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Abstract. Alluvial rivers respond to external forcings such as variations in sediment supply, water supply and
base level by aggrading, incising and adjusting the rates at which they transport sediment. These processes
are recorded by landforms, such as terraces and fans, that develop along river courses, and by stratigraphy in
downstream sedimentary basins. Many concepts we use to interpret such records are derived from models that
treat alluvial rivers as single-segment streams: for example, the length of an alluvial river has been shown to
set its response time to external forcing. However, alluvial rivers in nature exist within interconnected networks,
complicating the application of such concepts to real systems. We therefore adapted a model describing long-
profile evolution and sediment transport by transport-limited, gravel-bed alluvial rivers to account for network
structure, and explored the response of large numbers of synthetic networks to sinusoidally varying sediment and
water supply. We show that, in some respects, networks behave similarly to single-segment models. In particular,
single-segment models predict well properties that integrate across the entire network, such as the total sediment
output. We use this behaviour to define an empirical network response time, and show that this response time
scales with network mean length, or the mean distance from all a network’s inlets to its outlet. Nevertheless,
interactions between segments do lead to complex signal propagation within networks: amplitudes and timings
of aggradation and incision vary between minor tributaries and major trunk streams, and between upstream and
downstream parts of the network, in ways that depend on each individual network’s structure. We conclude that,
while single-segment models may be useful for some applications, detailed studies of specific catchments require
a modelling framework that accounts for their specific network structure.

monly attributed to tectonic or environmental change (i.e.,

Alluvial river networks are fundamental features of Earth’s
surface, controlling the movement of water and sediment
through the landscape. They host fluvial landforms, such as
terraces and fans, and deliver sediment to downstream sedi-
mentary basins. The formation of such landforms, the shapes
of network longitudinal profiles, and variation in sedimentary
facies or accumulation rates in stratigraphic records are com-

external or allogenic forcing; Blum and Toérnqvist, 2000;
Strasser et al., 2006; Densmore et al., 2007; Bridgland and
Westaway, 2008; Wegmann and Pazzaglia, 2009). A major
goal for geomorphologists and stratigraphers is, in turn, to
infer the timing and magnitude of past tectonic and environ-
mental change from the age and extent of terrace surfaces, as
well as the timing and amplitude of stratigraphic fluctuations
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Figure 1. Example catchment planforms from the Great Plains,
USA, showing diverse network structures: South Platte (orange),
Big Blue (dark blue), Niobrara (green), upper Arkansas (pink) and
upper Bighorn (light blue). Scale bar applies to all catchments. Line
thickness scales with drainage area. Stream data from the HydroR-
IVERS database (Lehner and Grill, 2013).

(e.g., Allen, 2008a; Duller et al., 2010; Macklin et al., 2012;
Zhang et al., 2020). Doing so accurately requires an under-
standing of how alluvial rivers respond to changes in water
supply, sediment supply and base level by aggrading, incis-
ing and adjusting their sediment-transport rates (Armitage et
al., 2011; Romans et al., 2016; Tofelde et al., 2021). Here, we
focus on how this response is influenced by the arrangement
of alluvial rivers in networks (Fig. 1).

Several lines of evidence suggest that processes of aggra-
dation, incision and sediment transport are intimately con-
nected to the fluvial network structures on which they oc-
cur (Benda et al., 2004). At tributary junctions, contrasts in
ratios of sediment to water discharge in adjoining streams
lead to slope breaks in longitudinal river profiles (Lauer et
al., 2008). When steep tributaries with high sediment loads
meet gentler trunk streams, fans can develop (Fig. 2a). Such
fans can deflect or block the main stream and trigger aggra-
dation along it (Church, 1983; Steffen et al., 2010; Savi et al.,
2016, 2020). Alternatively, incision and lateral migration by
the main stream can lead to fan abandonment (Larson et al.,
2015). Terrace surfaces are often continuous along and be-
tween adjoining streams, attesting to the coupled evolution
of interconnected river segments (Fig. 2b). Pulses of sed-
iment propagating through river networks can interact and
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interfere at tributary junctions, leading to “hotspots” of geo-
morphic change and influencing patterns of sediment export
(Benda and Dunne, 1997a; Czuba and Foufoula-Georgiou,
2014, 2015; Roy et al., 2022). Natural river networks present
diverse structures (Fig. 1). Furthermore, recent work has
highlighted how network structure varies systematically with
climatic and tectonic setting, erosional properties, and lithol-
ogy (e.g., Seybold et al., 2017; Ranjbar et al., 2018; Yi et
al., 2018; Getraer and Maloof, 2021; Li et al., 2023; Goren
and Shelef, 2024; Pelletier et al., 2025). These results raise
the possibility that, if network structure influences alluvial
river responses to external forcing, those responses may vary
between regions with different climates, rates and styles of
tectonic activity, or lithologies (Roy et al., 2022).

To quantify relationships between external forcings and al-
luvial river landforms, longitudinal profiles and stratigraphic
archives, a series of conceptual studies have employed nu-
merical models and physical experiments that approximate
alluvial river systems as single, one dimensional streams
(e.g., Paola et al., 1992; van den Berg van Saparoea and
Postma, 2008; Armitage et al., 2011; Simpson and Castell-
tort, 2012). These models have the advantage of being rela-
tively straightforward to implement and efficient to run, and,
despite their simplicity, have led to some useful and influen-
tial concepts. Water discharge is either held constant along
stream (e.g., Paola et al., 1992; Simpson and Castelltort,
2012; McNab et al., 2023) or set to increase smoothly from
inlet to outlet (e.g., Armitage et al., 2011; Goldberg et al.,
2021; Braun, 2022). Paola et al. (1992) defined an equilibra-
tion time, Ty, based on a diffusive model of the long-profile
evolution of alluvial rivers, which scales with the square of
the system length, and showed that the system response to ex-
ternal forcing depends strongly on the frequency of forcing
relative to this equilibration time (see also Howard, 1982).
Relatedly, it has been argued that stochasticity in sediment
transport can lead to degradation (in extreme cases, destruc-
tion, or “shredding”) of external signals with timescales sim-
ilar to or shorter than those of stochastic events (e.g., Jerol-
mack and Paola, 2010; Griffin et al., 2023). These behaviours
are thought to limit what kinds of catchments can record
what kinds of signals, whether in terrace sequences or in
downstream stratigraphy (Allen, 2008b; Tofelde et al., 2017).
Other studies have emphasised how propagation of signals
along stream could lead to a lag between the forcing and the
river’s response, with implications for the interpretation of
terrace ages and of stratigraphic time series (Hancock and
Anderson, 2002; Braun, 2022; Yuan et al., 2022; McNab et
al., 2023).

Concepts derived from single-segment models can, how-
ever, be challenging to apply to real systems, either to
construct formal tests of model predictions or to facilitate
quantitative interpretations of geomorphic and stratigraphic
archives. Unlike the single-segment geometries these mod-
els consider, the “length” of a river network is poorly de-
fined: channel heads lie at varying distances upstream from
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Figure 2. Field photographs of alluvial river landforms associated with network confluences and along-stream supply of sediment. (a) Fan
development and interaction with main stream at tributary confluence, Kaindy River (tributary to Saryjaz River), eastern Kyrgyzstan. Photo-
graph by Taylor F. Schildgen. (b) Terraces straddling a main stream—tributary confluence in the Toro basin, near El Alfarcito, NW Argentina.
Photograph courtesy of Stefanie Tofelde. (¢) Along-stream supply of sediment by debris-covered slopes and debris fans to Vénéon river,

Massif des Ecrins, France. Photograph by Taylor F. Schildgen.

network outlets (Fig. 1). Implicit in the arguments of many
studies is the idea that timescales of network evolution are
controlled by main stream length (e.g., Métivier and Gaude-
mer, 1999; Castelltort and Van Den Driessche, 2003), but this
assumption has not been tested. Furthermore, signal prop-
agation on a network is, conceivably, much more complex
than along a single river segment. Along-stream delivery of
sediment, which occurs in natural valleys from tributaries as
well as from transport down or lateral erosion of adjacent
hillslopes, has also generally not been considered (Fig. 2c;
Benda and Dunne, 1997b; Benda et al., 2003; Tofelde et al.,
2022).

Some modelling studies have begun partly to address the
issue of alluvial network responses to external change. Savi
et al. (2020) explored interactions between a tributary and
main stream in an experimental setting, emphasising that a
tributary’s influence extends both upstream and downstream
of a confluence (see also Benda et al., 2003). Pizzuto (1992)
predicted long profiles of alluvial rivers under steady state
conditions, taking into account network structure and down-
stream fining, but did not consider their transient evolu-
tion. Benda and Dunne (1997a) and Czuba and Foufoula-
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Georgiou (2014, 2015), among others, simulated the dynam-
ics of sediment transport on networks, but used fixed profile
slopes, limiting the application of their models to timescales
shorter than those on which network long profiles evolve.
Howard (1982) developed a long-profile evolution model for
sand-bed alluvial rivers, and described the response of a sin-
gle, randomly generated network to external perturbation,
with a focus on the evolution of the main trunk stream. Mean-
while, Lauer et al. (2008) developed a model describing the
coupled response of the Fly River and its tributary the Strick-
land, Papua New Guinea, to base-level rise. These latter two
approaches have, however, not been applied more widely.
Several important questions therefore arise regarding re-
sponses of alluvial river networks to external forcing. How
similarly do networks behave compared to simplified, single-
segment models? If similarly, what is an appropriate length
scale with which to describe a network and its equilibra-
tion time? How do patterns of aggradation and incision vary
throughout a network, for example between the main stream
and adjacent tributaries, or between upstream and down-
stream regions? How might these patterns in turn influence
the spatial distribution and timing of terrace formation and
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the development of downstream stratigraphy? We address
these questions using a model that describes long-profile evo-
lution of and sediment transport by alluvial rivers (Wickert
and Schildgen, 2019). We focus on responses to cyclical en-
vironmental change (i.e., changes in sediment and water sup-
ply), since orbital climate cycles appear to influence many
geomorphic and stratigraphic records (e.g., Strasser et al.,
2006; Bridgland and Westaway, 2008; Wegmann and Pazza-
glia, 2009; Tofelde et al., 2017), though the principles we dis-
cuss could easily be extended to variable uplift rates or base
level. We start by introducing our modelling framework and
summarising some key concepts derived from analytical so-
lutions for the simplest single-segment case in which all wa-
ter and sediment is supplied at the alluvial valley inlet (Mc-
Nab et al., 2023). We then extend these concepts, using nu-
merical simulations, to the single-segment case in which wa-
ter and sediment are both supplied along the course of each
stream segment, and finally to the case of interconnected val-
ley networks. To explore the range of possible behaviour, we
analyse large sets of randomly generated network configura-
tions. Our goal is to assess the extent to which general con-
cepts derived from simplified models can be applied to real
systems, as well as the degree of variability and complexity
that can arise due to a network’s specific geometry.

2 Background

2.1 Modelling long-profile evolution of alluvial rivers

Wickert and Schildgen (2019) developed a model describ-
ing the long-profile evolution of transport-limited, gravel-bed
rivers. Their approach brings together established theory re-
lating water flow, sediment transport and channel hydraulic
geometry that has been extensively tested in laboratory and
field settings. The result is a model grounded in first prin-
ciples and consisting only of parameters that are physically
defined (i.e., parameters that can, in principle, be measured).
We envisage a self formed channel meandering through a
gravel valley with width B and length L (Fig. 3). Over time,
the channel sweeps from side to side, moving downstream
sediment from the entire valley cross section. Then, follow-
ing Exner (1925), change in elevation, z, through time, ¢, is
controlled by along-stream variations in bedload sediment
discharge, Q:

iz 1 00
at  B(1—1xp) ox

+U, (D

where x is distance down valley, A, is sediment porosity and
U is a source/sink term that can account, for example, for
uplift and subsidence, along-stream sources of sediment, or
bedload loss due to downstream fining (all notation is sum-
marised in Appendix A). Wickert and Schildgen (2019) de-
rived an expression for Qg in terms of bankfull water dis-
charge, Oy, and down-valley slope:
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where [ is the intermittency of bankfull discharge, S is sinu-
osity, and kg, A~ 0.041 is a coefficient combining terms re-
lating to sediment transport and equilibrium hydraulic ge-
ometry. This expression assumes that sediment discharge de-
pends on bed shear stress according to the relationship of
Meyer-Peter and Miiller (1948), which was later updated
by Wong and Parker (2006); that gravel-bed channels adjust
their widths such that the bed shear stress is maintained at a
fixed ratio of the threshold for bedload motion (Parker, 1978;
Phillips and Jerolmack, 2016); and that bed roughness fol-
lows a grain-size dependent Manning—Strickler formulation
(Parker, 1991, Clifford et al., 1992).

