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Abstract. Precise and reliable information about bedforms regarding geometry and dynamics is relevant for
many applications – such as ensuring safe conditions for navigation along the waterways, parameterizing the
roughness of the riverbed in numerical models, or improving bedload measurement and monitoring techniques.
There are many bedform analysis tools to extract this information from bathymetrical data. However, most of
these tools require the setting of various input parameters, for which specific values have to be selected. How
these settings influence the resulting bedform characteristics has not yet been comprehensively investigated.
We therefore developed a workflow to quantify this influence by performing a Monte Carlo simulation. By
repeating the calculations many times with varying input parameter settings, the possible range of results is
revealed, and thus the procedure-specific uncertainties can be quantified. We implemented a combination of
the widely used zero-crossing procedure to determine bedform geometries and a cross-correlation analysis to
determine bedform dynamics. Both methods are well known and established, which ensures the transferability
and value of the findings. In order to increase the robustness of the workflow, we implemented a wavelet analysis
based on Bedforms-ATM (Guitierrez et al., 2018), which is carried out before the zero-crossing procedure. This
provides further orientation and accuracy by identifying predominant bedform lengths in a given bed elevation
profile. The workflow has a high degree of automation, which allows the processing of large amounts of data.
We applied the workflow to a test dataset from the Lower Rhine in Germany that was collected by the German
Federal Waterways and Shipping Administration in February 2020. We found that bedform parameters reacted
with different sensitivity to varying input parameter settings. Uncertainties of up to 35 % and up to 50 % were
identified for bedform heights and bedform lengths, respectively. The setting of a window size in the zero-
crossing procedure (especially for the superimposed small-scale bedforms in cases where they are present) was
identified to be the most decisive input parameter. Here, however, the wavelet analysis offers orientation by
providing a range of plausible input window sizes, and it thus allows for a reduction in uncertainty. Concurrently,
the time difference between two successive measurements has been proven to have a significant influence on the
determination of bedform dynamics. For the test dataset, the faster-migrating small-scale bedforms were no
longer traceable for intervals longer than 2 h. At the same time, they contributed to up to 90 % of the total
bedload transport, highlighting the need for measurements at high temporal resolution in order to avoid a severe
underestimation.
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1 Introduction

Bedforms are ubiquitous in rivers with sandy or gravelly
beds (Carling et al., 2006; Kleinhans, 2001; Van Rijn, 1993).
Their occurrence, shape, dimensions and dynamics depend
on hydraulic and morphological conditions. Knowing bed-
forms is crucial for various fields of application. For ex-
ample, bedform crest heights influence the navigable depth
along the waterways (e.g., Carling et al., 2006; Scheiber et
al., 2021). This is why information about maximum bed-
form heights is required in order to ensure safety and ease of
navigation. From the perspective of hydraulics, bedforms in-
crease the flow resistance at the riverbed. In numerical mod-
eling, bedform dimensions and shapes often need to be pa-
rameterized and transformed into form roughness (Lefebvre
and Winter, 2016; Venditti, 2013). The erosion of particles
on the bedforms’ upstream faces and the accumulation on
their downstream faces result in a downstream movement
of sediments, contributing to bedload transport (Simons et
al., 1965). Therefore, bedload transport rates can be esti-
mated based on bedform migration – so-called dune track-
ing (e.g., Claude et al., 2012; Leary and Buscombe, 2020;
Simons et al., 1965) – representing an alternative approach
to direct bedload measurements.

Over the years many tools were developed to derive both
bedform geometries and migration rates from multibeam
echo sounding (MBES) data (e.g., Cisneros et al., 2020; Gilja
et al., 2013; Guitierrez et al., 2018; Henning, 2013; Lee et
al., 2021; Lebrec et al., 2022; Lefebvre et al., 2022; Núñez-
González et al., 2021; Ogor, 2018; Scheiber et al., 2021; Van
der Mark and Blom, 2007; Van Dijk et al., 2008; Wang et al.,
2020; Zomer et al., 2022). Most of these tools require the set-
ting of procedure-specific input parameters. There are often
no theoretically sound criteria or anything like best practice
for setting a specific value. For example, a widely used and
established approach is the zero-crossing procedure, which
is implemented in many published tools and has been used in
many studies (e.g., Van der Mark and Blom, 2007; Leary and
Buscombe, 2019; Wang et al., 2020; Zomer et al., 2022). The
identification of bedforms crests and troughs in a longitudi-
nal bed elevation profile (BEP) is based on the calculation
of a moving average, which requires the setting of a window
size. However, there are no equations or guidelines for choos-
ing a specific value. Therefore, the procedure is strongly in-
fluenced by the personal experience and subjective selection
of the investigator. If applied by several investigators, differ-
ent results will be obtained from the same procedure and for
the same dataset. Despite the ubiquitous need to define the
setting of these parameters, little attention has been paid to
how different settings influence estimated bedform charac-
teristics. A Monte Carlo simulation (MCS) is a suitable ap-
proach to evaluate this influence of input parameter settings.
An MCS is a computer-based analytical method that utilizes
sequences of random numbers as inputs into a model in or-
der to obtain a probabilistic approximation to the solution

(Adekitan, 2014). With regard to bedform analysis, repeated
calculations with varying input parameter settings reveal the
possible range of results and enable robust estimates of the
resulting bedform characteristics.

We therefore developed a workflow to perform extensive
sensitivity and uncertainty analyses and applied it to a field
dataset. The workflow includes an initial wavelet analysis,
a zero-crossing procedure to determine bedform geometries
and two different approaches to analyze bedform dynamics,
which are partly based on existing tools. These individual
steps are embedded in an MCS routine to repeat the calcula-
tions with varying input parameter definitions. This is the key
feature of the workflow and allows us to quantify the range
of uncertainty for different bedform parameters (e.g., height,
length and migration rate) due to the input parameter settings.
It also allows us to compare the sensitivity of the different
input parameters further down the line. Both will be of great
value for future studies when estimating the uncertainty and
the robustness of produced results.

There are essentially two key research questions for this
study. First, what is the sensitivity of the individual input pa-
rameters? Second, what is the total level of uncertainty to be
expected due to varying input parameter settings? In order
to adequately address these research questions, the following
aspects were decisive for the development of the workflow.

– Automation. Due to increasing data availability and the
need for repeated calculations (within the MCS), it was
essential to achieve a high degree of automation to en-
able batch processing of large datasets. Therefore, the
algorithm was coded in a way that allows for easy selec-
tion of multiple datasets and the performance of many
iterations.

– Transferability and value. As mentioned earlier, there
are lots of different bedform analysis tools avail-
able. Each of them is complex and it would be be-
yond the scope of this work to combine them within
one comprehensive study. Therefore, we selected the
well-established zero-crossing procedure to determine
bedform geometries in combination with the cross-
correlation analysis to determine bedform dynamics.
Both approaches have been used in many studies or
are even implemented in recently published tools (see
the list above). In this way, the value and transferabil-
ity of the findings for future research can be increased.
With regard to bedform dynamics, we use the zero-
crossing procedure in combination with a newly intro-
duced method as a second approach, which allows for
further validation and provides new insights into bed-
form dynamics.

– Robustness. Before the MCS can be carried out, a value
range must be specified within which the input parame-
ters are varied. In order to provide orientation and thus
avoid diverging results, a wavelet analysis was added
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to the workflow based on Bedforms-ATM (Guitierrez et
al., 2018). This allows for initial estimates about pre-
vailing bedform lengths in a given BEP, which are re-
quired input parameters for the zero-crossing procedure.
In this way, the boundary conditions for the MCS can
be defined and the accuracy and the robustness of the
procedure increased. The combination of wavelet anal-
ysis and zero-crossing procedure has already proven to
be efficient in the algorithm developed by Wang el al.
(2020). A further aim was to increase the robustness of
the statistical evaluation of bedform characteristics. We
therefore introduce a new parameter as a measure of to-
tal bedform height, which behaves more robustly com-
pared to existing measures.

The entire workflow is based on the evaluation of longitu-
dinal BEPs. Due to the high degree of automation, large num-
bers of BEPs can be analyzed. By using a dense arrangement
of the individual BEPs and analyzing different angles, a 3D
analysis could be approximated. We applied the workflow to
a test dataset that contains MBES data of a 500 m stretch of
the Lower Rhine in Germany. The data were collected dur-
ing a 3 d campaign in February 2020 by the German Federal
Waterways and Shipping Administration.

Section 2 introduces the implemented workflow and con-
tains detailed descriptions of the individual steps and imple-
mented methods. This is followed by a description of the
MBES dataset from the Lower Rhine. In Sect. 4, the result-
ing bedform parameters and bedload transport rates are pre-
sented. Section 5 focuses on the interpretation of the results
and the sensitivity of the different procedure-specific input
parameters. Finally, the key findings are outlined in Sect. 6.

2 Method

Before describing the individual steps of the implemented
workflow in detail, Fig. 1 provides an overview for orienta-
tion. The workflow consists of the following key points.

