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Abstract. The interaction of tectonics, surface processes, and climate extremes impacts how the landscape re-
sponds to extreme hydrological events. In 2022, an anomalous precipitation event occurred during the monsoon
season along the lower–middle reaches of the upper Indus River, resulting in short-lived high-magnitude flood-
ing and socioeconomic disruption downstream. To understand the spatial relationship between the geomorphic
response and climatic controls of this flood event, as well as their primary triggers, we performed a landscape
analysis using topographic metrics and quantified the causal association between hydroclimatic variables. Tem-
perature anomalies in upstream glaciated subcatchments had a considerable impact on snow cover distribution,
based on our observations. As snow cover changed, glacial-melt runoff rose, contributing to increased fluvial
stream power after traversing higher-order reaches. The higher-order reaches of the upper Indus River received
an anomalously high amount of precipitation, which, when combined with substantial glacial-melt discharge,
contributed to an extreme flood across the high-relief, steep-gradient channels. The flood-affected regions had
high mean basin ksn (normalized steepness index) values and stream length–gradient (SL) index values, with nu-
merous spikes in their magnitudes along their channel profiles downstream. To determine how the lower–middle
reaches of the upper Indus River responded to this flood event, we employed the enhanced vegetation index (EVI)
and the normalized difference water index (NDWI) as change indicator metrics. We observed an inverse causal
influence of the NDWI on the EVI and a statistically significant relationship between anomalous stream power
and the relative EVI, suggesting that the downstream channel morphology changed rapidly during this episodic
event and highlighting the EVI as a useful indicator of geomorphic change. We suggest that this extreme flood
event resulted from the interaction of anomalous glacial melt and anomalous precipitation over a high-relief
landscape, with a certain causal connection to anomalous temperature observed over the event duration. The
synoptic observations suggest that this meteorological condition involves the interaction of the Indian summer
monsoon (ISM) and western-disturbance (WD) moisture fluxes. However, the geomorphic consequences of such
anomalous monsoon periods, as well as their influence on long-term landscape change, are still unclear.
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1 Introduction

High-mountain floods in the Himalayas are associated with
several processes, including the coupling of the Indian sum-
mer monsoon (ISM) and western-disturbance (WD) circula-
tions (Houze et al., 2011), cloudbursts (Dimri et al., 2016),
anomalous precipitation, cloud-scale interconnected atmo-
spheric anomalies (Dimri et al., 2017), and geomorphically
driven surface processes (Sharma et al., 2017). There is
growing recognition that landscapes may evolve through the
cumulative effects of extreme episodic events, particularly in
rapidly eroding terrains (Korup, 2012; Cook et al., 2018). Re-
cent studies suggest that even minor shifts in weather patterns
can have a significant impact on the frequency and magnitude
of floods (Knox, 2000; Liu et al., 2015; Benito et al., 2015;
Sharma et al., 2022). It has also been suggested that high-
magnitude flood occurrences in the bedrock rivers draining
the Himalayas are the geomorphic agents with the most sig-
nificant impact on the evolution of the regional landscape, as
well as on the residents of regions downstream (Bookhagen
et al., 2005a; Sharma et al., 2017; Panda et al., 2020).

The Tibetan Plateau and its surrounding mountainous re-
gions, such as the Himalayas and the Karakoram, are critical
for the downstream hydrology and water availability of the
Indus River system (Hewitt, 2009; Immerzeel et al., 2010)
(Fig. 1). The majority of the hydrological budget of the Indus
River comes from precipitation, snowmelt, and glaciers, but
the relative contributions of these factors vary among the ma-
jor contributing tributaries (Bookhagen and Burbank 2010;
Wu et al., 2021). The upper Indus River catchment receives
precipitation from two distinct climatic systems, WDs and
the ISM, across its foreland and highlands in the northwest-
ern (NW) Himalayas (Bookhagen and Burbank, 2006, 2010).
However, it remains unclear how these two distinct circula-
tion patterns interact over the Himalayan landscape and what
their potential influence on long-term geomorphic change
might be (Dimri et al., 2015, 2017; Ray et al., 2019).

Short-duration episodic weather events have a signifi-
cant influence on hillslope surface processes and rates of
bedrock erosion by modulating mass movement and subse-
quent landscape evolution (Snyder et al., 2003; Bookhagen
et al., 2005b; Srivastava et al., 2017). During such events,
a large amount of sediment is transported through the flu-
vial system, some of which is temporarily deposited in low-
gradient reaches, altering the landscape before being finally
deposited in oceanic sinks (Goodbred et al., 2003; Panda et
al., 2020). The geomorphic signatures of the catchment mor-
phology are vital for understanding and identifying the chan-
nel response involved in such events, as well as the processes
and patterns of erosion (Kashyap and Behera, 2024; Sharma
et al., 2017).

From the beginning of July until the end of August 2022,
large portions of the Indus River catchment experienced un-
precedented monsoon precipitation (Otto et al., 2023; Nan-
ditha et al., 2023). Some recent studies have suggested that

the primary triggers of this anomalous precipitation event
were an intensely low atmospheric circulation pattern, low
sea surface temperatures across the eastern Pacific, and the
advent of a La Niña event (Otto et al., 2023; Nanditha et al.,
2023). This extreme precipitation event resulted in a catas-
trophic flood in the low-elevation flood plains of the In-
dus River catchment (Jones, 2022; Otto et al., 2023; Ma et
al., 2023). This severe flood had an extreme impact on the
southern provinces of Pakistan, causing the internal displace-
ment of about ∼ 30–32 million people and the deaths of
∼ 1500–1600 people (Bhutto, 2022; Khokhar, 2022; Ma et
al., 2023). Economic losses in excess of USD∼ 25–30 bil-
lion have been anticipated (Bhutto, 2022; Otto et al., 2023).
According to reports, the peak flow rate of the 2022 flood ex-
ceeded that of the disastrous 2010 floods that occurred across
Pakistan (Bhutto, 2022; Nanditha et al., 2023). The magni-
tude of fluvial discharge in the upstream tributaries of the
Indus River increased predominantly as a result of increased
streamflow across glaciated channels (NDMA, 2022). How-
ever, the geomorphic consequences and main drivers of this
high-magnitude flooding in the upper Indus River catchment
have not been evaluated yet.