Combining Egs. (1) and (2) gives

3z ko 0 ( 3z |0z

dx

1/6
— = — — U, 3
3t~ STOB(1—2p) dx \ " dx >+ )
a non-linear diffusion equation, in which we have assumed
that kg, I, and S do not vary along stream. Throughout this
work, we solve Eq. (3) using the boundary conditions:

5 6/7
e - _g(A) 4)
dx x=0 stIQW’O

and

z2(x=L,t)=0. )

Additionally, for single-segment models, we apply the initial
condition:

00\’
Z(x,t=0)=2=—S<—’> (L —x), (6)
ko I Qw,0

where L is the x (i.e., down-valley) position of the valley
outlet. Equation (4) states that the slope at the valley inlet is
set by the ratio of the sediment and water supplies (denoted
Qs.0 and Qy o, respectively). Equation (5) states that the ele-
vation at the valley outlet is fixed to zero. Equation (6) states
that the long profile begins in equilibrium with the supplied
sediment to water ratio.

2.2 Solutions for a single-segment valley with upstream
supply of water and sediment

McNab et al. (2023) explored the behaviour of Eq. (3) for the
simple, single-segment case in which all water and sediment
is supplied at the valley inlet (Fig. 3a). They showed that,
if the system is subjected to small variations in water and
sediment supply, such that

Ow(x,1) = Qw +8Qw(t) (7)

and

https://doi.org/10.5194/esurf-13-1059-2025
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Figure 3. Schematic diagrams showing the alluvial valley cases we investigate. (a) Single-segment, upstream supply case (McNab et al.,
2023). Sediment and water are supplied only at the valley inlet, with discharges of Qg o and Qy ¢, respectively. Sediment is transported
downstream to the outlet, where it is exported with a discharge of Qg ;. We assume that changes in water supply affect the entire valley
instantaneously, so that the water discharge at the outlet equals that at the inlet, Q. Also shown are the valley length, L, valley width,
B, and channel sinuosity, S. (b) Single-segment, along-stream supply case. Here, in addition to sediment and water supplied to the inlet,
sediment and water are added to the valley continuously along stream. Responsible processes could include: sediment supply from low order
gullies and debris chutes, creep and mass wasting on hillslopes, or lateral erosion by the channel; water supply from low order gullies and
rills, surface runoff, or groundwater. Since water accumulates along stream, water discharge at the outlet, Qv ;, now diverges from that at the
inlet. (¢) Network case. Analogous to the single-segment cases, we investigate both an upstream supply case, in which water and sediment
and supplied only at valley inlet segments, and an along-stream supply case in which sediment and water are supplied along segments as
well as at inlet segments.

valley inlet, changes in water supply are assumed to affect
_ the entire valley instantaneously (Eqs. 7-8).
Os,0(t) = Q5,0 +80s,0(0), 3 McNab et al. (2023) further showed that if sinusoidal fluc-
tuations in water and sediment supply are imposed, so that

where

n_ S = A —_ . 2t =
$0ull) X Ow @ O0= QwQW““(‘E‘> (13)
and and

050 — . [ 2nt
PO B 10)  80s0() = Ao, Qs,osm<T>’ (14)

then variation in elevation can be approximated by then resulting fluctuations in elevation and sediment dis-

charge are approximated by

96 828
g9% P _Z’ (11)
ot dx? _ . (27
dz(x,t) %Z(AQS’Q _-AQW)GZ sin ?(t —®7) (15)
where
—— s 1/6 and

7 koI Ow |0z (12)
K= ~

6 B(1 —Ap)|0x §Qs(x, 1)~

- (27

where « is a sediment-transport diffusivity. In Eqs. (7)—(12), 0s,0(Ag,, —Ag, )G g, sin 7 (t—90,) ). (16)
overlines indicate mean values (with respect to time), while
“8”s indicate small variations about those means. Note that, AQs,o and Ag,, are dimensionless amplitudes, normalised by

while variations in sediment supply are imposed only at the their mean values, of sediment supply and water discharge,
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respectively, while P is the period of the imposed signal. The
valley’s response to sinusoidal variations in water and sed-
iment supply is itself approximately sinusoidal, modulated
by two parameters: “gain”, G, and G, and phase shift,
¢, and @, (Howard, 1982, obtained a similar result for a
generic linear system). Gain describes the response ampli-
tude relative to the amplitude of the imposed signal. A value
of zero indicates that, despite imposed variation in water or
sediment supply, there is no variation in elevation or sedi-
ment discharge. A value between zero and one indicates that
amplitudes of variation in elevation or sediment discharge
are lower than those imposed (i.e., the signal is damped, or
buffered). A value of one indicates that the response and im-
posed signal have the same amplitude, while a value greater
than one indicates the that imposed signal is amplified. The
phase shift, or lag, describes the offset in time between the
imposed signal and the valley response.

McNab et al. (2023) provided analytical expressions for
G;, Gg,, ¢; and ¢, and showed that they are principally
controlled by two key parameters: the relative distance along
stream, x /L, and the forcing period relative to the valley’s
equilibration time, P/Teq, where Teq = L? /k (e.g., Paola et
al., 1992). This result implies that for a given external forc-
ing, the likelihood of terrace formation, related to G, and its
timing, related to ¢,, depend on the timescale of that forcing,
the size of the system, and the position along stream. Sim-
ilarly, the likelihood of a detectable signal reaching down-
stream sedimentary basins, related to G g, at the valley out-
let, and its timing, related to ¢, at the outlet, also depend on
the forcing timescale and the system size.

3 Approach

Here, we extend McNab et al. (2023)’s application of Wick-
ert and Schildgen (2019)’s model to explore how along-
stream sources of water and sediment and the geometries of
alluvial valley networks influence their responses to chang-
ing water and sediment supply. In turn, we explore how
distributions of terraces and their ages within valley net-
works, as well as patterns of sediment accumulation in down-
stream basins, are related to external change. Specifically,
complementing McNab et al. (2023)’s analysis of the single-
segment, upstream supply case, we analyse numerical simu-
lations of two additional geometric representations of a river
system (Fig. 3). In the first geometric representation, we
model a single-segment valley in which water and sediment
are supplied along stream so that they increase continuously
according to a power law (hereafter the “single-segment,
along-stream supply” case; Fig. 3b). In the second geometric
representation, we model branching networks of converging
tributaries, including a general case where all sediment and
water are supplied at inlet segments and a general case where
sediment and water are also supplied along stream (Fig. 3c).
For each of these scenarios, we impose periodic variations
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in sediment and water supply, and compute resulting varia-
tions in elevation and sediment discharge along stream and
throughout the network. From these results, we derive esti-
mates of gain and phase shift along stream and throughout
the network, and compare them to the analytical solutions of
McNab et al. (2023) for the single-segment, upstream sup-
ply case. This approach allows us to characterise the valley
response and isolate the influences of along-stream sediment
and water sources and of network geometry.

4 Single-segment valleys with along-stream supply
of water and sediment

4.1 Modelling framework

We supply water along stream so that water discharge in-
creases continuously according to a power law:

Ow =kx,QW(x + x0)Pv0w a7

where ky o, is the power-law coefficient linking distance
downstream to bankfull water discharge, p, ¢, is the power-
law exponent, and x is a distance from the drainage divide
at the valley inlet. This approach is similar to that of several
previous studies (e.g., Goldberg et al., 2021; Braun, 2022).
Equation (17) is related to Hack’s Law, which connects
downstream distance to upstream drainage area (though
commonly expressed in the opposite sense, with downstream
distance as a function of drainage area; Hack, 1957). How-
ever, the relationship between drainage area and bankfull wa-
ter discharge is not linear, being influenced, for example, by
catchment hydrology and the catchment’s size relative to that
of the footprint of major rainfall events (S6lyom and Tucker,
2004). These effects result in bankfull water discharge in-
creasing more slowly downstream than drainage area (Aron
and Miller, 1978; O’Connor and Costa, 2004). We adapt the
earlier definitions of equilibration time, Teq, (e.g., Paola et
al., 1992) to account for along-stream variation in water dis-
charge as follows:

L2

eq = , 18
7 (k) (18)

where the angled brackets indicate a spatial average.

In an extension to previous studies, we also supply sed-
iment along stream. We set the source term, U, in Eq. (3),
to the sediment supply per unit distance along stream. We
choose this along-stream sediment supply so that sediment
discharge at steady state also increases downstream accord-
ing to a power law with the same form as Eq. (17). As such,

__ 1 90 _kuoprortxo)ne
B(1—14p) dx B(1—1yp)

— 1 Qs,O 00w
B(l_)‘p) QW,O ox

19)
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4.2 Numerical simulations

We simulate five single-segment valleys in which sediment
and water discharge increase at different rates, with 0.8 <
(Px,0w = Px,0,) < 2.4 (Fig. 4a). This range corresponds ap-
proximately to an inverse Hack’s law exponent in the range
1.6-2.4 (typical values from global compilations, e.g. Shen et
al., 2017; He et al., 2024), combined with an exponent link-
ing drainage area to bankfull water discharge in the range
0.5-1 (Aron and Miller, 1978; O’Connor and Costa, 2004;
Solyom and Tucker, 2004). For each valley, we choose ky ¢,
and ky g, so that the ratio of sediment to water discharge
remains constant along stream at steady state and the av-
erage water and sediment discharge is equal across all five
simulated valleys (specifically, we set the spatial and tem-
poral mean water discharge, (Qy), to 26m>s~!, and sup-
ply sediment from upstream and along stream such that
the spatial and temporal mean sediment discharge, (Qy), is
2.6x1073m3s™1). As such, each valley has the same steady-
state slope, which is constant along stream (Fig. 4b). We set
valley width, B, to a uniform value of 256 m, so that each
valley has the same equilibration time of 100 kyr (as defined
in Eq. 18).

For each valley, we performed a series of numerical sim-
ulations in which we varied sediment or water supply sinu-
soidally (both at the inlet and along stream), with a range of
periods between P/Teq = 1072-10%. We define gain numer-
ically as

_ max(z(x, 1)) —min(z(x, 1))

G.(x) = DX 20
) 220)(Ag, — Ag.) 20)
and

Go.(x) = max(Qs(x,t))—min(Qs(x,t))’ @1

204(x)(Ag, — Ag,)

which we compute directly from the simulated time series
of elevation and sediment discharge. To avoid the influence
of transient effects at the onset of periodic forcing, we mea-
sure gain only after two complete cycles (i.e., with > 2 P).
We estimate the phase shift by extracting peaks and troughs
in the simulated time series of elevation and sediment dis-
charge and measuring the difference in time between them
and peaks and troughs in the imposed signal. We then explore
how gain and lag vary along stream, as functions of forcing
period and discharge exponent, and compare with equivalent
results for the single-segment, upstream supply case (derived
from numerical simulations and analytical solutions previ-
ously presented by McNab et al., 2023).