– Input data. These data consist of longitudinal BEPs de-
rived from MBES data.

– Step 1 – wavelet analysis. In this step, predominant bed-
form lengths are identified in a given BEP by a continu-
ous wavelet transform based on Bedforms ATM. These
are required input parameters for step 2.

– Step 2 – zero-crossing procedure. This step requires the
identified predominant bedform lengths as input param-
eters (window sizes) for the zero-crossing procedure,
based on the software RhenoBT (Frings et al., 2012),
in order to determine bedform geometries. By extend-
ing the original algorithm, a data export of tables con-
taining information about individual bedform attributes
(e.g., height, length and shape) was implemented to en-
able extensive statistical analyses as an optional post-

processing routine. In addition, new statistical parame-
ters for the characterization of bedform geometries were
defined.

– Step 3 – cross-correlation/centroid analysis. This step
consists of the calculation of bedform migration rates
based on determined bedform geometries using a cross-
correlation analysis or a newly introduced centroid anal-
ysis that detects the migration of the geometrical cen-
troids of individual bedform areas. Bedload transport
rates can be derived from a known migration rate by
considering grain density and porosity.

– MCS. The setting of input parameters is required at vari-
ous points in the workflow. This has an impact on the re-
sults that is not immediately apparent to the user. There-
fore, the calculations are repeated multiple times with
different input parameter settings in order to reveal the
range of plausible results and to evaluate the level of
uncertainty.

2.1 Preprocessing and data preparation

Before the actual analysis, the spatial discretization of the
river section under investigation has to be defined. Spatial
discretization lateral to the flow direction is given by the dis-
tance between the BEPs. The more heterogeneous the inves-
tigated bedform field is (high spatial variation in bedform di-
mensions), the denser the arrangement of BEPs should be. In
the longitudinal direction, a division into sections is manda-
tory. The statistical parameters (e.g., the average bedform
height and length) are calculated per section (see Sect. 2.4).

In order to obtain the BEPs from the MBES data, some
hydrographic preprocessing steps are required. Based on the
plausibilized raw MBES data, geometric modeling is suitable
to reduce included measurement uncertainties. For this pur-
pose, the measurement data are gridded, and for each grid
point a polynomial is approximated to the 3D point cloud
within a given radius. In the case of the test dataset from the
Lower Rhine, a surface approximation with polynomials us-
ing a least-squares fit was applied. Along the considered pro-
file tracks, the individual BEPs are derived from the DEMs.
A detailed description of hydrographic preprocessing steps
can be found, e.g., in Lorenz et al. (2021).

2.2 Wavelet analysis

The first step of the workflow is a continuous wavelet trans-
form based on Bedforms-ATM. It is performed to identify the
predominant wavelengths (interpreted as bedform lengths)
in the individual BEPs. The predominant bedform lengths
are required input parameters for the zero-crossing proce-
dure that follows in the second step. Wavelet transforms have
been used in a variety of applications to analyze riverbed
roughness (Nyander et al., 2003) or to discriminate engi-
neering surfaces (Raja et al., 2002). They are more suitable
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Figure 1. The implemented workflow consists of three steps. Parts of the workflow are performed as an MCS to consider the uncertainties
associated with the setting of various input parameters.

for signals containing discontinuities compared to Fourier
methods. In terms of bedform analyses, the so-called Mor-
let wavelet appears to be the most efficient (Guitierrez et al.,
2018) and has been used for all analyses in this study. As a
result of the wavelet transform, a spectrum is obtained that
indicates the dominance of individual wavelengths in a BEP.
Figure 2 shows the so-called wavelet power spectrum for an
exemplary BEP excerpt. Based on the chosen significance
level, the predominant wavelengths are identified. Only those
peaks in the wavelet power spectrum that are greater than
the global significance level are considered. By default, the
significance level has to be set by the user. In the shown
example (Fig. 2), three different significance levels lead to
three different results. The workflow has been adapted ac-
cordingly, meaning that the analysis is executed three times
for each BEP with significance levels of 0.3, 0.6 and 0.9,
respectively. If two predominant wavelengths (equal to two
individual peaks included in the wavelet power spectrum)
are detected, it is assumed that two coexistent layers of bed-
forms are present. For example, small-scale secondary bed-
forms might be migrating over large-scale underlying bed-
forms with (likely) higher migration rates (e.g., Carling et
al., 2006; Gilja et al., 2013; Kleinhans et al., 2002).

The resulting wavelengths from all analyzed BEPs are
stored in a table. This table contains the total number of de-
tected wavelengths and is passed to the next step in the work-

flow (zero-crossing procedure) after outliers have been re-
moved. For this purpose, the mean value and standard devia-
tion σ are calculated for each detected bedform layer. Values
that lie outside the range of ± 2σ around the mean value are
removed. Nevertheless – before carrying out the further cal-
culation steps – it is recommended to check the results from
the wavelet analysis for plausibility, to compare them with
site-specific knowledge about occurring bedform dimensions
and to make manual adjustments if necessary. The most sen-
sitive step is deciding on the number of bedform layers rep-
resenting features with predominant wavelengths. Due to po-
tential ambiguity of the results, this step is not automated
but requires a critical assessment based on the present mor-
phological conditions. In the example shown in Fig. 2, differ-
ent significance levels indicate a different number of bedform
layers for the same BEP. In the first case (Fig. 2b), two bed-
form layers are detected with wavelengths of 8 m and 26 m.
In the second case (Fig. 2c), two bedform layers are detected
with wavelengths of 8 and 23 m. In the third case (Fig. 2d),
only one layer with a wavelength of 8 m is detected because
the second peak is below the global significance. This de-
cision has a great impact on all analyses that follow (in a
recently published meta-analysis by Scheiber et al., 2024, in
which five bedform analysis algorithms were compared, the
consideration of a second bedform layer was also identified
as the most significant cause of deviations between the results
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Figure 2. Here we identify predominant wavelengths of a BEP using wavelet analysis. Different wavelengths are identified depending on the
chosen significance level. (a) Excerpt of an exemplary BEP of the test dataset from the Lower Rhine separated into two layers of bedforms.
(b–d) Identified predominant wavelengths using wavelet analysis with a significance level of 0.3, 0.6 and 0.9, respectively. In the first two
cases (b, c) two layers of bedforms are identified. In the third case (d) only one layer of bedforms is identified.

of the different algorithms). For instance, the estimated bed-
load transport rates at the end of the procedure can be over-
estimated or underestimated based on the selected number of
bedform layers. To make this decision, a visual inspection
of the BEPs is recommended. In addition, the calculation of
bedform migration rates can be used as validation. If migra-
tion rates with high correlation coefficients can be detected
for both bedform layers, it can be assumed that the number
of layers has been chosen correctly.

Optionally – especially in case of larger-scale gradients of
the channel bed (e.g., due to underlying bars) – a detrend-
ing of the BEPs can be performed using robust spline filter

techniques. The algorithm is based on a discrete cosine trans-
form and is used to smooth the initial signal. The degree of
smoothing depends on the adjustable s parameter (for further
information, refer to Gutierrez et al., 2013).

2.3 Zero-crossing procedure

The zero-crossing procedure is adapted from the software
RhenoBT that, in turn, is based on the bedform tracking tool
created by Van der Mark and Blom (2007). It is a widely
used approach for analyzing BEPs with respect to bedform
geometries (see Sect. 1). Here a moving average is calcu-
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lated over the considered BEP by setting a window size.
The chosen window size should ideally approximately cor-
respond to the expected bedform length. For this reason, the
results from step 1 (wavelet analysis) provide the rationale
for setting the adequate window size. The zero crossings are
calculated based on the moving average. The local minima
between each two zero crossings are interpreted as bedform
troughs. To limit the effect of small-scale fluctuations in the
BEPs a zero-crossing threshold (hereafter referred to as zc
threshold) is used to define the minimum distance between
a bedform trough and the moving average. Only local min-
ima with distances larger than the zc threshold are consid-
ered. There are no objective criteria for its exact definition,
but globally it must not be greater than the minimum ex-
pected bedform height. At the end of the procedure, one or
two (depending on the selected number of bedform layers)
baselines are constructed that separate the individual bed-
form layers from each other. The lowest baseline separates
the bedforms from the non-active layer of the riverbed. The
individual bedform attributes (height, length and shape) are
calculated based on this separation. If two bedform layers
are present, the individual attributes are calculated for each
layer separately. In such a case the baseline of the small-scale
bedforms is calculated first. Following this, the procedure is
repeated by calculating the moving average – with the cor-
responding window size for the underlying large-scale bed-
forms – over the previously calculated baseline of the small-
scale bedforms. The procedure is illustrated in Fig. A1.

2.4 Bedform statistics

The results of the zero-crossing procedure can be exported
as tables, which summarize geometric attributes for each in-
dividual bedform and the chosen input parameter settings
(Table 1), e.g., to enable subsequent statistical analyses as
a post-processing routine. The tables are exported for each
BEP, section, bedform layer and iteration of the MCS.

