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Abstract. Calculating contributing area (often used as a proxy for surface water discharge) within a digital
elevation model (DEM) or landscape evolution model (LEM) is a fundamental operation in geomorphology. Here
we document the fact that a commonly used multiple-flow-direction algorithm for calculating contributing area,
i.e.,D∞ of Tarboton (1997), is sufficiently biased along the cardinal and ordinal directions that it is unsuitable for
some standard applications of flow-routing algorithms. We revisit the purported excess dispersion of the multiple-
flow-direction (MFD) algorithm of Freeman (1991) that motivated the development ofD∞ and demonstrate that
MFD is superior to D∞ when tested against analytic solutions for the contributing areas of idealized landforms
and the predictions of the shallow-water equation solver FLO-2D for more complex landforms in which the
water surface slope is closely approximated by the bed slope. We also introduce a new flow-routing algorithm
entitled IDS (in reference to the iterative depth- and slope-dependent nature of the algorithm) that is more suitable
than MFD for applications in which the bed and water surface slopes differ substantially. IDS solves for water
flow depths under steady hydrologic conditions by distributing the discharge delivered to each grid point from
upslope to its downslope neighbors in rank order of elevation (highest to lowest) and in proportion to a power-law
function of the square root of the water surface slope and the five-thirds power of the water depth, mimicking
the relationships among water discharge, depth, and surface slope in Manning’s equation. IDS is iterative in two
ways: (1) water depths are added in small increments so that the water surface slope can gradually differ from
the bed slope, facilitating the spreading of water in areas of laterally unconfined flow, and (2) the partitioning
of discharge from high to low elevations can be repeated, improving the accuracy of the solution as the water
depths of downslope grid points become more well approximated with each successive iteration. We assess the
performance of IDS by comparing its results to those of FLO-2D for a variety of real and idealized landforms
and to an analytic solution of the shallow-water equations. We also demonstrate how IDS can be modified to
solve other fluid-dynamical nonlinear partial differential equations arising in Earth surface processes, such as the
Boussinesq equation for the height of the water table in an unconfined aquifer.
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1 Introduction

Contributing area is a key variable in many empirical equa-
tions for fluvial erosion and sediment transport rates. As
such, calculating contributing area on a regular grid is a task
performed in many digital elevation model (DEM) analy-
ses that involve fluvial processes (e.g., Clubb et al., 2017)
and during every time step of nearly every landscape evo-
lution model (LEM) (Tucker and Hancock, 2010). Although
contributing area is often used as a proxy for surface water
discharge, the complexity and computational expense of hy-
draulic models preclude their use in some applications (e.g.,
landscape evolution models, where a full hydraulic model
would have to be performed for every time step in order
to evolve the topography) in favor of simpler and more ef-
ficient methods (“flow-routing algorithms”) that distribute
area as a function of topographic slope and require fewer in-
puts than hydraulic models. In addition to calculating con-
tributing area, flow-routing algorithms are used as reduced-
complexity models for the fluvial transport of quantities be-
sides contributing area. Pelletier (2008), for example, used
a flow-routing algorithm to simulate the fluvial transport of
radioactive tephra following a hypothetical volcanic eruption
through the then-proposed nuclear waste repository at Yucca
Mountain, and Pelletier and Orem (2014) routed a DEM of
difference to obtain a map of volumetric fluvial sediment
fluxes following a wildfire.

Calculating contributing area on a regular grid (i.e., one
with equal distance between adjacent grid points in both di-
rections) involves assigning each grid point in a DEM an
area equal to (1x)2, where 1x is the distance between ad-
jacent grid points. Working in rank order from the highest
to the lowest elevation, the (1x)2 values at each grid point
are added to the areas routed to each grid point from upslope
and partitioned to nearest-neighbor grid points downslope. In
the simplest flow-routing algorithm, i.e., D8 or steepest de-
scent (O’Callaghan and Mark, 1984), all of the incoming area
to each grid point is partitioned to the nearest-neighbor grid
point (including diagonals) with the steepest slope. Because
the flow pathways in D8 are multiples of 45°, D8 yields unre-
alistic predictions for surface water flow pathways in any por-
tion of a landform in which the slope aspect is not a multiple
of 45°. Freeman (1991) developed one of the first multiple-
direction flow-routing algorithms, MFD (in reference to the
multiple-flow-direction nature of the algorithm). MFD parti-
tions flow to downslope grid points in proportion to a power-
law function of the slope in the direction of each downslope
nearest-neighbor grid point. Freeman (1991) advised using
an exponent of 1.1 in the power-law function of slope based
on a trial-and-error minimization of the directional bias of
his algorithm (his Fig. 4). He found that, for the outer-facing
cone test case that approximates the divergent morphology
typical of many hillslopes, values of p higher than 1.1 bias
flow towards the cardinal and ordinal directions of the grid,

while values of p smaller than 1.1 bias flow away from the
cardinal and ordinal directions of the grid.

Tarboton (1997) argued that the MFD algorithm results
in excessive dispersion, i.e., lateral spreading with increas-
ing distance downslope. To address this problem, Tarboton
(1997) developed D∞, which limits dispersion in part
by partitioning contributing area to at most two nearest-
neighbor grid points. Tarboton (1997) documented the fact
that D∞ predicts flow patterns with less error and bias than
competing algorithms for the outer-facing cone and planar
test cases (his Table 2).

Other flow-routing algorithms for use on regular grid
DEMs have been developed, including variations of MFD
and D∞ (e.g., Quinn et al., 1991; Qin et al., 2007; Seibert
and McGlynn, 2007), algorithms based on two-dimensional
flow tubes (Costa-Cabral and Burges, 1994) and decomposed
flux vectors (Desmet and Govers, 1996), and algorithms pro-
posed for specific types of terrain or land uses (e.g., Hyvälu-
oma et al., 2013; Xiong et al., 2014). Seibert and McGlynn
(2007) introduced a triangular multiple-flow-direction algo-
rithm that extends D∞ by permitting flow to more than
two neighboring nodes when appropriate on divergent ter-
rain. Qin et al. (2007) adapt the MFD algorithms of Freeman
(1991) and Quinn et al. (1991) by allowing the exponent on
local topographic slope to vary as a function of the maxi-
mum downslope steepness. The purpose of this modification
was to improve the performance of the MFD algorithm in
steep areas as a larger value of the exponent results in greater
concentration of the flow in the direction of steepest descent
and reduced dispersion (Holmgren, 1994; Qin et al., 2007).
Alternatively, established flow-routing methods have been
combined and modified for specific use cases. For instance,
Xiong et al. (2014) route flow using the MFD algorithm for
convex portions of the landscape and D8 on convergent por-
tions of the landscape, while Hyväluoma et al. (2013) devel-
oped an anisotropic routing algorithm that allowed for ex-
plicit representation of directionally variable flow path like-
lihoods resulting from tillage. Such approaches trade method
generalizability for improved accuracy in their study areas.

