in white on (a) and black lines in (a) show the four earthquake dates in the sequence. Polygons in (b)–(e) are
from Ferrario (2019).

Figure 3. False colour composite multi-spectral satellite images acquired (a) prior to the earthquake sequence (b) after the 28 July earthquake
(c) after the 5 August earthquake and (d) at the end of the sequence (copyright Planet Labs with polygons from Ferrario (2019)) alongside
a coherence matrix (e) that appears to show an initial failure during the 5 August earthquake and then reactivation during the 9 August
and 19 August earthquakes. Black lines in (e) show the four earthquake dates in the sequence. The landslide polygon corresponding to the
coherence matrix is indicated in white on panel (a).

ing this threshold beyond 1.5 reduced the number of timed
landslides without improving the accuracy (Fig. A2). For this
reason, we do not obtain timing information for all land-
slides.

2.4 Validation of SAR methods against optical satellite
images

In order to validate the landslide timing information derived
from SAR, we compare with the timing information that can
be obtained from optical and multi-spectral images acquired

during the earthquake sequence. This process is complicated
by two factors.

First, while our SAR methods have sufficient temporal res-
olution to assign a failure to a specific earthquake, this is not
possible using optical images in all cases due to cloud cover.
The inventories of Ferrario (2019) were generated using im-
agery acquired after the earthquakes on 5 and 19 August,
meaning that every landslide can be assigned to either the
first or second half of the sequence. In areas that were cloud-
free in Planet, Sentinel-2 or Google Earth images acquired
between the 28 July and 5 August or the 9 and 19 August,
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we were able to carry out a more precise validation, but for
around a third of the landslides, this was not possible.

Second many landslides fail more than once during the
sequence. To identify multi-stage landslides in the optical
satellite imagery, we initially compared the areas of poly-
gons from the 5 and 19 August inventories that overlapped
and classed those which had increased in size between the
two earthquakes as “multi-stage”. Where this was possible,
we then used the Sentinel-2 and Google Earth images to
further constrain these changes in time. Landslides show-
ing only small increases in area (< 100 m2) and cases where
landslides were mapped as multiple polygons in one inven-
tory but a single polygon in the other, were not classed as
“multi-stage” as these differences could have arisen from dif-
ferences in the images rather than landslide reactivation. We
also observed a small number of cases where the failed area
after 28 July or 5 August in Sentinel-2 or Google Earth was
better delineated by the 19 August polygon than the 5 Au-
gust polygon in the inventories of Ferrario (2019). These
cases were also not classed as multi-stage, since the discrep-
ancy between the two inventories seems more likely to have
arisen from mapping uncertainty (e.g. due to shadow in the
Planet imagery) than from reactivation. Finally, we identi-
fied some cases of landslides initiating on 28 July and grow-
ing in size on 5 August, which were not initially classed as
“multi-stage” because Ferrario (2019) did not map landslides
between these two earthquakes.

Since both optical and SAR data can therefore yield mul-
tiple failure stages for a given landslide, a comparison be-
tween these two might agree, disagree or partially agree (i.e.
in the case of multi-stage failure, agree for one detected fail-
ure timing, but not for another). Most statistical measures of
performance, such as confusion matrices do not allow for
partial agreement. Therefore, for landslides showing more
than one failure in the optical data, we compare the SAR
timings against the optical result that seems the most rel-
evant in each case. SAR timings derived from amplitude
(Sect. 2.3.1), which primarily detect denudation of the hills-
lope were assessed against the timing of the largest failure by
area in the optical images (referred to as the “main” failure).
First and final failure timings derived from InSAR coherence
(Sect. 2.3.2) were compared against the first and last visible
failures in the optical satellite imagery.

2.5 Landslide triggering condition datasets

Using the information on landslide evolution through time
derived from SAR, we were able to consider the condi-
tions under which new landslides and reactivations were trig-
gered (Sect. 4.1). For this analysis, estimates of PGV experi-
enced during each earthquake were obtained from the USGS
Shakemap webpage (USGS, 2018a, b, c, d). For 19 August,
we took the maximum PGV experienced by each landslide
during the Mw 5.8, 6.3 and 6.9 earthquakes. In the majority
of cases, this was the PGV of the Mw 6.9 earthquake. Slope

was calculated from the 30 m Copernicus digital elevation
model in Google Earth Engine and the maximum value was
taken within each landslide polygon.

The landslide probability under these conditions can be es-
timated with the logistic regression model of Nowicki Jessee
et al. (2018) using regression coefficients derived in that
study for a global database of landslides. For lithology, we
used the coefficient derived for intermediate volcanics, which
comprise the majority of the study area according to the
global lithological map of Hartmann and Moosdorf (2012)
and for landcover, closed deciduous forest, which is the land-
cover type shared by most of the landslides (Dossa et al.,
2013). Although lithology and landcover also affect land-
slide susceptibility, we do not attempt to control for these:
lithology does not vary much across the study area, particu-
larly since many new landslides and reactivations occur on
the same scars and so at the same locations. Differences in
landcover between landslides is too difficult to account for
since the landslides themselves mean that it changes through
time.

