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Abstract. Questions of landscape scale in coupled channel–hillslope landscape evolution have been a signifi-
cant focus of geomorphological research for decades. Studies to date have suggested a characteristic landscape
length that marks the shift from fluvial channels to hillslopes, limiting fluvial incision and setting the length
of hillslopes. The representation of real-world landscapes in slope–area plots, however, makes it challenging
to identify the exact transition from hillslopes to channels, owing to the existence of an intermediary colluvial
valley region. Without a rigorous explanation for the scaling of the channel hillslope transition, the use of com-
putational models, which are forced to implement a finite grid resolution, is limited by the scaling of the physical
parameters of the model relative to the grid resolution. Grid resolution is also tied to the width of channels, which
is undetermined without a rigorous explanation of where channels begin.

Building on existing work, we demonstrate the existence and implications of the characteristic landscape
length and its relationship to grid resolution. We derive the characteristic landscape length as the horizontal
length in a one-dimensional landscape evolution framework required to form an inflection point. On a two-
dimensional domain, channel heads form in steady state at the characteristic area, the square of the characteristic
length, independent of grid resolution. We present a box-counting fractal definition using the grid resolution,
revealing that the dimension of the contributing drainage region on steady-state hillslopes is expressed as a mul-
tifractal system. In sum, channels have contributing drainage areas, therefore a dimension of 2, whereas, by
definition, unchannelized locations or nodes have a dimension between zero and 2, so not a well-defined area.
This conceptualization aligns with the scaling of channel width as the square root of drainage area. Since chan-
nel heads form at a resolution-independent drainage area, the width of channel heads is not explicitly defined,
suggesting that the grid resolution is analogous to the property of channel head width in real-world landscapes,
influenced by the particle size. We substantiate this theory with topographic analyses of Gabilan Mesa, Cal-
ifornia. These findings clarify several unresolved properties of channel–hillslope coupling, with potential for
substantially improving the accuracy of coupled landscape evolution models in replicating landscape forms.
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1 Introduction

Landscape evolution models (LEMs) are quantitative theo-
ries that describe the physical processes shaping geomorphic
patterns. Coupled channel–hillslope LEMs combine both flu-
vial and hillslopes processes, each described by individual
mathematical statements called geomorphic transport laws.
A central, yet poorly understood, aspect of these coupled
LEMs is channel initiation, setting the transition between
hillslopes and channels (Tucker and Hancock, 2010; Diet-
rich et al., 2003). In real-world landscapes, this transition is
often described in terms of stochastic perturbations and time-
dependent behavior (Smith and Bretherton, 1972; Howard
and Kerby, 1983; Del Vecchio et al., 2023). Given that land-
scape evolution occurs over long timescales, computationally
evaluated LEMs are commonly used to test theories describ-
ing channel initiation (Anand et al., 2022; Tucker and Han-
cock, 2010).

Selecting a finite grid resolution is essential for both com-
putationally evaluating two-dimensional coupled channel–
hillslope LEMs and interpreting real-world topography from
digital elevation models (DEMs). Scaling grid resolution rel-
ative to physically derived parameters or topography presents
several challenges. The widely used stream-power incision
model (Howard and Kerby, 1983; Howard, 1994; Whipple
and Tucker, 1999) requires contributing drainage area as a
proxy for discharge. When stream-power incision is com-
bined with linear diffusion (Culling, 1960), the scaling of
contributing drainage area across grid resolutions inconsis-
tently affects hillslopes, with presumably parallel flow paths,
and channels, where flow paths converge (Pelletier, 2010;
Hergarten, 2020; Hergarten and Pietrek, 2023; Bernard et al.,
2022). Previous efforts have addressed this issue by propos-
ing criteria for channel initiation (Hergarten, 2020; Hergarten
and Pietrek, 2023), but the scaling relationships between
the physically derived model parameters and channel initi-
ation remain unclear. Instead, computational models often
implement a physically derived or arbitrarily chosen thresh-
old for drainage area or the product of powers of drainage
area and slope (AmSn), below which stream-power erosion
is absent (Perron et al., 2008; Tucker and Bras, 1998; Camp-
forts et al., 2017; Theodoratos and Kirchner, 2020). How-
ever, some studies have suggested that the value of the chan-
nelization thresholds themselves depends on grid resolution
(Montgomery and Dietrich, 1992; Ariza-Villaverde et al.,
2015; Tarboton et al., 1991), and some studies have ques-
tioned the necessity of using a threshold altogether (Perron
et al., 2008; Theodoratos et al., 2018). Grid resolution also
complicates the modeling of channels with large drainage
areas where the expected channel widths exceed the pixel
width (Pelletier, 2010; Hergarten, 2020).