Previous work has compared the abilities of these and
other algorithms to realistically distribute flow across the
landscape in a variety of terrains that include both synthetic
and real-world topography. Single-flow-direction algorithms
(e.g., D8 or the stochastic variants of Fairfield and Leymarie,
1991) have been widely found to be insufficient at reproduc-
ing realistic flow paths, especially over divergent terrain such
as hillslopes or distributary surfaces (Erskine et al., 2006;
Gallant and Hutchinson, 2011; Qin et al., 2013; Rieger, 1998;
Wilson et al., 2007; Zhou and Liu, 2002). Multiple-flow-
direction algorithms have been shown to produce similar re-
sults over planar to convergent terrain, while their largest rel-
ative differences occur in areas with lower contributing area
totals such as ridgelines (Erskine et al., 2006; Wilson et al.,
2007, 2008; Zhou and Liu, 2002). Authors have variously ar-
gued for the primacy ofD∞ (Gallant and Hutchinson, 2011;
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Tarboton, 1997), its multiple-direction variant (Seibert and
McGlynn, 2007), or the variable exponent MFD variant (Qin
et al., 2013).

The sensitivity of flow-routing methods to grid orienta-
tion has been previously examined in a limited number of
publications, although the issue of DEM grid orientation
dependence has also been addressed for other topographic
metrics (e.g., Zhou and Liu, 2004). Fairfield and Leymarie
(1991) documented the inability of D8 to capture flow direc-
tions correctly when surfaces were not oriented with the grid.
Rieger (1998) compared the contributing area predictions of
D8 and MFD on inner- and outer-facing cones and concluded
that MFD showed better invariance to rotation. Hyväluoma
(2017) explicitly considered the impact of grid rotation on
MFD results for varying values of p, finding that rotational
invariance was at a maximum for values near 1 and steadily
declined (i.e., became more grid-orientation-dependent) as p
increased. These results generally support the conclusion of
Freeman (1991) to use a value of p equal to 1.1 to minimize
orientation artifacts.

One limitation of D∞, MFD, and the other aforemen-
tioned flow-routing methods is that they route areas using
the bed slope. Contributing area is most often used as a
proxy for surface water discharge, which is driven by wa-
ter surface slope. Unrealistic flow-routing patterns can result
if the water surface slope and the bed slope differ substan-
tially (e.g., Fig. 1 of Bernard et al., 2022). Recent theoret-
ical advancements have shown that traditional flow-routing
algorithms are solutions to a simplified conservation equa-
tion for overland flowing water (Bonetti et al., 2018; Chen
et al., 2014; Gallant and Hutchinson, 2011; Hutchinson et
al., 2013). In particular, multiple-flow-direction algorithms
are equivalent to the two-point flux finite-volume approxima-
tion of Manning’s equation (Coatléven, 2020; Coatléven and
Chauveau, 2024). In light of these developments and in con-
sideration of the attention that flow dispersion has received
in the literature, a flow-routing algorithm that incorporates
water discharge as a function of flow depth and water surface
slope could more accurately compute specific contributing
area with DEMs.

To address this limitation, we developed a water-depth-
dependent flow-routing algorithm entitled IDS (referring to
the iterative depth- and slope-dependent nature of the algo-
rithm) that provides additional accuracy for applications in
which the bed and water surface slopes differ substantially.
IDS solves for the water surface under steady hydrologic
conditions by distributing the discharge delivered to each
grid point from upslope to its neighbors downslope in pro-
portion to a power-law function of the product of the square
root of the water surface slope and the five-thirds power of
the water depth, mimicking the relationships among water
depth, surface slope, and discharge in Manning’s equation.
In Sect. 2, we provide background information on a case
study that motivated this project. In Sect. 3, we describe
the methods used to compare existing flow-routing methods

on idealized and real-world topography, define the new IDS
flow-routing algorithm, and describe how IDS can be modi-
fied to solve other flow-related nonlinear partial differential
equations arising in Earth surface processes (in this case, the
Boussinesq equation for the height of the water table in an
unconfined aquifer). In Sect. 4, we describe the results of the
comparisons between flow-routing algorithms. We assess the
performance of IDS by comparing its results to those of FLO-
2D (O’Brien, 2009; see also O’Brien et al., 1993) for a vari-
ety of real and idealized landscapes as well as to an analytic
solution of the shallow-water equations applied to an ideal-
ized channel (Delestre et al., 2013; MacDonald et al., 1997).
In Sect. 5, we discuss the implications of these results and the
potential advantages and limitations of the IDS algorithm.

2 Motivating example

The work documented here began with the goal of pre-
dicting the likelihood of rilling or gullying on a relatively
long (350 m) and steep (up to 0.4 m m−1) hillslope in Pinal
County, Arizona (Fig. 1a). A necessary step in predicting the
likelihood of rilling or gullying on hillslopes is to predict the
peak specific discharge of surface water flow associated with
rainfall events. To estimate the peak specific discharge, we
installed monitoring equipment on the hillslope illustrated in
Fig. 1 to measure rainfall and water discharges (Pelletier et
al., 2024). We then developed empirical equations relating
the specific surface water discharge to contributing area and
peak event rainfall intensity. We attempted to use theD∞ al-
gorithm to predict the likelihood of rilling or gullying on this
hillslope and nearby hillslopes with other aspects and ori-
entations but quickly ran into a problem: we found that the
extent to which contributing area is localized into microto-
pographic depressions in the lower portions of the hillslopes
is highly sensitive to hillslope orientation. For hillslopes ori-
ented along multiples of 45° (i.e., the cardinal and ordinal
directions), D∞ predicts specific contributing areas in the
lower portions of the hillslopes that are more than a factor
of 2 larger than similar hillslopes in the study that are ori-
ented in other directions, despite no substantial or apparent
difference in the length or nature of the hillslopes. Figure 1
illustrates this phenomenon by comparing the specific con-
tributing area, a (defined as the contributing area per unit dis-
tance perpendicular to the flow direction), predicted by D∞
and MFD for a hillslope oriented along the vertical direc-
tion to that of the same hillslope with its point cloud rotated
30° prior to rasterization. For the hillslope without rotation,
D∞ predicts a maximum specific contributing area of ap-
proximately 2300 m (Fig. 1b). For the same hillslope rotated
30°, D∞ predicts a maximum specific contributing area of
less than 1000 m. MFD, in contrast, predicts similar specific
contributing area values for the original and the rotated DEM
(Fig. 1c).
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A conclusion that could be drawn from Fig. 1 is that D∞
returns correct results for one or the other landform orien-
tation and that the dependence of the specific contributing
area predicted byD∞ on landform orientation could be miti-
gated by orienting the hillslope properly prior to flow routing.
This potential conclusion has two limitations. First, nearly
all landscapes have a range of slope aspects and orienta-
tions; hence, applying a rotation to achieve maximum accu-
racy would be impractical for all but the most planar or to-
pographically simple study sites. Second, we have no way of
knowing which orientation yields more accurate results for
any hillslope other than for idealized cases that have analytic
solutions. Rather than interpreting the results of Fig. 1 as im-
plying that D∞ is more correct for some orientations than
others, Fig. 1 implies that D∞ produces results that are in-
determinate by more than a factor of 2 for this case. Given the
sensitivity of rilling or gullying to whether a threshold shear
stress or specific contributing area is exceeded, such indeter-
minacy renders D∞ unsuitable for this application. In this
paper, we revisit the relative performance of D∞ and MFD
in light of the sensitivity of D∞ to landscape orientation.