3 Results

3.1 Detection of landslide timings from SAR amplitude

After applying the SAR amplitude methods described in
Sect. 2.3.1, we were able to constrain the timings of 307
of the 991 landslides larger than 2000 m2. As the ampli-
tude methods primarily detect denudation of the hillslope,
for landslides that undergo multi-stage failure, we expect
the amplitude-derived timing to represent the main failure.
Of these 307 landslides, 10 were assigned to the 28 July
earthquake, 269 to 5 August, 16 to the 9 August and 12 to
the 19 August. The timings that these 307 landslides were
expected to have based on optical imagery (Sect. 2.4) are
shown in Table 1. Cells for which the two datasets agree are
in bold. Altogether, the optical and SAR timings agree for
269 (88 %) of the landslides. Single failures had a higher rate
of agreement (91 %) than multi-stage (81 %). In Sect. 2.3.1,
we required a minimum of 3 SAR amplitude metrics to se-
lect the same timing before it was accepted. Burrows et al.
(2022) found a similar accuracy (> 90 %) when imposing
this requirement and testing on three landslide inventories of
known timing. However, the proportion of landslides timed
in this study (30 %) is much higher than Burrows et al. (2022)
were able to time at this level of accuracy (5 %–10 %). Some
of this improvement may be due to the modification made
to the method (Sect. 2.3.1, Supplement), but it is also likely
to be due to the tropical rainforest that covers most of our
study area, since Burrows et al. (2022) found their method
performed best in heavily vegetated areas.
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Table 1. A comparison between timings derived from optical and SAR amplitude satellite data with each cell containing the number of
landslides associated with a particular trigger. Cells where the two methods agree are given in bold font. Where possible optically mapped
landslides were assigned to a causative earthquake (date columns) otherwise they are assigned to either 1st or 2nd half of the earthquake
sequence (final two columns). The multi-stage failure timing derived from optical satellite imagery refers to the largest failure when compared
to timings derived from SAR amplitude and to the first and last visible change when compared to first and last failure timings derived from
InSAR coherence respectively.

Timing from Optical imagery

Single Failure Multi-stage failure

28 July 5 August 9 August 19 August 1st half 2nd half 28 July 5 August 9 August 19 August 1st half 2nd half

Timing from
SAR amplitude

28 July 0 3 0 0 3 0 3 1 0 0 0 0
5 August 0 123 0 0 43 10 0 59 0 1 18 15
9 August 0 2 3 0 3 3 0 2 0 1 0 5
19 August 0 0 0 1 0 9 0 0 0 1 0 1

First failure
timing from In-
SAR coherence

28 July 0 0 0 0 0 3 5 8 0 0 3 0
5 August 0 20 0 0 2 1 0 14 0 0 3 0
9 August 0 0 0 0 0 0 0 0 0 0 0 0
19 August 0 0 0 1 0 1 0 0 0 0 0 0

Last failure
timing from In-
SAR coherence

28 July 0 2 0 0 0 1 0 0 0 0 0 1
5 August 0 68 0 0 5 1 0 5 0 7 0 11
9 August 0 10 0 0 0 3 0 0 0 5 0 12
19 August 0 22 0 7 0 6 0 0 0 15 0 32

3.2 Detection of first and last failure timings from InSAR
coherence

We were able to detect the first failure for 61 of the 371 land-
slides larger than 3960 m2 using the coherence matrix ap-
proach described in Sect. 2.3.2. This was the 28 July earth-
quake in 19 cases (31 %), 5 August in 40 cases (66 %) and
19 August in 2 cases (3 %). The SAR and optical timings
agree for 49 out of 61 landslides (80 %, Table 1). For the 12
cases for which the optical and SAR disagree, the coherence
matrix assigns an earlier first failure than the optical.

We were able to detect the last earthquake a landslide
failed in for 213 of the 371 events. This was the 28 July earth-
quake in 4 cases (2 %), 5 August in 97 cases (46 %), 9 August
in 30 cases (14 %) and 19 August in 82 cases (38 %). This last
failure timing refers to the point after which there was no fur-
ther failure by the end of our study on 5th September, so may
correspond to a reactivation. Overall, the final failure timing
agrees with the optical imagery for 153 of the 213 landslides
(72 %, Table 1). Of the 60 cases where the two timings do
not agree, 32 are landslides that were mapped as failing only
on 5 August by the optical imagery, but have been assigned
a later final failure by the InSAR coherence. Thus, the co-
herence method has detected reactivations that are not visi-
ble in the optical imagery. There is no way to further validate
whether or not these were real events without additional data.
Another 20 of these 60 are landslides that were considered
“multi-stage” based on optical imagery, having failed for the
first time on 28 July or 5 August and grown in size by the
end of the sequence, but which were assigned a final failure
timing of 28 July or 5 August based on the InSAR coher-
ence matrix. These are thus cases where the coherence has

failed to detect reactivations that were expected based on the
optical data.