In the present study, we evaluated the spatial distribution
of channel changes in the mountainous portion of the upper
Indus River catchment due to the extreme precipitation event
that occurred during the months of July and August 2022. We
employed a channel slope–discharge product along the trunk
channel of the upper Indus River to estimate the anoma-
lies in stream power resulting from the anomalous precipita-
tion event during July and August 2022. We used a random-
forest-based machine-learning approach to compare the ob-
served and predicted intensities of precipitation and runoff
by assessing the mean climatology of independent hydrocli-
matic variables. We further quantified the causal relationship
between hydroclimatic drivers using nonlinear time-series
data over the event duration. We investigated the channel re-
sponse to this episodic flood event by using the normalized
difference water index (NDWI) and the enhanced vegetation
index (EVI) as change indicator metrics and comparing these
metrics to event characteristics such as anomalous precipita-
tion, stream power, and channel metrics. We aim to better
understand the controls on where and when these types of
extreme hydrological events may substantially modify rivers
and landscapes, allowing for better anticipation of the asso-
ciated geomorphic hazards, and we also seek to better con-
strain the potential role of these episodic events in driving
long-term geomorphic change across the western syntaxial
region.

2 Regional setting

In the Himalayas, the erosion rates are high, and the land-
scape of the mountainous terrain is shaped by interactions be-
tween river systems and basement tectonics (Jaiswara et al.,
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Figure 1. Regional topographic setting of the upper Indus River catchment, along with its major tributaries (R: River), overlaid with the
outlines of major geological structures. (MBT: Main Boundary Thrust. MCT: Main Central Thrust. STDS: South Tibetan Detachment System.
ITSZ: Indus–Tsangpo Suture Zone. SSZ: Shyok Suture Zone. KF: Karakoram fault.)

2019, 2020). Among the Himalayan river systems, the upper
Indus River is unique, featuring a fully developed ∼ 1200–
1400 km long, eighth–ninth-order drainage network that en-
ters the Himalayan terrain as an antecedent channel and cuts
right through the seismically active belt in the Indus River
gorges (Fig. 1). This catchment is highly affected by re-
current landslides and debris flow, as well as by episodic
glacial and landslide dams, which represent significant ge-
omorphic hazards (Korup and Montgomery, 2008; Korup et
al., 2010a, b).

The upper Indus River flows through the highly tecton-
ically active region of the Nanga Parbat–Haramosh mas-
sif (NP-HM), which is one of the highest-relief regions on
Earth (>∼ 5000 m) and has a strong potential for rapidly
eroding uplifted material (Leland et al., 1998; Shahzad et
al., 2009; Korup et al., 2010a, b). The NP-HM region ex-
periences the highest recorded rates of denudation and chan-
nel incision on Earth (∼ 12 mm yr−1), as well as high rates
of tectonic uplift (∼ 4–10 mm yr−1), and forms river anti-
clines across extremely weak crust (Koons et al., 2002, 2013;
Zeitler et al., 2001, 2014; Butler, 2019). This has a signifi-
cant impact on the tectonics and morphology of the western
Himalayas (Hewitt, 2009; Zeitler et al., 2014). The upper In-
dus River catchment (UIRC) is characterized by an extremely
steep channel gradient of>∼ 20–25°, a high topographic re-
lief of ∼ 4000–5000 m, and a large number of snow-covered
peaks (Hewitt, 2007; Farinotti et al., 2020).

As a fraction of the total annual discharge, snowmelt
constitutes up to 50 % in the upper Indus River catch-

ment (UIRC) (Bookhagen and Burbank, 2006, 2010; Scher-
ler et al., 2011). Due to the western-disturbance (WD) incli-
nation, the UIRC experiences a lot of precipitation in win-
ter and spring (Kapnick et al., 2014), while the influence of
the ISM in the region weakens toward the northwest due to
the orographic barrier of the high mountains (Forsythe et al.,
2017). Annual precipitation in the UIRC increases with ele-
vation. Across the northern valley floors – in the rain shad-
ows – it ranges from 100–200 mm yr−1, while at elevations
of ∼ 4000–4400 m a.s.l. (above sea level), it ranges from
600–800 mm yr−1, and above ∼ 5000 m a.s.l., it ranges from
1500–2000 mm yr−1 (Sharif et al., 2013; Wu et al., 2021).
From October to March, the monthly mean temperatures
in the UIRC are below freezing at elevations >∼ 3000 m
(Archer, 2004). Discharge in the tributary channels of the up-
per Indus River that depend on glacier meltwater has a strong
association with summertime mean air temperatures across
the Karakoram (Forsythe et al., 2017; Wu et al., 2021).

3 Materials and methodology

3.1 Data used

In the present study, we used a 30 m Shuttle Radar Topog-
raphy Mission (SRTM) digital elevation model (DEM) for
landscape characterization and to estimate geomorphic quan-
titative parameters. To investigate the impact of the climatic
variables driving this extreme event on regional erosion pro-
cesses, we utilized daily precipitation datasets from CHIRPS

https://doi.org/10.5194/esurf-13-147-2025 Earth Surf. Dynam., 13, 147–166, 2025



150 A. Kashyap et al.: Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme

(Climate Hazards Group InfraRed Precipitation with Station
data – Version 2.0 Final) for the period from 1 July to 31 Au-
gust, covering 40 years (1982–2022). Several previous stud-
ies have investigated CHIRPS precipitation datasets at daily,
monthly, and annual temporal scales across the Indus Basin
(Gao et al., 2018; Ullah et al., 2021; Nawaz et al., 2021;
Shahid et al., 2021). These studies have extensively evalu-
ated CHIRPS’s performance against regional ground datasets
obtained from meteorological stations. Several studies (Kat-
sanos et al., 2016; Paredes-Trejo et al., 2017; Bai et al., 2018;
Gao et al., 2018) have recommended CHIRPS for hydrolog-
ical analysis and water resource management due to its fine
spatiotemporal resolution.

We investigated the spatiotemporal distribution of hy-
drometeorological variables using daily datasets from 1 July
to 31 August. ERA5-Land, a daily aggregated ECMWF cli-
mate reanalysis dataset with a spatial resolution of 11 132 m,
provided data on 2 m air temperature, skin temperature, dew
point temperature, snowmelt, and runoff. We used remote-
sensing-based indices to detect signatures of anomalous
changes over the landscape. We computed these metrics over
the monthly mean for July and August 2022 using daily
datasets for the MODIS-based normalized difference water
index (NDWI); normalized difference snow index (NDSI);
snow albedo; EVI; and surface reflectance bands B1 and B2,
which have a 500 m spatial resolution.