3 Methods

3.1 Re-evaluation of D∞ and MFD for planar and
conical slopes

This subsection details the comparisons made among D∞
and MFD as well as analytic solutions for the specific con-
tributing area, a (m), of idealized planar, outer-facing cone,
and inner-facing cone test cases. We chose to compare D∞
and MFD in this study because of their widespread use in
the community and because many of the other flow-routing
algorithms commonly in use are derived from one or both of
these algorithms.

The analytic solution for the specific contributing area of
a plane is the straight-line distance parallel to the direction
of flow from a given grid point to the upstream boundary
(indicated by arrows in Fig. 2a). In this paper, we focus on
the case of a plane oriented 30° relative to a cardinal direction
to highlight algorithmic performance in cases in which the
landform does not align with a cardinal or ordinal direction.
The analytic solution for the outer-facing cone is

a =1x+
r

2
, (1)

where r is the distance of the grid point from the center.
There is some ambiguity about the correct value of a as
r→ 0 for the outer-facing cone. Mathematically, a→ 0 as
r→ 0. In practice, however, every grid point is assigned an
area equal to (1x)2 prior to flow routing when the specific
contributing area is computed on a regular grid. Hence, the
value of a for any grid point that has no upslope neighbors is
1x. For this reason, we included a term in Eq. (1) that results
in a =1x at r = 0.

Figure 1. Dependence of the specific contributing area, a (m), pre-
dicted by (b) D∞ and (c) MFD on the relative orientation of the
hillslope to the cardinal and ordinal directions of the grid. (a) The
monitored hillslope in Pinal County, AZ, USA, that motivated this
work. (b) Rotating the hillslope by 30° results in more than a factor
of 2 of difference in predicted a values using D∞. (c) The same
rotation has almost no effect with MFD.

The analytic solution for the inner-facing cone is

a =
ρ2
− r2

2r
, (2)

where 0< r ≤ ρ and ρ is the radius of the cone.
The tests reported here were performed on grids with

101× 101 points with 1x = 1 m. For the outer- and inner-
facing cones, the cone center is located at grid point (51, 51),
and comparisons between the analytic solution and the nu-
merical results were made for areas with r ≤ ρ = 50 m. The
central pixel was left out of the error assessment for the inner-
facing cone case due to the singularity at r = 0. The results
presented in this paper using D∞ were obtained using ver-
sion 5.3.7 of TauDEM (Tarboton, 2014).
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3.2 Comparison of D∞ and MFD to FLO-2D for the
landscape in Fig. 1

Standard flow-routing algorithms do not involve discharge
explicitly. Instead, each grid point is assigned a unit area
equal to (1x)2 and that area is routed from upslope to downs-
lope in a manner that depends on bed slope. These algorithms
do not reference discharge because they implicitly assume
that the bed slope and water surface slope are equal.

As a prelude to relaxing the assumption that the water sur-
face slope is equal to the bed slope, we note that contribut-
ing area, A, may be defined as the ratio of the discharge, Q
(units of L3 T−1), to a user-prescribed runoff rate, R (units
of L T−1), under steady hydrologic conditions (i.e., steady,
uniform flow and a time-invariant discharge in balance with
a steady runoff rate):

A=Q/R. (3)

In this formulation, contributing area is explicitly a function
of the discharge and the runoff rate. An advantage of this def-
inition or formulation of contributing area is that it facilitates
the computation of contributing area using the water surface
slope, which is the slope that drives surface water flow and
thus imparts shear stress on the bed surface. Another advan-
tage of this formulation is that a known discharge or flow
depth entering the study area at an upslope boundary can be
readily associated with a contributing area that can then be
routed through the study area along with the area contribu-
tions from grid points within the DEM or LEM domain. One
of the test cases considered in Sects. 3.3 and 4.3 (i.e., the me-
andering channel) explicitly leverages this interrelationship
between contributing area and discharge to accept incoming
flow through an upstream boundary.

To evaluate the performance of the D∞ and MFD algo-
rithms against the predictions of FLO-2D for the landform
in Fig. 1, we ran FLO-2D on the landform in Fig. 1 with
a constant, uniform runoff rate, R, for 2 h. This simulation
time was sufficient to produce a hydrologic steady state for
R ranging from 10 to 1000 mm h−1. The unit discharge was
then converted to an equivalent specific contributing area us-
ing Eq. (3). We then compared the predictions of D∞ and
MFD to those of FLO-2D using the cumulative frequency–
size distributions of a values along a contour located near the
bottom of the hillslope.

3.3 IDS

IDS solves the steady-state mass conservation equation,

∇ ·q= R, (4)

where q is the unit discharge, given by the diffusive wave
approximation of the shallow-water equations (Alonso et al.,
2008):

q=
h5/3

n
|∇ (b+h)|1/2â. (5)

Here, h is water depth, b is bed elevation, n is Manning’s
n, and â is a unit vector along the direction of the water sur-
face slope. IDS solves this system of equations for flow depth
within a finite-difference framework using a nonlinear Jacobi
iterative method (Ortega and Rheinboldt, 2000). A solution
water surface is constructed incrementally from repeated grid
traversals wherein grid points are solved sequentially accord-
ing to a topological sort on water surface elevation (Heck-
mann et al., 2015; Klemetsdal et al., 2020), and discharge
from a grid point is distributed among downstream neighbors
using modified MFD partition weights (Table 1).

MFD assigns a unit area to each grid point equal to (1x)2

and, working in rank order from highest to lowest elevation,
partitions the area entering each grid point from upslope to
downslope grid points according to a power-law function of
the bed slope:

fi,MFD =
S
p
i

8∑
i=1
S
p
i

, (6)

where fi,MFD is the fraction of the incoming contributing
area that is partitioned to each of the eight nearest neighbors
indexed with i, Si is the slope in each of the nearest-neighbor
directions (Si = 0 in Eq. 6 for any upslope grid points), and
the default value of p is 1.1.