4.3 Results and comparison with single-segment,
upstream-supply case

We first show simulated aggradation, incision and sediment
discharge of an example valley with py o, = px 0, =1.6
at three forcing periods (Fig. 5). For comparison, we also

https://doi.org/10.5194/esurf-13-1059-2025
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Figure 4. Initial setup for case with along-stream supply of wa-
ter and sediment, and comparison with the upstream supply case.
(a) Water discharge, Qw, (solid lines) and sediment discharge, Qs
(dotted lines), as functions of distance downstream, where colour
indicates power-law exponents py o, = Px,(,- Dashed grey line
shows spatial average, corresponding to the upstream supply case.
(b) Elevation as a function of distance downstream for the case
with along-stream supply of water and sediment (solid lines) and
the case with only upstream supply of water and sediment (dashed
line). Since the ratio of sediment to water discharge is held con-
stant throughout the domain and between each valley, the profiles
are linear with the same slope as one another.

include results from an equivalent simulation with sedi-
ment and water supplied only upstream (i.e., with py o, =
Dx,0, = 0; McNab et al., 2023). To elucidate further how
the valley response varies spatially, with forcing timescale,
and with the power-law exponent, we then show gain and lag
for each valley as functions of downstream distance (Fig. 6)
and forcing period (Fig. 7), again with comparison to the up-
stream supply case (McNab et al., 2023). We found that, in all
cases, patterns of long-profile evolution are similar regard-
less of whether sediment supply or water supply is varied.
We therefore only show variation in elevation driven by vari-
ation in sediment supply here (equivalent results for varia-
tion in water supply are shown in Figs. S1-S3 in the Supple-
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ment). To further simplify the presentation of results, while
we consider how the long profile varies along stream, we
focus on variation in sediment discharge only at the valley
outlet, which is most relevant for downstream sedimentary
basins.

Broad patterns of aggradation and incision are similar for
both the upstream and along-stream supply cases (Figs. 5g—
1, 6 and 7a and d; see also Howard, 1982; Goldberg et al.,
2021; Braun, 2022). In both cases, when the forcing period
is short relative to the valley’s equilibration time (P < Teq),
amplitudes of aggradation and incision are low (G, ~ 0) and
lag significantly behind the forcing (¢, > 0). At intermedi-
ate forcing periods (P ~ T¢q), amplitudes are increased and
lag times reduced. When forcing periods significantly ex-
ceed the equilibration time (P >> Tq), aggradation and in-
cision occurs with similar amplitudes to, and close to in
phase with, the imposed variation in sediment or water sup-
ply (G, ~6/7=0.86, ¢, ~0; the value of 6/7 is related
to the 7/6 power on valley slope in the sediment-discharge
equation, Eq. 2).

Nevertheless, some important differences in patterns of
aggradation and incision do arise between the upstream and
along-stream supply cases, most evident in the distributions
of gain and lag as functions of downstream distance and
forcing period (Figs. 6 and 7). First, in the along-stream
supply case, G; is larger and ¢, is generally lower than in
the upstream supply case, for a given forcing period. Sec-
ond, in the upstream supply case, G, and ¢, decrease and
increase continuously downstream, respectively (Fig. 6). In
contrast, in the along-stream supply case, while G, initially
decreases and ¢, increases away from the inlet, both reach
turning points so that G, increases and ¢, decreases to-
wards the outlet. Third, while in the upstream supply case
@, decreases continuously as the forcing period increases, in
the along-stream supply case, it briefly increases to a max-
imum for periods close to the valley’s equilibration time
(P & Teq; Fig. 7d). These differences generally become more
pronounced as the water- and sediment-discharge power-law
exponents increase (Figs. 6 and 7).

When sediment supply is varied, variation in sediment
output follows similar patterns to aggradation and incision
(Figs. 5a—c and 7b and e); however, when water supply is var-
ied, different behaviour emerges (Figs. 5d—f and 7c and f; cf.
Simpson and Castelltort, 2012; Goldberg et al., 2021; Braun,
2022). When the period of variation in water supply is short
relative to the valley’s equilibration time (P < Teq), varia-
tion in sediment output has the same amplitude and is in
phase with the forcing (Go, =1, ¢g, =0). In the upstream
supply case, when the forcing period is increased, the am-
plitude of variation in sediment output briefly exceeds that
of the imposed variation in water supply (G, > 1 while
P ~ T¢q), before decreasing to zero for long forcing periods.
In the along-stream supply case, variation in sediment output
is not amplified at periods close to the valley’s equilibration
time, instead decreasing continuously as the forcing period
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increases. In both cases, negative lag times are introduced, so
that peaks in sediment output precede corresponding peaks in
water supply.

4.4 Interpretation

Two concepts help explain physically the variations in val-
ley response that arise due to changing sediment and water
supply (Figs. 5-7). First, the extent to which the valley can
adjust to external perturbations depends on the relationship
between the perturbation timescale and the timescale over
which the valley can aggrade and incise (e.g., Howard, 1982;
Paola et al., 1992; Goldberg et al., 2021; Braun, 2022). At the
valley scale, the approximate timescale over which the valley
can adjust is given by the equilibration time, Teq. At the local
scale, however, the adjustment efficiency is also influenced
by the local diffusivity (Eq. 12). In the upstream case, diffu-
sivity is uniform along the valley, while in the along-stream
supply case, it increases downstream with water discharge,
so that the capacity for the valley to adjust also increases
downstream. Second, variation in sediment and water sup-
ply can be thought of as a signal introduced to the valley that
can propagate along stream. In the upstream supply case, this
signal takes the form of variations in slope at the inlet, that
must then propagate downstream. In the along-stream supply
case, as well as signal originating from the valley inlet, signal
is introduced continuously along the valley, and propagates
both up- and down-stream.

We first apply these concepts to patterns of aggradation
and incision (Figs. 5g-1, 6 and 7a and d). At the valley
scale, when sediment or water supply vary with periods much
smaller than Ty, aggradation and incision cannot keep pace
with the forcing and amplitudes are low. As the forcing pe-
riod increases to values similar to or greater than Teq, aggra-
dation and incision can increasingly keep pace and ampli-
tudes increase. In the upstream supply case, signal is intro-
duced only at the inlet, so that lag increases continuously
downstream as the signal propagates. For short forcing pe-
riods relative to Teq, incomplete adjustment causes the sig-
nal to diffuse as it propagates, so that gain decreases down-
stream. In contrast, in the along-stream supply case, signal
is introduced continuously along stream, and diffusivity in-
creases downstream as a result of increasing water discharge.
As such, downstream parts of the valley do not need to “wait”
for signal to propagate from the inlet, and have a greater ca-
pacity to adjust to the forcing. Away from the inlet, local sig-
nal sources therefore increasingly dominate, so that gain in-
creases and lag decreases towards the outlet (i.e., the signal
appears to propagate upstream).

Peaks in lag at forcing periods close to Teq for the along-
stream case reflect the interaction between local and up-
stream signal sources (Fig. 7d). At shorter forcing periods,
signal introduced at the inlet quickly diffuses away, so that
aggradation and incision further downstream is controlled
only by local signal sources. At periods around Teq, signal in-
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Figure 5. Valley response to sinusoidal variation in sediment and water supply at three forcing periods, for the cases where all sediment and
water are supplied at the valley inlet (dashed lines, previously shown by McNab et al., 2023) and where sediment and water are supplied
along stream with a power-law exponent py o, = px, g, = 1.6. (a—¢) Red solid line shows normalised variation in sediment supply as a
function of time; dashed grey line shows normalised sediment discharge at the valley outlet for the upstream-supply case; solid black line
shows normalised sediment discharge at the valley outlet for the along-stream supply case; greyscale circles show times used in panels (j-I).
(d—f) Same as (a—c) except blue solid line shows normalised variation in water supply. (g-i) Elevation, z, as a function of time for selected
positions along stream, in response to changing sediment supply. Dashed grey lines represent upstream-supply case; solid, coloured lines
represent along-stream supply case. (j-1) Valley long profiles at different times for the along-stream supply case in response to changing
sediment supply (for the upstream supply case, compare with Figs. 2 and 3 in McNab et al., 2023). Grey scale lines show long profiles,
where shade corresponds to times represented by circles on panels (a—c); bluescale lines show perturbations from the steady state profile, éz.

Equivalents to panels (g-1) for variation in water supply are shown in Fig. S1.

troduced at the inlet maintains some amplitude downstream,
but takes time to propagate; the increasing influence of this
upstream signal causes lag times to increase briefly with in-
creasing period. As the forcing period increases further, the
signal propagates more efficiently downstream, so that lag
times again steadily decrease.

When sediment supply is varied, variation in sediment dis-
charge is driven only by variation in valley slope (Eq. 2).
Thus, in both the upstream and along-stream supply cases,
variation in sediment output closely follows that of aggrada-
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tion and incision at the valley outlet: G, and ¢o_ behave
similarly to G, and ¢, (Figs. Sa—c and 7b and e).

In contrast, when water supply is varied, it influences the
valley’s capacity to transport sediment directly as well as
triggering variations in slope (Eq. 2). Interactions can then
arise between the imposed variation in water supply and the
resulting variations in slope that can be damped and lag be-
hind the forcing (Figs. Sa—c and 7b and e). At forcing peri-
ods much shorter than Teq, slopes do not adjust along much
of the valley, so that variation in water supply is translated

Earth Surf. Dynam., 13, 1059-1092, 2025
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Figure 6. Elevation gain, G, and lag, ¢;, of valley response to changing sediment supply, as functions of distance downstream for three
forcing periods, P = Teq/10 (a, d); P = Teq (b, €); P = Teq x 10 (¢, f). Dashed grey lines show G and ¢, for the case where all sediment
and water is supplied at the valley inlet (computed using the analytical expression given by McNab et al., 2023). Solid lines show G, and ¢,
for the case where sediment and water are supplied continuously along stream, where colour represents power-law exponent py o, = Px, Q-
Note that the saturation of G, at 6/7 is related to the power of 7/6 in the sediment-transport equation (Eq. 2). The behaviour in response to

changing water supply is very similar (Fig. S2).

directly into to variation in sediment output. Meanwhile, at
forcing periods much longer than T¢q, slopes can adjust to
maintain an equilibrium with sediment and water supply, so
that sediment output varies little (see also Goldberg et al.,
2021; Braun, 2022). At intermediate forcing periods, slopes
partially adjust, but lag behind the imposed variation in water
supply. In the upstream supply case, variation in water sup-
ply and slope combine to amplify the imposed signal, while
in the along-stream supply case, amplitudes simply decrease
from short to long forcing periods.

In both the upstream and along-stream supply cases, the
delayed adjustment of valley slope leads to a negative lag
in sediment output, such that peaks in sediment output arise
prior to imposed peaks in water supply (Figs. 5d—f and 7f).
Consider the onset of sinusoidal variation in water supply.
Initially, water supply increases without any adjustment of
valley slope, so that sediment output also increases. Valley
slope then begins to decrease, so that sediment output in-

Earth Surf. Dynam., 13, 1059-1092, 2025

creases more slowly and then begins to decrease. This tran-
sition occurs prior to water supply reaching its maximum,
resulting in the negative lag or appearance that variation in
sediment output leads that of water supply.

5 Alluvial valley networks

5.1  Modelling framework

We model alluvial valley networks as a series of intercon-
nected network segments, each of which follow Eq. (3). We
supply sediment and water to inlet segments (i.e., segments
without any segments upstream), and impose base level at
the outlet segment (i.e., a segment without any segments
downstream). In some cases, we also supply water and sedi-
ment along stream, analogously to the single segment, along-
stream supply case presented above (Fig. 3c). Within the
network, a segment’s sediment supply is set by the sum of
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sediment discharges from its upstream segments, while el-
evation is required to be continuous across segment junc-
tions (see also Howard, 1982). To solve Eq. (3), we use the
semi-implicit finite-difference scheme presented by Wickert
and Schildgen (2019) adapted for a network (Wickert et al.,
2025).