3.2 Drainage network extraction and landscape analysis

We extracted the drainage network from the DEM using the
ArcGIS platform. A regional slope map was produced by
running a 1000 m radius mean filter over the slope model
derived from the DEM, and a regional relief map was gener-
ated by passing a 1000 m circular-radius focal range window
over the DEM. Further analysis of the DEM and the derived
flow accumulation data was performed in MATLAB using
the “Transient-profiler” tools (Jaiswara et al., 2019, 2020).
We extracted the longitudinal profiles of the bedrock chan-
nels within an accumulation region of about 1× 106 m2 and
the channel network of the upper Indus River catchment us-
ing TopoToolbox (Wobus et al., 2006; Kirby and Whipple,
2012; Schwanghart and Scherler, 2014). We used a 1000 m
smoothing window and a 20 m vertical interval to sample the
channel networks in order to reduce the noise and artifacts
embedded in the elevation data.

3.3 Quantitative geomorphic parameters

We used geomorphic quantitative parameters, such as the SL
(stream length–gradient) index, normalized steepness index
(ksn), and stream power of the upper Indus River trunk chan-
nel, to evaluate the influence of the high-magnitude flood-
ing event across the upper Indus River during July and Au-
gust 2022. To evaluate the spatial variability in the flood mag-

nitude and channel morphology, these metrics were plotted
on the longitudinal profile of the trunk channel.

3.3.1 Stream length–gradient index (SL index)

Rivers often achieve an equilibrium or steady state between
erosion and sedimentation, which is represented by a con-
cave longitudinal river profile (Schumm et al., 2000). Tec-
tonic, lithological, and/or climatic factors often result in
shifts in river profiles from this expected steady-state con-
dition (Hack, 1973; Burbank and Anderson, 2011). Here, we
use the stream length–gradient (SL) index to identify zones
of topographic break and changes in the channel gradient of
the longitudinal profile, employing the following equation:

SL= (1H/1L)/L, (1)

where SL denotes the steepness or gradient of the profile for
the local reach,L is the total river length from the midpoint of
the local reach to the highest point on the channel,1H is the
change in elevation over the reach, and 1L is the length of
the reach. Thus,1H/1L represents the channel slope or gra-
dient of the reach. A sharp lithological variation and/or dif-
ferential uplift across active structures are frequently linked
to an abrupt change in the SL index along the river (Hack,
1973; Jaiswara et al., 2020; Kashyap et al., 2024).

3.3.2 Channel steepness index

We extracted the bedrock profile of the upper Indus River,
which can be described using the power-law relationship be-
tween the upstream drainage area (A) and channel gradi-
ent (S) as follows (Jaiswara et al., 2019, 2020; Kashyap et
al., 2024):

S = ks ·A
−θ , (2)

where ks = (E/K)1/n is the channel steepness index, θ =
(m/n) is the channel concavity index, m and n are positive
constants, andE is the erosion rate at a steady state (Wobus et
al., 2006; Kirby and Whipple, 2012). The relative magnitude
of ks is often related to the surface uplift rate as well as the
erosional efficiency across a bedrock catchment (Snyder et
al., 2003; Wobus et al., 2006).

3.3.3 Stream power estimation

The normalized steepness index (ksn) has emerged as an im-
portant topographic metric, featuring a significant correlation
with erosion rates over a wide range of timescales (Wobus et
al., 2006; Jaiswara et al., 2019; Kashyap et al., 2024). How-
ever, one major drawback of ksn is that it includes an assump-
tion of spatially constant precipitation because the upstream
drainage area is used as a proxy for discharge (Adams et al.,
2020; Leonard et al., 2023).
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In the present study, we incorporate precipitation inten-
sity into the stream power calculation to analyze the anoma-
lous stream power observed along the trunk channel during
the flood event. We estimate the precipitation-induced stream
power using the slope–discharge method, which involves
multiplying the accumulated flow distance weighted by pre-
cipitation by the hyperbolic tangent function of the channel
gradient along the flow path (Adams et al., 2020; Leonard
et al., 2024). The estimation of stream power (KsnQ) as a
function of channel discharge can be calculated as

KsnQ= (S)× f (
∫
p ·FD), (3)

where S is the channel gradient, FD is the accumulated flow
distance, and p is the accumulated precipitation (Leonard et
al., 2023, 2024). Thus, KsnQ is a normalized version of the
channel steepness metric that uses the product of the channel
gradient (S) and upstream discharge (Q), estimated from the
mean precipitation (P ), as a fluvial-discharge proxy. This en-
ablesKsnQ to account for the spatial and temporal variability
in precipitation observed along the upper Indus River during
the high-magnitude flood event. Accumulated precipitation
resolves spatial patterns well and scales nearly linearly with
relevant discharge, particularly for large and long-lasting pre-
cipitation events (Rossi et al., 2016; Leonard et al., 2023,
2024).

3.4 Machine-learning-based approach for modeling the
anomalous event characteristics

The random forest (RF) technique is a supervised machine-
learning method that has been used as a tree-based ensemble
technique and includes a bagging or bootstrapping algorithm
(Breiman, 2001; Wolfensberger et al., 2021). In the present
study, we use an RF-based multivariate regression approach
to estimate the anomalous precipitation and runoff intensity
for July and August 2022, using the independent variables
obtained from classifying variable importance. Accordingly,
we employ the following equation:

H (x)=
T∑
i=1

hi(x), (4)

where hi(x) denotes the ith regression tree output (hi) on
sample x. Therefore, the prediction from the RF approach
is the mean of the predicted values of all the decision trees.
T denotes the regression trees for the regression prediction.