IDS’s approach to solving Eqs. (4) and (5) is a straight-
forward generalization of MFD that incorporates water flow
depth in addition to water surface slope. IDS begins by using
MFD and Eq. (3) to provide an initial guess for the discharge
at every grid point. Manning’s equation is then used to es-
timate the flow depth and water surface at every grid point
using the discharge. The algorithm initializes the local dis-
charge at each grid point to R(1x)2 and, working in rank
order from highest to lowest elevation, adds the discharge
routed to that grid point from upslope and partitions the dis-
charge to downslope pixels according to

fi,IDS =

(
h

5/3
a S

1/2
i

na

)2p

8∑
i=1

(
h

5/3
a S

1/2
i

na

)2p , (7)

where fi,IDS is the fraction of the incoming discharge that is
transferred to each of the eight nearest-neighbor directions
indexed by i, Si is the current best estimate of the water sur-
face slope in each of the nearest-neighbor directions, ha is
the weighted-average current best estimate of the water flow
depth, and na is the average Manning’s n value of the two
grid points on the ends of the flow pathway between the cen-
tral pixel and its nearest neighbor in each of the eight nearest-
neighbor directions. The quantity in parentheses is the unit
discharge in Manning’s equation, assuming that the hydraulic
radius can be approximated by the flow depth. The quantity
in parentheses is raised to the power 2p to preserve the slope
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Figure 2. Color maps of specific contributing area, a (m), and its error for D∞ and MFD for the (a–e) planar, (f–j) outer-facing cone, and
(k–o) inner-facing cone test cases. The maps are arranged vertically for the three cases to facilitate comparison. Panels (a), (f), and (k) show
analytic solutions. Panels (b), (g), and (l) show predictions usingD∞. Panels (c), (h), and (m) show error usingD∞. Panels (d), (i), and (n)
show predictions using MFD. Panels (e), (j), and (o) show error using MFD.

dependence that Freeman (1991) identified as resulting in op-
timal results for cones and planes.

IDS is iterative in two ways. First, when the grid is tra-
versed from highest to lowest elevation and discharges are
estimated at each grid point, the entire flow depth associated
with the discharge is not added to each grid point all at once.
Instead, IDS adds a fraction of the flow depth (equal to 1/Na)
during each traversal of the grid, a process that is repeatedNa
times. The fractional flow depth is added as the difference
between the new water surface and the current water surface,
permitting incremental raising or lowering of the water sur-
face as needed. This procedure facilitates lateral spreading
of water flow in regions of unconfined flow. The second way
that the IDS is iterative is that the entire procedure can be
repeated Nt times using an improved estimate of the initial
water surface slope during each iteration. This repetition can
yield improved accuracy for applications in which the water
surface and bed slopes differ substantially.

Table 1 summarizes the key steps of IDS. Note that if a
better initial guess for the discharge is available (e.g., from
a previous time step within an LEM), that guess can be used
instead of the results of MFD in step 1.

Two subtleties associated with the IDS algorithm should
be noted. First, the IDS algorithm performs a hydrologic cor-
rection (using the priority flood+ ε algorithm of Barnes et
al., 2014) implemented in the initial DEM and between each
traversal of the grid to ensure that the water surface slope
does not fall below a user-prescribed minimum value. This
is important because water surface slopes near zero can re-

Table 1. Pseudocode for the IDS algorithm.

1) Use the MFD algorithm to estimate discharge and water flow
depth using Eq. (3).
2) Repeat Nt times:
2a) Repeat Na times:
2a1) Assign a unit discharge to each pixel equal to R(1x)2.
Add any discharges input through upslope boundaries.
2a2) Compute water surface slope.
2a3) Working from high to low elevations, partition the dis-
charge from each grid point to its nearest neighbors using the
fractions computed using Eq. (7).
2a4) Compute the flow depth associated with the discharge at
each grid point using Eq. (5).
2a5) Add to the current estimate of the flow depth a fraction
1/Na of the predicted flow depth.
End repeat loop beginning at 2a.
End repeat loop beginning at 2.

sult in a prediction of unrealistically large flow depths when
Manning’s equation is used to infer water flow depth from
discharge. Second, the simplest choice for calculating the ha
term in Eq. (7) is to average the water depths of the two
grid points on either side of the flow pathway using equal
weighting. However, we found that the predictions of IDS
match those of FLO-2D more accurately when the water
depth of the grid point whose discharge is being partitioned
is weighted more than the water depth of the downslope grid
point:

ha = ch+ (1− c)hi, (8)
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Figure 3. Cumulative frequency–size distributions (i.e., the fraction
of the area of the landform ≥ a) of (a, b) specific contributing area
and (c) its absolute error for D∞ and MFD for the three test cases.

where c ≈ 0.8 is used here because it yields results clos-
est to those of FLO-2D (Sect. 4.3). Fiadeiro and Vero-
nis (1977) discuss how such weighted-mean schemes for
finite-difference approximations of steady-state advection–
diffusion-type problems can improve the accuracy and/or
convergence properties of the solutions.

Figure 4. Color maps of specific contributing area, a (m), for the
hillslope in Fig. 1 as predicted by (a) D8, (b) MFD, (c), D∞, and
(d–f) FLO-2D for three values of the runoff rate, R.

IDS has six more parameters than eitherD∞ or MFD: the
runoff rate R (chosen to be consistent with the characteristic
rainfall event under consideration), Manning’s n (which can
vary spatially to account for differences in surface roughness
across the DEM), the averaging parameter c, a minimum wa-
ter surface slope applied to prevent the water depth from be-
coming unrealistically large when the discharge is converted
to a flow depth, the number of additions of the fractional flow
depth Na, and the number of complete water surface con-
structions Nt . Section 4 provides guidance on the choice of
these parameters based on our experience with the test cases.

We tested IDS against the results of FLO-2D for the land-
form in Fig. 1 and five idealized landscapes: the cones and
plane in Fig. 2, a low-order drainage basin, and a meandering
fluvial channel. The low-order drainage basin is a useful test
case because it demonstrates how IDS can resolve the varia-
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Figure 5. Cumulative frequency–size distribution of specific con-
tributing area, a (m), along the contour located in Fig. 1b for the
results in Figs. 4 and 7b.

tions in flow depth across a valley bottom (a capability that is
essential for enabling LEMs to compute valley flow widths
rather than requiring that a user prescribe them a priori). In
this test case, the valley-bottom grid points cannot accom-
modate all of the discharge from the adjacent hillslopes, so
the flow spreads laterally to occupy multiple grid points ad-
jacent to the lowest grid point within each valley. The mean-
dering channel example is a useful test case because it tests
the ability of the IDS model to resolve the spatial variabil-
ity of flow depths within a channel with bends and variable
bed slopes and because it illustrates how flow through an up-
stream boundary can be accommodated.

We also tested IDS against an analytic solution for
the shallow-water equations for steady, supercritical flow
through an idealized 200 m long rectangular channel with
variable along-stream topography and width that includes a
constriction and an expansion (Delestre et al., 2013). This
case is pseudo-2D in that the analytic solution is not only
depth-averaged but also width-averaged; i.e., topography and
flow depth in the across-stream direction are constants. The
channel width varies smoothly from about 10 m at the up-
stream and downstream boundaries to about 5 m at the con-
striction. Since the channel width is much wider than the
grid spacing (we used 0.1 m for this value), flow through
this channel is analogous to laterally confined sheet flow.
We tested IDS on the 2D channel topography with a large
number of iterations (Nt = 2, Na = 10 000) to ensure con-
vergence in the iterates and averaged the solution flow depth
across-stream to compare with the analytic solution.

Figure 6. Color maps of specific contributing area, a (m), and its
error for the IDS algorithm for the (a, d) planar, (b, e) a outer-facing
cone, and (c, f) inner-facing cone test cases.

3.4 Generalization of IDS to other partial differential
equations in Earth surface processes

In this subsection we describe how IDS can be modified to
solve other flow-related steady-state partial differential equa-
tions using the 2D steady-state Boussinesq equation as an
example.