If the optical data is assumed to be correct, the accuracy
of the InSAR coherence methods thus appears to be 72 %–
80 %. However some cases where the optical and SAR dis-
agree may be due to differences in what the two datasets are
sensitive to. This is explored further in Sect. 4.4. Overall,
the coherence matrix approach appears to perform well, al-
though relatively few landslides can be timed using it com-
pared to the amplitude methods, in part due to the larger
landslide size required for the coherence analysis. Within the
landslides examined, larger landslides were more likely to
be assigned a timing by the InSAR coherence methods than
smaller landslides. The inventory of Ferrario contained 87
landslides > 10 000 m2, 38 in the range 8000–10 000 m2, 75
in the range 6000–8000 and 171 in the range 3960–6000 m2

of which 70 (80 %), 25 (66 %), 46 (61 %) and 86 (50 %) were
assigned a timing respectively.

3.3 Combination of amplitude and coherence to detect
multi-stage failures and reactivations

Altogether for the 371 landslides > 3960 m2, we derived the
timing of first failure for 61 landslides and of the final fail-
ure for 213 landslides based on the coherence matrices. From
the amplitude methods, we have timing information for 170
landslides > 3960 m2, which we interpret as the “main” fail-
ure (whenever the most substantial denudation of the hill-
slope took place, since this is what the amplitude methods
detect). How the timing datasets derived from coherence and
amplitude overlap is shown in Fig. 4f. Overall, 258 of the 371
landslides are timed by at least one method, and 158 of these
are timed by more than one method.
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Figure 4. a) Landslides and reactivations timed with SAR following each earthquake in the sequence. Where first failure timing was available
from coherence, this was plotted in preference over main failure. Last failures are only plotted when neither first nor main failure timings
were available (since these would otherwise be reactivations). Reactivations are shown as highlights on the original failure. Modelled PGA
contours of 0.1, 0.2 and 0.4 g from USGS (2018a–d) are plotted as white lines. (e) the number of each failure type after each earthquake with
coloured arrows showing reactivations (f) distribution of timing information available from SAR for the 371 landslides > 3960 m2

For 48 landslides, we obtained both the first and final fail-
ure timings from the InSAR coherence matrices. In 24 cases
(50 %), the two timings were the same, indicating a single
period of failure. For 6 cases (13 %), the first and final fail-
ures were associated with consecutive earthquakes. For 18
cases (38 %), at least one additional earthquake occurred be-
tween the first and final detected failures. In these cases, we
were able to visually inspect the matrix and identify that all
18 landslides were reactivated more than once, with 6 land-
slides (13 %) active in all 4 earthquakes (See Fig. 3 for an
example).

Although our amplitude methods provide only a single
failure timing, they allow us to identify more examples of
reactivations. When we have a main failure timing that is
later than the coherence-based first failure, we can interpret
the main failure as a reactivation (4 cases). When we have
a main failure timing that is earlier than a coherence-based
final failure, we can interpret this final failure as a reactiva-

tion (45 cases). These probable reactivations are shown in
Fig. 4 as coloured outlines around the original failure and by
coloured arrows in Panel e. Landslide activity (derived from
any method) was observed for a total of 259 landslides (Panel
f) with activity at 24 sites (9 %) on 28 July, 203 sites (78 %)
on 5 August, 44 sites (17 %) on 9 August and 86 sites (33 %)
on 19 August. These percentages total over 100 % because
some landslides are active in multiple earthquakes. In fact,
reactivations made up the majority of the detected activity
for the 9 and 19 August events, 75 % and 59 % respectively
(Panel e).

4 Discussion

4.1 Triggering conditions for new landslides and
reactivations

The landslide timing dataset we have generated allows us to
make comparisons between the conditions required to trig-
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ger new landslides and those required to reactivate exist-
ing landslides. The occurrence of earthquake-triggered land-
slides is primarily controlled by topography and ground
shaking (Nowicki Jessee et al., 2018). Figure 5 shows the
peak ground velocity (PGV) and slope at which new fail-
ures (Panel a) and reactivations (Panel b) occurred during the
earthquake sequence.