To define the network topology (i.e., the position of each
segment in the network relative to its adjacent segments),
we use an approach introduced by Shreve (1966), follow-
ing the algorithm outlined by Shreve (1974). This algorithm
randomly generates binary trees with a given number of val-
ley inlet (or “exterior”) segments; an example is shown in
Fig. 8a—d. The algorithm treats all possible binary trees as
equally likely. It has been argued that populations of bi-
nary trees generated with this approach are not realistic rep-
resentations of real river-network populations, because, un-
like river networks, the trees produced are not necessarily
space filling (e.g., Dodds and Rothman, 2000). Abrahams
(1984) discusses observations from real networks that de-
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viate from the predictions of Shreve’s model, often associ-
ated with space-filling constraints, but also occurring in re-
gions with high relief. We note that several other frameworks
for randomly generating synthetic networks have been devel-
oped, including, for example: undirected or directed random
walks on lattices (Leopold and Langbein, 1962; Scheidegger,
1967); models of headward growth and branching (Howard,
1971; Dunkerley, 1977); “Random Self-similar Networks”,
that can be constructed with specified statistical proper-
ties (Veitzer and Gupta, 2000); and “Optimal Channel Net-
works”, that seek to minimise energy expenditure involved
in the transport of water across the landscape (Howard, 1990;
Rodriiguez-Iturbe et al., 1992). Several of these approaches
avoid the space-filling problem by constructing networks
explicitly on two-dimensional grids, but no consensus has
emerged as to which most successfully recreates realistic net-
work populations. Furthermore, our model of long-profile
evolution and sediment transport does not require any spa-
tial information beyond distances along stream and the topo-
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logical relationships between segments. We therefore persist
with Shreve’s approach, since it is relatively simple and sam-
ples all possible binary trees, with the caveat that the statistics
of network populations we obtain may deviate from those of
natural networks.

Once the network topology has been defined, lengths and
properties such as water discharge and valley width need to
be assigned to each segment. In natural networks, segment
lengths and widths vary, and water discharge is derived from
upstream catchment areas as well as locally from ground-
water and surface runoff. Such complexities may influence
how alluvial river networks respond to external variation in
sediment and water supply, but they may also obfuscate more
general aspects of network behaviour. We therefore start with
more simplified synthetic representations of alluvial river
networks, before progressively building complexity towards
more naturalistic representations.

Specifically, we consider four network scenarios. In the
simplest scenario, we set segment lengths to a uniform value
of 5km and supply water and sediment only at the valley in-
lets (Figs. 3c and 8a and e). In the second scenario, we draw
random segment lengths from a gamma distribution with a
shape parameter of two and a mean of 5 km, following Shreve
(1969) and Shreve (1974), but still supply water and sedi-
ment only at the valley inlets (Fig. 8b and f). Note that, un-
like Shreve (1969) and Shreve (1974), we do not use different
length distributions for inlet and interior segments, for sim-
plicity and due to a lack of evidence for systematic differ-
ences between them (Abrahams, 1984). Shreve (1974) also
showed that a segment’s local contributing area scales ap-
proximately linearly with its length, with a factor of around
300 m2m~!. In the third scenario, we therefore return to uni-
form segment lengths, but add water and sediment along each
segment as well as at the valley inlets (Figs. 3c and 8c and g).
In the fourth scenario, we use non-uniform segment lengths
and also add water and sediment along each segment (Fig. 8d
and h). In all scenarios, we set values of upstream and along-
stream water supply so that the mean across each network,
(Ow),is 26 m?s~!. We also fix the ratio of sediment to water
supply to a constant value of 107, and neglect any down-
stream fining, so that the network long profiles are linear at
steady state (Fig. 8i-1; cf. Pizzuto, 1992). We do not expect
this choice to influence significantly our results, since the dif-
fusivity is only weakly dependent on valley slope (Eq. 12).
In all scenarios, we fix the valley width to a uniform value of
254 m; we return to implications of this choice in the Discus-
sion (Sect. 6.3).

5.2 Characterising network geometries

To explore how a network’s geometry influences its response
to external forcing, we first need to be able to describe its
geometry in a quantitative way. This topic has been the fo-
cus of considerable effort for the last few decades, so that
many network metrics have been proposed and applied. In
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the absence of a priori ideas regarding controls on network
responses to changing sediment and water supply, we test a
range of existing metrics that quantify different aspects of
network structure.

Horton (1945) developed an influential set of statistics de-
scribing network geometries that are now known as “Hor-
ton’s laws”. These laws rely on the concept of “stream or-
der”, which was later modified by Strahler (1952). Exterior
or inlet segments are defined as first order streams. Where
two first order streams combine, a second order stream is
formed. Where a second order stream meets a first order
stream, the second order stream is lengthened; only when two
second order streams meet is a third order stream initiated,
and so on. Thus streams of order two or greater can consist
of multiple network segments. Horton (1945) showed that,
within a given network, the number of streams with order w,
N, decreases with stream order such that

N
Ney+1

~ Rp, or N, ~ Rp¥?, (22)

where €2 is the maximum stream order within the network.
Rp is termed the “bifurcation ratio”, and can be visualised as
the gradient of a linear function relating w to N,, in linear-
logarithmic space (Fig. 8m—p). Horton (1945) also showed
that stream lengths increase with stream order, such that

Ly
L1

~ Ry, or Ly~ R.“ . (23)
Schumm (1956) showed that a similar rule applies to stream
drainage areas:

Aw
Ap+1

A~ Ry, or Ay~ Rp“ L. (24)

L, and A, are mean lengths and drainage areas, respec-
tively, of streams with order w; and Ry and R4 are termed
the length and area ratios, respectively. Since the synthetic
networks used here have no inherent upstream drainage area,
we define a related statistic using water discharge:

Qw,w

QW,a)«H

~ Roy. o Ouu™ Ro, ", 25)

where Qv is mean water discharge of streams with order
w and Rg,, is the discharge ratio. Typical values of Horton’s
ratio in natural networks are: 3 < Rg <5, 1.5 < Ry < 3 and
3 < R4 <6, and Shreve (1966, 1969) showed that popu-
lations of random networks generated using his approach
(which we adopt here) return similar values. However, Kirch-
ner (1993) showed that these ranges are in fact characteristic
of all possible binary trees, while Jarvis and Werritty (1975)
showed that Horton’s laws retain relatively little information
about network topology. Both Jarvis and Werritty (1975) and
Kirchner (1993) therefore suggest that Horton’s Laws are
not particularly useful measures of network structure. Costa-
Cobral and Burges (1997) do show, nevertheless, that they
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Figure 8. Randomly generated networks for four scenarios: (a, e, i, m) uniform segment lengths with upstream supply of sediment and
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(a—d) Schematic network planforms, where colour indicates stream order (Strahler, 1952). Horizontal lines represent network segments
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relationships between segments. Line thickness scales with water discharge (see key in panel 1). (e-h) Discharge as a function of distance
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can in some cases be used to discriminate between network
populations with different characteristics. We include them
here for completeness and consistency with the existing lit-
erature.

Another limitation of Horton’s laws is that they do not
distinguish between streams of a given order that flow into
streams of different higher orders (e.g., a first-order stream
that flows into a second-order stream is treated the same as
one that flows into a third order stream). As such, they only
hold exactly for networks in which streams of each order
exclusively flow into streams exactly one order higher (Tar-
boton, 1996). Tokunaga (1978) devised an alternative scheme
which does account for all possible relationships between
streams of different orders. Tokunaga defines the parameter
€; as the average number of streams of order w flowing into
streams of order w + i. They then define the parameter K as
average decrease in €; as i is incrementally increased, i.e., the
average of €1 /€2, €2/€3, ..., €q—1/€q. K is therefore a more
sophisticated version of Horton’s Rp.

Another prominent series of network metrics are built
around the concept of “topological length” (e.g., Werner
and Smart, 1973; Jarvis and Werritty, 1975). This frame-
work is particularly attractive for the present problem since
timescales of diffusive processes are known to scale with a
system’s length (e.g., Paola et al., 1992). A segment’s topo-
logical length, which we denote /, is defined as the number of
segments from it to the outlet (including it and the outlet seg-
ment). Commonly used metrics making use of the topolog-
ical length are: the maximum topological length of all seg-
ments in the network, /.x (also known as the network “di-
ameter”); the average topological length of all segments in
the network, (/); and the average topological length of all in-
let segments, (I1) (also known as the “mean source height”).
Since some of the networks we analyse have variable seg-
ment lengths, we also define an equivalent set of metrics that
use absolute rather than topological lengths, i.e.: the maxi-
mum length to the outlet, L,x; the mean length of all seg-
ments in the network to the outlet, (L); and the mean length
from all inlet points to the outlet, (Ly) (cf. the catchment
“centre of gravity”; Langbein, 1947; Gray, 1961).

Similar to the topological length is the concept of “topo-
logical width”, defined as the number of segments positioned
at a given topological length from the outlet, w (e.g., Kirkby,
1976; Ranjbar et al., 2018). Typically, the maximum topolog-
ical width in a network, wpax, is taken as a measure of a its
structure; we also include the mean topological width, (w).

Lastly, we make use of the widely documented power-
law relationship between upstream drainage area and dis-
tance downstream from the drainage divide known as Hack’s
law (Hack, 1957; Gray, 1961; Mueller, 1972). The exponent
of this power law provides a measure of the rate at which
drainage area accumulates downstream. As in the case of Ry
above, since the networks we analyse have no inherent up-
stream drainage area, we fit a power-law function relating a
point’s distance from the furthest inlet to its water discharge

Earth Surf. Dynam., 13, 1059-1092, 2025

F. McNab et al.: Morphodynamics of alluvial river networks

(insets in Fig. 8e-h). The exponent of this power law, p, is
then equivalent to a combination of an inverse Hack’s expo-
nent and an exponent linking drainage area to bankfull water
discharge.

5.3 Numerical simulations

For each of the four network scenarios described in Sect. 5.1,
we performed two sets of simulations. First, to assess the
range of behaviour of networks with a fixed number of seg-
ments, we generated 200 networks each with 40 valley inlet
segments (corresponding to 69 segments in total). Second,
to assess how network behaviour varies with the number of
segments, we generated a set of networks with numbers of in-
let segments between 2 and 150. We generated four distinct
network topologies for each number of inlet segments, for a
total of 596 networks. For each network, we varied sediment
and water supply sinusoidally with seven periods logarithmi-
cally spaced between one hundredth and one hundred times
the equilibration time, where as an initial estimate, we define
network equilibration time with the maximum stream length,
Lmax (denoted Teqmax). We ran each simulation for four full
cycles with timesteps of one thousandth of the forcing pe-
riod. After each simulation, we measured elevation gain, G,
and lag, ¢,, throughout the network, and sediment-discharge
gain and lag at the network outlet (G g, 1 and ¢g,, 1, respec-
tively).

In preparatory simulations, we found that networks re-
sponded to cyclical variations in sediment and water supply
in broadly similar ways to the simpler, single-segment cases
described earlier (see also Howard, 1982). Nevertheless, we
also found significant variability between networks with the
same number of segments, but different segment configu-
rations, implying that a network’s configuration influences
its response time. To quantify this variability, we compared
G, as a function of forcing period for each network to
the predictions for the simple single-segment case in which
all sediment and water are supplied at the inlet. This single-
segment, upstream supply case has a well defined relation-
ship between G ¢, ;. and the forcing period normalised by the
valley equilibration time, P /Teq, which has been determined
analytically (Fig. 7b; McNab et al., 2023). We therefore used
an iterative optimization scheme to ﬁncl,\for each network, an
empirical network equilibration time, Ty, that minimises the
difference between its G, 1, obtained numerically, and the
analytical solution for the single-semgment, upstream sup-
ply case. From this equilibration time we define an “effective
length”, L, for the network, following the definition of equi-
libration time in Eq. (18), given by
L =,/Teqlx). (26)
We can then compare empirical network equilibration times
and effective lengths obtained in this way with network prop-
erties to assess which features control the timescales of the
network responses.
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5.4 Results

We first assess timescales of network responses to variation
in sediment and water supply and their controls (Figs. 10—
12). We then present broad patterns of aggradation, incision
and sediment output as functions of forcing period, provid-
ing an overview of the possible range of behaviour across
catchments with different properties (Fig. 13). Lastly, we ex-
plore in detail spatial patterns of aggradation and incision,
which influence the distribution and timing of terrace forma-
tion within networks (Figs. 14-16).