The 2D steady-state Boussinesq equation quantifies the
water table height in unconfined aquifers (Bear, 1972):

∇ · (h∇ (b+h))=−I/K, (9)

where h(x, y) is the water flow depth, I is the recharge rate
(units of L T−1), and K is the homogeneous and isotropic
hydrologic conductivity (units of L T−1). The boundary con-
dition used in the example application of this paper is h= 0
at any channel. Note that the Boussinesq equation is a conser-
vation equation with a source term similar in form to Eq. (4).
Specifically, Eqs. (9), (4), and (5) are the same except that
Eq. (9) has different power-law exponents among flux, water
depth, and water surface slope than Eqs. (4) and (5). The sim-

Earth Surf. Dynam., 13, 239–256, 2025 https://doi.org/10.5194/esurf-13-239-2025



A. B. Prescott et al.: Calculating contributing area on regular grids 247

ilarity in form of Eq. (9) and Eqs. (4) and (5) suggests that
it should be possible to use the IDS algorithm, modified to
partition the subsurface water flow entering each grid point
to its nearest neighbors in proportion to the product of h and
the water surface slope ∇ (b+h) raised to the power p, to
solve the 2D steady-state Boussinesq equation.

4 Results

4.1 Re-evaluation of D∞ and MFD for planar and
conical slopes

Figure 2 illustrates the results of D∞ and MFD for a plane
oriented 30° counterclockwise from the south (Fig. 2a–e),
for the outer-facing cone (Fig. 2f–j), and for the inner-facing
cone (Fig. 2k–o) test cases. Figure 2g is the key image in
Fig. 2 because it demonstrates that the relatively low disper-
sion of D∞ along certain directions is a consequence of the
tendency for flow to be biased along those directions (a val-
ues are approximately 25 % larger than the analytic solution
along the cardinal and ordinal directions and lower every-
where else). MFD achieves a lower mean absolute error and
bias than D∞ for all cases (Table 2). For the outer-facing
cone, the error and bias obtained by MFD are nearly 10 times
lower than those of D∞. In Sect. 5 we discuss why the re-
sults presented here differ from those of Tarboton (1997).

Figure 3 complements Fig. 2 by plotting the cumulative
distribution of a values for each of the cases illustrated in
Fig. 2. Figure 3a demonstrates that, for the plane oriented
30° from the nearest cardinal direction, D∞ underpredicts
the larger a values by approximately 20 %, while MFD over-
predicts a values by approximately 10 %. Figure 3b demon-
strates that for the outer-facing cone,D∞ overpredicts a val-
ues in a small portion of the grid by approximately 25 % and
underpredicts a values nearly everywhere else, while MFD
overpredicts a values by less than 5 % everywhere. Note
that, for the inner-facing cone, we plotted the absolute error
(Fig. 2m, o) using logarithmic scales due to the large positive
skew of a values (i.e., a few grid points near the center have
a values that are more than an order of magnitude larger than
a values in most of the rest of the grid). Figure 3c documents
the fact that D∞ predicts absolute errors that are approxi-
mately 5–10 times larger than the absolute error associated
with MFD for this case.

4.2 Comparison of D∞ and MFD to FLO-2D for the
landscape of Fig. 1

Figures 4 and 5 compare the specific contributing area pre-
dicted by D∞ and MFD (the results of D8 are also shown
for completeness) to the predictions of FLO-2D for three
values of the runoff rate: R = 10, 100, and 1000 mm h−1.
Figure 4d–f illustrate that contributing area is a function of
runoff rate and/or water depth and that any algorithm that
seeks to calculate specific contributing area in a manner that

Figure 7. Color maps of specific contributing area, a (m), for the
hillslope pictured in Fig. 1a as predicted by (a) FLO-2D and IDS
using DEMs of different resolutions: (b) 1x = 1 m and (c) 1x =
0.5 m. All results correspond to R = 100 mm h−1.

honors the water depth dependence of flow routing (and its
associated dispersion) should be a function of R. While the
flow patterns are a function of R, a visual comparison of the
differences among Fig. 4d–f indicates that the specific con-
tributing area is only modestly sensitive to R for this test
case; i.e., as R increases over 2 orders of magnitude, dis-
persion increases (i.e., deeper flows are more likely to be lat-
erally unconfined), but only modestly so on this steep hills-
lope. The modest dependence on R is also apparent in Fig. 5,
where the dashed lines are the cumulative frequency–size
distributions of a values along the contour located as shown
in Fig. 1b. D8 produces results that are wholly unrealistic for
this hillslope. The D∞ algorithm also produces results that
are inconsistent with those of FLO-2D for this case (Fig. 5).
The MFD algorithm produces results that are most consis-
tent with FLO-2D (Fig. 5). We conclude that MFD is more
accurate than D∞ for this test case.

4.3 IDS

IDS predicts specific contributing areas for the planar and
conical test cases with an accuracy comparable to that of
MFD for the inner-facing cone case (Table 2 and Fig. 6). For
the outer-facing cone and planar test cases, however, the re-
sults of IDS are inferior to those of MFD. Despite this weak-
ness, IDS has an advantage in that it resolves flows within
channels and valley bottoms, as the low-order valley and
meandering channel examples presented in this section will
demonstrate.

Figure 7a and b compare the predictions of IDS to those
of FLO-2D for the hillslope in Fig. 1. Figure 5 demonstrates
that IDS predicts a values with a cumulative frequency–size
distribution nearly indistinguishable from that of FLO-2D.
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Table 2. Performance of MFD, D∞, and IDS for the planar and conical test cases, as quantified using the mean absolute error |a− aa| and
mean bias a− aa , where aa is the analytic solution for specific contributing area.

MFD D∞ IDS

|a− aa| (m) a− aa (m) |a− aa| (m) a− aa (m) |a− aa| (m) a− aa (m)

Plane oriented 30° 3.55 1.28 7.51 −7.50 3.65 2.80
Outer-facing cone 0.33 0.25 2.75 −2.62 1.22 1.22
Inner-facing cone 2.24 2.17 6.40 −2.79 2.32 2.00

Figure 8. Panels (a)–(c) show color maps of specific contributing
area, a (m), for the hillslope pictured in Fig. 1a as predicted by IDS
for different values of the parameter c quantifying the weighting of
the local grid point relative to the downslope grid point: (a) c = 0.5,
(b) c = 0.8, (c) c = 1. (d) Cumulative frequency–size distribution
of a (m) for a range of values of c and for the results of FLO-2D.

Both IDS and FLO-2D result in essentially identical results
when the DEM is rotated (results not shown because they are
indistinguishable from those in Fig. 1c).