Reactivations occurred at lower PGV and slope than new
failures and a large proportion of reactivations occurred in
locations where the model of Nowicki Jessee suggests less
than 1 % probability of landslides (Fig. 5b). While the ini-
tiation of new landslides at the beginning of the sequence
(28 July) occurred at PGV as low as 2.1 cm s−1 (PGA as
low as 0.15 g, Fig. 4a), this was mostly confined to slopes
steeper than 35° (Fig. 5a). Later in the sequence, landslides
on similarly steep slopes were reactivated at PGV as low as
1.5 cm s−1 during the earthquake on 9 August, while PGV
values around 2.5 cm s−1 were sufficient to reactivate land-
slides on slopes shallower than 20° (Fig. 5b). New landslides
initiating at such shallow slope angles were only observed for
the earthquake on 5 August, where the majority of landslides
were triggered at PGV > 3 cm s−1 (PGA > 0.4 g, Figs. 5a,
4b). This observation primarily applies to large landslides,
since these are more likely to be assigned a timing by both the
amplitude (Burrows et al., 2022) and coherence (Sect. 3.2)
methods.

This increased susceptibility to failure for reactivations
compared to new failures is consistent with the increased
levels of post-seismic rainfall-triggered landsliding that have
been observed following many large earthquakes (Fan et al.,
2021; Jones et al., 2021b; Marc et al., 2015; Tanyaş et al.,
2021; Yunus et al., 2020). The mechanisms suggested for el-
evated susceptibility to reactivation by rainfall are equally ap-
plicable to the case of seismic triggering studied here. They
include damage to the regolith during the earthquake (loss of
cohesion or internal friction); the loss of vegetation whose
roots were contributing to the stability of the slope; steepen-
ing of the hillslope and increased presence of unconsolidated
material in the form of co-seismic landslide deposits, which
is easily remobilised (Marc et al., 2015; Fan et al., 2021). In
other cases, such as the 2015 Gorkha, Nepal earthquake, in-
creased post-seismic landslide susceptibility was driven by
both the increased presence of (co-seismic) landslide scars
which were then able to be reactivated during the subse-
quence monsoon seasons (Dahlquist and West, 2019) and by
more general, widespread damage to the landscape, which
temporarily reduced the amount of rainfall required to trig-
ger new landslides (Burrows et al., 2023). On the contrary, af-
ter the 5 August earthquake, we observe reactivations at low
PGV-slope combinations, but not new landslides (Fig. 5), in-
dicating that here the primary driver of increased landslide
activity is the increased presence of landslide scars rather
than more general weakening of the landscape.

4.2 Possible detection of precursory motion during the
28 July earthquake

18 of the 61 landslides for which we obtained the timing of
first failure appear to have failed on 28 July. This propor-
tion (30 %) is very high compared to the results from am-
plitude, where the main failure was attributed to this earth-
quake in only 3 of 170 cases (2 %). It also contradicts previ-
ous research based on optical satellite images, which found
that in cloud-free areas, very few of the landslides triggered
during the earthquake sequence occurred before the earth-
quake on 5 August (Ferrario, 2019; Ganas et al., 2018; Zhao
et al., 2021). One explanation for this discrepancy could be
that some landslides exhibited precursory motion during the
earthquake on 28 July but did not fail completely until 5 Au-
gust. Such motion would usually not be visible in optical
satellite images or detectable using amplitude methods as
it would not result in denudation of the hillslope. The short
wavelength of Sentinel-1 (5.5 cm) means that coherence can
be sensitive to relatively small movements and previous stud-
ies have demonstrated that small precursory movements can
result in coherence loss prior to catastrophic failures (Dini
et al., 2022; Jacquemart and Tiampo, 2021).

Figure 6 shows a possible example of this, where the land-
slide appears active during both the 28 July and 5 August
earthquakes in the coherence matrix (Panel e), but large-scale
failure is not visible in the optical satellite imagery until after
5 August (Panel c). A white arrow in Panel (b) indicates an
area where activity triggered by the 28 July earthquake may
be visible. However, these detectable changes are small, with
trees and shrubs not perceptibly moved between 18 June and
1 August but clearly removed by 10 August. It is clear that
no activity would be visible in lower resolution imagery un-
til after 5 August and so the landslide would not be mapped
before this time. The SAR amplitude methods described in
Sect. 2.3.1 assigned this landslide to the 5 August earth-
quake, which is likely due to the fact that there is minimal
change in landcover between panels (a) and (b) within the
landslide polygon.