5.4.1 Timescales of network responses

In defining timescales of network responses to variation in
sediment and water supply, we focus on sediment discharge
at the network outlet, which depends on the integrated re-
sponse of the entire network. We first illustrate our procedure
for calibrating network equilibration times, Teq, with an ex-
ample for a single network (Fig. 9). Sediment-discharge gain
at the network outlet, G g, 1., in response to varying sediment
supply follows a broadly similar pattern to that of the single-
segment cases discussed earlier: G g, is close to zero for
short forcing periods and approaches one for long forcing pe-
riods, with a transition at intermediate periods. When the net-
work equilibration time is defined using the network’s maxi-
mum length, Teqmax, this transition occurs at shorter forcing
periods than for the single-segment, upstream supply case,
so that G, ;. for the network exceeds that of the analyti-
cal prediction (Fig. 9a). The difference between G, ; for
the network and the single-segment, upstream supply case is
reduced if smaller network equilibration times are used; we
used an iterative scheme to find the optimal value and de-
fine it as the network’s equilibration time, T¢q (Fig. 9b). In
this case, the optimal value of Teq ~ 33 kyr is approximately
half that of the value implied by the network’s main stream
length, Teq max =~ 71 kyr.

We next consider the full set of network simulations with
40 inlet segments (Fig. 10). When network equilibration time
is defined using the networks’ maximum lengths, Teqmax,
there is considerable vertical spread in G, ; (we used
Teq,max to define the periods at which the simulations were
run). At intermediate periods, G g 1 varies by up to a factor
of approximately two between networks at the same forc-
ing period (Fig. 10a—d). This variation in G g,,; confirms
that networks with the same number segments but differ-
ent geometries respond differently to external forcing. Using
7/”;], the same measurements of G ;. spread out horizon-
tally, closely following the predicted curve (Fig. 10a—d). This
horizontal spread corresponds to a range in empirical Teq
between approximately 20—150 kyr, for the cases with uni-
form segment lengths, which can be attributed to differences
in the network topology (see inset histograms in Fig. 10e
and g); this range increases to approximately 15-250 kyr for
the cases with non-uniform segment lengths (see inset his-
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Figure 9. Procedure for calibrating network equilibration times,
Teq, by minimising the difference between sediment-discharge gain
at the outlet, Go,,L-as a function of normalised forcing period,
P [Teq, for a given network and the single-segment, upstream sup-
ply case. (a) Black line shows G_ 1 as a function of P/Teq for
the single-segment, upstream supply case, according to analytical
solution of McNab et al. (2023). Grey circles show G 1 for the
network, where Teq is defined using the network’s maximum length.
Blue circles show G ¢, ;, for the network, where Teq is defined as
that which provides the optimal fit to the single-segment, upstream
supply case. (b) Black line shows root-mean-square (RMS) mis-
fit between G g1 for the network and for the single-segment, up-
stream supply case, as a function of network Teq. Grey and blue
circles show points corresponding to those shown in (a).

tograms in Fig. 10f and h). We obtain similar results for the
set of simulations with numbers of inlet segments ranging
between 2 and 150 (Fig. S4 in the Supplement).
Equilibration times defined empirically in this way are
only useful if they are predictable from measurable net-
work properties; only then can they provide insight into
the behaviour of natural systems. We therefore compute
Spearman’s rank correlation coefficients between network
effective lengths, Z, derived from the empirical equilibra-
tion times (Eq. 26), and the network properties defined in
Sect. 5.2 (Fig. 11; see Figs. S5 and S6 in the Supplement
for cross plots of all network metrics against L). (We choose
Spearman’s rank since the functional forms of relationships
between network effective lengths and the various network
metrics are not known a priori.) For the set of networks with
40 valley inlet segments and uniform segment lengths, we
obtain moderate correlations between L and Horton’s and
Tokunaga’s topological metrics (r ~ 0.4-0.7; Fig. 11a and ¢).
However, apart from for the length ratio Ry, correlations are
greatly reduced for the network case with non-uniform seg-
ment lengths and for the set with variable numbers of in-
let segments (Fig. 11a—d). In general, the series of metrics
based on topological and absolute lengths perform signifi-
cantly better (r > 0.6), in particular the average lengths ({I),
(I1), (L), (L1); r > 0.7). The average absolute lengths, (L)
and (Ly), perform well across all network cases (r > 0.99),
while the performance of the average topological lengths,
(/) and (I1), deteriorates for networks with non-uniform seg-
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Figure 10. Gain for sediment discharge at the valley outlet, G o 1 , as function of forcing period, P, normalised by equilibration time, Teq,
for the set of networks with number of inlet segments, N1 = 40. Circles represent networks, the black line represents the single segment
case where all sediment and water are supplied at the inlet (McNab et al., 2023), and the grey band represents range for the single-segment
case with along-stream supply of sediment and water, with power-law exponents py ¢, and py o, between 0.8 and 2.4. (a—d) Teq defined

using maximum length (i.e., maximum distance from valley inlet to outlet). (e-h) Empirical f;] optimised for each network to minimise the
difference between G o 1. as function of P /Teq of the network and the upstream supply case. Inset histograms show distributions of obtained
fe\q. (a, e) Uniform segment lengths with no along-stream supply of sediment and water; (b, f) non-uniform segment lengths with no along-
stream supply of sediment and water; (c, g) uniform segment lengths with along-stream supply of sediment and water; (d, h) non-uniform
segment lengths with along-stream supply of sediment and water. Equivalent results for the set of networks with N; = 2-150 in Fig. S4.

ment lengths (r ~ 0.7). Relationships between (L) and L
for each of the network scenarios are well approximated by
linear relationships passing through the origin with gradients
of 1.35-1.45 (Fig. 11e-1). We find moderate negative correla-
tions between effective length and topological widths and the
inverse Hack exponent, p. In particular, the mean topologi-
cal width, (w), performs well for networks with uniform seg-
ment lengths (r & —0.8), but, as with the topological length
metrics, this relationship deteriorates for networks with non-
uniform segment lengths. For the set of networks with vari-
able numbers of valley inlet segments, these correlations be-
come positive and decrease in magnitude.

Both the mean length, (L), and the mean inlet length, (L),
predict network effective length equally well. In the remain-
der of the paper, we focus on (Ly); it is, to us, more intu-
itively connected to the length of a single-segment valley.
This choice is, nevertheless, arbitrary, and similar arguments
to those we make in the following also apply to (L).

Earth Surf. Dynam., 13, 1059-1092, 2025

The distributions of L as a function of (L1) for the set of
networks with 2-150 valley inlet segments are slightly non-
linear, implying that the ratio of L to (L) varies with network
size (Fig. 11i-1). Indeed, in every scenario, L/(Ly) is close
to one for small numbers of inlet segments, then increases
quickly as the the number of inlets segments increases, until
about 50 inlet segments are reached, after which it increases
more slowly (Fig. 12). In our simulations, the upstream sup-
ply cases reach a maximum value of L/(Ly) =~ 1.45, while
the along-stream supply cases reach a slightly lower maxi-
mum of Z/ (L1) ~ 1.42. The scenarios with non-uniform seg-
ment lengths (Fig. 12b and d) show considerably more scatter
than those with uniform segment lengths (Fig. 12a and c).

5.4.2 Network response as function of forcing period

Accounting for the effects of networks’ structure on their
equilibration times allows us to explore their behaviour in
more detail within a common reference frame. In the follow-
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Figure 11. Controls on the network effective length, L, for four network scenarios with: (a, e, i) uniform segment lengths with no along-
stream supply of sediment and water; (b, f, j) non-uniform segment lengths with no along-stream supply of sediment and water; (c, g, k) uni-
form segment lengths with along-stream supply of sediment and water; (d, h, 1) non-uniform segment lengths with along-stream supply
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bars represent sets of 200 networks each with 40 valley inlet segments; orange bars represent sets of 600 networks with 2-150 valley inlet
segments. Solid bars correspond to positive trends while hatched bars correspond to negative trends. (e~h) Circles show L as a function of
mean length, (Lp), for each network in the sets of simulations with 40 valley inlet segments. Histograms show distributions of each variable.
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valley inlet segments.

ing, we show how gain and lag vary as a function of period,
where period is normalised by the networks’ individual equi-
libration times, 7/‘;1, determined above (Fig. 13, for results
with Ni =40; Fig. S7 in the Supplement for results with
Nj =2-150). As with the single-segment cases, we found
that elevation gain, G, and lag, ¢., are similar regardless
of whether sediment or water supply is varied. Therefore,
only the results for variation in sediment supply are shown
(Figs. 13a—h and S7a-h); corresponding results for variation
in water supply are shown in Figs. S8 and S9 in the Supple-
ment.

https://doi.org/10.5194/esurf-13-1059-2025

For each of the network scenarios, G, like G, 1, fol-
lows a similar pattern to the single segment cases: it remains
close to zero for short forcing periods and increases to ap-
proximately 6/7 (= 0.86) as the forcing period increases be-
yond the equilibration time (Fig. 13a—d). The range in G,
within individual networks is, however, significantly larger
than for the single-segment cases. The network scenarios
with non-uniform segment lengths (Fig. 13b and d) also show
a greater range and variability than those with uniform seg-
ment lengths (Fig. 13a and c). ¢,/ P, as in the single-segment
cases, is generally largest for small forcing periods and de-
creases for longer forcing periods (Fig. 13e—h). This pattern
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particularly holds for the networks with only upstream sup-
ply of sediment and water, for which ¢, typically lies be-
tween the single-segment, upstream and along-stream sup-
ply cases (Fig. 13e and f; see also Howard, 1982). How-
ever, for the network scenarios with along-stream supply
of sediment and water, ¢,/ P reaches a peak of around 0.2
with P/ 7/‘;1 ~ 107!, and then begins to decrease slightly for
shorter periods (Fig. 13g and h). There, the along-stream
range in ¢; is also considerably lower than for networks with-
out along-stream supply of sediment and water. We obtained
similar patterns for single-segment cases with along-stream
supply of sediment and water (Fig. 7d).

When sediment supply is varied, sediment-discharge gain,
Go,, and lag, ¢, at the valley outlet vary in similar ways to
those described for G, and ¢, above (Fig. 13i—p). However,
as in the single-segment cases, different patterns arise when

Earth Surf. Dynam., 13, 1059-1092, 2025

water supply is varied (Fig. 13q—x). There, G ¢, 1. is approx-
imately one for short forcing periods, and drops to zero for
long forcing periods. Unlike the single-segment, upstream
supply case, but similar to the single segment, along-stream
supply case, there is no significant amplification (G g, > 1)
at intermediate periods. ¢, 1., again similar to the single seg-
ment cases, is zero for short forcing periods and drops to
—0.25 for long forcing periods.

5.4.3 Spatial patterns of aggradation and incision

Patterns of aggradation and incision vary spatially within
networks, in ways that depend on network geometry and
could influence the distribution and timing of terrace for-
mation (Figs. 14-16). We first illustrate how gain and lag
vary spatially, as well as corresponding elevation time se-
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along-stream supply of sediment and water. (a—d) Elevation gain, G, in response to variation in sediment supply. Circles represent value at
the network outlet, where error bars represent range throughout network. Black line and grey band represent value at outlet and range along
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supply are shown in Fig. S8, and for the set of networks with N; = 2-150 are shown in Fig. S9.
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ries for selected segments, for an example network simula-
tion with forcing period equal to its empirical equilibration
time, Teq (Fig. 14). We then show gain and lag as functions
of downstream distance, for all four cases of the same net-
work topology and a range of forcing periods (Fig. 15; to aid
visualisation, we also provide a Video Supplement showing
corresponding patterns of aggradation and incision in plan
view). Finally, we show how these patterns vary for different
network topologies, distributed from most compact to most
elongate (Fig. 16). It is impractical to show here results from
each of the 796 networks we tested; we do, however, provide
a script in the accompanying software repository allowing in-
terested readers to plot the entire dataset (McNab, 2025). Al-
though, in detail, spatial patterns of aggradation and incision
are unique to each individual network, some general features
can be identified, of which the examples in Figs. 14—16 are
representative.