Based on the mean climatology of the last 40 years, we
predicted the daily anomalous precipitation and runoff in-
tensity for the 2022 event and compared them with the ob-
served actual values. We employed the highest-significance
variables, as well as precipitation and runoff data from 1982
to 2021, as a training set. We utilized a time-series cross-
validation approach in this study to evaluate the random for-
est model’s performance in predicting the precipitation and

runoff corresponding to the high-elevation flood event that
occurred in the upper Indus River catchment in July and Au-
gust 2022. Given the temporal dependence and sequential
pattern of hydroclimatic data, using a normal K-fold cross-
validation method could result in data leakage by allowing
future data to inform past projections. To address this is-
sue, we employed time-series cross-validation to maintain
the data within chronological order. We trained the model
using a sliding-window method, gradually moving the train-
ing window forward in time with each iteration. Specifically,
we designed the first training window to contain data from
the first 30 years, leaving the last 10 years for testing. In
each successive iteration, we increased the training window
by 1 year and retrained the model on the expanded train-
ing set. We trained these models on meteorological variables
obtained from the classification of the most significant vari-
ables, as well as on other physical drivers associated with
high-elevation flood episodes in the region. We evaluated the
model’s performance based on the accuracy of the precipita-
tion and runoff predictions, using metrics such as the mean
absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE) (Tables S1 and S2 in the Sup-
plement). We computed these metrics for each rolling win-
dow to gain insight into the model’s performance across var-
ious time periods, especially in the lead-up to the 2022 flood
event. In order to utilize the independent variables to estimate
these event characteristics, we first classified the hydrocli-
matic variables based on their importance using the RF clas-
sification approach. Then, using the RF multivariate regres-
sion approach, we selected only the independent variables
with the highest significance to estimate the anomalous pre-
cipitation and runoff intensity during the event duration.

3.5 Causal discovery among hydroclimatic variables

Causal methodologies have been utilized to evaluate whether
and how changes in one hydroclimatological variable dur-
ing an anomalous extreme event influence the magnitude of
another (Runge et al., 2019a; Nowack et al., 2020). To un-
derstand how an extreme event is regulated over high moun-
tainous terrain, a temporal investigation of event character-
istics is required. Using this evaluation, we can gain insight
into how the conditioning hydroclimatic variables that regu-
late these extreme events evolve throughout the event dura-
tion in a catchment (Runge, 2018; Krich et al., 2020). Under-
standing directional dependencies is crucial for distinguish-
ing them from connections that cannot be deduced using any
statistical model (Kretschmer et al., 2017; Karmouche et al.,
2023).

In this study, we use causal stationarity and the absence of
contemporaneous causal effects for the time-series datasets,
applying the PCMCI and MCI approaches, defined as fol-
lows (Tibau et al., 2022; Runge et al., 2023). The PCMCI ap-
proach is a causal identification technique that combines the
momentary conditional independence (MCI) approach with
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the PC (Peter and Clark) algorithm (Runge et al., 2019b;
Nowack et al., 2020). Given a set of multivariate time series,
the PCMCI approach estimates a time-series graph that de-
picts the conditional independencies among the time-lagged
factors (Runge et al., 2014, 2019a). In addition to the PCMCI
approach, we use the ParCorr linear independence test, based
on partial correlations (Runge et al., 2014, 2023).

In order to evaluate the meteorological disturbances asso-
ciated with the upper Indus River flood of 2022, we identi-
fied the causal lag connection between hydroclimatic vari-
ables, with a specific focus on exploring the meteorologi-
cal conditions leading up to and occurring during the flood
event. We focused on identifying the short-term meteorologi-
cal drivers that triggered the anomalous-precipitation-driven,
high-elevation flood and on understanding the distribution of
the flood’s immediate impacts within the upper Indus River
catchment. We emphasize that this study does not attempt
to explore the causality of long-term climatic changes or as-
sess the full geomorphic consequences of the flood on the
landscape. We deliberately limit the scope to comprehend
the meteorological conditions and their direct impact on the
flood during the July–August 2022 period. By narrowing our
focus to short-term hydroclimatic interactions, we aim to of-
fer insights into key atmospheric processes and their role in
shaping the event’s severity, rather than the flood’s broader
or longer-term geomorphic impacts.

In the present study, we use daily datasets of hydrocli-
matological variables and group them as follows: tempera-
ture gradient (Tg), including air temperature, surface tem-
perature, and dew point temperature; rainfall gradient (Rg),
including precipitation intensity, runoff, and snowmelt;
and anomalous-change (Ac) indicators, including the EVI,
NDWI, and NDSI (covering 1 July to 31 August 2022, i.e., 62
observational intervals). We evaluate the causal interference
between these hydroclimatic variables using the MCI ap-
proach, employing a maximum 2 d lag period (τmax = 2) and
a significance threshold set to 0.05 (α = 0.05), in order to ex-
amine the spatially interdependent relationships among these
variables during 2 d event periods.

3.6 Moisture pathways

Recent studies have used the Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model (https://
www.ready.noaa.gov/HYSPLIT_traj.php, last access: 4 De-
cember 2019) to determine the probable moisture parcel
source region (Joshi et al., 2023) and to identify moisture
pathways (Wang et al., 2018; Joshi et al., 2023). To determine
the backward trajectory following the anomalous precipita-
tion events, this study used the HYSPLIT model. We used
three starting heights (500, 1000, and 3000 m a.s.l.) to cal-
culate the backward trajectory for each day of July and Au-
gust 2022 as the HYSPLIT model required the start date and
time, location, and height of each precipitation event (Wang
et al., 2018). This study used meteorological data with a spa-

tial resolution of 1°× 1° from the Global Data Assimilation
System of the National Centers for Environmental Predic-
tion (NCEP-GDAS).

4 Results

4.1 Geomorphic analysis of the terrain of the upper
Indus River

The upper Indus River is around ∼ 1400–1600 km long and
forms multiple loops, both parallel to and in opposition to
the regional structural trend. Its bed elevation ranges from
∼ 500 to 6000 m. The river exhibits distinct morphologi-
cal characteristics along its flow path with regard to its to-
pographic attributes and derivatives. Over the elevated low-
relief landscape in the Tibetan Plateau, the relief and channel
gradient range from ∼ 0–500 m and 0–10°, respectively; the
SL index values correspond to <∼ 1× 104, and the mean
basin ksn values are <∼ 90 m0.9 (Figs. 2 and 3a). Then, as
the river traverses the NP-HM region, there is a progressive
rise in the local relief and channel gradient to >∼ 2000–
3000 m (>∼ 25–35°), which is also reflected in the SL in-
dex (2.5× 104) and the mean ksn value (>∼ 331 m0.9). This
region is characterized by topographic discontinuities across
active structures, leading to high relief variation and topo-
graphic roughness.