Interest in the potential to detect precursory movements
prior to catastrophic failure with coherence or with displace-
ments derived from InSAR or optical image correlation, has
grown in recent years as the acquisition frequency of satel-
lite images has increased (Dong et al., 2018; Jacquemart
and Tiampo, 2021; Lacroix et al., 2023). If coherence loss
following the first earthquake in a sequence could be used
to indicate areas susceptible to catastrophic failure during
later earthquakes, this would be a useful risk management
tool. However, we are only able to examine a very limited
number of cases here. 14 of the 18 landslides that initiated
on 28 July were also active on 5 August so could indicate
precursory motion. Unfortunately, for the majority of these,
cloud free images were not available between the earth-
quakes on 28 July and 5 August. Additionally, many took
place in unvegetated areas where small movements would be
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Figure 5. PGV and slope steepness at which (a) new landslides and (b) reactivations were triggered during the 2018 Lombok earthquake
sequence. Dashed lines show the landslide probability under these conditions according to the empirical model of Nowicki Jessee et al.
(2018). (c) 2D histograms of Slope and PGV during each earthquake. Darker tones indicate a higher prevalence across the study area.

Figure 6. (a–d) Evolution through time of a landslide captured with high resolution google earth imagery acquired before (a), during (b, c)
and after (d) the earthquake sequence. The white arrow on Panel (b) indicates a location where preliminary activity may have taken place
following the earthquake on 28 July prior to the main failure during the 5 August earthquake (c) (e) the coherence matrix for this event,
showing landslide activity during earthquakes on 28 July, 5 August and possibly 19 August. Panels (a)–(d) © Google Earth with white
polygons from Ferrario (2019).

challenging to see. This lack of vegetation also means that
few (only 4) were also timed with amplitude methods. Thus
overall, it is difficult to investigate this effect further here.

4.3 Implications for hazard and mass wasting

Several studies have attempted to draw associations between
the shaking experienced during an earthquake or its magni-
tude, and the likely severity of associated landslides (Godt

et al., 2008; Marc et al., 2017; Malamud et al., 2004; Now-
icki Jessee et al., 2018; Tanyaş and Lombardo, 2019). The
results of our study highlight the complexity of this problem,
since our dataset includes (i) landslides that did not fail until
19 August despite experiencing stronger shaking on 5 Au-
gust (ii) landslides that did not fail on 28 July, but that were
reactivated by comparable shaking on 9 August or 19 August
after failing on 5 August and (iii) landslides from 5 August
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that were reactivated by 9 August or 19 August but not both,
despite similar levels of shaking.

Overall, we believe that the earthquakes on 9 and 19 Au-
gust resulted in more landslide activity than they would have
done had they not been part of the sequence, since activ-
ity associated with these earthquakes occurred at low PGV
(Fig. 5b). Although other sequences of relatively low magni-
tude earthquakes have triggered landslides, such as the 2011,
Mw 5.1 Lorca, Spain and Mw 2020 Mila, Algeria events,
both of which triggered over 250 landslides (Alfaro et al.,
2012; Hallal et al., 2024), there are also cases where larger
earthquakes have not resulted in extensive landslide activ-
ity, such as the Mw 6.2 foreshock to the Mw 7.0 Kumamoto
earthquake (Xu et al., 2018). Our conclusion is further sup-
ported by the fact that the earthquake at the beginning of the
sequence (28 July) resulted in less activity than subsequent
earthquakes on 9 and 19 August despite having similar shak-
ing intensity (Fig. 5c). 24 landslides were observed to be ac-
tive in this event, compared to 44 and 86 respectively on 9
and 19 August. Thus, relatively weak shaking was required
to trigger landslide activity later in the sequence, an effect
which was also observed for aftershock-triggered landslides
during the 2015 Gorkha, Nepal earthquake sequence (Tiwari
et al., 2017). However, since this activity takes the form of
reactivations rather than new failures, its spatial extent is de-
termined by the locations of triggered landslides, and thus
shaking intensity associated with the mainshock (Fig. 4c).
This highlights the importance of rapid assessment of co-
seismic landslides following a large earthquake as these can
easily be reactivated by aftershocks.

It is difficult to determine the erosional effects of the multi-
stage failure processes we have observed here with our co-
herence analysis. First, we identified more landslide activity
than expected during the earthquake on the 28 July (Figs. 4a,
5a). However, if these landslides would have failed anyway
during the larger event on 5 August, the total mass wast-
ing volume will be unchanged. Equally if the earthquakes
on 9 and 19 August only resulted in downslope movement of
unconsolidated co-seismic deposits left after 5 August, this
material would likely have rapidly been remobilised by sur-
face runoff or rainfall-triggered failure, so the overall effect
on mass wasting would be minimal. If instead these earth-
quakes further damaged the rock and/or regolith or caused
landslide scarps to retreat, the mass wasting from the four
earthquakes in sequence is likely to be greater than the sum
of the mass wasting that would have been caused by each
earthquake in isolation. For example, on its own, the earth-
quake on 9 August would not be expected to trigger many
landslides, (USGS, 2018c). Ferrario (2019) mapped many
polygons that increased in size between 8 August and the end
of the sequence, suggesting that this may be the case, but we
cannot differentiate between the two processes using SAR
since both would result in coherence loss. Overall, while we
are able to detect a mechanism that may result in increased

mass wasting, different methods such as repeat LiDAR sur-
veys would be required to fully quantify this process.