Prior research has also explored the characteristic land-
scape length that distinguishes hillslopes from channels and
defines the width of first-order valleys (Montgomery and
Dietrich, 1992; Tarboton et al., 1988; Perron et al., 2008;

Horton, 1945). This length is thought to be associated with
the flow-path length from topographic maxima to inflection
points with maximum steepness, differentiating convex sum-
mits and concave-up valleys (Willgoose et al., 1991a; Tar-
boton et al., 1991; Roering et al., 2007). Additionally, re-
search indicates that this length scale corresponds to the
square root of the contributing area at channel heads (Mont-
gomery and Dietrich, 1992; Tarboton et al., 1988; Perron
et al., 2008; Tucker and Bras, 1998). Researchers working
on this problem have long noted three distinct regions – from
hillslopes, intermediate colluvial valleys, and channels – in
slope–area plots. In particular, they have been intrigued by
the curved region associated with debris flows and shallow
landslides, corresponding to unchannelized colluvial valleys
with relatively constant slopes (Montgomery and Foufoula-
Georgiou, 1993; Stock and Dietrich, 2006; Struble et al.,
2023; McGuire et al., 2023). The connection between the in-
termediate region and debris flows is problematic, however,
because curved slope–area plots appear in models and real-
world landscapes without debris flows.

In this work we analytically derive the characteristic land-
scape length, defined as the contributing length to an in-
flection point in a one-dimensional analysis. On a two-
dimensional domain, we use the characteristic landscape
length and the pixel width as a measure to define a frac-
tal box-counting definition. This reveals that unchannelized
nodes, those with contributing drainage area less than the
characteristic length squared, do not have a well-defined con-
tributing drainage area, instead varying with the grid reso-
lution according to their fractal dimension. In other words,
when analyzed at sufficiently high resolution, the scaling re-
lationship for contributing drainage regions, which are two-
dimensional for channels (hence drainage area), breaks down
on hillslopes, resulting in a system of contributing drainage
dimension that does not exhibit self-similarity.

We demonstrate that this theory, derived from one-
dimensional analyses and computational simulations, corre-
sponds to real-world topography using Gabilan Mesa in Cal-
ifornia. In particular, we show that, on Gabilan Mesa, the
drainage area of nodes with the steepest slope (the inflec-
tion point) scales with 1 factor of grid resolution. In contrast,
the drainage area of channel heads, calculated as the square
of the drainage area divided by the grid resolution at the in-
flection point, is independent of grid resolution. Using these
results, we propose directions for computational models and
suggest that real-world landscapes have a property analogous
to a grid resolution.

2 Detachment-limited linear diffusion landscape
evolution

Landscape evolution models for erosional drainage-basin
evolution have a storied history. The simplest, most ap-
plicable model assumes detachment-limited stream-power
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(Howard, 1994; Whipple and Tucker, 1999) and linear dif-
fusion (Culling, 1960), and it is commonly presented in the
literature as

∂z

∂t
= U −KAm|∇z|n+D∇2z. (1)

On a two-dimensional domain, topographic elevation, z,
is a function of the horizontal coordinates x and y and of
time t . This model is based on three fundamental parame-
ters: K , D, and U . Erodibility, K , modulates the strength of
the stream-powered erosion. Diffusivity,D, characterizes the
strength of gravity-driven erosive processes. The uplift rate,
U , represents the effects of base-level forcing, such as uplift
or base-level fall. We assume that K , D, and U are constant
in both space and time.

Stream-power incision corresponds to the term
KAm|∇z|n. A, the contributing area, a proxy for dis-
charge in steady-state landscapes, is calculated for each
(x,y) node on the two-dimensional domain using flow-
routing vectors in the direction of steepest descent of z, such
that A is a function of x, y, z, and t . |∇z| is the norm of
the gradient of z. Stream-powered erosion is assumed to be
detachment-limited, meaning that sediments, once detached,
are not redeposited within the domain.

The values of the exponents m and n are the source of
significant debate in the literature. The exponent m= 1

2 , ap-
plied to contributing area A in Eq. (1), is commonplace for
two reasons. Firstly, assuming n= 1, the scaling of channel
slopes with the square root of drainage area is consistently
observed in bedrock channels and large drainage basins, in
a typical range of 0.4 to 0.55 (Whipple and Tucker, 1999;
Leopold and Maddock, 1953). Throughout this work, we set
n= 1, inducing linear behavior of stream-powered erosion
and in the range suggested by empirical studies (Whipple and
Tucker, 1999; Lague, 2014). Secondly, the choice of m= 1

2
and n= 1 preserves the fundamental dimension of K as a
rate. However, Eq. (1) is incorrect, since it is dependent on
grid resolution, which we discuss in Sect. 2.2 and address
with a nuanced solution in Sect. 5.1.

Linear diffusion (Culling, 1960), representative of mixing
processes such as soil creep and bioturbation, assumes that
the diffusive flux, qd, is directly proportional to the gradient
of z, given as qd =−D∇z. The divergence of the diffusive
flux, −D∇2z, can be positive or negative, indicating erosion
in concave-down profiles and deposition in concave-up pro-
files. Linear diffusion accurately models soil-mantled land-
scapes with cohesive sediments and gradients significantly
lower than the angle of repose (McKean et al., 1993). How-
ever, it fails to represent sediment fluxes accurately on hill-
slopes where local slopes approach a critical slope (Roering
et al., 1999).