In accordance to the definition of individual attributes de-
scribed in Wesseling and Wilbers (2000), bedform length is
defined as the length of the line connecting two adjacent
troughs, while bedform height is the height of the triangle
formed by a crest and its two adjacent troughs. Total height
Htotal is determined by measuring the height of the trian-
gle, which is defined by two adjacent troughs of the large-
scale bedforms and the maximum of the BEP in between
(see Fig. 3a). Total length Ltotal is equal to the length of the
large-scale bedforms. The shape factor S (–) is the relation
between the exact bedform area and the simplified bedform
area resulting from the triangle formed by bedform height
and length (Ten Brinke et al., 1999).

S =
A

0.5 ·H ·L
(1)

Based on these individual bedform attributes, statistical
parameters are calculated to describe average bedform char-

Table 1. Output from the analysis containing geometrical attributes
for each bedform layer.

Attribute Definition

X position (m) x position along the BEP

Length (m) bedform length

Height (m) bedform height

Points number of points

Area (m2) exact bedform area

Shape factor relation between the exact bedform area and
the area of the triangle formed by two adja-
cent bedform troughs and the bedform crest

Layer related bedform layer

Iteration iteration within MCS

Window size (m) selected window size

Zc threshold (m) selected zc threshold

acteristics in a defined section of the BEP. For this purpose,
the median is formed over all individual bedform attributes
contained in a section. Since the determination of these pa-
rameters results from the averaging of individual attributes,
their significance depends on the number of detected bed-
forms in the considered section. For this reason, another pa-
rameter for estimating the total bedform height was imple-
mented that is independent of the number of identified bed-
forms. For obtaining the so-called T90 parameter, in each
x value the vertical difference between lowest baseline and
the BEP is calculated (see Fig. 3b). Finally, the 90th per-
centile of the resulting values is formed within each sec-
tion. The parameter is therefore not based on measuring the
height of individual bedforms but on measuring the accumu-
lated bedform layer thickness (T ) along the entire BEP. The
90th percentile approximately corresponds to the average to-
tal bedform height of individual bedforms in a section. This
means that both T90 and Htotal are used to quantify the same
property, but T90 is expected to behave more robust due to the
mentioned aspects. Definitions of all parameters are given in
Table A1.

2.5 Estimation of bedform migration and bedload
transport

Bedform migration rates can be determined if consecutive
measurements over time are available. For this purpose, two
different methods were implemented. The first method is a
cross-correlation analysis that identifies the spatial offset be-
tween two consecutive BEPs (Leary and Buscombe, 2019;
McElroy and Mohrig, 2009; Van der Mark and Blom, 2007).
Migration rates are determined using the known time differ-
ence between each set of two measurements. They can be es-
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Figure 3. (a) Definition of individual bedform attributes. (b) Determination of the T90 parameter.

timated for the total BEP and for the individual bedform lay-
ers by using the constructed baselines from the zero-crossing
procedure. This can be a decisive aspect in cases where bed-
forms of different dimensions occur that migrate with dif-
ferent rates. As many different solutions emerge from the
MCS for constructing the baselines (because different input
parameter settings are used), the cross-correlation analysis
is also carried out as an MCS. Therefore, many iterations
are performed with different baselines for the same BEP. To
consider the small-scale bedforms of the upper layer sepa-
rately, the upper baseline is subtracted from the initial BEP.
The resulting geometries represent the isolated small-scale
bedforms and are subsequently used in the cross-correlation
analysis. To consider the large-scale bedforms of the lower
layer, there are two possible approaches that were evalu-
ated before the final implementation. The first approach is
based on a subtraction of the lower baseline from the upper
baseline. However, preliminary results (not shown here) in-
dicate that correlations are relatively low for this approach.
Another option is to directly use the upper baseline in the
cross-correlation analysis. Both approaches lead to an iso-
lated representation of the large-scale bedforms. The second
approach proved to be more suitable, as higher correlations
could be achieved, and therefore this approach was imple-
mented.

In addition to the cross-correlation analysis, an alternative
method has been developed to better determine the migration
rates of the small-scale bedforms. The migration of smaller
superimposed bedforms decisively contributes to total bed-
load transport. The resulting quantity may even exceed the
transport associated with larger underlying bedforms (Zomer
et al., 2021). This highlights the need for a more detailed

analysis of this process. In the presented method, individ-
ual migration rates are obtained – instead of an average mi-
gration rate along the entire BEP – by tracking the geomet-
ric centroids of individual bedform areas. Geometric cen-
troids are calculated for all individual bedform areas obtained
from the zero-crossing procedure for two consecutive mea-
surements. Each centroid from the first measurement is as-
signed to the centroid from the second measurement with
the smallest distance in downstream direction. The offset be-
tween each pair of centroids corresponds to the individual
migration distance. By knowing the time difference between
both measurements, migration rates are determined. In order
to ensure a correct assignment of corresponding centroids,
some plausibility check criteria have been defined. For each
pair of bedforms, the ratio of bedform length (L(t2)/L(t1))
and bedform area (A(t2)/A(t1)) is calculated. To ensure a re-
liable assignment, a threshold allowing 25 % of deformation
(concerning length and area) was set. All pairs of bedforms
whose ratios exceed this threshold are excluded. This means
that bedforms whose shape has already changed too much to
allow for a reliable assignment are not included in the further
analysis. The obtained results provide insights into the vari-
ability of bedform migration rates along a BEP and can be
related to specific geometric attributes. To derive a weighted
average migration rate (cm) from the individual rates for a
considered BEP, the products of individual migration rate (ci)
and corresponding bedform length (Li) are summed up and
divided by the total length of the BEP (LBEP).

cm =

∑
ci ·Li

LBEP
(2)
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Like the cross-correlation analysis, the centroid analysis
is also carried out as an MCS by using the various bedform
geometries determined in step 2.

Figure 4 illustrates the two methods for a pair of BEPs se-
lected for demonstration purpose. Figure 4a shows the results
from the cross-correlation analysis and the shifted BEPs. Fig-
ure 4b shows the calculated individual offsets from the cen-
troid analysis. In the following, the cross-correlation analysis
is referred to as method 1 and the centroid analysis as method
2.

Based on the obtained migration rates – and by consider-
ing porosity and density – bedload transport rates (given in
gs−1 m−1) can be estimated. The approach by Ten Brinke
et al. (1999) includes migration rate c (ms−1), density ρ
(gcm−3), porosity n (–), bedform height H (m) and shape
factor S (–).

qb = c ·H · S · 0.5 · ρ · (1− n) (3)

Since during the procedure the exact area of each single
bedform is calculated, shape factor and bedform height can
be replaced. For this purpose, the sum A (m2) of the individ-
ual bedform areas is used. This means that no averaging of
bedform characteristics along the BEP is necessary. To ob-
tain the correct unit, the result must be divided by the total
length of the BEP.

qb = c ·
A

LBEP
· ρ · (1− n) (4)

The calculation of bedload transport is also part of the
MCS as the results depend on the obtained bedform geome-
tries and migration rates.

2.6 Monte Carlo simulation

According to Fig. 1, steps 2 and 3 of the developed work-
flow are executed as an MCS in order to address the possible
range of results and the corresponding level of uncertainty.
Concerning step 1, the results of the wavelet analysis pro-
vide an orientation for setting the window sizes in step 2
(zero-crossing procedure). For each BEP, the wavelet anal-
ysis is performed three times with significance levels of 0.3,
0.6 and 0.9, respectively. The resulting bedform lengths from
all analyzed BEPs are stored in a table. This table now con-
tains the total number of detected bedform lengths. In or-
der to exclude outliers, mean value and standard deviation
σ are calculated for each layer. The final range of consid-
ered bedform lengths for each layer results from±2σ around
the mean value (denoted as “WS_range_n” in Fig. 1). These
steps ensure an automated and a reproducible procedure. The
obtained ranges of bedform lengths are then used in the fol-
lowing zero-crossing procedure.

For applying the zero-crossing procedure in step 2, the
user-defined inputs are the following parameters: (i) the re-
spective window sizes for calculating the moving average

of the individual bedform layers (denoted as “WS_n_i” in
Fig. 1) and (ii) the zc threshold (denoted as “zc-threshold_i”
in Fig. 1). Within a given range, random values are gen-
erated for each parameter according to a uniform distri-
bution. Concerning the window sizes, the ranges of bed-
form lengths resulting from the wavelet analysis are used
(“WS_range_n_for MCS”). For zc threshold there is a lack
of objective criteria, but globally it must not be greater than
the minimum expected bedform height. The random values
for (i) and (ii) are generated once and are then used for all
BEPs and all repeated measurements in order to ensure com-
parability. Using all available sets of generated random val-
ues results in multiple representations of the bedform geome-
tries for each BEP (denoted as “bedform_geometries_n_i” in
Fig. 1). All of these representations are then used to calcu-
late bedform migration and bedload transport rates in step
3, in which two consecutive measurements over time are al-
ways considered in pairs. To ensure comparability, only pairs
of representations of the bedform geometries with identical
parameter settings are considered.