4.4 Disagreement between failure timings derived from
optical and SAR datasets

When carrying out the validation of the SAR methods, cases
were observed where the timings derived from SAR did not
match the failures that were visible in the optical datasets
(Table 1). Inaccuracies in the SAR methods or manual land-
slide mapping, such as features being mapped as landslides
that are in fact something else, may account for some of
these disagreements. However, there are patterns that sug-
gest that some of them may instead be due to differences
in what is and is not detectable in SAR and optical satellite
imagery. For example, the 12 cases where the first failure
timings from InSAR coherence were early compared to the
optical datasets could be explained if the InSAR coherence
method has detected small, precursory motions that were not
visible in Sentinel-2 or Planet imagery as in Sect. 4.2. These
12 landslides include 6 that were not visible until 5 August
in the optical imagery, but were detecting as failing on both
28 July and 5 August by the coherence matrix; and 4 that
were mapped in the second half of the sequence by Ferrario
(2019), but were active in every earthquake according to the
coherence matrix.

A similar explanation could be applied to the 32 cases
where the landslide failed only on 5 August according to the
optical imagery, but whose last failure was detected on 9 Au-
gust or 19 August by the coherence method. 29 of these 32
landslides were also identified as failing on 5 August based
on either InSAR coherence or amplitude (the other 3 were not
assigned a timing using these methods). This suggests that
these 29 last detected failures could be reactivations rather
than new failures. It is possible that these landslides reacti-
vated without visibly changing the size or shape of the scar in
the optical satellite imagery. Since InSAR coherence is sen-
sitive to erosion of unvegetated surfaces (e.g. Cabré et al.,
2020), it might still detect such failures. To confirm that
these are indeed reactivations, comparison against a differ-
ent dataset, such as field surveys, ground-based SAR or high
resolution DEMs would be necessary, but this is beyond the
scope of this study.

Finally, 24 landslide polygons were identified as increas-
ing in size in the second half of the earthquake sequence
based on the optical satellite images and thus classed as
“multi-stage” (Sect. 2.4), but were assigned last failures with
the InSAR coherence matrix that were too early. There are
two possible explanations for this. First, it could be that the
change in size or shape of the landslide polygon was due to
differences in the Planet imagery and how shadows are cast
at the edges of the forest rather than reactivations. Second, if
only part of a large landslide scar reactivates, it may change
in shape in the optical imagery while most of the SAR pixels
remain unchanged and do not lose coherence.
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Overall, there are several differences between what can be
detected with SAR amplitude, InSAR coherence and optical
satellite images, which may be exacerbated by the different
spatial resolutions of these data. The difficulty in detecting
landslide reactivations in optical datasets, which is a motiva-
tion for developing techniques based on SAR is also a limi-
tation when validating these techniques.

4.5 Wider applicability and limitations of the coherence
method

The coherence matrix approach we have used here has some
specific advantages. First, it works well in unvegetated ar-
eas, where amplitude-based methods are less likely to return
timing information (Burrows et al., 2022) and where land-
slide detection with optical data is particularly challenging.
Second, using the coherence matrix approach, we are able to
detect not only a single failure timing but also possible cases
of precursory motion and reactivation. Reactivation of shal-
low landslides in earthquake sequences has been observed
for other events, but studying this process requires either
field photographs or high resolution multi-spectral satellite
images, which are often obscured by cloud (e.g. Sepúlveda
et al., 2010; Petley, 2024). The coherence approach used here
could therefore provide a useful tool in studying this process.
The ability to distinguish between active and inactive periods
on shallow landslide scars could also be useful both in moni-
toring landslides that move too rapidly or are poorly oriented
for differential InSAR techniques and in studying rainfall-
induced reactivation of co-seismic landslides. The InSAR co-
herence approach we have used here could allow us to better
study these processes. However, there are limitations, partic-
ularly in terms of landslide size, that impact the applicability
of the methods. Altogether, we obtained timings for a rela-
tively limited portion of the landslide inventory of Ferrario
(2019). The number of landslides that it is possible to con-
strain the timing of may improve in the future by incorpo-
rating data from planned SAR satellites with regular acquisi-
tion strategies such as NiSAR and ROSE-L missions (Jones
et al., 2021a; Davidson and Furnell, 2021). The longer wave-
length of these satellites is likely to improve their landslide
detection capacity in forested areas as they will undergo less
decorrelation caused by the movement of vegetation (Bur-
rows et al., 2020). However further testing will be needed to
establish this. Additionally, there are other factors that can
influence coherence that must be taken into account in future
works, particularly soil moisture and InSAR spatial decorre-
lation (Scott et al., 2017; Kellndorfer et al., 2022).