Figure 7c illustrates the results of IDS for the hillslope in
Fig. 1 using a DEM with1x = 0.5 m. The results are similar
to those of Fig. 7b except that the higher resolution of the in-
put data results in some finer detail in the flow pathways that
is not present for the DEM with 1x = 1 m. This similarity
between the results of Fig. 7b and Fig. 7c provides confi-
dence that we have implemented IDS (Prescott and Pelletier,

Figure 9. Results of FLO-2D and IDS for a low-order drainage
basin. (a) Color map of elevation. Panels (b) and (c) show color
maps of water flow depth, h (m), predicted by (b) IDS and (c) FLO-
2D. The pop-out in (b) demonstrates convergence of the IDS so-
lution water depth along a channel cross-section as the number of
additions, Na, is increased.

2024) in a manner that correctly converts between absolute
and specific quantities as needed.

Figure 8 documents the dependence of the results of IDS
on the parameter c that controls the weighting of the local
grid point relative to the downslope grid point when com-
puting the water flow depth and Manning’s n value between
grid points. Higher values of c are associated with less to-
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Figure 10. Plot of execution time versus N log2N , where N is the
number of grid points, for different resolutions of the low-order
drainage basin in Fig. 8.

Figure 11. Results of FLO-2D and IDS for the meandering channel
example. (a) Color map of elevation of this test landform. Panels
(b) and (c) show color maps of surface water flow depth, h (m),
predicted by (b) IDS and (c) FLO-2D.

pographic flow confinement. Figure 8d demonstrates that the
value of c that most closely matches the results of FLO-2D is
0.8. For all the other landscapes considered in this paper, the
results are essentially independent of the value of c within
the range of reasonable values (i.e., 0.5 to 1).

Figure 9 compares the results of IDS to those of FLO-2D
for the case of a low-order drainage basin. IDS predicts flow
depths that are nearly indistinguishable from those of FLO-
2D for this test case. This low-order drainage basin is an il-
luminating example because it demonstrates how IDS can
solve for the width of flow in addition to the depth where the
wetted width of the valley is larger than the grid point spac-
ing. In this example, the accommodation space for surface
water flow in the valley bottoms is sufficiently small that flow
must spread out laterally into multiple grid points. If we were

to use a flow-routing algorithm such as D∞ that is based on
bed slope only, all of the flow would be localized into a single
grid point (e.g., Bernard et al., 2022).

The inset diagram to the right of Fig. 9b illustrates the de-
pendence of the results on the number of flow depth additions
implemented in IDS. For Na = 10, the water surface slope is
slightly non-smooth across the profile, but this irregularity
goes away for larger values of Na. To determine the appro-
priate value ofNa, users should try multiple values to identify
a value of Na above which the results change by less than the
desired accuracy.

We evaluated the efficiency of IDS using this example for
a range of grid sizes from 299× 199 to 19136× 12736. All
of the simulations were run with identical parameters other
than the number of grid points and the grid spacing. The
computation time scales as N log2N , where N is the num-
ber of grid points (Fig. 10). This matches the theoretically
optimal scaling of the two limiting functions used the al-
gorithm, the priority flood+ ε depression-filling algorithm
(Barnes et al., 2014) and the Quicksort algorithm used to rank
the grid points from highest elevation to lowest (Sedgewick
and Wayne, 2011). All other operations performed by the al-
gorithm scale linearly.

Figure 11 compares the results of IDS to FLO-2D for the
case of a meandering channel. The R value was set to zero
for this case and the water depth was assigned a value of
0.2 m in each of the grid points within the channel at the up-
slope boundary. Similar to Fig. 9, IDS predicts flow depths
that are visually indistinguishable from those of FLO-2D for
this test case, except for a few grid points at or near the
banks where there are some minor differences in predicted
flow depths that could be related to how FLO-2D interpolates
DEM points when developing a computational grid from an
input DEM. This was the only example discussed in this pa-
per in which it was necessary to use Nt > 1 to obtain results
that were nearly indistinguishable from those of FLO-2D.

Figure 12 compares the flow depths predicted by IDS with
the analytic solution of Delestre et al. (2013) for flow in a
short channel of varying width. The discharge and depth at
the upstream boundary are prescribed to be 20 m3 s−1 (uni-
formly distributed among the upstream boundary grid points)
and 0.503386 m. A uniform Manning’s n of 0.03 m−1/3 s,
grid spacing of 0.1 m, and R value of zero are also pre-
scribed. Figure 13c shows that the water surface produced
by IDS closely matches the analytical solution throughout
the channel length with a mean residual of −0.057 m. The
largest deviation occurs near the center of the channel profile
where IDS underpredicts the analytic solution by 0.11 m, or
11.9 % of the analytical flow depth. The IDS solution is indis-
tinguishable from the numerical solution to the full shallow-
water equations applied to this case by Delestre et al. (2013)
(their Fig. 9b).

The parameter values used in the applications of IDS il-
lustrated in Figs. 6–12 are summarized in Table 3. We chose
n= 0.035 for the cases that include fluvial valleys and chan-
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Figure 12. Results of IDS applied to the pseudo-2D supercritical
flow example of Delestre et al. (2013) and MacDonald et al. (1997).
(a) Color map of elevation of the 2D channel bed. (b) Color map
of the IDS solution for flow depth. (c) Comparison of the analyt-
ical solution of water surface elevation to the IDS across-channel
averaged solution.

nels, n= 0.4 m−1/3 s for the hillslope case in Figs. 1, 4, 6,
and 7, and n= 0.03 m−1/3 s for the case in Fig. 12 to match
the value used in the analytical solution. We adopted n=
0.4 m−1/3 s for the hillslope case because Emmett (1971)
recommended an approximate value of 0.5 m−1/3 s for over-
land flow on hillslopes, but FLO-2D does not allow n to be
larger than 0.4 m−1/3 s, so we adopted the 0.4 m−1/3 s value
as the closest value allowable in FLO-2D to that of the Em-
mett (1971) recommendation. The results are not sensitive to

Figure 13. Solutions to the Boussinesq equation for the water table
elevation in the vicinity of a channel (where we assume h= b = 0).
(a) Color map of water table depth in the vicinity of a straight chan-
nel. (b) Comparison of the solution mapped in (a) to the analytic
solution. Color maps of (c) water table depth and (d) the product
of the water table depth and water surface slope in the vicinity of a
meandering channel.

the prescribed value of the minimum slope, provided that its
value is smaller than the bed slope at all or nearly all loca-
tions. We choose 0.001 m m−1 as the minimum slope for all
the cases considered in this paper except for the low-order
drainage basin case; that case required a lower value because
it includes valley bottoms with bed slopes < 0.001 m m−1.
In all cases, Dirichlet boundary conditions (i.e., fixed ele-
vation) were used for grid points along outflow boundaries
or those with prescribed inflow conditions. While we be-
lieve that other boundary conditions (e.g., prescribed flux and
slope) could be implemented in IDS, ensuring that the prob-
lem specified by Eqs. (4) and (5) is well-posed with such
boundary conditions requires additional research.