The tributaries in the upstream glaciated valleys that flow
parallel to the structural trend have a higher mean chan-
nel gradient (>∼ 20–30°) and topographic relief (>∼ 2000–
3000 m) (Fig. 2). When these tributary channels start to de-
scend toward the main stream after following the glaciated
landscape, the SL index and ksn values for the trunk chan-
nels show a significant rise at a mean elevation of ∼ 3000–
4000 m. Approaching the southern mountain front, the main
trunk channel relief and channel gradient are∼ 1000–2000 m
and ∼ 15–25°, respectively (Fig. 3a).

The spatial association of higher ksn values (>∼
331 m0.9), topographic relief (∼ 1500–2000 m), and longi-
tudinal increases in channel gradient along the main down-
stream upper Indus River channel suggests a higher erosional
regime. The high values of these various topographic met-
rics highlight zones of accelerated erosion, where the river is
in gradational disequilibrium. Furthermore, this tectonically
active southern front coincides with a region that receives
significant levels of annual mean precipitation (∼ 1500–
2500 mm yr−1), suggesting a tectonics–climate linkage in the
erosional process.

4.2 Spatial distribution of hydroclimatic anomalies over
the event duration

The downstream reach of the upper Indus River trunk chan-
nel received a significant amount of anomalous precipitation
(>∼ 60–80 mm d−1) during the observation period of July
and August 2022 (Fig. 4a and b). The spatial variability in
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Figure 2. Spatial distribution of local relief, overlaid with mean basin ksn ranges across the upper Indus River catchment.

anomalous precipitation had a range of >∼ 0–40 mm d−1

along the major glaciated tributaries, such as the Hunza,
Astor, Gilgit, Shingo, and Zanskar rivers. In July and Au-
gust 2022, the total extent of anomalous precipitation was
around ∼ 900–1000 mm per month, approximately 300 %–
400 % more than the long-term (1982–2022) mean clima-
tology. From July to August 2022, there was continuous
precipitation in the high-gradient downstream region, and
due to the antecedent weather conditions, extreme precipita-
tion likely produced suitable conditions for high-magnitude
flooding. The potential geomorphic response to such anoma-
lous precipitation is suggested by the resulting anomalous
stream power over the downstream channels (Fig. 4c and d).
The spatial distribution of anomalous stream power shows
that the greatest increase occurred at ∼ 400–800 km along
the channel profile downstream. For both July and Au-
gust 2022, we observed a significant rise in stream power,
reaching >∼ 200 m3 s−1 above the mean values (Fig. 3b).

During the observation period, other variables, such as
runoff and snowmelt, also showed positive anomalies across
the upstream glaciated subcatchments in the Karakoram
(Fig. 4e and f). Furthermore, during July and August 2022,
the temperature variables indicated a positive deviation from
the mean climatological trend over the glaciated catchments.
In the upstream subcatchments of the Shyok, Shingar, Hunza,
and Gilgit rivers, air and dew point temperatures reached
∼ 3 °C above the mean, while surface temperatures reached
∼ 6 °C above the mean (Fig. 5). The spatial distribution
of anomalous temperatures aligns well with the magnitude
of anomalous snowmelt and runoff across the upstream
glaciated catchments.

We also observed a significant shift in the spatial distribu-
tion of change indicator variables during the observation pe-
riod. In July 2022, the lower–middle reaches of the upper In-
dus River exhibited a negative change in the EVI (∼ 0–0.21)
and a positive relative NDWI (∼ 0.15–0.20). Such an inverse
relationship between these two change indicators was also
found in the upstream channel in August. During the event,
the tributary channels in the upstream glaciated landscape ex-
perienced a significant change in snow cover distribution, as
demonstrated by the spatial variations in the relative NDSI
(∼ 0–0.63). The changes in relative snow cover correspond
directly to increases in snowmelt and glacial runoff across
glaciated catchments (Fig. 6). We observed a significant re-
lationship (p < 0.005; R = 0.81) between the relative EVI
metric and the anomalous stream power in the upper In-
dus River trunk channel and along its main tributaries. The
anomalous stream power of the upper Indus River and all
of its major tributaries corresponds to a proportion of EVI
change that exceeds that across low-gradient regions. This
positive relationship, with an increasing trend, suggests a
substantial geomorphic response due to extreme flooding.
However, a negative relationship between anomalous stream
power and the EVI can also be observed across the channels
of the Astor and Shingo rivers (Fig. 7).

4.3 Machine-learning-based approach for quantifying
the event anomalies

The RF-classification-based determination of variable impor-
tance indicates that dew point temperature is the most sig-
nificant variable in estimating precipitation intensity. Other
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Figure 3. (a) Longitudinal profile of the trunk channel of the upper Indus River, depicted with the SL index (“dl” refers to change in channel
length, and “dh” refers to change in channel elevation). (b) The longitudinal profile of the trunk channel of the upper Indus River, depicted
with stream power (“Obs.August” and “Obs.July” refer to observations for August and July related to stream power for the year 2022,
whereas “Mean August” and “Mean July” represent the average stream power for the previous 40 years of climatological observations). The
stream power profile is illustrated only for the highest-order trunk channel of the upper Indus River, as indicated by the dashed black line in
panel (a).

significant variables include surface temperature and air
temperature. The relative NDSI was the variable of high-
est significance for estimating precipitation in all subcatch-
ments except the Shingar River (Fig. S1 in the Supplement).
Snowmelt, dew point temperature, the relative NDSI, and

surface temperature are the most significant variables for
each subcatchment when estimating runoff intensity. Surface
temperature holds the highest significance in the trunk chan-
nel catchment of the upper Indus River, followed by air tem-
perature and precipitation intensity (Fig. S2). The anomalous
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Figure 4. Spatial distributions of hydrometeorological variables across the upper Indus River catchment for the anomalous months of
July and August 2022. (a) Precipitation (July). (b) Precipitation (August). (c) Snowmelt (July). (d) Snowmelt (August). (e) Runoff (July).
(f) Runoff (August).

precipitation and runoff intensity are then estimated using
these independent variables, with the highest significance ob-
tained during classification.