We define distinct height (H ) and length (L) dimensions,
in alignment with prior dimensional analyses (Theodoratos
et al., 2018; Willgoose et al., 1991b). Although both H

and L can be expressed in meters, treating them as sepa-

Table 1. Symbols and variable definitions used in the study.

Symbol Dimension Description

x, y L Horizontal coordinates

z H Elevation

t T Time

K 1
T

Erodibility

D L2

T
Diffusivity

U H
T

Uplift

A L2 Contributing area

δ L Pixel width

` L Boundary length

r L Linear diffusion
characteristic length

|∇z| H
L

Norm of gradient of z

∇
2z H

L2 Laplacian of elevation

tĉ, tc̃ =
1
K

T Characteristic times

hĉ,hc̃ =
U
K

H Characteristic heights

t̂ , t̃ , ẑ, z̃, etc. 1 Dimensionless operators

rate dimensions facilitates our ability to simplify the model
through non-dimensionalization (Huntley, 1967). For steady-
state topography, the horizontal dimension pertains to the
two-dimensional domain, while the vertical dimension serves
as the function’s codomain, organized so that erosion bal-
ances uplift everywhere. In Eq. (1), D has fundamental di-
mension L2T −1 and U has fundamental dimension HT −1.
Throughout this work, we specify K as having the funda-
mental dimension T −1. Table 1 summarizes the dimensions
of all variables and parameters considered.

2.1 One horizontal dimension

With two horizontal dimensions, contributing drainage area
scales inconsistently with grid resolution owing to differ-
ences in flow routing between hillslopes and channels. As
noted by Pelletier (2010), Hergarten (2020), and Hergarten
and Pietrek (2023), hillslopes are thought to have parallel
flow paths, whereas channels have convergent flow paths.
As these authors suggest, the area of contributing drainage
regions with parallel flow paths is determined by the grid
resolution, which dictates their width. In contrast, regions
with convergent flow have contributing drainage areas that
are relatively unaffected by changes in grid resolution. In or-
der to address this inconsistency, we first consider the one-
dimensional equivalent to the landscape evolution model pre-
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sented in Eq. (1),

dz
dt
= U −K|x|

∣∣∣∣ dz
dx

∣∣∣∣+D d2z

dx2 , (2)

with the boundary length `:

−
`

2
< x <

`

2
.

|x|, a length, is a proxy for the amount of the accumulated
precipitation across the one-dimensional domain. The expo-
nent m= 1 preserves the fundamental dimension of K as
T −1 in the one-dimensional framework. Bonetti et al. (2020)
present a non-dimensionalization of Eq. (2), using character-
istic length lĉ = `, characteristic height hĉ =

U
K

, and charac-
teristic time tĉ =

1
K

. Therefore, x
lĉ
= x̂, z

hĉ
= ẑ, and t

tĉ
= t̂ ,

resulting in

dẑ
dt̂
= 1− |x̂|

∣∣∣∣ dẑ
dx̂

∣∣∣∣+ (CI )−1 d2ẑ

dx̂2 , (3)

−
1
2
< x̂ <

1
2
.

Given the four parameters (U ,D,K , and `) and three fun-
damental dimensions (H , L, T ) in Eq. (2), the equation can
be rewritten using non-dimensionalization to include a sin-
gle dimensionless group (Buckingham, 1914). This dimen-
sionless group, referred to as the channelization index CI ,
functions as a Péclet number and quantifies the competition
between advection and diffusion in the domain (Perron et al.,
2008; Anand et al., 2023; Bonetti et al., 2020).

CI =
`2K

D
(4)

Figure 1 plots the numerically evaluated steady-state pro-
files of Eq. (3) for various values of CI . Larger values of CI
manifest in narrower hillslope profiles relative to the bound-
ary size, formed by the relative strength of advective pro-
cesses over diffusive processes. The computational granular-
ity necessary for accurate numerical evaluation is a function
of the channelization index, CI . Larger values of CI require
a finer resolution to accurately represent the concave-down
region around x̂ = 0.

As noted by Litwin et al. (2022a), the channelization in-
dex (CI ) is a dimensionless boundary length. The intrinsic
length of Eq. (2) corresponds to a group involving D, since
[D] = L2T −1. To solve for this intrinsic length, we con-
sider the fixed points of Eq. (3) (Howard, 1994). The fixed
point of ẑ, where dẑ

dx̂ = 0, is located at the top of the ridge
at x̂ = 0. For x̂ = 0, stream-powered erosion does not oc-
cur, so the steady-state dimensionless erosion at the top of
the ridge is C−1

I ·
d2ẑ
dx̂2 =−1 (Roering et al., 2007). Inflec-

tion points, fixed points of dẑ
dx̂ , occur at the sides of the ridge

Figure 1. Equation (3) solved for various values of CI . As noted
in Anand et al. (2023), concave-down profiles are locally preserved
near x̂ = 0 for asymptotically large values of CI . Inflection points
are plotted with dots. The value CI ≈ 6.828 sets the distance be-
tween the inflection points equal to the boundary length.