4.5.1 Effects of perpendicular baseline on InSAR
coherence

The overall coherence γtotal can be broken down into three
components according to Eq. (3) (Zebker and Villasenor,

Figure 7. The effect of perpendicular baseline on coherence for a
landslide in an unvegetated part of the study area.

1992).

γtotal = γtemporal · γspatial · γthermal (3)

Landslides, along with other processes that alter the scat-
tering properties of the Earth’s surface result in decorrela-
tion of γtemporal. Decorrelation of γspatial resulting from small
variations in the satellite orbit between image acquisitions
can also result in coherence loss (decorrelation of γthermal is
caused by noise within the satellite receiving antenna and can
usually be ignored). γspatial is determined by the perpendic-
ular baseline Bperp (the distance between the satellite loca-
tions at the time the two SAR images were acquired), the
difference between the SAR incidence angle θ and the local
slope in the satellite line of sight αLOS, lightspeed c, the SAR
wavelength λ and chirp bandwidth Bw and the sensor-target
distance r according to Eq. 4 (Lee and Liu, 1999).

γspatial = 1−
cBperp

λrBw
|cotan(θ −αLOS)| (4)

Decorrelation of γspatial is thus strongest for slopes that are
close to the incidence angle of Sentinel-1 (32.9–43.1°) and
face towards the sensor, an effect recently observed by Kell-
ndorfer et al. (2022) who found that, for example, a slope
at 30° would undergo decorrelation of 70 % for an interfero-
gram formed from two images with Bperp = 81 m. Such val-
ues are not uncommon: in this study, the mean Bperp was
53 m± 40 m, while around 2/3 of the landslides occurred on
slopes steeper than 30° (although not all of these were ori-
ented towards the sensor). Decorrelation of interferograms
formed with long Bperp values was observed over many
landslides in this study. Figure 7 shows one such example
for a landslide in an unvegetated area that slopes towards
the satellite at an angle of 35.1°, so that, since θ = 35.0°,
cotan(θ−αLOS) is close to 1. It can be seen that, while we are

https://doi.org/10.5194/esurf-13-1039-2025 Earth Surf. Dynam., 13, 1039–1057, 2025



1052 K. Burrows et al.: Detection of earthquake-induced landslide activity with Sentinel-1

able to differentiate between co-event (unstable) and pre- and
post-event (stable) periods for this landslide at shorter Bperp,
this becomes difficult for baselines > 75 m. This underlines
the value of the coherence matrix approach, since it allows us
to more easily identify periods of low coherence caused by
spatial decorrelation. Studies in arid environments have been
able to normalise for this property (Liu et al., 1999), but it is
more complicated here since the landslides result in a change
in landcover type. In forested areas, decorrelation of γspatial
is compounded by volume decorrelation (Hoen and Zebker,
2000), but in Sentinel-1 interferograms, γtotal is likely to be
dominated by decorrelation of γtemporal in vegetated areas due
to the movement of leaves in the canopy between image ac-
quisitions (Jacob et al., 2020).

Overall, decorrelation of γspatial, which can be ignored for
many applications, can have a strong impact in landslide
studies, and should be considered in future works, particu-
larly those that use different SAR constellations which may
have longer Bperp and those that go on to use Sentinel-1A in
the coming years as Bperp is likely to grow during this time
(ESA, 2024). A Google Earth Engine tool to calculate αLOS
for an inventory of landslides and a given Sentinel-1 SAR
scene, and so estimate the likely impact of spatial decorrela-
tion for a particular event is available (Burrows, 2024).

4.5.2 Effects of soil moisture on InSAR coherence

Changes in surface soil moisture alter the dielectric prop-
erties of the soil so can also decorrelate γtemporal. A strong
decorrelation signal has been observed for areas of bare rock
and soil for Sentinel-1 interferograms formed from one wet
and one dry image (Scott et al., 2017). Importantly, however,
the decorrelation effect is not permanent. In the hyper-arid
Atacama Desert, Cabré et al. (2020) were able to distinguish
between changes in soil moisture, which are only temporary,
and erosion, which represents a permanent physical change.
We can see a similar effect in Fig. 8, which shows a coher-
ence matrix including a short rainfall event for an unvege-
tated area where a landslide occurred during the earthquake
sequence. The rainfall event can be seen by plotting the abso-
lute difference in rainfall in the three days before each image
used to form an interferogram were acquired (Fig. 8b).