The results show that the upper Indus River catchment
received significantly more precipitation and runoff than
predicted on multiple occasions in July and August 2022
(Fig. 8). The anomalous and extreme characteristics of the
hydroclimatic and terrestrial drivers could explain this phe-
nomenon. The upper Indus River catchment received a sig-
nificant amount of anomalous precipitation, with an inten-
sity of >∼ 100 mm d−1, which is much higher than the pre-
dicted intensity for the period of observation. The channels
in the higher-relief landscapes, such as those of the Astor and
Gilgit rivers, encountered the second-highest anomalous in-
cidence, with intensities of∼ 80–100 mm d−1. The upstream
glaciated catchments, such as the Shyok, Shingo, and Hunza
rivers, also show persistent anomalous intensities of up to
∼ 100 mm d−1. The least impacted catchments were the Zan-
skar and Shingo rivers, despite experiencing high rates of
precipitation, ranging from ∼ 60–80 mm d−1.

Distributions of observed and predicted runoff show that
the intensity of observed runoff corresponds to the precip-

itation trend. During the observation period, the upper In-
dus River catchment experienced much higher runoff rates.
This catchment was followed by upstream glaciated sub-
catchments, including the Shyok (∼ 30–60 mm d−1), Shingo,
and Gilgit (∼ 20–30 mm d−1) rivers. However, in the major-
ity of the upstream subcatchments, the observed anomalous
runoff intensity was insignificant (Fig. 9).

4.4 Causal relationship among hydroclimatic variables
over the event duration

The causal analysis showed that the impact of numerous me-
teorological variables on the extreme flood across the ter-
rain of the upper Indus River varied significantly. We ob-
served a significant causal lagged connection between dew
point temperature and the NDSI, both of which positively
influenced precipitation intensity, with a 1 d lag observed
across the upper Indus River catchment. Similarly, precipi-
tation intensity and snowmelt exhibited a positive causal in-
fluence on the NDWI, with a 1 d lag period. For instance, the
cross-correlation between precipitation and dew point tem-
perature, which has a positive impact, is> 0.4 over the event
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Figure 5. Spatial distributions of hydrometeorological variables across the upper Indus River catchment for the anomalous months of July
and August 2022. (a) Air temperature (July). (b) Air temperature (August). (c) Surface temperature (July). (d) Surface temperature (August).
(e) Dew point temperature (July). (f) Dew point temperature (August).

duration. There was a significant negative causal influence
of the NDWI on the EVI, indicating an inversely propor-
tional relationship across the observational lag period. The
hydroclimatic variables, such as the precipitation intensity,
snowmelt, NDWI, EVI, NDSI, air temperature, and surface
temperature, exhibited nonlinear and nonstationary trends
from 1 July to 31 August 2022, as shown by the autocor-
relation and PCMCI magnitude throughout the time series.
The auto-MCI ranges of these variables are comparatively
very low. Runoff and dew point temperatures exhibit station-
arity and a linear trend throughout the time series, with rel-
atively high auto-MCI ranges. It is also observed that dew
point temperature has a significant inherent connection with
snowmelt and the NDSI, indicating that these variables have
a direct causative relationship with a high cross-MCI range
(Fig. 10). In a causal investigation, edges with arrows indi-
cate a link between the drivers. However, depending on the
available metrics, there may be an instant causal connection
between the drivers. It should be observed that this relation-
ship may not have been determined to be causative.

4.5 Identifying moisture trajectories for the anomalous
precipitation event

Based on observations of moisture source uptake along tra-
jectories for the observation period from 1 July to 31 Au-
gust 2022, precipitation across the orographic ridges of the
upper Indus River terrain was delivered along two major
pathways – one from Mediterranean Sea sources, such as
western-disturbance-derived moisture from the onset of the
monsoon, and another from the ISM, originating from the
Bay of Bengal and the Arabian Sea. The WD routes provided
the moisture sources for the precipitation along the 3000 m
height trajectories, while the Arabian Sea, the Bay of Ben-
gal, and the Himalayan foreland provided the moisture along
the 500 and 1000 m trajectories. Furthermore, the anoma-
lous temperature gradient observed for the months of July
and August 2022 shows that the steep bedrock valleys cause
abnormal air–mass feedback. The substantial divergence in
the air–mass curve from mid-July to mid-August 2022 sug-
gests that there may have been very high precipitation and
temperature fluctuations during these periods (Fig. 11).
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Figure 6. Spatial distributions of hydrometeorological variables across the upper Indus River catchment for the anomalous months of July
and August 2022. (a) EVI (July). (b) EVI (August). (c) NDWI (July). (d) NDWI (August). (e) NDSI (July). (f) NDSI (August).

5 Discussion

5.1 Spatial relationship between topographic metrics
and event anomalies

To characterize the geomorphic response to this extreme
flood, we estimated the stream power over the trunk channel
of the upper Indus River as an event anomaly. Understand-
ing the spatial distribution of stream power along the lon-
gitudinal profile of bedrock rivers is essential for evaluating
catchment-scale variability in channel responses to anoma-
lous precipitation events (Whipple et al., 2000; Kaushal et
al., 2020). The peaks and troughs in the stream power pro-
file regulate the morphological characteristics of the bedrock
channels (Schneider et al., 2014; Bawa et al., 2014; Sinha et
al., 2017). The river morphology and channel shape are sig-
nificantly impacted by temporal variations in flooding inten-
sity during anomalous precipitation events (Bookhagen and
Strecker, 2012; Scherler et al., 2011).

The initial ∼ 400–600 km segment of the upper Indus
River is characterized by low-gradient channels as the river
traverses the elevated low-relief landscape. After travers-
ing the main stream and joining the highest-order channel

across the syntaxial region, the river experiences a sharp
rise in the stream power profile downstream. The western
syntaxial region (NP-HM) in the NW Himalayas is one of
the most rapidly uplifting (>∼ 5–10 mm yr−1) and eroding
(>∼ 10 mm yr−1) regions on Earth, featuring extreme topo-
graphic relief (> 3000 m) (Figs. 1 and 2). The sudden in-
crease in the stream power of the upper Indus River after
it traverses the NP-HM, along with the resultant extreme
flood in the lower–middle reaches, was also attributed to the
high elevation change (>∼ 4000 m) and steep channel gradi-
ent (>∼ 20–30°) (Fig. 3b). The spatial variability in stream
power is also strongly correlated with other topographic met-
rics, such as ksn and the SL index, which demonstrate a con-
siderable rise in their longitudinal profiles when the chan-
nel crosses the NP-HM region (Fig. 3a). We observed that
the stream power distribution along the longitudinal pro-
files of the upper Indus River is characterized by numerous
peaks during both months of anomalous precipitation, July
and August 2022 (Fig. 3b). The present study, which esti-
mates stream power driven by anomalous precipitation, iden-
tifies regions across the upper Indus River catchment with
high erosion potential corresponding to the 2022 flood event.
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Figure 7. Statistical relationship between the relative EVI and anomalous stream power from 1 July to 31 August 2022 with respect to the
upper Indus River catchment and all its major tributaries.