where |x̂|
∣∣∣ dẑ

dx̂

∣∣∣= 1. These inflection points mark the transi-
tion from concave-down to concave-up profiles. We denote
r as the length between x = 0 and the inflection points of
Eq. (2), identical to the characteristic hillslope length given
in prior works (Roering et al., 2007; Perron et al., 2008; Will-
goose et al., 1991a). For CI ≈ 4+ 2

√
2≈ 6.828, the inflec-

tion points of dz
dx occur at ± `2 ; thus `= 2r . Solving for r ,

r =

√√√√D

K

(√
2

2
+ 1

)
∝

√
D

K
. (5)

For the remainder of this paper, we adopt r as the char-
acteristic landscape length, proportional to the characteristic

length-scale
√
D
K

used in several prior studies (Perron et al.,
2008; Theodoratos et al., 2018). While r can also be derived
from Eq. (2) as a first-order linear ordinary differential equa-
tion in dz/dx (Appendix A), the insights gained from the
non-dimensionalization of the one-dimensional equation are
useful for analyzing the landscape evolution equation in two
horizontal dimensions.

2.2 Two horizontal dimensions

On a two-dimensional domain, stream-power linear diffusion
landscape evolution is dependent on three horizontal lengths:
the landscape length r , the boundary length `, and the pixel
width δ. The explicit dependence on δ is controversial. On
a two-dimensional domain, δ is not only correlated with nu-
merical error, as on a one-dimensional domain, but also sets
the width of linear elements, such as channels. Considering
these three lengths (the boundary length, the pixel width, and
r), a minimum of two dimensionless groups can be formed,
without unnecessarily rescaling the other dimensional quan-
tities (Buckingham, 1914). This approach maintains the char-
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acteristic height as U
K

, diverging from the approach of Litwin
et al. (2022b).

Bonetti et al. (2018) define specific area, a, a length, as
the contributing area per unit contour width in the limit ap-
proaching zero contour width (Bonetti et al., 2018; Gallant
and Hutchinson, 2011). Specific area, satisfying the conser-
vation of a unitary precipitation rate, is expressed as

−∇ ·

(
a∇z

|∇z|

)
= 1. (6)

Given δ, an infinitesimally small contour width cannot be
achieved; thus a is not well defined. In the following anal-
ysis, the specific drainage area a is defined as a = A

δ
, while

noting that the specific drainage area is implicitly dependent
on the grid resolution (Litwin et al., 2022b; Costa-Cabral
and Burges, 1994). Using the D8 flow-routing algorithm on
a square pixel (Tarboton et al., 1988), both the flow length
and the contour width between diagonal pixels measure

√
2δ

diagonally, whereas, along the cardinal directions, both met-
rics equal δ. With the D∞ algorithm on a square pixel, the
contour width and the flow length between neighboring pix-
els are always δ (Gallant and Hutchinson, 2011). Throughout
this paper, we use the D∞ algorithm to bypass complexities
in cardinal and diagonal directions and to accurately model
flow routing on divergent hillslopes.

The landscape evolution models in the form of Eq. (1)
with m= 1

2 do not explicitly address the role of flow width
(Perron et al., 2008). Previous attempts to account for the
channel width have sought to normalize the fluvial erosion
component by a factor of w

δ
, where w is the channel width

(Howard, 1994; Perron et al., 2008). Channel widths are ob-
served to scale with the square root of drainage area (Leopold
and Maddock, 1953); thus w

δ
∝

√
A
δ

.

∂z

∂t
= U −

√
A

δ
K
√
A|∇z| +D∇2z (7)

= U −Ka|∇z| +D∇2z (8)

Rescaling the stream-powered erosion by
√
A
δ

defines the
specific drainage area, a, a length, as the discharge source
term, preserving the dimension ofK . This normalization im-
plies that fluvial erosion is proportional to contributing area,
and thus discharge, assuming a uniform runoff generation
rate (Litwin et al., 2022b). The calculation of a with con-
tour width δ is appropriate for unchannelized nodes, such that
erosion occurs by overland flow and that the minimum con-
tour width is therefore δ. We first explore the implications of
Eq. (8) for unchannelized nodes. The use of a ensures that
the contributing drainage of locally parallel flow regions on
hillslopes is independent of pixel width, thereby conforming
to a one-dimensional framework. We show that locally paral-
lel flows occur at the inflection point, a = r . For nodes with-
out a = r , the specific drainage area is implicitly dependent
on δ. This dependence is unavoidable but can be reconciled
through an additional dimensionless group.

2.3 Dimensional analysis

As previously noted, considering the three horizontal lengths
`, δ, and r entails at least two dimensionless groups. Non-
dimensionalizing Eq. (8) with lc̃ = r , hc̃ = U

K
, and tc̃ = 1

K
,

such that a
lc̃
= ã, x

lc̃
= x̃, y

lc̃
= ỹ, z

hc̃
= z̃, and t

tc̃
= t̃ , results in

∂z̃

∂t̃
= 1−

r

δ
Ã

∣∣∣∇̃ z̃∣∣∣+ D

r2K
∇̃

2z̃ (9)

= 1− ã
∣∣∣∇̃ z̃∣∣∣+(√2

2
+ 1

)−1

∇̃
2z̃ (10)

with boundary length

`

lc̃
=
`

r
= ` ·

√√√√ K

D
(√

2
2 + 1

) ∝√(CI ).