By performing this MCS, the possible range of results can
be quantified for all steps of the procedure. At the same time,
the various statistical parameters can be examined with re-
spect to their robustness. For examining the behavior of each
input parameter separately, additional runs can be executed
in which only one parameter is varied at a time while all the
other parameters are kept constant. The number of iterations
is freely selectable. The higher the number, the more robust
the estimates. On the other hand, a very high number of it-
erations leads to longer computational times. With respect to
the analyses shown here, 100 iterations per BEP were per-
formed.

3 Dataset

The developed workflow was applied to an MBES dataset
from the Lower Rhine in Germany. The dataset was ob-
tained during a field measurement carried out by the German
Federal Waterways and Shipping Administration in Febru-
ary 2020. All hydrographic processing steps (e.g., plausibil-
ity checks, geometric modeling and extraction of longitudi-
nal BEPs from spatial data) were carried out by the German
Federal Institute of Hydrology.

The study area is located close to Emmerich at Rhine kilo-
meter 860.0 to 860.5 and covers 500 m in length and about
200 m in width (see Fig. 5). The section is characterized
by a mixed sand and gravel bed with grain sizes on the or-
der of 6 mm (D50). According to BfG (2011), grain density
was assumed to be 2.603 gcm−3, and for porosity a value
of 0.30 was selected. The measurements were taken on con-
secutive days at medium- to high-flow conditions with dis-
charges ranging from 4000 to 4200 m3 s−1 at gauging station
Emmerich (long-term mean discharge at 2260 m3 s−1) and
depth-averaged flow velocities of about 1.9 ms−1 in the main
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Figure 4. Calculation of bedform migration based on the cross-correlation analysis (a) and by comparing the individual bedform areas of the
geometrical centroids (b). The time difference between the measurements was 0.4 h (corresponding to measurement pair no. 2 in Table A3).
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Figure 5. Study area near Emmerich (Rhine kilometer 860.0 to 860.5), with spatial discretization into 16 profile tracks lateral to the flow
direction and 100 m sections in the longitudinal direction. The base map is from ©OpenStreetMap contributors 2023. Distributed under the
Open Data Commons Open Database License (ODbL) v1.0.

channel. There was a peak in discharge 10 d before the first
day of the campaign exceeding a discharge of 6000 m3 s−1.
The total area covered with bedforms was measured four
times with intervals between 3.2 and 24 h. Additional MBES
data were collected along a single measurement swath in the
center of the bedform field at shorter intervals, allowing for
a more detailed analysis of bedform migration and bedload
transport. All measurements were collected using a Kongs-
berg Maritime multibeam echo sounder EM3002 combined
with positioning by a Trimble antenna SPS185 in precise dif-
ferential GPS mode, an estimation of the heading by a Sea-
path 330 system and data from an inertial measurement unit
(MRU5+). Beam footprints can be quantified in the range
of 0.09–0.27 m for a typical depth of 3.5 m and a beam di-
vergence of 1.5°×1.5°. The point cloud density is about 330
points per square meter, and the measurement uncertainty re-
garding the elevation of a single point can be specified by
0.15 m (95 % confidence level).

Table A2 contains all measurements performed during the
campaign. In order to expand the data basis with respect to
bedform migration and bedload transport, all possible combi-
nations (for dt > 0) are considered rather than only directly
consecutive measurements. The 10 available detailed mea-

surements thus result in
(

10
2

)
= 45 possible combinations

(see Table A3).
Hydrographic processing was performed according to

Lorenz et al. (2021). The measurement data were plausibi-
lized and modeled to a regular grid with a point spacing
of 10 cm by a surface approximation with polynomials us-
ing a least-squares fit. Longitudinal BEPs were derived us-
ing triangular meshing of the DEM. The measured bedform
field was subdivided into 16 BEPs with a lateral distance of
10 m from each other (see Fig. 5b). Starting from the left
boundary of the navigation channel, the profile lines were
shifted parallel as a polyline in specific intervals so that all
profile lines were parallel and equidistant (10 m) from each
other. Figure 6 shows some selected BEPs. All BEPs de-
rived from MBES data from 17 February 2020 can be found
in Appendix A (Fig. A2). The largest bedforms are located
between BEP 8 and BEP 14, covering the entire length of
the study area (see Fig. 6c). Smaller bedforms are located
between BEP 3 and BEP 7, occurring only occasionally in
individual sections (see Fig. 6b). Along BEP 15 and BEP
16 no significant bedforms were measured (see Fig. 6d). A
macrostructure is recognizable, particularly in BEPs 1–4 (see
Fig. 6a). It extends from the head of the groyne on the left
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Figure 6. Selected BEPs derived from MBES data of the first measurement from 17 February 2020.

bank to the middle of the channel. The length of the struc-
ture exceeds that of the other longest bedforms by an order
of magnitude. When analyzing the collected MBES data, no
migration of the structure could be identified within 48 h. We
therefore assume that this is not a migrating bedform but an
accumulation of sediments that were washed out between the
groynes during the previous flood event. This is why we de-
cided not to include it in the analyses shown in Sect. 4.2.

4 Results

4.1 Wavelet analysis

Figure 7 shows the identified predominant wavelengths cal-
culated in the first step (wavelet analysis based on Bedforms-
ATM). Wavelengths of the small-scale bedforms slightly in-
crease from left to right, reaching a maximum of 13 m. No
wavelengths could be identified near the boundaries of the
study area (BEPs 1–2 and 15–16). In the center of the bed-
form field, a second layer of large-scale bedforms with wave-
lengths on the order of 25 m was detected. A visual compar-
ison of the results with the BEPs shown in Fig. 6 confirms
the plausibility of the results. The resulting migration rates
from the cross-correlation analysis (see Sect. 4.3) will also
verify the assumption of two separate layers. The detected
wavelengths are based on all four measurements of the to-
tal bedform field and on different settings of the significance
level, which were 0.3, 0.6 and 0.9, respectively. Values have
been rounded to whole meters. Therefore, there are overlaps
(up to 12 points per BEP and bedform scale) that cannot be
recognized in the figure.

Only the center of the bedform field (BEPs 8 to 14) was
considered in the further analyses. Along the other BEPs, ei-
ther only very small bedforms occur or bedforms only cover
a limited section. The ranges of respected wavelengths are
defined by twice the standard deviation around the mean
value (see Sect. 2.2). All detected wavelengths were within
the specified ranges.

4.2 Bedform geometries

The wavelet analysis determines the range of values for the
input parameter window size in the zero-crossing procedure

(step 2). For each BEP, 100 iterations were performed with
varying settings (MCS). Window sizes for small-scale bed-
forms were varied between 5 and 13 m, while window sizes
for large-scale bedforms were varied between 23 and 27 m
(according to ±2σ in Fig. 7). The setting of the zc threshold,
the second input parameter, was varied between 0.5 and 5 cm,
which are assumed to be smaller values than the expected
minimum bedform height. At the same time, the derivation
of even smaller structures would reach the limits of mea-
surement accuracy. Based on the specified ranges for each
input parameter, random values are generated according to a
uniform distribution. Figure 8 shows the bedform parameters
obtained from 100 iterations. The parameters were averaged
along each BEP. With respect to bedform geometries, tem-
poral changes can be neglected due to the short time differ-
ences between the individual measurements. Therefore, only
the first measurement (BEP 1 in Fig. 8) is considered in this
context.

Regarding total bedform height, the T90 parameter remains
nearly constant over all iterations for all BEPs, whereas the
Htotal parameter has a higher scattering with a maximum
range of about 5 cm (Fig. 8a and b). The mean for both pa-
rameters reaches a maximum in BEP 11 (values of 33 and
35 cm). Considering the individual bedform layers (Fig. 8c
and d), the large-scale bedforms appear to be slightly lower
(mean values range from 15 to 19 cm for the small-scale
bedforms and from 5 cm to 15 cm for the large-scale bed-
forms) but much longer than the identified small-scale bed-
forms (mean values range from 5 to 6 m for the small-scale
bedforms and from 17 to 22 m for the large-scale bedforms).
Bedform lengths appear to be very sensitive with respect to
varying input parameter settings. The lengths of the small-
scale bedforms have a maximum total range of 4 m, while
the lengths of the large-scale bedforms have a maximum total
range of up to 10 m in BEP 14. It should be noted that spatial
averaging (over the cross section) can lead to a stabilization
and thus to a decreased scattering of the results, which is
shown in Fig. 8e. The relative ranges ((max−min)/mean) of
the individual parameters are shown here, which were aver-
aged over the BEPs 8–14. By far the lowest values are found
for the total bedform height (values of 2 % for T90 and 10 %
for Htotal). Bedform heights of individual layers show much
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Figure 7. Derivation of the ranges of window sizes for the zero-crossing procedure from the identified predominant wavelengths in individual
BEPs by means of wavelet analysis.