G, is broadly lowest upstream and highest downstream
in the network. It steadily increases downstream along the
higher order segments (in the example here, w > 2), similar
to patterns in mid- and down-stream sections of the single-
segment case with along-stream supply of sediment and wa-
ter (Figs. 6b and Fig. 15a—d, i-1, g-t). However, on lower
order streams (here w < 2), G, is generally highest at the in-
let and decreases downstream, similar to the simple single-
segment case with all sediment and water supplied at the
inlet, and to the uppermost sections of the single-segment
case with continuous supply of sediment and water along
stream. G, is generally highest at the inlet of tributaries
that meet higher order segments near the network’s down-
stream end. This pattern holds also for short forcing peri-
ods (P ~ Teq/10), where, while amplitudes of aggradation
and incision approach zero along higher order segments, ap-
preciable amplitudes remain on some lower order segments
(Fig. 15a—d).

@, is broadly highest upstream and lowest downstream
in the network. It steadily decreases downstream along the
higher order segments; this decrease is more gradual than the
increase in ¢, downstream that arises in the single-segment,
upstream supply case, so that the network response appears
more uniform along stream (Figs. 14c and Fig. 15e-h, m—p,
u—x; see also Howard, 1982). This pattern is similar to that
we obtained in mid- and down-stream sections of the single
segment, along-stream supply case (Fig. 6d and e). However,
on lower order segments, ¢, is generally lowest at the in-
let and increases downstream, similar to the single-segment,
upstream supply case, and to the uppermost sections of the
single-segment, along-stream supply case (Figs. 6d and e,
14d, and 15e-h, m—p, u—x). This increase in ¢, downstream
occurs more rapidly for shorter forcing periods (compare
Fig. 15e-h, for P = T¢q/10 with Fig. 15m—o, for P = T¢).
As such, ¢, is generally lowest at the inlets of, and increases
most rapidly along, lower order segments that meet higher
order segments near the valley outlet. For the network sce-
narios with non-uniform segment lengths, these patterns hold
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for short, lower order segments, but for longer ones, ¢, first
increases downstream, before reaching a peak and decreas-
ing downstream before meeting higher order segments (e.g.,
Fig. 15f and h).

Comparing networks with different geometries, these pat-
terns are most straightforwardly expressed for more elongate
networks, which contain a single higher order main stream
fed by short lower order streams (Fig. 16d, h, and 1). As
networks become more compact, middle order streams arise
with behaviour intermediate between the lower order and
higher order end members (Fig. 16a—c, e—g, i—k). This range
of behaviour leads to more complex patterns of aggradation
and incision that depend on specific network geometry.

5.5 Interpretation

As in the single-segment case, network responses to varia-
tion in sediment and water supply can be understood in terms
of the relative timescales of the forcing and network aggra-
dation and incision (e.g., Howard, 1982; Paola et al., 1992;
Braun, 2022), and of signal propagation through the network
(Figs. 10-16). In both network cases, signal is now intro-
duced at multiple valley inlets, while, in the along-stream
supply case, signal is also introduced internally along each
network segment. On individual segments, variation in sed-
iment and water delivery from upstream segments transmits
signal downstream, while aggradation and incision of down-
stream segments drives local base-level variation and trans-
mits signal upstream. As in the single-segment, along-stream
supply case, accumulation of water downstream means that
diffusivity, and the capacity for segments to adjust to exter-
nal forcing, is greater in downstream, higher order parts of
the network.

It is well understood that, in the single-segment case, the
timescale over which a diffusive system evolves is set by
the square of its length (e.g., Paola et al., 1992; McNab et
al., 2023). In the network case, signal is introduced at range
of distances from, and therefore must propagate a range of
distances to, the network outlet. Our results suggest that the
timescale over which a network can aggrade and incise is
controlled by the average of these distances (in our termi-
nology, the mean inlet length, (L); Figs. 10—-12). This result
may also be related to that of Jarvis and Werritty (1975), who
showed that metrics related to a network’s mean length retain
more information about network structure than those focused
on branching statistics (i.e., Horton’s and Tokunaga’s laws)
or the accumulation of drainage area and water discharge
(i.e., Hack’s law). For example, two networks can have the
same maximum length but very different distributions of seg-
ments; the mean length, in contrast, takes into account the
entire network structure.

This framework also helps make sense of spatial varia-
tion in the network response (Figs. 14-16). On lower or-
der streams, the response is dominated by signal propagating
from upstream inlets: G, therefore generally decreases and
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Figure 14. Spatial variation of gain, G, and lag, ¢,/ P, within a network with uniform segment lengths and no along-stream supply of
sediment and water, when sediment supply is varied with a period, P, equal to the network’s empirically obtained equilibration time, fe\q.
(a) Schematic network planform shaded by stream order. Thicker grey lines highlight streams, while circles show positions of specific nodes,
whose evolution are shown in (d—f). (a) As (a) shaded by G;. (¢) As (a) shaded by ¢./P. (d) Elevation, z, as a function of time, ¢, for
selected nodes along stream (i), as shown in (a—c). Grey lines show timing of peaks and troughs in the imposed forcing; circles show peaks
and troughs in elevation. Colours indicate stream order. () As (d) for tributary streams (ii—iv). (f) As (d) for tributary streams (v—vii).

¢, generally increases downstream. Higher order streams,
in contrast, are influenced by signal propagating from a
range of distances up- and down-stream, as well as, in the
along-stream supply case, local signal sources. Signals in-
troduced far upstream take time to propagate to high order
segments and lose amplitude as they do so. However, signals
introduced on short tributaries can propagate efficiently to
higher order streams, behaving similarly to the local sources
of the single-segment along-stream supply case. Combined
with increased diffusivity on higher order segments, these
effects result in a general increase in G, and decrease in
¢, along higher order segments, similar to single-segment,
along-stream supply case (this general reduction of ¢, on
high order segments, such that the network response is more
spatially uniform than the single-segment, upstream supply
case, was also noted by Howard, 1982). Higher amplitudes
and lower lags on higher order segments also feed back to
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short adjacent tributaries by varying their base level. Thus,
G is maximised and ¢, minimised on short tributaries close
to the valley outlet.

The networks with upstream and along-stream supply of
sediment and water behave similarly in many respects. In
particular, we obtained very similar estimates of equilibra-
tion times and effective lengths for the two cases, with those
of the along-stream supply networks being only slightly
shorter (Figs. 11 and 12). These patterns likely reflect the
fact that, even when along-stream supply is included, an in-
creasing fraction of a segment’s sediment supply is still de-
rived from upstream as the segment order increases. Thus, for
higher order segments such as the outlet, whose behaviour
we used to estimate 7/”;], the signal propagating from up-
stream dominates in both cases. An exception arises in pat-
terns of ¢, 1, for both variation and sediment and water sup-
ply, and ¢, 1, for variation in sediment supply, at low forc-
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Pz-

ing periods (i.e., P S 7/";]; Fig. 13e—f, m—n). Here, signals
propagating from upstream are strongly damped, so that, in
the along-stream supply case, local sources begin to dom-
inate, and ¢, ; and @ ; even decrease with decreasing
period (similar to the single-segment, along-stream supply
case; Fig. 7d and e). In contrast, in the upstream supply case,
lag times at the network outlet strongly diverge as P /Teq, de-
creases, so that a wide range of ¢z / P and ¢,/ P occurs even
for simulations with similar P/Teq.

This last result suggests that, for the upstream supply net-
works, the mean inlet length is not a good predictor of lag

https://doi.org/10.5194/esurf-13-1059-2025

time at the outlet for short forcing periods. If progressive
damping of signals as they propagate downstream results in
inlets positioned far upstream having increasingly limited in-
fluence on aggradation and incision at the outlet, a corollary
is that inlets close to the outlet should exert greater influ-
ence. Indeed, distinguishing networks by the distance up-
stream from the outlet to their closest inlet segment reveals
a clear pattern (Fig. 17). For the networks with uniform seg-
ment lengths, three populations exist, in which the first inlet
occurs two, three or four segments upstream from the out-
let; lag times increase as the distance to the first inlet in-

Earth Surf. Dynam., 13, 1059-1092, 2025
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a function of forcing period, P, normalised by empirical equilibra-
tion time, 7/";], with focus on shorter forcing periods (see boxes on
Fig. 13 for position within wider parameter space). Lag measure-
ments for each network are shaded by distance upstream to the first
inlet segment. (a) Networks with only upstream supply and uniform
segment lengths. Uniform segment lengths result in three popula-
tions in which the first inlet segment occurs two, three or four seg-
ments upstream from the outlet. (b) Networks with only upstream
supply and non-uniform segment lengths.

creases (Fig. 17a). For the networks with non-uniform seg-
ment lengths, there is more scatter, but the same general pat-
tern is present (Fig. 17b). This scatter may arise due to differ-
ences in the distribution of water discharge, and hence diffu-
sivity, along the paths from the first inlet downstream to the
outlet. In the networks with uniform segment lengths, wa-
ter discharge increases downstream at consistent intervals, so
that networks with equal distances to the first inlet also have
similar distributions of discharge along the path. Conversely,
in the networks with non-uniform segment lengths, discharge
and distance are decoupled, so that two networks with sim-
ilar distances from the outlet to the first inlet can have very
different distributions of discharge along the path, and hence
very different rates of signal propagation. These results con-
firm that, at short forcing periods, aggradation and incision,
and, consequently, sediment export, at the network outlet are
mainly influenced by network structure close to the outlet.
Similarly, we expect the response to short period external
forcing at different points within the network to be mainly
controlled by local network structures.

6 Discussion

6.1 Single-segment models can predict integrated
network behaviour

We have shown that simplified, single-segment models with
only upstream supply of sediment and water can accurately
predict amplitudes of variation in sediment export from net-
works with varying complexity, provided an appropriate
lengthscale is chosen to characterize the network (Figs. 9—
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12). We also showed that an appropriate lengthscale for a
given network is predictable from its mean inlet length. As
such, we propose a modified definition of alluvial river equi-
libration time appropriate for networks:

L kAL
4T ) (k)

where k. is a coefficient scaling mean inlet length, (Ly), to
effective length, L. The value of k; depends on the number
of network segments and on how discharge varies through-
out the network. In our simulations, it increased from close
to one for networks with few segments to approximately 1.4—
1.45 for networks with many segments (Fig. 12). It may con-
tinue to rise slowly for larger networks than those tested here.

This result implies that, if our main concern is the ampli-
tude of variation in sediment discharge at the network out-
let (e.g., for studies of downstream stratigraphic records),
we can use simplified single-segment models, and avoid the
complexity and computational cost of network implementa-
tions. We note that, for variation in sediment supply, single-
segment models with only upstream supply of sediment and
water do not predict network lag times as effectively as their
amplitudes (Fig. 13e—f, m—n). When sediment supply is var-
ied at relatively short forcing periods (P < Teq), lag times
for networks with only upstream supply are lower than pre-
dicted by the single-segment case and considerable scatter is
introduced. We found that this pattern reflects a decoupling
of aggradation and incision at the outlet from distant parts
of the network, and a greater influence of network struc-
ture close to the outlet, such as the distance from the out-
let to its closest inlet (Fig. 17). Such nuances are not cap-
tured by single-segment models. For networks with along-
stream supply of sediment and water, lag times follow the
single-segment, along-stream supply case more closely than
the single-segment, upstream supply case across the range
of forcing periods we tested. We also stress that, in all our
simulations, we varied sediment and water supply uniformly
across the network. In reality, forcing could occur more lo-
cally, for example if a large landslide delivers excess sed-
iment to a specific tributary, or if orographic effects in-
fluence precipitation patterns across a catchment. Such lo-
calised forcing may affect sediment discharge at the outlet
in different ways from the simulations shown here, depend-
ing, for example, on the distance from the outlet at which the
forcing occurs.

Howard (1982), analysing a single example network con-
figuration, also noted a broad similarity between its be-
haviour and that of a single-segment model. Comparing a
single-segment model with a network of equal maximum
length and equal water discharge at the outlet, he estimated
the response time to be approximately six times longer in
the network, based on the time needed to approach equilib-
rium following a step change in the hydraulic regime. This
result may appear to conflict with our analysis, in which net-
work equilibration times are typically similar to or shorter

, 27
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than single-segment models with the same maximum length
(Figs. 9 and 10a—d). The difference, however, arises due our
different treatments of water discharge. Rather than compar-
ing networks and single-segment models with equal maxi-
mum discharge, we used mean discharge in our definitions
of network effective length and equilibration time (Egs. 26
and 27). In our set of networks with forty inlet segments,
maximum discharge was on average six times larger than
mean discharge, decreasing our estimated equilibration times
by an average factor of around six relative to Howard (1982).
Meanwhile, Howard (1982)’s network has 39 inlet segments,
a maximum topological length of 30, and a mean inlet topo-
logical length of around 18; in this case, the network max-
imum length provides a reasonable approximation of its ef-
fective length (too long by a factor of ~ 1.15). Thus, our es-
timates of network equilibration time are broadly consistent
with that of Howard (1982).