Therefore, by considering the form with the dimension-
less area, this yields two dimensionless groups related to the
horizontal length scales,

51 =
r

δ
,

with the second appearing in the boundary condition

52 = ` ·

√√√√ K

D
(√

2
2 + 1

) .
The dimensionless group r

δ
represents the number of pix-

els of contributing drainage, though not necessarily individ-
ual pixels (with theD∞ flow-routing algorithm), required to
form an inflection point. In the literature, some papers keep
this value constant (Theodoratos et al., 2018), but others do
not (Anand et al., 2023). Identical values of this dimension-
less group create a consistent scaling break in steady-state
slope–area space. With increased resolution, the inflection
point occurs for fewer pixels of contributing area, but the
same specific drainage area is calculated using contour width
δ. The dimensionless ratio `

r
denotes the boundary relative to

r and is proportional to the square root of the channelization
index. These dimensionless groups function similarly to two
controls of a microscope: one control alters the proximity
of the microscope to the specimen, effectively changing the
boundary size, and the other adjusts the resolution through
the focus of the lenses. The effect of these groups is demon-
strated through computational simulations in the following
section.

3 Two-dimensional results

We completed steady-state numerical simulations using the
Landlab-equipped (Hobley et al., 2017) Jupyter notebook of
Anand et al. (2023), using the D∞ algorithm (Anand et al.,
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Figure 2. Slope-specific drainage area plot for the simulated to-
pography shown in Fig. 3 for `= 1000 m, δ = 10 m, K = 2.5×
10−5 yr−1, D = 7× 10−2 m2 yr−1, and U = 3.6× 10−3 m yr−1.
The binned median slope is plotted in magenta. The specific
drainage area, a = r , shown with the red line, has the steepest slope.
The specific drainage area value, r

2

δ , shown in orange, represents
the transition to fluvial power-law scaling, with slope decreasing
steadily with contributing area. This value is resolution-independent
as an area but not as a specific drainage area, which has the funda-
mental dimension of length.

2020) and implicit diffusion. Our simulations follow Eq. (8),
with the specific drainage area calculated using δ as a contour
width.

Inflection points occur at a = r (Fig. 2). The specific
drainage area value, a = r2

δ
, features local fluvial power-

law scaling according to −m
n
=−

1
2 , with slope decreasing

steadily with the square root of specific drainage area. For a
specific drainage area much greater than a = r2

δ
, the gradient

scales with the specific drainage area according to−m
n
=−1.

The significance of the specific drainage area a = r2

δ
is ex-

plained in the following section.
Larger values of `

r
induce larger boundary sizes relative to

r , therefore portraying more hillslopes and larger stream or-
ders (Fig. 3). The dimensionless group r

δ
controls the magni-

fication (Fig. 4). Nodes with drainage area exceeding A= r2

are shown with yellow dots. For different values of δ, the
resolution changes, but the images stay largely the same.

4 Fractal analysis

In the steady-state simulations presented in Figs. 3 and 4,
channel heads are located at a ≈ r2

δ
. This value is well de-

fined as an area, r2, as hypothesized by Montgomery and
Foufoula-Georgiou (1993), but not as a δ-derived specific
drainage area.

On a discrete grid with pixel width δ, points with zero di-
mension have an area of δ2, formed by a length and width
of δ. Topographic maxima have zero-dimensional contribut-
ing drainage area, δ2. On a two-dimensional mesh, lines

Figure 3. Computational simulation results varying ` for δ =
10 m,K = 2.5×10−5 yr−1,D = 7×10−2 m2 yr−1, andU = 3.6×
10−3 m yr−1. The corresponding channelization indices, CI =
`2K
D

, are approximately 22, 89, and 357. These simulations preserve
the dimensionless group r

δ , the ratio of the characteristic length to
the pixel width. Larger values of CI , given the same r value, imply
a resized boundary length, `. Channels are highlighted with yellow
dots for A≥ r2.

are represented with a width equal to the grid resolution.
Resolution-independent lengths on steady-state topography
correspond to the inflection points, a = r , for linear diffu-
sion. Using the D∞ algorithm, these lengths correspond
to flow-routing lengths rather than to Euclidean lengths.
The flow directions for nodes with a = r are locally paral-
lel in limδ→0, separating zones of topographic divergence
(a < r) from topographic convergence (a > r). Areas on
two-dimensional grids are resolution-independent. Numeri-
cal simulations (Figs. 3 and 4) indicate that these contribut-
ing areas correspond to nodes withA= r2, such that the con-
tributing area is convergent to a point, i.e., a channel head. In
these simulations, according to Eq. (8), channels (linear el-
ements which by definition have width δ) form downstream
from these channel heads.
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Figure 4. Computational results varying δ for U = 1×10−3 m yr−1,D = 5×10−2 m2 yr−1, andK = 5×10−4 yr−1. Nodes with drainage
area exceeding a = r2

δ are shown with yellow dots. Varying δ with an r
`

constant produces similar results. With decreasing r
δ , maximum

elevation decreases, since topographic maxima have a specific drainage area δ. This presents a possible benefit for subtracting δ from a, thus
counting the number of links (Rodríguez-Iturbe et al., 1997). We forgo this approach for simplicity.