Figure 8. Resulting bedform parameters of the Monte Carlo simulation. (a–d) Identified ranges and mean values for individual BEPs.
(e) Averaged relative ranges over BEPs 8–14.

higher values between 30 % and 35 %. The highest values,
however, are found for bedform lengths with a value of al-
most 50 % for the small-scale bedforms.

4.3 Bedform migration and bedload transport

To enable the calculation of bedform migration rates, re-
peated MBES measurements were performed during the
campaign with a minimum time difference of 3.2 h between
two successive measurements for the entire bedform field.
These intervals turned out to be too long to track the faster-
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Figure 9. Correlation coefficients from the cross-correlation analysis (method 1) as a function of time difference between successive mea-
surements. The red and blue dots represent the median values for small-scale and large-scale bedforms obtained from MCS, respectively.
Polygons show the total range of results. Only one result per measurement is available for the total BEP.

migrating small-scale bedforms. Therefore, only the detailed
measurements of the single measurement swath in the cen-
ter (nos. 5–14 in Table A2) are considered for the analysis
of migration rates. Here, intervals are much shorter and start
from 0.2 h. Based on the 10 available measurements, 45 pair-
wise combinations can be analyzed (see Table A3). Migra-
tion rates were calculated using two different methods, as
introduced in Sect. 2.5.

Figure 9 shows the correlation coefficients derived from
the cross-correlation analysis (method 1) as a function of
time difference dt between two measurements. Correlation
coefficients are shown here for the total BEP (without con-
sidering separate layers of bedforms) and for the individual
layers. The constructed baselines from the MCS were used
for considering the individual layers. Accordingly, results
from 100 iterations are available for each measurement. For
the total BEP, on the other hand, only one result per mea-
surement is available. Correlation coefficients obviously de-
crease with increasing dt due to the deformation of bedforms.
However, correlation coefficients of the large-scale bedforms
and of the total BEP remain above a value of 0.7 even after
20 h. Concerning the small-scale bedforms, correlation coef-
ficients decrease much more rapidly and drop below a value
of 0.5 after less than 2 h, highlighting that longer time dif-
ferences between measurements are unsuitable for tracking
these bedforms.

By using method 2 (centroid analysis), migration rates
for individual bedforms are determined. Individual migra-
tion rates are then filtered by the defined quality criteria

considering the geometrical similarity of corresponding bed-
forms from two measurements. Figure 10 shows the remain-
ing number of traceable bedforms. For the small-scale bed-
forms, the number of traceable bedforms strongly decreases
as dt increases. For this reason, the results for longer mea-
surement intervals should be assessed with particular cau-
tion, as they are influenced by only a few observations. In
contrast, the number of traceable large-scale bedforms is low
for all measurement pairs and does not change significantly
as dt increases, which is why we do not recommend using
this method to track underlying large-scale bedforms (see
Sect. 5).

Figure 11 summarizes determined migration rates for all
45 possible combinations of measurements for both meth-
ods. For method 1 (cross-correlation analysis), results with
correlation coefficients smaller than 0.5 were excluded. For
method 2 (centroid analysis), after filtering the results, out-
liers exceeding a 95th percentile were removed and then
weighted average migration rates were calculated along the
BEP.

For method 1 median migration rates of the small-scale
bedforms fluctuate between 1.5 and 2.2 mh−1. For all mea-
surement pairs with a time difference of 2.5 h or more (above
pair no. 12), the correlation coefficients drop below the 0.5
threshold value, and thus no reliable results are available. For
the large-scale bedforms, median migration rates fluctuate
between 0.1 and 0.8 mh−1. Fluctuations are much lower for
measurement pairs with a time interval of 1 d or more. Con-
cerning migration rates of the total BEPs (without consider-
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Figure 10. Number of traceable bedforms depending on measurement interval (centroid analysis, method 2). The red and blue dots represent
the median values for small-scale and large-scale bedforms obtained from MCS. Polygons show the total range of results.

Figure 11. Calculated migration rates for all respected measurement pairs by means of cross-correlation analysis (method 1, a) and centroid
analysis (method 2, b).

ing individual layers of bedforms), results for short measure-
ment intervals are close to the migration rates of the small-
scale bedforms, while results for longer measurement inter-
vals are close to the migration rates of the large-scale bed-
forms, depending on which process is dominant. This high-
lights the need for considering individual bedform layers in
order to make precise statements about migration rates. Mi-

gration rates for both the small-scale bedforms and the BEPs
decrease with increasing measurement intervals. This effect
can probably be attributed to the fact that small bedforms
tend to migrate faster but at the same time can only be reli-
ably tracked for very short measurement intervals. For small
dt, the migration of small bedforms has a significant effect on
the cross-correlation analysis (and thus on the determination
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of the best-fitting spatial offset). With increasing dt, deforma-
tion of bedforms increases so that the smallest bedforms are
no longer traceable and the average migration rate decreases
(see also Sect. 5.1.2). This effect can be found in the results
of both methods.

Regarding method 2 (Fig. 11b), fluctuations are higher
compared to method 1. For the small-scale bedforms, median
migration rates vary between 1 and 2 mh−1 for most of the
measurement pairs that contain measurements of the same
day. For longer measurement intervals (1 or 2 d intervals) val-
ues vary between 0 and 0.5 mh−1. As shown in Fig. 10, the
number of traceable bedforms drastically decreases with in-
creasing dt, which is why only the results for very short mea-
surement intervals are sufficiently reliable. Here, the results
are quite comparable to those of method 1. Again, migration
rates decrease with increasing dt. The number of traceable
large-scale bedforms is constantly low (≤ 5). Fluctuations
are very high for short measurement intervals. For longer
measurement intervals, however, median migration rates are
again comparable to those obtained from method 1 and vary
from 0.1 to 0.6 mh−1.

Based on the migration rates calculated by the two meth-
ods, bedload transport rates were estimated using Eq. (4). As
has been shown, the time difference between two measure-
ments has a strong impact on resulting migration rates. The
small-scale bedforms can only be tracked accurately by us-
ing short measurement intervals, whereas longer intervals are
more suitable for the large-scale bedforms. For this reason,
only measurement intervals shorter than 2 h were considered
for the estimation of bedload transport due to the small-scale
bedforms, whereas only measurement intervals longer than
19 h (measurements carried out on different days) were con-
sidered for the large-scale bedforms. For estimating the to-
tal transport, the quantities derived from both bedform layers
were summed up. Figure 12 shows estimated bedload trans-
port rates and their ranges resulting from the different input
parameter settings within the MCS for both methods. The
results obtained from the centroid analysis are again more
affected, leading to total bedload transport rates fluctuating
within a range of about 60 gs−1 m−1 (corresponding to more
than 50 % in relation to the median). In comparison, those
obtained from the cross-correlation analysis only fluctuate
within a range of about 40 gs−1 m−1 (corresponding to about
30 % in relation to the median). Median values, however, are
of the same order of magnitude for both methods. Further
on, both methods indicate that bedload transport associated
with the small-scale bedforms accounts for nearly 90 % of
the total transport, while bedload transport associated with
the large-scale bedforms accounts for only slightly more than
10 %.

5 Discussion

5.1 Interpretation of the results

5.1.1 Bedform geometries

The results for bedform geometries (refer to Sect. 4.2) show
the lowest uncertainties for the bedform parameters that mea-
sure the total height. Here, we determined values of 2 % for
T90 and 10 % for Htotal. The heights of the individual layers,
on the other hand, show significantly higher uncertainties of
30 % to 35 %. The greatest uncertainties arise in the determi-
nation of bedform lengths, which reach values of up to 50 %.
We recognized that uncertainties in the determination of bed-
form geometries are lower if the geometries of the individual
layers are considered together as composite entities. In this
case, the calculated attributes only depend on the baseline of
the large-scale bedforms, which separates the bedforms from
the underlying non-active layer of the riverbed. They are in-
dependent of the baseline of small-scale bedforms that sepa-
rates both layers from each other. At the same time, we show
in Sect. 5.2 that the window size of the small-scale bedforms
is the most sensitive input parameter. This explains why de-
termined uncertainties are lower for total heights compared
to the heights of the individual layers.

Furthermore, bedform lengths were subject to higher un-
certainties than bedform heights, especially for the small-
scale bedforms. The specific morphological situation for the
test dataset from the Lower Rhine could have had an influ-
ence on this result. It is noticeable that the analyzed bedforms
of both layers are rather similar in height and differ mainly
in their length (see Fig. 8c and d). For most BEPs both lay-
ers have average heights of approx. 10 to 20 cm, while the
average lengths are approx. 5 to 6 and 17 to 22 m, respec-
tively. There are other cases where both length and height
differ by an order of magnitude, e.g., as in datasets from the
Rio Paraná as published in Parsons et al. (2005) or from the
Waal river as published in Zomer et al. (2023). The analysis
should therefore be continued by using datasets with differ-
ent morphological conditions in order to validate this finding.