What controls a network’s mean inlet length? In our sim-
ulations, we constructed networks with specified numbers of
segments and specified (average) segment lengths, approxi-
mately corresponding to a consistent drainage area. In such
network populations, the shortest mean lengths occur in the
most compact networks, while the longest mean lengths oc-
cur in the most elongate (Fig. 16). However, in nature, spa-
tial constraints such as coastlines or fault-bounded moun-
tain ranges may be more relevant, and could instead fix a
network’s main stream or maximum length. Comparing net-
works with equal main stream lengths, the relationship is
reversed: the shortest mean lengths occur in the most elon-
gate networks, which will also have smaller drainage areas,
while the longest mean lengths occur in the broadest net-
works. Robinson and Scheingross (2024) argued that, while
tributaries tend to be arranged in a regular fashion in tectoni-
cally quiescent areas, this pattern can be disrupted by faulting
in tectonically active areas. This result implies that network
structures in tectonically active regions can be particularly
irregular, which could lead to a wide range of mean lengths,
equilibration times, and responses to external forcing in adja-
cent catchments of similar sizes. Yi et al. (2018) also showed
that basins tend to be more elongate in more arid regions.
Depending on whether networks of similar drainage areas or
similar main stream lengths are compared, this effect could
introduce a tendency towards longer network mean lengths
and response times, or shorter mean lengths and response
times, respectively. These patterns may therefore exacerbate
or counteract to some extent the effect of reduced water dis-
charge on the response time of alluvial networks in arid re-
gions (Eq. 12; e.g. McNab et al., 2023).

6.2 Detailed network behaviour is complex and network
dependent

Although networks’ integrated responses to external forc-
ing, as expressed in variations in sediment discharge at their
outlets, appear to be predictable using simplified, single-
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segment models, patterns of aggradation and incision within
them show considerable complexity (Figs. 14-16). Specifi-
cally, amplitudes of aggradation and incision (G;) and the
extent to which they lag behind the imposed forcing (¢;)
vary along stream and between streams of different orders.
This complexity arises despite relatively simple, spatially
uniform, sinusoidal variations in sediment and water supply,
as a consequence of the dynamics of signal propagation in
networks (in contrast to the relatively simple, unidirectional
signal propagation associated with single-segment models).
Complex distributions of terraces and their ages in natural
networks therefore need not imply complex and local varia-
tions in sediment and water supply. In detail, patterns of G,
and ¢, throughout a specific network depend on its specific
structure. We therefore argue that, if a detailed understand-
ing of dynamics of aggradation and incision in a specific net-
work are desirable — for example, to aid interpretation of ter-
race ages or geometries — then that specific network should
be modelled using approaches like the one we employ here.
Nevertheless, there are some general features in patterns of
G and ¢, that appear to be common to most networks and
have implications for the distribution and timing of terrace
formation.

G describes variations in the amplitude of aggradation
and incision, relative to imposed variations in sediment and
water supply, which in turn influence the likelihood of terrace
formation and preservation; higher amplitudes of aggrada-
tion and incision are more likely to result in long lived ter-
race sequences (Figs. 14b, d—f and 15a-d, i—p, g-t). Note
that, to obtain absolute amplitudes of aggradation and in-
cision, G, is multiplied by steady state elevation (Eq. 15),
so that it modulates a general tendency towards higher am-
plitudes at greater distances from the outlet (McNab et al.,
2023). G; is generally higher closer to the network outlet,
canceling out to some extent the natural tendency for am-
plitudes of aggradation and incision to decrease towards the
outlet, and thus promoting terrace formation further down-
stream. On lower order segments that join higher order seg-
ments near the outlet, G, decreases rapidly downstream, so
that amplitudes of aggradation and incision decrease particu-
larly quickly (Figs. 14e and f and 15a—d). On such tributaries,
terrace formation is therefore more likely than on adjacent
higher order segments, but this likelihood decreases quickly
away from valley inlets towards higher order segments. Ap-
preciable amplitudes of aggradation and incision (G, ~ 0.2)
persist on such segments even for short forcing periods, sug-
gesting that terrace formation is possible in specific parts of
a network even when the timescales of variation in sediment
or water supply are much shorter than its equilibration time
(P ~ Teq/10; Fig. 15a—d).

Network ¢, is typically lower and more uniform along
stream, particularly along higher order segments, compared
to the simple unidirectional signal propagation predicted
for the single-segment, upstream supply case (as noted by
Howard, 1982). Nevertheless, ¢, can vary spatially by factors
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of 2-3 in simulations with significant amplitudes of aggrada-
tion and incision (e.g., with P ~ Teq; Figs. 15m-p and 14i—
1), implying that terrace formation can occur diachronously
throughout a network, and result in a single terrace surface
whose age varies spatially despite a simple, spatially uniform
forcing (Figs. 14c, d—f and 15e-h, m—p, u—x). On higher or-
der segments, ¢, generally increases upstream, so that ter-
race formation will occur progressively later away from the
network outlet. This pattern may superficially resemble up-
stream propagation of a signal introduced at the valley outlet
(i.e., base-level variations), despite being driven by variation
in sediment and water supply evenly distributed across the
network and its inlets. It arises because signal can arrive at
higher order segments relatively efficiently along short trib-
utaries; high order segments that can then, due to their larger
discharges and diffusivities, adjust most efficiently. On lower
order segments, ¢, generally increases away from valley in-
lets, so that terrace formation will appear to propagate down-
stream. This effect is particularly pronounced on lower or-
der segments that join higher order segments close to the
network outlet, where ¢, can increase rapidly downstream
and could generate a wide range of terrace ages over a rela-
tively short distance (Figs. 14e and f and 15e-h, m—p). This
pattern arises because these low-order segments experience
both direct forcing at their upstream ends, as well as signifi-
cant variation in local base level associated with the efficient
aggradation and incision of higher order segments at their
downstream ends.

6.3 Variation in valley width

Throughout our analysis thus far, we have treated valley
width, B, as a constant. In natural alluvial valley networks,
it can vary both in time and space. That valley widths evolve
through time is clear from the preservation of paired terrace
sequences, which necessarily record valley narrowing over
time (e.g., Tofelde et al., 2022). Models describing the lat-
eral evolution of alluvial valleys have been developed, and
could in future be coupled with our network implementation
of the long profile model of Wickert and Schildgen (2019)
to explore the effects of such behaviour (e.g., Hancock and
Anderson, 2002; Turowski et al., 2025).

Several studies have also explored how valley width varies
along stream, and in particular as a function of upstream
drainage area (e.g., Snyder et al., 2003; Brocard and van der
Beek, 2006; Beeson et al., 2018; Clubb et al., 2022). Such
measurements can contain significant noise, with consider-
able short wavelength variation, but typically take a power-
law form on average. Turowski et al. (2024) combined a
compilation of observed power-law parameters with theoret-
ical arguments to conclude that plausible power-law expo-
nents are in the range 0.03-0.9, with a likeliest value around
0.4-0.5. This broad range suggests that valley width can re-
main essentially constant downstream, or increase almost as
quickly as upstream drainage area (and, by extension, wa-
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ter discharge). Our preceding analysis therefore represents
one end member of along-stream valley-width behaviour. To
explore the other end member, we ran a second set of sim-
ulations in which valley width increased downstream at the
same rate as water discharge. This formulation is mathemati-
cally convenient because the increasing valley width cancels
out the effects of increasing water discharge on the efficiency
of sediment transport, so that the diffusivity becomes con-
stant across the network (Eq. 12).

The majority of results for this non-uniform valley width
case are very similar to those for the uniform valley width
case (see Figs. S10-S15 in the Supplement for single-
segment results and Figs. S16-S28 in the Supplement for net-
work results). Again, amplitudes of variation in sediment dis-
charge at the network outlet (G g, ) are well approximated by
analytical predictions for the single-segment, upstream sup-
ply case (Fig. S16). Effective lengths obtained for the non-
uniform valley width case also correlate closely with net-
work mean length (Fig. S18-S20). Ratios of effective length
to mean length, k;, are lower than in the uniform valley
width case (up to 1.16 for upstream supply cases and 1.13
for along-stream supply cases; Fig. S21).

Some differences between the uniform and non-uniform
valley width cases do arise, because, in the former, diffusiv-
ity increases downstream as water accumulates, whereas in
the latter, diffusivity is spatially constant. In the uniform val-
ley width case, signal propagation is relatively inefficient up-
stream or on lower order segments where discharge is low,
whereas it is more efficient downstream or on higher or-
der segments with larger discharge. This pattern contributes
to a general increase in G, and decrease in ¢, towards the
network outlet. In contrast, in the non-uniform valley width
case, signal propagation is equally efficient throughout the
network, so that signal propagating from upstream valley in-
lets has more influence farther downstream, and distributions
of G; and ¢, are more symmetrical along stream. In the
single-segment, along-stream supply case, minima in gain
and maxima in lag occur further downstream than in equiva-
lent models with uniform valley width (Figs. S12 and S13).
In the network case, G, and ¢, are more uniform along
higher order segments, and differences between lower order
segments near the outlet and those further upstream are less
pronounced (Figs. S26-S27).

This analysis accounts for the effects of smoothly vary-
ing valley widths, likely to be representative of alluvial val-
ley networks on average. However, significant local vari-
ability can arise, due to, for example, lithological varia-
tions, distributions of tectonic structures such as active faults,
or geologically recent drainage integration, so that natural
networks can contain anomalously narrow or wide reaches
(e.g., Hilgendorf et al., 2020; Clubb et al., 2023). Very nar-
row sections will efficiently transmit signals up- and down-
stream, increasing response amplitudes and decreasing re-
sponse lag times in surrounding parts of the network. Mean-
while, very wide sections will adjust slowly and, depending
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on the timescale, could act as local points of fixed elevation,
decoupling upstream sections from the rest of the network.
How such dynamics play out in nature needs to be assessed
on a network-by-network basis.

6.4 Choice of network generator

We used a relatively simple approach for randomly gener-
ating networks (Shreve, 1966, 1969, 1974). Although this
approach theoretically samples all possible binary trees, the
number of possible networks far exceeds the number we can
practically analyse, such that the network populations we
obtained are necessarily incomplete. End-member configu-
rations such as perfect binary trees (in which every inter-
nal segment has two internal segments upstream, until a fi-
nal level of inlet segments) are very unlikely to be selected.
Statistics of network populations generated in this way also
likely diverge, at least to some extent, from those of nat-
ural network populations, since, for example, the networks
are not required to be space filling (Abrahams, 1984; Dodds
and Rothman, 2000). The high fidelity of the relationship
we obtained between network equilibration times and their
mean inlet lengths strongly suggests that it will apply to
branching networks more generally (Fig. 11). Nevertheless,
the statistical results we obtained, such as precise values of
the coefficient k; scaling network mean length to effective
length (Eq. 27; Fig. 11), and their variation with network
size (Fig. 12), likely depend at least to some extent on our
choice of network generator. We also note that, since we
did not sample the full range of possible network configu-
rations, we may not have observed the full range of possi-
ble behaviour in, for example, spatial patterns of aggradation
and incision, or lag at the network outlet (Figs. 15-17). Re-
peating our analysis using more involved approaches to net-
work generation that appear to produce more naturalistic net-
work populations, such as random walks on lattices (Leopold
and Langbein, 1962; Scheidegger, 1967) or Optimal Channel
Networks (Howard, 1990; Rodriiguez-Iturbe et al., 1992), or
indeed using network populations extracted from real land-
scapes, may provide results more representative of natural al-
luvial river systems. Approaches that allow random network
populations to be generated with prescribed statistical prop-
erties may also facilitate more detailed and systematic explo-
ration of structural controls on network behaviour (Veitzer
and Gupta, 2000). In the meantime, these issues highlight
the importance of modelling the specific structures of spe-
cific networks of interest, particularly when an understanding
of spatial patterns of aggradation and incision is required.