4.1 Fractal definition

The resolution-independent dimension of unchannelized
nodes, with a ≤ r2

δ
, is not necessarily an integer. Nodes in

locations with flow directions of partial convergence or par-
tial divergence have non-integer, or fractal, dimension. The
dimension of unchannelized nodes with integer dimension,
using δ as a contour width, is

a =
(r)Df

δDf−1 . (11)

Df is the box-counting fractal dimension, commonly de-
fined as

Df =
log(number of self-similar pieces)

log(magnification factor)
.

Solving for Df,

Df =
log

(
a
δ

)
log

(
r
δ

) . (12)

The numerator, log
(
a
δ

)
, is the logarithm of the number of

contributing pixels. The denominator, log
(
r
δ

)
, is the loga-

rithm of the magnification factor, the dimensionless group
r
δ
, referring to the number of contributing pixels at the inflec-

tion point. Therefore, for each node, Eq. (12) is calculated
by comparing the logarithm of the number of contributing
pixels to the logarithm of the number of pixels at the inflec-
tion point (Fig. 5). This fractal dimension is similar to defini-
tions of Péclet numbers given in previous studies (Theodor-
atos et al., 2018; Hooshyar et al., 2020). Figure 6 shows the
fractal dimension of the contributing drainage plotted for the
parameters given in Fig. 2.

Equation (12) indicates that nodes with locally divergent
flow near hilltops exhibit a contributing drainage region with

Figure 5. Schematic diagram of the non-fractal dimension drainage
regions. On landscapes, lengths do not correspond to Euclidean
lengths but correspond instead to flow lengths. Areas are not neces-
sarily square-shaped.

fractal dimension between 0 and 1. Unchannelized nodes
with locally convergent flow have a contributing drainage re-
gion with fractal dimension between 1 and 2, corresponding
to unchannelized valleys (Fig. 6). This explanation clarifies
the properties of unchannelized nodes but does not extend to
channelized nodes.

Equation (12) suggests that, for channelized nodes, with
a ≥ r2

δ
, Df exceeds 2 for a calculated using δ as a contour

width. Several studies have demonstrated that the fractal di-
mension of channel networks, as measured by their length-
to-bifurcation ratios, approaches 2 for large stream orders
(Tarboton et al., 1988; Rinaldo et al., 1998; La Barbera and
Rosso, 1989; Rodríguez-Iturbe et al., 1997). While these
fractal definitions may be independent, it would be uncon-
ventional for the box-counting fractal dimension of a region
on a two-dimensional surface to exceed 2. For river segments
observed in nature, channel width scales with the square root
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Figure 6. Simulation results for U = 1× 10−3 m yr−1, D = 5× 10−2 m2 yr−1, K = 2.5× 10−4 yr−1, δ = 2 m, and `= 100 m, plotted
according to the fractal dimension, Df (Eq. 12). Channel heads, with drainage area r2, have dimension 2. Colluvial valleys correspond to
1<Df < 2. River segments have dimension 2 when accounting for channel width.

of drainage area (Leopold and Maddock, 1953). Letting δ be
the channel width at the channel head,

w =
δ

r

√
A. (13)

Box-counting with δ-sized pixels for river nodes down-
stream of the channel head captures only the contributing
nodes for a fraction of the contour width of the channel. Us-
ingw as the contour width for river nodes,A= aw ·w, where
aw is the specific contributing area corresponding to contour
width w. Substituting aw for a and w for δ in the numera-
tor of Df, as defined for hillslopes, Df = 2 for all channels.
The ratio r

δ
remains constant, the dimensionless magnifica-

tion factor set by the parameters of the model.

w =

(
δ

r

)2

· aw Df =
log

(
aw
w

)
log

(
r
δ

) (14)

5 Confirmation and discussion

To apply this theory to real-world landscapes suitable for the
stream-power plus linear diffusion model, it is necessary to
identify a set of hypotheses to test. Our first hypothesis is that
the drainage area at the inflection point scales with 1 factor of
grid resolution. Secondly, we hypothesize that the drainage
area of channel heads is independent of grid resolution and
corresponds to the square of the specific drainage area at the
inflection point.

Gabilan Mesa is a frequent subject for studies of linear dif-
fusion advection landscape evolution, featuring soil-mantled
hillslopes with cohesive soils and uniform steady-state to-
pography. Debris flows and shallow landsliding are uncom-
mon. Gabilan Mesa also has low gradients in most places
relative to the critical slope, supporting the assumption of lin-
ear diffusion (Perron et al., 2008, 2009). Our data originate
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from a 2015 DEM, as utilized by Grieve et al. (2016). These
data include channel heads using the Pelletier algorithm (Pel-
letier, 2013), which estimates channel head locations from
contour curvature. Floodplains were manually mapped and
excluded. We did not need to run a sink-filling algorithm,
since Gabilan features very little topographic roughness.