The measurements from the Lower Rhine were carried out
a few days after a peak in discharge. Findings from other
studies indicate that significant changes in bedform charac-
teristics may occur during the falling flood limb, and these
findings are very much in line with our observations for
the dataset from the Lower Rhine. According to Martin and
Jerolmack (2013), the larger primary bedforms become inac-
tive during the fall of the flood and are cannibalized by the
formation of smaller bedforms in equilibrium with the de-
creased discharge. In the study of Wilbers and Ten Brinke
(2003), smaller secondary bedforms were observed emerg-
ing during the falling flood limb, while shrinking heights and
increasing lengths were observed for primary bedforms. In
Zomer et al. (2023), however, secondary bedforms were ob-
served over the full range of flow conditions. To demonstrate
that we found similar conditions for the dataset from the
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Figure 12. Comparison of bedload transport rates derived from cross-correlation and centroid analysis along the evaluated BEP.

Lower Rhine, the height-to-length ratio of detected bedforms
is plotted in comparison to the maximum and mean bedform
height according to Flemming (1988) in Fig. 13. While the
small-scale bedforms fit in quite well with Flemming’s ra-
tio, the large-scale bedforms are less steep and are shifted
accordingly to the right. Corresponding to the observations
of the aforementioned studies, the emergence and migra-
tion of small-scale bedforms could have resulted in shrinking
heights (and retarded migration) of the large-scale bedforms
after the peak in discharge (this would also explain the high
contribution of the small-scale bedforms to the total bedload
transport). However, no further measurement data are avail-
able to confirm this conclusively, as investigating the tempo-
ral development of bedforms during a flood wave was not the
initial objective of this study.

The performed MCS revealed high uncertainties in the
determination of bedform geometries, which resulted from
different input parameter settings. However, there are other
sources of uncertainty in the determination of bedform ge-
ometry like the choice of method or tool in general. For ex-
ample, in the recently published meta-analysis by Scheiber et
al. (2024), five bedform identification algorithms were com-
pared. They were divided into two groups based on method-
ological similarities. Within each group deviations in median
heights and lengths did not exceed a value of 25 % after ef-
forts were made to standardize inputs (e.g., harmonizing def-
initions of bedform attributes). Much higher deviations were
found between the two groups. Another source of uncer-
tainty is described by Scheiber and Lefebvre (2023). They
show that the definition of bedform height (there are various
possible and common ways to geometrically determine the
height of an individual bedform) can have an even higher in-

Figure 13. Ratio of identified bedform heights and lengths obtained
from MBES data from the Lower Rhine (February 2020) compared
to the mean and maximum bedform heights according to Flemming
(1988).

fluence on the resulting values. Here, relative differences of
over 100 % were identified. Further on, the influence of data
preprocessing like the generation of DEMs and BEPs could
also be considered. By collating all this information about the
multiple sources of uncertainty, the picture can be gradually
completed.

Earth Surf. Dynam., 13, 191–217, 2025 https://doi.org/10.5194/esurf-13-191-2025



J. Reich and A. Winterscheid: Investigating uncertainty and parameter sensitivity in bedform analysis 207

5.1.2 Bedform migration and bedload transport

In Sect. 4.3 we showed the results for bedform migration that
were derived from the MCS by using the multiple solutions
obtained from the zero-crossing procedure. We investigated
how the influence of the different input parameter settings
for the zero-crossing procedure propagates to the determi-
nation of bedform dynamics. In addition, the influence of
the measurement interval was evaluated. These results reveal
that the determined migration rates and their uncertainties
depend on the time difference between two measurements.
This time difference determines the highest possible trace-
able migration rate and thus at the same time the minimum
bedform dimensions that can be considered (since it is as-
sumed that migration rates increase with decreasing bedform
dimensions). Even within an individual layer, there is hetero-
geneity in terms of bedform dimensions. The smaller the time
difference is, the smaller the bedforms that can be tracked
accurately will be. An increase in time difference leads to
an increasing loss of information and eventually to a poten-
tial underestimation of bedform migration and bedload trans-
port rates since the faster-migrating smaller bedforms are no
longer identified. In the centroid analysis these are succes-
sively removed from the analysis as they no longer meet the
defined quality criteria. In the cross-correlation analysis the
influence of larger bedforms within an individual layer in-
creases with increasing time difference. This explains the de-
creasing trend in Fig. 11 regarding the migration rate of the
small-scale bedforms, which was found by using both meth-
ods. Exceeding a measurement interval of 2 h, migration of
small-scale bedforms can no longer be tracked, which even-
tually leads to an underestimation of bedform migration and
bedload transport (it was shown that the migration of small-
scale bedforms accounted for about 90 % of the total bed-
load transport). On the other hand, in order to track the un-
derlying large-scale bedforms, longer measurement intervals
appeared to be more suitable as they are subject to signif-
icantly lower scattering. For short intervals (measurements
carried out on the same day) deviations of more than 100 %
were reached in cross-correlation analysis (Fig. 11a). This
underlines that in order to track both small- and large-scale
bedforms accurately, different intervals and therefore multi-
ple measurements are required. It could be helpful to perform
preliminary measurements to get a first impression about pre-
vailing bedform dimensions and migration rates and to select
suitable intervals based on this.

In this study, a second method was used for determining
bedform dynamics. The newly introduced centroid analysis
appeared to be subject to greater uncertainties, especially
regarding migration of large-scale bedforms. As shown in
Fig. 10 the number of traceable bedforms is constantly low
for the large-scale bedforms. We therefore recommend not
to use this new method to track underlying large-scale bed-
forms, since for short measurement intervals the spatial offset
is too small to enable a precise assignment (approaching the

limit in terms of measurement accuracy), whereas for large
intervals deformation already has too much influence on the
calculation of the geometric centroids. However, another rea-
son for the smaller number of traceable large-scale bedforms
can be found in the distribution of larger bedforms along the
BEPs. While small-scale bedforms can be found along the
entire BEP, large-scale bedforms are only present in certain
sections and are not covering the total length of the BEP. The
added value of the new method is a deeper look at the be-
havior of individual bedforms – in relation to their geomet-
ric attributes – as well as information about the longitudinal
variability of bedload transport. From this information, new
insights can be gained, especially concerning the behavior of
rapidly migrating smaller bedforms, which can end up con-
tributing the largest part to the total bedload transport.

As mentioned above, there are multiple sources of uncer-
tainty in the determination of bedform geometries. When de-
riving bedload transport rates from these, others are added,
such as the uncertainty in the estimation of porosity and grain
density. For example, since both parameters are linearly re-
lated to bedload transport, a variation of 10 % will also result
in a change of 10 % concerning bedload transport rates. The
choice of an empirical formula for the calculation could even
be a further source of uncertainty. Again, these sources of
uncertainty must be added in order to complete this consid-
eration.

A more detailed look at the performance of different bed-
load transport measurement techniques and – among other
aspects – at possible factors influencing the dune track-
ing method were the subject of the so-called LILAR cam-
paign (Onjira et al., 2023). The campaign was carried out in
November 2021 through cooperation between German and
Dutch authorities. One of the objectives was to compile,
compare and evaluate different methods for measuring sedi-
ment transport. In addition, we are planning to perform fur-
ther campaigns to investigate the influence of different dis-
charge conditions on bedform characteristics in more detail.
For this kind of comparative study, it is again essential to
estimate the uncertainties in bedform analyses in order to ro-
bustly evaluate occurring changes.

5.2 Sensitivity of the input parameters

In Sect. 5.1 we discussed the influence of input parameter set-
tings on the calculated bedform characteristics and bedload
transport rates. In this section, we discuss which of the input
parameters has the greatest influence. A sensitivity analysis
was performed in which only one input parameter was varied
at a time while the others were kept constant. Table 2 shows
the three chosen input parameter settings. For the parameters
that were kept constant, a mean value was set based on the
results from the wavelet analysis (see Fig. 7).
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Table 2. Input parameter for sensitivity analyses.

Setting Window size of Window size of Zc threshold
small-scale large-scale (cm)

bedforms (m) bedforms (m)

1 1–20 25 0.5
2 8 20–30 0.5
3 8 25 0.5–5

5.2.1 Bedform geometries

Figure 14 shows the potential influence of the input param-
eters window size for small- (a–c) and large-scale bedforms
(d–f) and zc threshold (g–i) on the resulting bedform geome-
tries (T90,Htotal L1, 2/total). The resulting bedform geometries
were averaged over the considered BEPs 8–14. Increasing
the window size for the small-scale bedforms (setting 1) re-
sults in increasing bedform heights and lengths. The param-
eter is especially sensitive during the first iterations. When
exceeding a value of about 5 m, increasing convergence can
be observed for both bedform heights and lengths. Within the
selected range of window sizes based on the wavelet analy-
sis (gray area), only a very low variability can be observed.
Thus, the sensitivity is particularly high outside this selected
range. Overall, with respect to bedform height, the T90 pa-
rameter behaves less sensitively than the Htotal parameter.
The reason for this is that the T90 parameter is independent
of the number of identified bedforms. It is not based on mea-
suring individual bedform heights but on measuring the ac-
cumulated bedform layer thickness (T ) in every x position
along the entire BEP. Therefore, the same number of input
values is always used for the calculation.