6.5 High frequency fluctuations in sediment transport
and signal “shredding”

Lastly, we note a superficial similarity between the reduced
amplitude of sediment-supply signals we observe at short
forcing periods (i.e., G;, Gg,,L < 6/7 for P 5 Teq) and the
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concept of signal “shredding”, as proposed by Jerolmack and
Paola (2010). This concept builds from the observation that
sediment transport in many environments is a threshold pro-
cess subject to large, autogenic, stochastic fluctuations. Jerol-
mack and Paola (2010) demonstrated that, if an external sig-
nal is imposed with a timescale similar to or shorter than the
timescales of these internal fluctuations, it will be smeared
across a range of timescales and, consequently, its ampli-
tude will be severely reduced. The original signal is there-
fore unreconisable in time series of sediment discharge (i.e.,
it will be “shredded”). This process is distinct from the dif-
fusive damping or buffering we observe, in which signal am-
plitudes are reduced but their frequency content is preserved
(see also Howard, 1982; Paola et al., 1992; Armitage et al.,
2013; Goldberg et al., 2021; Braun, 2022; McNab et al.,
2023). The shredding concept has subsequently been applied
extensively, particularly in studies focused on conditions for
stratigraphic preservation of environmental signals in net de-
positional settings such as fans and deltas (e.g., Wang et al.,
2011; Li et al., 2016; Toby et al., 2019).

In their model of long-profile evolution and sediment
transport by alluvial rivers, which we apply here, Wickert
and Schildgen (2019) derived a deterministic relationship be-
tween valley slope, water discharge, Oy, and sediment dis-
charge, Qg (Eq. 2). That such a deterministic relationship ex-
ists is consistent with the preservation of terrace sequences
recording Milankovitch periodicities, which implies that al-
luvial rivers can respond systematically to external change
(e.g., Bridgland and Westaway, 2008; Wegmann and Paz-
zaglia, 2009; Tofelde et al., 2017). The model accounts for
the efficient adjustment of alluvial river-channel width in re-
sponse to water-discharge variability (Parker, 1978; Phillips
and Jerolmack, 2016), which leads to the approximately lin-
ear form of Eq. (2), and tempers the influence of extreme
events on river long-profile evolution. The model also as-
sumes that the channel migrates laterally, mobilising sedi-
ment across the full valley width, B; the associated lateral
migration timescale likely sets a lower temporal bound on
the model’s applicability. The model uses a characteristic
bankfull discharge, which combined with the assumption of
a hydraulic geometry that is in equilibrium with this dis-
charge, embeds the assumption that stochastic or local events
— such as floods, landslides, or avulsions — do not affect the
hydraulic geometry or sediment-transport efficiency signifi-
cantly in the long term, such that Q¢ remains a near-linear
function of long-term average slope and Q.

Nevertheless, it is clear that short-term fluctuations in
sediment-transport rates do occur, and that these fluctuations
may limit transmission of external signals through alluvial
valleys. Jerolmack and Paola (2010) proposed that, below
a characteristic maximum time scale for internal variability,
autogenic processes dominate morphologic and/or sediment-
output signals. Using an experimental hillslope (rice pile)
with a sediment feed at the upslope boundary, Griffin et al.
(2023) demonstrated that signals with timescales shorter than
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the duration of the largest stochastic events are severely de-
graded, whereas those with timescales longer than the du-
ration of the largest stochastic events but shorter than the
largest events’ repeat time are degraded but, in some cases,
still recoverable. For fluvial aggradation and incision under
variation in either sediment or water supply, the diffusive
and stochastic frameworks make similar predictions: short
period signals are damped or degraded, while long period
signals are faithfully transferred into aggradation or incision
that may be preserved in terrace sequences. As such, if au-
togenic processes act on timescales shorter than our diffu-
sive Teq, they will add noise to our predicted aggradation
and incision, but otherwise have a limited effect. If, how-
ever, autogenic timescales exceed our Teq, these processes
will impose a stricter limit on the translation of external sig-
nals into aggradation and incision. For variations in sedi-
ment discharge, which could contribute to the development
of downstream stratigraphy, similar behaviour will arise un-
der varying sediment supply. However, when water supply is
varied, the two frameworks make opposite predictions about
patterns of sediment discharge: we predict that short period
variation in water supply will translate directly into short
period variation in sediment discharge and that long period
signals will be damped (Figs. 7 and 13; see also Goldberg
et al., 2021; Braun, 2022); meanwhile, autogenic processes
will still act to degrade short period signals. As such, if au-
togenic timescales are shorter than T.q, water-supply sig-
nals will be preserved only at periods between the autogenic
timescales and T.q, whereas if the autogenic timescales ex-
ceed Teq, water-supply signals may be suppressed across all
input periods. Ultimately, placing tighter constraints on both
autogenic and diffusive timescales in real alluvial valley sys-
tems is critical for understanding the relative importance of
each process, and we hope that our physically based, network
approach can facilitate this goal.

7 Conclusions

All alluvial rivers exist as parts of networks. We therefore
extended a model describing the evolution of alluvial river
longitudinal profiles to account for interactions between in-
terconnected river segments, as well as lateral sediment in-
put, and explored the response of large numbers of synthetic
networks to sinusoidal variations in sediment and water sup-
ply. Our network implementation has several features distinct
from single-segment models, and these features influence the
dynamics of aggradation, incision and sediment transport. In
particular: sediment and water supply signals are introduced
at inlet segments distributed at varying distances from the
outlet; individual segments are influenced by variation in sed-
iment and water supply from upstream segments alongside
variation in local base level driven by downstream and ad-
jacent segments; and water discharge increases downstream
at discrete intervals as tributaries coalesce, so that the effi-
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ciency of the valley response also increases discontinuously
downstream. (This last effect may be counteracted to some
extent in natural river networks by increasing valley width
downstream.)

These network dynamics result in behaviour that, when
integrated across the entire network, can resemble that of
single-segment models. For example, when sediment supply
is varied, amplitudes of variation in sediment discharge at the
outlet are small for short forcing periods and large for long
forcing periods, with a transition when periods are close to
the system’s equilibration time. We have shown that, for net-
works, the equilibration time scales with mean inlet length,
or mean distance from valley inlets to the outlet. This re-
sult may justify the use of single-segment models in stud-
ies focused on sediment delivery to downstream sedimentary
basins.

Significant complexity does arise, however, in spatial pat-
terns of aggradation and incision across a network. Ampli-
tudes of aggradation and incision, and the extent to which
they lag behind imposed variation in sediment or water sup-
ply, depend on a segment’s order, its position along stream,
and the overall structure of the network. While we have high-
lighted some general patterns, these details ultimately de-
pend on the specific network in question. We therefore sug-
gest that, for applications that rely on patterns of aggradation
and incision in specific catchments, such as interpreting the
spatial distribution and timing of terrace formation, models
that account for specific catchments’ network structure are
required.

We have shown that simply accounting for network struc-
ture — a fundamental feature of alluvial river systems — in-
troduces a rich range of behaviour that is not, for many ap-
plications, adequately captured by single-segment models.
Nevertheless, our simulations remain simplified relative to
natural catchments and forcing scenarios, with sinusoidal
variation in sediment and water supply imposed uniformly
across the network, and valley width held constant or set
to increase smoothly with water discharge. Much remains
to be explored. For example, how do spatially non-uniform
signals, such as local sediment delivery from large land-
slides or changes in spatial patterns of precipitation, prop-
agate through a catchment? Or, how do anomalously nar-
row or wide valley reaches influence network behaviour?
Such problems are tractable within our modelling frame-
work, which we hope will ultimately facilitate more robust
interpretations of stratigraphic and geomorphic archives in
terms of past climatic and tectonic change.
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Appendix A: Notation

All parameter notation and, if applicable, values used in sim-
ulations are summarised in Table Al.

Table A1. Notation.
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Symbol  Definition Value? Units Equationb
K Sediment-transport diffusivity m2s! 12
(k) Spatial mean sediment-transport diffusivity m?s~! 18
Ap Bedload sediment porosity 0.35 - 1
¥z Elevation lag S 15
®0, Sediment-discharge lag s 16
w Stream order (Strahler, 1952) - 22
Q Network maximum stream order - 22
Ay Average area of streams of order w m?2 24
Ao, Amplitude of variation in sediment supply, relative to mean 0.2 - 8
Ag,, Amplitude of variation in water supply, relative to mean 0.2 - 7
B Valley width 254¢ m 1
G, Elevation gain - 15
G, Sediment-discharge gain - 16
K Tokunaga’s coefficient (Tokunaga, 1978) -

kr, Coefficient scaling mean length, (L), to effective length, L - 27
ko, Bedload sediment-discharge coefficient (Wickert and Schildgen, 2019)  0.041 - 2
kx, 04 Power-law coefficient: downstream distance to sediment discharge m3Pros g1 19
kx,0w Power-law coefficient: downstream distance to water discharge m3Prowsl 17
I Topological length -

Imax Network maximum topological length -

() Mean topological length -

(I1) Mean topological length of inlet segments —

L Absolute length m

L, Average length of streams of order @ m 23
Lmax Network maximum absolute length m

(L) Mean absolute length m

(Ly) Mean absolute length of inlet segments m

L Empirical network effective length m 26
I Intermittency of bankfull water discharge 1 - 2
Ny Number of network inlet segments 2-150 -

Ny Number of streams of order w - 22
P Period of sinusoidal forcing Teq X (10’2—102) S 14
Px, 0 Power-law exponent: distance to sediment discharge 0.8-2.4 - 19
Px, 0w Power-law exponent: downstream distance to water discharge 0.8-2.4 - 17
O Bedload sediment discharge m3s~! 1
(Qs) Spatial and temporal mean sediment discharge 26x%x1073 m3s~1

0s.0 Input bedload sediment discharge m3s~! 4
Ow Bankfull water discharge m3s~! 2
(Ow) Spatial and temporal mean bankfull water discharge 26 m3s~!

Ow,0 Input bankfull water discharge m3s~! 4
Ow,w Average water discharge of streams of order m3s~! 25
Rp Bifurcation ratio (Horton, 1945) - 22
Rp Length ratio (Horton, 1945) - 23
Ry Area ratio (Schumm, 1956) - 24
Rop Discharge ratio - 25
S Channel sinuosity 1 - 2
t Time S 1
Teq Equilibration time S

]/";1 Empirical network equilibration time S 26
U Source term, e.g., uplift or lateral sediment supply ms! 1
w Topological width -

Wmax Maximum topological width -

(w) Mean topological width -

X Down valley distance m 1
z Valley elevation m 1

4 If applicable, value or range of values used in simulations. bf applicable, Equation where parameter first appears or is defined. ¢ For the primary simulations B was set to this
value throughout the network. For the supplementary simulations with variable valley width, the mean valley width was set to this value (Figs. S10-S27).
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Code and data availability. All software and data necessary to
recreate the analyses shown here are included in the accompany-
ing repository (https://doi.org/10.5281/zenodo.17108339, McNab,
2025). To construct synthetic networks and solve the equations
of sediment transport and long profile evolution, we used the
GRLP package (https://doi.org/10.5281/zenodo.17091246, v2.0.0,
Wickert et al., 2025). Data for the network planforms shown in
Fig. 1 were obtained from the HydroRIVERS database (https:
/Iwww.hydrosheds.org/, last access: August 2025; Lehner and
Grill, 2013). We used Generic Mapping Tools (https://www.
generic-mapping-tools.org/, last access: October 2025) (v6.5) to
plot the final figures (Wessel et al., 2019).

Video supplement. An animation showing plan-view patterns
of aggradation and incision for examples of the simulations
summarised in Figs. 14 and 15 is included in the Supplement and at
“/Video_Supplement/Video_Supplement_Network_Example.gif”
in the accompanying software repository (McNab, 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esurf-13-1059-2025-supplement.
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