Figure 7 plots the gradient by drainage area for the section
of the DEM shown in Fig. 8. The characteristic length cor-
responding to the inflection point is 62 m, the drainage area
of which varies by a factor of δ across resolutions (Bernard
et al., 2022). Both Figs. 7 and 8 demonstrate that the drainage
area of channel heads is resolution-independent, as predicted
by Fig. 5 and Eq. (12). Figure 8 confirms that the location
of channel heads, nodes with A= (62m)2 and thus Df = 2
with r = 62m in Eq. (12), matches the location of channel
heads as identified by the contour curvature method of Pel-
letier (2013).

While D can be consistently defined by hilltop curva-
ture,K is difficult to estimate from topography. Potential ap-
proaches include using drainage density (Tucker and Bras,
1998) or channel steepness (Whipple and Tucker, 1999).
These approaches are problematic, since identifying K from
channel steepness or drainage density would assume that
erodibility is constant throughout the domain (both hillslopes
and channel networks), which is unlikely given variations in
sediment cover and physical processes. Another approach is
outlined by Perron et al. (2009), who conducted a regres-
sion of |∇z|

∇2z−Cht
, where Cht is the hilltop curvature, against

drainage area to derive values for D
K

and m, assuming a
stream-power formulation with n= 1 (Eq. 1). However, this
analysis overlooks grid resolution, and, as demonstrated in
Fig. 7, drainage areas on hillslopes are not independent of
grid resolution. Consequently, this regression is not a valid
method for extracting m and D

K
.

Given the consistency between our numerical simulations
and the topography of Gabilan Mesa, we consider it likely

that r = 1.3
√
D
K
≈ 62 m for this case study, though we leave

rigorous validation of these parameters, K in particular, for
future work. Nonetheless, the coherence between the topo-
graphic analyses presented in Figs. 7 and 8 and the mathe-
matical framework derived from computational results con-
firms the utility of our theory (Bras et al., 2003).

5.1 Spatially resolving channel width

The numerical simulations shown in this paper correspond to
Eq. (8), with specific area calculated with contour width δ.
These simulations have channel slopes that scale according
to a concavity of m

n
= 1, rather than a concavity of m

n
=

1
2 ,

because the scaling in channel width is confined to a sin-
gle pixel. Previous approaches, as given by Pelletier (2010),
assume that pixel widths exceed channel widths throughout
the simulated domain, such that pixel elevations represent the
channel elevation within the pixel rather than the average el-

evation. This results in the form A
w

, where w is the channel
width (Eq. 14), such that channel slope scales with drainage
area according to the exponent m= 1−α, where α is the
scaling of channel width (Pelletier, 2010). For self-similarity
given Eq. (14), α = 1

2 ; thus channels scale with drainage
area according to m= 1

2 . However, applying A
w

to a single
pixel forgoes the spatial representation of widening chan-
nels. Rather than assuming that pixel widths exceed chan-
nel widths throughout the domain, we propose instead that
models should assume that channel widths exceed the pixel
width, with the pixel width equal to the channel head width,
as suggested by Litwin et al. (2022b). With this assumption,
flow-partitioning across multiple pixels could accommodate
widening channels (Gailleton et al., 2024), enabling the pre-
cise depiction of river longitudinal profiles and widths.

5.2 Arbitrary r
δ

For large δ relative to r , landscapes are largely self-similar
(Anand et al., 2023; Hergarten, 2020), with concave-down
hillslope profiles restricted to single pixels. These simula-
tions converge to purely fluvial topography for r

δ
→ 0, with

channel-scaling behavior occurring instantly. Likewise, pre-
vious works regarded δ as an arbitrary value, seeking rela-
tionships to vary between δ (Pelletier, 2010). We suggest no
such abstraction to vary between δ for numerical simulations.
Real-world landscapes typically feature r � δ, introducing
computational challenges that can be mitigated by choosing
a small `

r
.

5.3 Physical merit to δ

In computational models, the channel head, with upstream
contributing drainage r2, marks the beginning of channels,
linear elements of width δ. In limδ→0, channel heads are
points, resulting in precisely linear channels regardless of the
area-scaling. This is not the behavior observed in nature. In
limδ→0, the topography of steady-state computational sim-
ulations minimizes numerical error to form a smooth sur-
face, whereas real-world landscapes feature roughness at in-
creasingly small scales (Roering, 2008). This indicates the
importance of other length scales in real-world landscapes,
including the particle size (Andrle and Abrahams, 1989; San-
gireddy et al., 2017; Sweeney et al., 2015; Dunne and Jerol-
mack, 2020), which are omitted from one-dimensional anal-
yses. Studies have shown that the particle size distribution is
closely related to the transition from slope-invariant colluvial
valleys (i.e., 1<Df < 2) and fluvial channels, suggesting a
maximum particle size at the channel head (Neely and DiBi-
ase, 2023).