The window size for the large-scale bedforms (setting 2)
has almost no influence on the T90 parameter (Fig. 14d). With
respect to the Htotal parameter, a very slight increase (2 cm)
can be observed with increasing window size (Fig. 14e). Bed-
form length (in this case only the large-scale bedforms are af-
fected) again exhibits more sensitivity. Here, no convergence
can be observed (Fig. 14f). Nevertheless, variability is much
smaller compared to setting 1. It can be assumed that con-
vergence will eventually occur with increasing values as the
calculated moving average value successively approaches a
horizontal line.

The influence of the zc threshold (setting 3) is also much
smaller than that of the window size for the small-scale bed-
forms. Bedform heights exhibit less sensitivity than bedform
lengths, for which no convergence occurs (Fig. 14i). By in-
creasing the zc threshold, local minima are filtered out suc-
cessively (see Sect. 2.3). Thereby, several individual bed-
forms are summarized, resulting in a smaller number of
longer bedforms. While the maximum height is limited by
the lowest and the highest point in a BEP, a successive in-
crease in length – by combining several individual bedforms
– is technically possible. This is why it is important to con-

sider the expected bedform dimensions in advance in order
not to obtain implausible results.

Changing the window size for the small-scale has the
strongest impact on resulting bedform geometries. Concern-
ing bedform height, the T90 parameter appears to be more
robust towards varying input parameter settings compared to
the Htotal parameter. Overall, bedform lengths appear to be
more sensitive and include a higher degree of uncertainty.
While the Htotal parameter shows a maximum variability of
about 30 %, the total length (corresponding to the length
of the large-scale bedforms) shows a maximum variability
about 60 % (both for setting 1). The delineation of two ad-
jacent bedforms is not always obvious, and several different
solutions might be conceivable. Even a manual delineation
is a highly subjective process and could lead to different so-
lutions for different investigators. In many cases a conver-
gence pattern can be observed that starts at the lower margin
of window sizes based on the results from the wavelet analy-
sis (shaded gray area in Fig. 14). Window sizes smaller than
the lower margin lead to diverging results, which confirms
the need for performing the wavelet analysis as an orienta-
tion.

These findings should be taken into account when analyz-
ing bedform geometries, such as studies on the relationship
between bedform height and length (e.g., Flemming 1988;
Lefebvre et al., 2022). Individual bedform attributes are of-
ten displayed in scatterplots. According to the findings of this
study, an uncertainty range would have to be specified for
each data point in a scatterplot based on different input pa-
rameter settings in the evaluation procedure. Therefore, we
would recommend investigating the sensitivity of input pa-
rameters for other methods as well. The shown results pro-
vide an indication of the possible order of magnitude.

5.2.2 Bedform migration and bedload transport

Figure 15 shows the results of the sensitivity analysis for the
calculation of bedform migration and bedload transport rates
based on the cross-correlation analysis (method 1). For this
purpose, the resulting parameters were averaged over differ-
ent measurement intervals. Based on the findings presented
in Sect. 4.3, only measurement intervals shorter than 2 h were
considered for the small-scale bedforms, whereas only mea-
surement intervals longer 19 h (measurements carried out on
different days) were considered for the large-scale bedforms.

Increasing window sizes for the small-scale bedforms lead
to decreasing bedform migration rates that converge to a
value of about 2 ms−1 for window sizes > 5 m (Fig. 15a).
For smaller window sizes, smaller bedforms are derived from
the BEPs, which are migrating at higher rates. At the same
time, bedload transport rates for the small-scale bedforms
increase with increasing window size as bedform area in-
creases, which outweighs the influence of decreasing migra-
tion rates. They converge to a value of about 110 gs−1 m−1

(Fig. 15b). Bedform area for the large-scale bedforms, how-
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Figure 14. Influence of variation in the input parameters on derived bedform geometries (the gray area corresponds to the selected value
range based on the wavelet analysis). Setting 1 uses a small-scale window size of 1–20 m, a large-scale window size of 25 m and a zc
threshold of 0.5 cm. Setting 2 uses a small-scale window size of 8 m, a large-scale window size of 20–30 m and a zc threshold of 0.5 cm.
Setting 3 uses a small-scale window size of 8 m, a large-scale window size of 25 m and a zc threshold of 0.5–5 cm.

ever, decreases with increasing bedform area for the small-
scale bedforms due to a different delineation of the total ge-
ometry. As a result, bedload transport rates for the large-scale
bedforms decrease as well. Correlation coefficients increase
with increasing window size for the small-scale bedforms
(Fig. 15c). This is because small bedforms resulting from
small window sizes can only be traced accurately for very
short measurement intervals. Thus, averaged correlation co-
efficients are lower for smaller window sizes. The large-scale
bedforms are only slightly affected. Overall, highest variabil-
ity can be found outside the chosen range of window sizes for
the small-scale bedforms based on the wavelet analysis.

Varying window sizes for the large-scale bedforms do not
have any influence on the cross-correlation analysis. This is
because the baselines of the large-scale bedforms are not in-
cluded in the analysis (see Sect. 2.5). Only the changing (in-
creasing) bedform areas result in a slight increase in bedload
transport rates for the large-scale bedforms (Fig. 15e).

Concerning the behavior of the zc threshold, similar ef-
fects can be observed as for the window size for the small-
scale bedforms at setting 1; however, they turn out to be sig-

nificantly less sensitive (Fig. 15g–i). Correlation coefficients
stay rather constant over all iterations (Fig. 15i).

Figure 16 shows the influence of input parameter settings
on the centroid analysis (method 2). As explained in the pre-
vious sections, the method is rather suitable for small-scale
bedforms and short measurement intervals. This is why the
small-scale bedforms and only those measurement pairs with
intervals shorter than 2 h are considered here (see Sect. 4.3).

At setting 1, migration rates initially increase with increas-
ing window size (Fig. 16a). A maximum is reached at a value
of 3 m. A further increase in window size leads to decreasing
migration rates with a tendency of convergence to a value of
1.5 ms−1. Bedload transport rates first increase and then tend
towards a value of 100 gs−1 m−1 (Fig. 16b). Very small bed-
forms can only be traced accurately at very short measure-
ment intervals, meaning that a rapid increase in the number
of detected bedforms can be observed with increasing win-
dow size (Fig. 16c). After reaching a maximum at a value
of 10 m, the number of traceable bedforms decreases again.
An increasing window size leads to increasing bedform areas
and thus to a decreasing number of bedforms. For all parame-
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Figure 15. Influence of variation in the input parameters on the cross-correlation analysis (the gray area corresponds to the selected value
range based on the wavelet analysis). Setting 1 uses a small-scale window size of 1–20 m, a large-scale window size of 25 m and a zc
threshold of 0.5 cm. Setting 2 uses a small-scale window size of 8 m, a large-scale window size of 20–30 m and a zc threshold of 0.5 cm.
Setting 3 uses a small-scale window size of 8 m, a large-scale window size of 25 m and a zc threshold of 0.5–5 cm.

ters the highest variations are again found outside the chosen
range of window sizes.

Varying the setting of the zc threshold again has much less
impact on the results. No systematic effect on the centroid
analysis can be observed (Fig. 16d and e).

As for bedform geometries, it can also be observed for
bedform migration and bedload transport that setting 1 has
the greatest influence on the resulting parameters. This is true
for both methods. Outside the chosen range of window sizes
based on the results from the wavelet analysis, increasing di-
vergence can again be seen. The results illustrate that the ef-
fect of varying input parameter settings in the zero-crossing
procedure propagates to the determination of bedform dy-
namics.

6 Conclusions

Bedform analysis tools are sensitive to the influence of input
parameters. Often, no theoretically sound criteria are avail-
able for the setting of input parameters with specific val-
ues. Thus, this decision depends on the subjective assess-

ment of the investigator. Therefore, we developed a highly
automated workflow, which allows for the quantification of
uncertainties in the calculation of bedform parameters due
to different input parameter settings by an MCS routine. We
implemented different methods to analyze both bedform ge-
ometry and dynamics (migration and bedload transport). In
terms of bedform geometry, we combined a wavelet analysis
based on Bedforms-ATM (Gutierrez et al., 2018) with the
well-established and widely used zero-crossing procedure.
In terms of bedform dynamics, we implemented a cross-
correlation analysis and the newly introduced centroid anal-
ysis. By applying this workflow to a test dataset from the
Lower Rhine in Germany, the following main results and key
conclusions can be derived.