4.4 Generalization of IDS to other partial differential
equations in Earth surface processes

Figure 13a and b illustrate the elevation of the water table
in the vicinity of a straight channel. The analytic solution to
Eq. (6) for this 1D case, assuming b = 0 and I = 0 for x > L,
is obtained by integrating twice:

h=

√
I

K

(
2Lx− x2

)
. (10)

That is, the flux of water in the saturated zone along the di-
rection perpendicular to the channel increases linearly with
distance from the left and right boundaries of the grid to-
wards the channel. Figure 13b demonstrates that the numer-
ical solution to Eq. (6) obtained using the IDS algorithm,
L= 500 m, and I/K = 0.001 (unitless) is consistent with
Eq. (10). Figure 13c and d illustrate the water table elevation
and the product of the water depth and water surface slope
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Table 3. Parameters used in the example applications of the IDS algorithm.

Where R n 1x Minimum
presented (mm h−1) (m−1/3 s) (m) Nt Na c slope (m m−1)

Fig. 6 100 0.4 1 1 10 0.8 0.001
Fig. 7b 100 0.4 1 1 10 0.8 0.001
Fig. 7c 100 0.4 0.5 1 10 0.8 0.001
Fig. 8a 100 0.4 1 1 10 0.5 0.001
Fig. 8b 100 0.4 1 1 10 0.8 0.001
Fig. 8c 100 0.4 1 1 10 1 0.001
Fig. 9b 100 0.035 5 1 10 0.8 0.0001
Fig. 10 100 0.4 0.016–1 1 10 0.8 0.001
Fig. 11b 0 0.035 10 3 100 0.8 0.001
Fig. 12b 0 0.03 0.1 2 10 000 0.8 0.001

(relevant because it is proportional to the water flux) for the
more complex case of the water table in the vicinity of a me-
andering channel (where subsurface flow is localized towards
the outer bends of the channel). Given that the seepage flux
at a channel bank controls the bank stability to gravitational
failure in alluvial channels (Cassagli et al., 1999; Simon and
Collison, 2001) and that bank stability is an essential process
is setting the hydraulic geometry of alluvial channels (Pel-
letier, 2021), this modification of IDS could prove useful in
modeling the evolution of alluvial channels.

Table 4 summarizes the variable names, symbols, units,
and default and/or typical values used in the paper.

5 Discussion

Although we devoted a substantial portion of this paper to
documenting IDS, we wish to emphasize that MFD is ade-
quate for many applications in which the water surface slope
is closely approximated by the bed slope. In such cases, MFD
may be the preferred method given its simplicity and supe-
rior performance in matching analytic solutions for some ide-
alized landforms. MFD is not suitable, however, for use in
LEMs or DEM analyses that aim to resolve cross-sectional
variations in surface water flow depths in valley bottoms. For
such cases, IDS or a similar depth-dependent flow-routing
algorithm must be used despite the increased computational
burden and complexity associated with such algorithms.

Qin et al. (2007) modified MFD to make the exponent p
a function of the maximum downslope steepness. Their goal
was to make flow more divergent in areas of gentle slopes
and more convergent in areas of steep slopes. We believe that
IDS is a more direct and theoretically defensible approach to
solving the problem of varying the degree of flow conver-
gence and divergence based on local topography. Given that
the exponent p was introduced by Freeman (1991) not as a
means to modify the degree of flow convergence and diver-
gence but rather as a means of correcting for the tendency
of flow to be biased towards or away from the cardinal and
ordinal directions of the grid, varying p to modulate conver-

gence and divergence could come at the expense of introduc-
ing or amplifying a directional bias of the type documented
in Fig. 1. Indeed, Hyväluoma (2017) demonstrated that the
use of MFD with p equal to 3 resulted in substantial grid
orientation dependence, although this dependence could be
counteracted with an intelligent weighting scheme. The de-
pendence of results on grid orientation was at a minimum for
p equal to 1 and increased as the value of p was increased.
Considering that Qin et al. (2007) permit p values of up to
10, we suspect that this method may also suffer from a grid
orientation dependence.

Modifications ofD∞ have also been proposed (e.g., Seib-
ert and McGlynn, 2007; Shelef and Hilley, 2013). A reader
might reasonably ask whether one or more of those mod-
ifications may have solved the bias documented in Fig. 1,
rendering a key motivation for this study moot. While we
cannot be certain that the published literature contains no so-
lution to the bias documented in Fig. 1, the modifications
to D∞ that we have examined have not solved the direc-
tional bias issue. For example, the modified version of D∞
proposed by Shelef and Hilley (2013) exhibits the same bias
along the cardinal and ordinal directions (see the panels re-
lated to directions 0 and 45° in Fig. 6 of Shelef and Hilley,
2013) that is apparent in Fig. 2g. A similar bias is also ap-
parent in Fig. 4d of Seibert and McGlynn (2007). Past work
has highlighted that multiple-flow-direction algorithms tend
to differ the most along ridgelines in divergent topography
(Erskine et al., 2006; Qin et al., 2013; Zhou and Liu, 2002).
The results presented in Fig. 1 demonstrate that a substantial
dependence on grid orientation can result in large predicted
differences in a for convergent regions as well.

The data provided in this paper on the error and bias as-
sociated with D∞ and MFD differ from those of Tarboton
(1997) (Table 2 in both papers) in part because Tarboton
(1997) compared his results to analytic solutions for the con-
tributing area downslope from a point source (i.e., examples
illustrated in his Figs. 5–7). Shelef and Hilley (2013) high-
lighted the issue of whether flow-routing algorithms should
be evaluated using a point source or equal-area contribu-
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Table 4. List of variables and their associated symbols, units, and default and/or typical values. Note that L T−1 only is listed for the units
of I and K because these quantities only appear as a ratio; hence, it is unnecessary to specify units of length and time.

Variable Symbol Units Default value(s)

Contributing area A m2

Specific contributing area a m
Analytic solution for specific contributing area aa m
Unit vector along slope aspect â

Bed elevation b m
Weight applied to local grid point when computing
averages between neighboring grid points c 0.8
Distance between adjacent grid points 1x m 0.1, 0.5, 1
Partition coefficients for MFD algorithm fi,MFD
Partition coefficients for IDS algorithm fi,IDS
Water flow depth h m
Average water flow depth between adjacent grid points ha m
Water flow depth of nearest-neighbor grid point in the
direction labeled by index i hi m
Infiltration rate I L T−1

Index of eight nearest-neighbor grid points i 1–8
Hydrologic conductivity K L T−1

Flow distance from start of aquifer to channel L m 500
Number of grid points N

Number of complete water surface constructions Nt 1–3
Number of additions Na 10, 100, 105

Manning’s n n m−1/3 s 0.4, 0.035, 0.03
Average Manning’s n of neighboring points na m−1/3 s 0.4, 0.035, 0.03
Exponent on slope in MFD algorithm p 1.1
Runoff rate R mm h−1 10, 100, 1000
Radius of conical hillslope ρ m 50
Surface water discharge Q m3 s−1

Unit discharge between adjacent grid points q m2 s−1

tions from each grid point. They concluded that it is best
to use a point source because “standardly used benchmarks
that assume equal-area contribution for each element in the
landscape may offset errors in drainage area sourcing some
points with errors from other points.” We would share this
concern for applications in which it is essential to accurately
map which upslope grid points source which downslope grid
points (e.g., predicting the area of contamination downslope
from a localized source). For the standard application of
flow-routing algorithms (i.e., calculating contributing area),
however, we believe that it is necessary to test the algorithms
in the way that they are actually used (i.e., using equal-area
contributions from each grid point).