While in this case, we are able to see that the soil moisture
change was not permanent, the coherence loss was of a simi-
lar magnitude to that caused by landslide activity. The earth-
quake sequence occurred during the dry season in Indone-
sia, with little rainfall recorded during the month of August
(Ferrario, 2019). However, this sensitivity to soil moisture
changes means that there are some events for which coher-
ence analysis may be inherently unsuitable, such as the case
of an earthquake immediately followed by a storm, in which
the coherence signal will be the same for a co-seismic land-
slide scar that becomes wet during the storm and one that is
reactivated. In this case, any drying effect would be hidden
by the co-seismic failure. Snowfall, such as was seen follow-

ing the 2023 Türkiye earthquake (Görüm et al., 2023), would
also result in coherence loss and probably limit the applica-
bility of the approach used here. Because of this sensitivity to
soil moisture changes, further testing is needed before the In-
SAR coherence methods can be applied to rainfall triggered
landslides. Landslides triggered by sequences of storms are
also often poorly constrained in time, and while the ampli-
tude based methods can be applied in this case (as in Bur-
rows et al., 2023), InSAR coherence could also be beneficial
in study landslide reactivation and landslides in unvegetated
areas.

5 Conclusions

We have applied SAR amplitude and coherence techniques to
characterise shallow landslide activity during the 2018 Lom-
bok, Indonesia earthquake sequence. We have assessed a new
method for landslide timing detection based on InSAR co-
herence matrices. This approach, which is mainly applicable
to larger events, can detect not only single failures but also
reactivations and thus build a more complete picture of land-
slide activity. Of the 177 landslides for which such analysis
was possible here, 98 were active in more than one earth-
quake. In most cases these were reactivations, where failure
in one earthquake was followed by further failure in a later
earthquake. However, in at least one case, our SAR tech-
niques identified possible precursory activity: small move-
ments during one earthquake in an area that then failed dur-
ing a later earthquake. This potential observation of precur-
sory activity is consistent with theory and has been observed
in a small number of previous studies but provides further
encouraging evidence that at least some landslides may ex-
perience detectable displacement prior to full failure. Ex-
amining the drivers for slope instability, we found that new
landslides generally followed pre-existing expectations of
the shaking intensity and slopes associated with earthquake-
triggered landsliding, but that reactivations of pre-existing
scars required much less energy, occurring at accelerations as
low as 0.1 g. This demonstrates the difficulty in establishing
predictive relationships for earthquake-triggered landslides.
It also highlights the importance of rapid mapping of co-
seismic landslide scars since these can easily be reactivated
during aftershocks. Finally, the shift of reactivations but not
new landslides to low PGV-slope combinations suggests that
here it was the landslides themselves rather than more gen-
eral landscape weakening that amplified landslide activity
later in the earthquake sequence. This study represents one
of the first combined applications of optical imagery and
Sentinel-1 amplitude and coherence to study landslide multi-
stage failure following a sequence of earthquakes. Applica-
tion to other sequences of earthquakes or storms would re-
quire multi-temporal landslide inventories and good cover-
age with satellite images and would allow further confirma-
tion and refining of the SAR methods.
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Figure 8. (a) InSAR coherence matrix for a landslide in an unvegetated area previously affected by rainfall (b) the difference in 3 d antecedent
rainfall at the time of each image acquisition derived from GPM data (Huffman et al., 2015). The same rainfall event is visible in both matrices
at the time image 2 was acquired.

Appendix A

Figure A1. A comparison of accuracy verses for the original “Step
change” method used by Burrows et al. (2022) to identify land-
slide timings and the alternative “Best split” method used here
(Sect. 2.3.1). The total number of landslides was 991 (all polygons
> 2000 m2 mapped by Ferrario (2019)). Accuracy was calculated
for landslides whose timing could be constrained to specific earth-
quake using Planet, Sentinel-2 or Google Earth images. Points are
labelled with the number of metrics required to select a time win-
dow for a landslide before it is accepted (When this number= 2, the
metrics must be drawn from the same SAR orbit, following Burrows
et al. (2022)).

Figure A2. Accuracy of the InSAR coherence matrix technique
when different thresholds are set for the number of standard de-
viations between “pre-event” and “co-event” for the timing to be
accepted. Accuracy values are calculated only for landslides whose
first failure could be constrained to a specific earthquake using
Planet, Sentinel-2 or Google Earth imagery.

Code and data availability. Sentinel-1 data are avail-
able from the Copernicus Data Space Ecosystem (https:
//dataspace.copernicus.eu, last access: June 2025). The orig-
inal polygon landslide inventory is available in the supple-
mentary materials of Ferrario (2019). Timing and reactivation
information derived from Sentinel-1 for this study are avail-
able at https://doi.org/10.5281/zenodo.15516233 (Burrows
et al., 2025). Computer codes for deriving landslide timings
from SAR amplitude in Google Earth Engine are available at
https://doi.org/10.5281/zenodo.6984291 (Burrows, 2022).
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