Bedform parameters react with different sensitivity to
varying input parameter settings. The lowest uncertainties
were found when individual layers of bedforms were con-
sidered together as composite entities without discriminating
between them. The introduced T90 parameter proved to be
especially robust as a measure of total bedform height with
uncertainties of only 2 %. Uncertainties in the heights of in-
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Figure 16. Influence of variation in the input parameters on the centroid analysis (the gray area corresponds to the selected value range
based on the wavelet analysis). Setting 1 uses a small-scale window size of 1–20 m, a large-scale window size of 25 m and a zc threshold of
0.5 cm. Setting 2 uses a small-scale window size of 8 m, a large-scale window size of 20–30 m and a zc threshold of 0.5 cm. Setting 3 uses a
small-scale window size of 8 m, a large-scale window size of 25 m and a zc threshold of 0.5–5 cm.

dividual bedform layers, on the other hand, appeared to be
much higher (between 30 % and 35 %). The highest uncer-
tainties were identified for bedform lengths, reaching values
of up to 50 % for the small-scale bedforms. Uncertainties re-
garding bedform geometries are propagated to the determi-
nation of bedform migration and bedload transport rates.

Dune-tracking-induced uncertainties for bedload transport
rates were found to be on the order of 30 % (by using the
cross-correlation analysis) to 50 % (by using the centroid
analysis). By applying both methods it could be shown that
the migration of the small-scale bedforms accounted for
about 90 % of the total bedload transport.

Regarding bedform dynamics, there is also an uncertainty
due to varying time differences between two consecutive
measurements. Rapidly migrating secondary bedforms were
only traceable for measurements with time differences of less
than 2 h. For those measurements a decrease in migration rate
was observed for increasing time differences. On the other
hand, using longer measurement intervals for tracking the
underlying large-scale bedforms resulted in lower uncertain-
ties. We therefore recommend choosing measurement inter-
vals with care depending on the process under investigation.
Performing preliminary measurements to get a first impres-
sion about prevailing conditions may support this decision.

With regard to the question of which input parameter has
the greatest influence on the resulting bedform parameters,
the window size for the small-scale bedforms exhibited the
highest sensitivity. An increase in window size has a signifi-
cant impact on bedform geometries, bedform migration and
bedload transport rates, especially for very small values.

The most stable results were found inside the range of val-
ues provided by the wavelet analysis (based on Bedforms-
ATM) in the first step of the workflow. This underlines the
importance of performing the wavelet analysis to narrow the
range of values entering the MCS. It was shown that values
below the specified range strongly influence the results and
lead to divergence.

Overall, it was shown that varying input parameter settings
can have a large influence on the determination of bedform
parameters. At the same time, we have introduced a work-
flow that can provide proof of robust estimates of these pa-
rameters. We therefore recommend carrying out similar in-
vestigations for other bedform analysis methods and datasets
in order to assess the robustness of derived results. How-
ever, in this study we focused on the uncertainties result-
ing from varying input parameter settings. There are mul-
tiple sources of uncertainties in bedform analyses like the
choice of a method or tool in general or the geometric defini-
tions of bedform attributes. All of these uncertainties must be
considered together in field studies characterizing prevailing
bedform conditions derived from measurement data.
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Appendix A

Figure A1. Zero-crossing procedure. (a) Calculation of the baseline of the small-scale bedforms. (b) Calculation of the baseline of the
large-scale bedforms.
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Figure A2. All BEPs derived from MBES data of the first measurement from 17 February 2020.

Table A1. Definition of bedform parameters.

Parameter Definition Description

T90 90th percentile of all T (x) along a section with
distance dx

Measure for average total bedform height in a
section

Htotal Median of all Htotal(i) in a section Measure for average total bedform height in a
section

Hsmall-scale Median of all Hsmall-scale(i) in a section Measure for average small-scale bedform
height in a section

Hlarge-scale Median of all Hlarge-scale(i) in a section Measure for average large-scale bedform height
in a section

Lsmall-scale Median of all Lsmall-scale(i) in a section Measure for average small-scale bedform
length in a section

Llarge-scale/Ltotal Median of all Llarge-scale(i)/Ltotal(i) in a
section

Measure for average large-scale/total bedform
length in a section
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Table A2. Performed MBES measurements during the field campaign.

No. Date Time (CET) Measured area 1t[h]∗

1 17 Feb 2020 09:35–10:41 total bedform field –
2 18 Feb 2020 09:35–10:21 total bedform field 24.0
3 18 Feb 2020 12:48–13:31 total bedform field 3.2
4 19 Feb 2020 09:52–10:36 total bedform field 21.1
5 17 Feb 2020 11:17–11:24 center –
6 17 Feb 2020 12.13–12:20 center 0.9
7 18 Feb 2020 08:46–08:54 center 20.6
8 18 Feb 2020 10:29–10:37 center 1.7
9 18 Feb 2020 10:41–10:48 center 0.2
10 18 Feb 2020 11:05–11:13 center 0.4
11 18 Feb 2020 11:57–12:04 center 0.9
12 18 Feb 2020 13:36–13:43 center 1.6
13 19 Feb 2020 09:24–09:32 center 19.8
14 19 Feb 2020 11:12–11:20 center 1.8

∗ time difference to previous measurement.

Table A3. The 45 evaluated measurement pairs obtained from the detail measurements.

No. Date 1 Time 1 (MET) Date 2 Time 2 (MET) 1t[h]

1 18 Feb 2020 10:29 18 Feb 2020 10:41 0.2
2 18 Feb 2020 10:41 18 Feb 2020 11:05 0.4
3 18 Feb 2020 10:29 18 Feb 2020 11:05 0.6
4 18 Feb 2020 11:05 18 Feb 2020 11:57 0.9
5 17 Feb 2020 11:17 17 Feb 2020 12:13 0.9
6 18 Feb 2020 10:41 18 Feb 2020 11:57 1.3
7 18 Feb 2020 10:29 18 Feb 2020 11:57 1.5
8 18 Feb 2020 11:57 18 Feb 2020 13:36 1.6
9 18 Feb 2020 08:46 18 Feb 2020 10:29 1.7
10 19 Feb 2020 09:24 19 Feb 2020 11:12 1.8
11 18 Feb 2020 08:46 18 Feb 2020 10:41 1.9
12 18 Feb 2020 08:46 18 Feb 2020 11:05 2.3
13 18 Feb 2020 11:05 18 Feb 2020 13:36 2.5
14 18 Feb 2020 10:41 18 Feb 2020 13:36 2.9
15 18 Feb 2020 10:29 18 Feb 2020 13:36 3.1
16 18 Feb 2020 08:46 18 Feb 2020 11:57 3.2
17 18 Feb 2020 08:46 18 Feb 2020 13:36 4.8
18 18 Feb 2020 13:36 19 Feb 2020 09:24 19.8
19 17 Feb 2020 12:13 18 Feb 2020 08:46 20.6
20 18 Feb 2020 11:57 19 Feb 2020 09:24 21.4
21 17 Feb 2020 11:17 18 Feb 2020 08:46 21.5
22 18 Feb 2020 13:36 19 Feb 2020 11:12 21.6
23 17 Feb 2020 12:13 18 Feb 2020 10:29 22.3
24 18 Feb 2020 11:05 19 Feb 2020 09:24 22.3
25 17 Feb 2020 12:13 18 Feb 2020 10:41 22.5
26 18 Feb 2020 10:41 19 Feb 2020 09:24 22.7
27 17 Feb 2020 12:13 18 Feb 2020 11:05 22.9
28 18 Feb 2020 10:29 19 Feb 2020 09:24 22.9
29 17 Feb 2020 11:17 18 Feb 2020 10:29 23.2
30 18 Feb 2020 11:57 19 Feb 2020 11:12 23.2
31 17 Feb 2020 11:17 18 Feb 2020 10:41 23.4
32 17 Feb 2020 12:13 18 Feb 2020 11:57 23.7
33 17 Feb 2020 11:17 18 Feb 2020 11:05 23.8
34 18 Feb 2020 11:05 19 Feb 2020 11:12 24.1
35 18 Feb 2020 10:41 19 Feb 2020 11:12 24.5
36 18 Feb 2020 08:46 19 Feb 2020 09:24 24.6
37 17 Feb 2020 11:17 18 Feb 2020 11:57 24.7
38 18 Feb 2020 10:29 19 Feb 2020 11:12 24.7
39 17 Feb 2020 12:13 18 Feb 2020 13:36 25.4
40 17 Feb 2020 11:17 18 Feb 2020 13:36 26.3
41 18 Feb 2020 08:46 19 Feb 2020 11:12 26.4
42 17 Feb 2020 12:13 19 Feb 2020 09:24 45.2
43 17 Feb 2020 11:17 19 Feb 2020 09:24 46.1
44 17 Feb 2020 12:13 19 Feb 2020 11:12 47
45 17 Feb 2020 11:17 19 Feb 2020 11:12 47.9
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