This study also differs from Tarboton (1997) in that we
consider dispersion to be a necessary outcome of flow rout-
ing. The development of D∞ was motivated by the desire
to minimize dispersion because it is “inconsistent with the
physical definition of upslope area, A” (Tarboton, 1997).
Tarboton (1997) also concluded that “on a planar surface
the dependence maps should be straight lines perpendicular
to the gradient” (i.e., dispersionless). In contrast, we pro-

pose that contributing area necessarily involves dispersion
because contributing area is a proxy for surface water dis-
charge and dispersion is present in all surface water hydraulic
phenomena (e.g., Fischer, 1973). If the reader accepts that
premise, it begs the following question: what is the appro-
priate amount of dispersion? We propose that, when flow-
routing algorithms are used as reduced-complexity models
for surface water hydraulics, the appropriate amount of dis-
persion is best identified by comparing the predictions of
flow-routing algorithms to those of hydraulic models, e.g.,
shallow-water equation solvers such as FLO-2D, and/or to
analytic solutions to the shallow-water equations.

IDS resides along a continuum of reduced-complexity al-
gorithms for quantifying contributing area and/or surface
water flow that range from simple depth-independent algo-
rithms (e.g., D∞ and MFD) to algorithms that approach the
complexity of solutions to the shallow-water equations (e.g.,
FLO-2D). Many models exist along this continuum, includ-
ing LISFLOOD-FP (Bates et al., 2010), FlowRCM (Liang et
al., 2015), and FLOODOS (Davy et al., 2017). It is beyond
the scope of this paper to compare the results of IDS to these
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alternative approaches, but it is important to motivate the use
of IDS by providing some rationale for its use over alter-
native reduced-complexity algorithms for surface water flow
routing. One potential advantage of IDS over LISFLOOD-
FP is that IDS solves for a steady-state hydrologic condi-
tion governed by a single characteristic or peak runoff rate.
LISFLOOD-FP, in contrast, requires an input time series of
runoff. One potential advantage of the IDS algorithm over
FlowRCM and FLOODOS is that IDS is deterministic, while
FlowRCM and FLOODOS achieve lateral spreading using
random walkers. Deterministic approaches are advantageous
because they return the same result each time they are per-
formed. Finally, the scaling behavior of IDS appears to be
superior to that of FLOODOS (i.e., execution time increases
as N log2N , i.e., more slowly than the N1.2 scaling reported
by Davy et al., 2017). Lastly, as demonstrated in the ap-
plication of IDS to the Delestre et al. (2013) example case
(Fig. 12), IDS can closely approximate an analytic solution
of the shallow-water equations in addition to matching the
results of FLO-2D across a range of scenarios.

We have treated FLO-2D throughout this paper as the gold
standard for surface water flow routing. A reader might rea-
sonably ask why we do not simply advocate for the use
of FLO-2D as a flow-routing algorithm for use in LEMs
and DEM analyses. One reason is that its source code is
unavailable. Another reason is that FLO-2D implements
approximations that can affect its accuracy (e.g., if the
Newton–Raphson step fails to find a solution to the dynamic
wave equation after three iterations, FLO-2D reverts to the
diffusive-wave approximation; p. 14 of O’Brien, 2009). We
did not compare the results of the various flow-routing algo-
rithms to FLO-2D quantitatively in this paper because, while
FLO-2D is a widely respected and applied model, it has not
(to our knowledge) been tested against an analytic solution
to the shallow-water equations. The extent to which it rep-
resents the best or most exact solution possible for the other
cases studied in this paper is also unknown. As such, we re-
lied on qualitative visual comparisons to avoid misinterpret-
ing minor quantitative differences between the predictions of
FLO-2D and the flow-routing algorithms investigated in this
paper as errors in the flow-routing algorithms.

The IDS algorithm routes flow under the assumption that
discharge occurs across the wetted width of the grid spac-
ing, 1x. While consistent with our motivation to compute
specific contributing area in situations where flow spreads
laterally over multiple pixels, LEMs are also commonly ap-
plied with coarse grid resolutions such that channel widths
are smaller than the grid spacing (Tucker and Hancock,
2010). A parameterization scheme could be implemented
within IDS to allow for subgrid-scale channel widths while
retaining the flow width on hillslopes or other areas of sheet
flooding as 1x (e.g., Pelletier, 2010).

It is worth briefly discussing the situations in which the
IDS algorithm is computationally fast and those in which it
requires many iterations to achieve a high degree of accu-

racy. Convergence occurs quickly in steeply sloping land-
forms where the water surface slope is similar to the bed
slope everywhere. In these applications, we have observed
little to no sensitivity to the initial conditions. On the other
hand, domains with relatively small bed slopes, large back-
water lengths, and/or entirely subcritical flow conditions can
require thousands of iterations to build an accurate water
surface solution. The performance of the algorithm also im-
proves when the initial guess is closer to the final solution in
such cases. This issue is common to numerical solvers of the
diffusive wave approximation; i.e., the doubly nonlinear and
degenerate nature of the partial differential equation leads to
difficulties as the water surface slope goes to zero (Alonso et
al., 2008). In addition, it is perhaps not surprising that, given
the top-down iterative nature of the IDS algorithm (i.e., dis-
charge is partitioned in rank order from the highest to low-
est elevation), convergence requires more iterations in gen-
tly sloping flow domains (where the downstream water sur-
face holds greater influence over the upstream surface) than
it does in steeply sloping domains. It may be possible to in-
vert the direction of the algorithm so that iterations proceed
from prescribed downstream conditions and work through
the topography in reverse rank order, thus allowing the down-
stream conditions to directly affect the upstream water sur-
face. This alteration of IDS has not been tested and provides
an avenue for future research.

6 Conclusions

The mapping of contributing area (often used as a proxy
for surface water discharge) within a digital elevation model
(DEM) or landscape evolution model (LEM) is a fundamen-
tal operation in many hydrologic and geomorphic models and
analyses. Here we documented the fact that a commonly used
multiple-direction flow-routing algorithm, i.e., D∞ of Tar-
boton (1997), is inherently biased along the cardinal and or-
dinal directions. We revisited the purported excess dispersion
of the MFD algorithm of Freeman (1991) that motivated the
development of D∞ and demonstrated that MFD predicts
contributing areas that are similar to those of analytic solu-
tions for idealized cases and of the shallow-water equation
solver FLO-2D for more complex landforms. We also intro-
duce a new flow-routing algorithm entitled IDS that provides
additional accuracy for applications in which the bed and wa-
ter surface slopes differ substantially. We assessed the perfor-
mance of IDS by comparing the results to those of FLO-2D
for a variety of real and idealized landscapes and to an analyt-
ical solution of the shallow-water equations. We also demon-
strated how the IDS algorithm can be modified to solve other
flow-related nonlinear partial differential equations arising in
Earth surface processes, such as the Boussinesq equation for
the height of the water table in an unconfined aquifer.
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