Figure 8. Random-forest-regression-based comparison of observed vs. modeled anomalous precipitation from 1 July to 31 August 2022
with respect to the upper Indus River catchment and all its major tributaries.

However, field validation or high-resolution pre- and post-
event DEMs are required to quantify the rate of erosion and
the patterns triggered by this extreme flood event. Our anal-
ysis primarily draws upon pre- and post-event observations
from remote-sensing-based indices and topographic analysis

to spatially correlate estimated stream power with channel
metrics.

The upstream glaciated channels of the trans-Himalayan
and Karakoram ranges have a substantial glacial influence
on erosion, contributing to the main trunk channel of the
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Figure 9. Random-forest-regression-based comparison of observed vs. modeled anomalous runoff from 1 July to 31 August 2022 with
respect to the upper Indus River catchment and all its major tributaries.

upper Indus River. Therefore, such high-magnitude floods
ought to propagate through the channels of high mountain-
ous tributaries, such as the Shyok, Gilgit, and Hunza rivers,
depending on the landscape characteristics of the upper Indus
River catchment. A moderate change in the distribution pat-
tern of snow cover may have a significant impact on glacial
runoff and substantially contribute to fluvial discharge. In ad-
dition to the southern mountain front, the headwaters and
syntaxial zone of the upper Indus River catchment received
a significant amount of precipitation, which contributed to
the anomalous rise in stream power and substantially con-
tributed to this extreme flood, influencing the channel geom-
etry of the lower–middle reaches and driving high bedrock
erosion (Fig. 4). However, the lower–middle reaches, with
higher stream power, are distinguished by steep channel val-
leys and the absence of sediment deposition. This observa-
tion suggests that the higher-order channels of the upper In-
dus River, traversing higher-relief and steep-gradient valleys,
likely possess direct first-order control over the pattern of
erosion when combined with an anomalous rate of precipi-
tation (Fig. 3b).

5.2 Hydrological extremes and causal connections

Our observations suggest that the interactions of glacial
runoff with fluvial discharge over the steep-gradient chan-
nels combined to drive the extreme flood event across the
upper Indus River catchment. These extreme hydrological
episodes imply that the possible responses of atmospheric
instabilities may be elevation-dependent (Dimri et al., 2015;

Forsythe et al., 2017; Ullah et al., 2021; Sharma et al., 2022).
They began with anomalous rises in temperature gradients
over the glaciated subcatchments of the upper Indus River
terrain, which drove rapid changes in snow cover distribu-
tion (Figs. 5 and 6). This directly impacted the magnitude of
glacial runoff and contributed to an anomalous rise in fluvial
stream power as it traversed downstream over higher-relief
fluvial reaches (Fig. 6). The lower–middle reaches of the up-
per Indus River catchment witnessed an anomalous amount
of precipitation intensity from early July to late August 2022
(Fig. 4). When compared to the annual mean climatology, the
precipitation intensity in the lower–middle reaches of the up-
per Indus River was roughly ∼ 150 %–200 % higher during
the 2022 monsoon period. The 2022 upper Indus River flood
represents an abrupt change from the region’s prior precip-
itation and runoff patterns. To study this anomaly, we uti-
lized a random forest model trained on climatological data
from the last 40 years (1982–2021), with an emphasis on the
months of July and August. The model used previous cli-
matology as a training dataset to estimate precipitation and
runoff, which are significant drivers of flooding. Despite the
resilience of the random forest model, the results revealed a
substantial difference between the model’s predictions and
the actual observed data obtained from the 2022 flood event.
The model, based on 40 years of past data, failed to capture
the increased precipitation and runoff patterns observed in
July and August 2022 (Figs. 8 and 9). The model’s inabil-
ity to predict rainfall intensity, as well as subsequent runoff,
highlights the anomalous nature of the event. This disparity
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Figure 10. Causal detection among hydroclimatic drivers featur-
ing nonlinear time series from 1 July to 31 August 2022 with re-
spect to the upper Indus River catchment, with a maximum al-
lowable lag of 2 d at the 95 % confidence interval. (The following
drivers are shown in the circles: dew point temperature (DT), sur-
face temperature (ST), air temperature (AT), precipitation intensity
(P ), snowmelt (SM), runoff (RF), the normalized difference water
index (NDWI), the normalized difference snow index (NDSI), and
the enhanced vegetation index (EVI). The node color represents au-
tocorrelation, whereas the link color represents the strength of the
directional link. The lag level at which the link was found signifi-
cant is indicated by the link label; the absence of this label indicates
that the link was found at zero lag.)

demonstrates that the 2022 flood not only was unusual but
also went beyond the typical climatological shifts observed
over the previous 4 decades. This emphasizes the necessity
for future modeling efforts to include other predictors, such
as changes in snowmelt dynamics, atmospheric circulation
anomalies, and other nonstationary phenomena.

The moisture flux trajectories observed across the lower–
middle reaches of the upper Indus River during the
2022 monsoonal period reveal two distinct sources of
moisture pathways, indicating that the combined effect
of westerly-driven precipitation and the active monsoon
phase likely caused this episodic event (Wang et al., 2018)
(Fig. 11). Over the past years, interactions between the
moisture-laden ISM and southward-penetrating upper-level
WD depressions have been linked to certain catastrophic
western Himalayan floods, such as those that occurred in
2010 across Pakistan and 2013 in Uttarakhand, India (Ras-
mussen and Houze, 2012; Vellore et al., 2016; Dimri et al.,
2016; Sharma et al., 2017). This anomalous rise in precipita-
tion intensity rates contributes to the rapid increase in stream
power across steep valleys. The combined causal influence
of temperature and precipitation intensity, along with topog-

raphy, plays an important role in modulating such episodic
events as these variables ultimately regulate the amount of
solid precipitation, influence changes in snow cover, and
have a significant impact on snowmelt runoff (Fig. 10) (Bovy
et al., 2016; Godard and Tucker, 2021; Delaney et al., 2023).
This flood highlights the importance of understanding the
cause-and-effect relationship between temperature and pre-
cipitation in high-elevation uplands.