5.4 Nonlinear diffusion

Physical landscapes are influenced by a variety of processes
not explicitly considered in this analysis, such as soil pro-
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Figure 7. Log–log plot of slope by drainage area for Gabilan Mesa, resampled across 1, 5, and 10 m pixels, as shown in Fig. 8. The binned
median is plotted with a dashed magenta line. The characteristic length is 62 m. The minimum drainage area, corresponding to topographic
maxima, is δ2. The drainage area of the inflection point is 62δm2. Channel heads have the characteristic area of contributing drainage area
which is resolution-independent.

Figure 8. A section of Gabilan Mesa visualized by plotting the fractal dimension, Df, for each node. Subsequent plots are generated by
resampling the topographic elevation from the original 1 m DEM to 5 and 10 m resolution. The D∞ algorithm calculates flow accumulation
for every pixel. The fractal dimension is calculated according to Eq. (12), using the characteristic length of 62 m, derived from Fig. 7.
Channelized pixels, those with A> (62m)2 and thus a fractal dimension of greater than 2, are highlighted in orange. This algorithm is
resolution-independent up to greater numerical error on coarser resolutions. Channel heads derived from the Pelletier algorithm (Pelletier,
2013) are marked with yellow stars, demonstrating a surprising correspondence between the channel head methods. Nodes with a fractal
dimension of 1 separate regions of topographic divergence from topographic convergence.

duction (Heimsath et al., 1997), nonlinear diffusion (Roer-
ing et al., 1999), and groundwater infiltration (Litwin et al.,
2022b). The fractal dimension of drainage region is a re-
sult of convergence and divergence on topography and is
not inherent to the one-dimensional equation with linear dif-
fusion. Future work should seek to generalize this work to
a variety of flux laws, such as nonlinear diffusion law in
the Andrews–Bucknam form (Roering et al., 1999; Andrews
and Bucknam, 1987), depth-dependent nonlinear diffusion
(Roering, 2008), and nonlocal models (Foufoula-Georgiou
et al., 2010; Furbish and Roering, 2013). For nonlinear dif-
fusion in the form of Roering et al. (1999) and Andrews and
Bucknam (1987), the characteristic length is not proportional

to
√
D
K

but is also a function of uplift relative to the critical
slope. Identifying the characteristic length from topography
with strongly nonlinear diffusion is inherently challenging,
as hillslopes nearing the critical slope become planar (Roer-
ing et al., 2007). Additionally, computational models incor-
porating nonlinear diffusion must address the nonlinear ef-
fects of the grid resolution setting the spatial scale of the
diffusion process (Ganti et al., 2012; Furbish and Roering,
2013).

5.5 Curved slope–area plots

The reasons for curved slope–area plots have long been
a topic of discussion in geomorphology (Montgomery and
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Foufoula-Georgiou, 1993). Colluvial valleys, corresponding
to the curved region between hillslopes and channels in
slope–area plots, have often been attributed to the role of
stochastic processes, such as debris flows and shallow land-
slides. We showed that, for these regions, drainage area is
not a reliable metric. For analyses of natural landscapes, our
theory should help elucidate the role of debris flows and
landslides (McGuire et al., 2023). For computational simu-
lations, this intuition shows potential for testing theories re-
lated to the frequency of forcing, both tectonic and climatic,
in hillslope–channel-coupled landscape evolution (Godard
and Tucker, 2021).

6 Conclusions

We showed that the relationship between the characteristic
landscape length and grid resolution in the stream-power plus
linear diffusion landscape evolution model is expressed as
a multifractal system for unchannelized nodes. Nodes with
locally divergent flow have a contributing drainage region
with fractal dimension between 0 and 1, while unchannel-
ized nodes with locally convergent flow display dimensions
between 1 and 2, aligning with unchannelized valleys. Chan-
nels have a well-defined contributing area, aligning with the
observed scaling of channel width and channel slopes as the
square root of drainage area. This finding underscores a sig-
nificant parallel between computational grid resolution and
real-world landscape features – the channel head and parti-
cle width, in particular. This study serves as a foundational
step towards understanding geomorphic channel–hillslope
coupling, highlighting the coherence and limitations of one-
dimensional and two-dimensional landscape evolution equa-
tions.

Appendix A: Alternate derivation of r

Let y = dz
dx , y′ = d2z

dx2 . Let x ≥ 0,y ≤ 0, by symmetry. Then,
rearranging Eq. (2), we have the form of a first-order lin-
ear ODE in y, which can be solved by the integrating factor
method.

y′+
K

D
xy =−

U

D
, (A1)

µ(x)= e
K
2D x

2
, (A2)

y =−
U

D
e−Kx

2/2D

x∫
0

e
K
2D x

2
dx+C. (A3)

Using y(0)= 0,

y =−
U

D
e−Kx

2/2D

x∫
0

e
K
2D x

2
dx. (A4)

Using y = U
Kx

, the characteristic length can be solved for
using a series-expansion and a root-finding algorithm.
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