5.3 Channel response to an extreme flood

This study used EVI change analysis as a significant event
characteristic to capture changes in channel morphology trig-
gered by the 2022 upper Indus River flood. The anomalous
runoff events during the flood significantly altered channel
geometries, and these changes were reflected in the spa-
tial and temporal variations in the EVI (Fig. 6). Geomor-
phic processes such as inundation, erosion, and landsliding
submerged or removed vegetation in areas characterized by
drastic shifts in EVI ranges (Anderson and Goulden, 2011).
The reduction in EVI ranges along steep channels highlights
the expansion of waterbodies during flooding, while the sur-
rounding areas experienced erosion and landslides due to ex-
treme discharge. The broader geomorphic consequences of
extreme hydrological events – such as river channel widen-
ing, sediment deposition, and riverbank erosion – are fre-
quently linked to such changes in vegetation cover (Olen et
al., 2016; Starke et al., 2020; Clift and Jonell, 2021; Scheip
and Wegmann, 2021). While the EVI cannot directly mea-
sure hydrologic parameters, its ability to reflect vegetation
loss makes it a useful proxy for assessing the intensity of
geomorphic processes during floods. This capability is par-
ticularly important in high-mountain landscapes, such as the
upper Indus River region, where steep terrain and glacial–
fluvial regimes amplify the effects of extreme events.

We utilize the NDWI and EVI as change indicator met-
rics to understand changes in channel morphology resulting
from this extreme flood event. The spatial variability in the
EVI corresponds significantly with the increase in NDWI in-
tensity observed downstream during July and August 2022
(Fig. 6). The substantial decrease in EVI values along down-
stream channels has also been attributed to the anomalous
precipitation event, which led to increased surface runoff,
higher NDWI limits, and subsequent flood deposits. We ob-
served a significant direct causal influence of precipitation
and snowmelt on the NDWI, with a 1 d lagged connection
(Fig. 10). This combined causal relationship between pre-
cipitation and snowmelt with NDWI intensity indicates that
anomalous runoff occurred across both glacial and fluvial
channels. Further, the inverse causal connection (negative
MCI ranges) between the NDWI and EVI illustrates the rapid
change in channel geometry due to increases in fluvial dis-
charge over the lower–middle reaches (Fig. 10).

The change in river morphology driven by the high-
magnitude flood episodes is also documented by the sta-
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Figure 11. Moisture pathways (backward trajectories) for the anomalous precipitation event across the upper Indus River catchment from
1 July to 31 August 2022. (The solid blue lines denote the trajectory at 500 m elevation, the solid yellow lines denote the trajectory at 1000 m
elevation, and the solid red lines denote the trajectory at 3000 m elevation. The dotted blue and yellow lines indicate the ISM pathways,
whereas the dotted red lines indicate the WD pathways).

tistically significant relationship (p < 0.005; R = 0.81) be-
tween the anomalous stream power and relative EVI values
observed across the lower–middle reaches of the upper In-
dus River (Fig. 7). It is generally assumed that relative veg-
etation intensity serves an indicator of geomorphic change
that results from short-duration, high-magnitude hydrologi-
cal events (Olen et al., 2016; Starke et al., 2020; Clift and
Jonell, 2021; Scheip and Wegmann, 2021). Thus, we an-
ticipate that the EVI acts as a spatial indicator of changes
in channel morphology observed across the lower–middle
reaches of the trunk channel during the monsoon period
of 2022 (Fig. 7), suggesting that distributions of event char-
acteristics, such as the NDWI and EVI, can be useful for de-
tecting relative changes in channel morphology triggered by
high-magnitude floods.

6 Conclusion

Our study reveals several significant event characteristics
of the 2022 upper Indus River flood. Our analysis shows
that the upper Indus River flood originated from elevated
glacial channels due to an anomalous temperature rise,
which increased glacial runoff. This increase in runoff across
glaciated catchments, after traversing fluvial reaches, en-
hanced fluvial discharge and likely increased the stream
power in the region affected by anomalous precipitation.

The synoptic observation of moisture pathways indicates that
this anomalous precipitation incident is linked to the in-
teraction of southward-moving midlatitude westerly troughs
and eastward-advancing southwestern monsoon circulation.
We observe a statistically significant relationship between
anomalous stream power and changes in the relative EVI
across the lower–middle reaches, which serves as a signif-
icant geomorphic indicator of changes in channel morphol-
ogy. This will aid in determining the reliability of the EVI
as a consistent indicator of geomorphic change, as well as
its applicability in studying the geomorphic evolution of re-
gional landscapes. This extreme flood illustrates how causal
connections between temperature and precipitation across
high-relief, steep-gradient channels can magnify impacts.
Such hydrological events may serve as efficient geomorphic
agents of erosion and, therefore, play a significant role in the
coupling of climatic extremes, topography, and erosion. This
study underscores the susceptibility of elevated syntaxial re-
gions to short-lived, high-magnitude flooding, emphasizing
the need for additional research to determine the causal rela-
tionship between the drivers of hydrological extremes. Sig-
nificant research is needed to understand the long-term im-
pact of these extreme climatic events on geomorphic pro-
cesses in the region.
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Code and data availability. This study utilizes open-source
datasets acquired from remote sensing and an open-source
platform, with the methodological tools also being open-source,
as detailed with appropriate sources and citations in the “Data
used” section of the paper. For quantitative geomorphic param-
eter estimation in this study, we used an SRTM-based 30 m
DEM obtained from the open-source OpenTopography plat-
form (https://opentopography.org/, Open Topography, 2025).
We obtained precipitation datasets from CHIRPS (Funk et al.,
2015). This study uses various hydroclimatic datasets from
ERA5-Land, featuring post-processed daily statistics from 1950
to the present (https://cds.climate.copernicus.eu/stac-browser/
collections/derived-era5-land-daily-statistics, C3S, 2017). All
change indicators employed in the present study (the NDWI,
NDSI, and EVI) were sourced from MODIS datasets, available at
https://modis.gsfc.nasa.gov/data/dataprod/ (NASA, 2000).

We employed the “Tigramite” Python package for causal discov-
ery, which includes methods for constraint-based causal discovery
and causal effect estimation designed for time series (https://github.
com/jakobrunge/tigramite) (Runge, 2025; Runge et al., 2019a, b,
2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esurf-13-147-2025-supplement.
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