

Supplement of

Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)

Felix Pfluger et al.

Correspondence to: Felix Pfluger (felix.pfluger@tum.de)

The copyright of individual parts of the supplement might differ from the article licence.

S1 Figures

Figure S1. Flow chart for the simulation of stages according to the defined scenarios using the UDEC modeling framework.

Figure S2. Violinshaped boxplots presenting distribution of mean daily GST values over full measurement interval from Sep-02-2013 to Aug-31-2013 for the 22 GST logger positions.

Figure S3. Wet areas in the west-facing slope below the Northern Bliggferner Glacier indicate ongoing debris flow activity in the years after 2007. Orthophotos provided by Land Tirol - data.tirol.gv.at.

Figure S4. Scenario S1 as simulated with UDEC: State at the end of cycling for models with varying structural features A-F. Elastic blocks are parameterized according to Figure 3c. Shear parameters are kept constant at ($\phi = 30^\circ, c = 0.1MPa$) for every model run. For S1C.fo, S1F.fo we assigned $\delta\phi = +3^\circ$ to foliation only, while other discontuinities kept the determined parameters.

Figure S5. X-displacement of full model domain after cycling of two stages of the scenario S4. The elevation of the PDL (left image= 2900 masl, right=3000 masl) defines the peak ground water table (transition between red and blue discontinuities and delineated by the slope topography). Hydrostatic water pressure is applied to the blue coloured discontuinities according to the respective depth below water table. Parameter were assigned according to Figure 3c.

S2 Tables

Table S1. Characterization of the rock mass by using the Geological Strength Index - parametrization (1). Intact rock properties (2) are tested in the laboratory. The material properties representing the rock mass (3) are derived from (1 & 2) to be subsequently assigned to the linear elastic blocks within the UDEC model. Specification for deriving parameters: 'estimated' values are derived from categorical relations or from given graphs. 'calculated' values are calculated according to the suggested formula.

Parameter	abbrev.	value	unit	source
(1) Geological Strength	GSI	35	-	estimated according to
Index				Hoek and Brown (2019)
Material constant intact	m_i	7	-	estimated acc. to Mari-
rock				nos and Hoek (2000)
Disturbance factor	D	0	-	acc. to Hoek and Brown
				(2019)
Material constants rock	m_b	0.6869	-	calculated acc. to Hoek
mass (m_b, s, a)				et al. (2002)
	S	0.0007	-	calc. acc. to Hoek et al.
				(2002)
	а	0.5159	-	calc. acc. to Hoek et al.
				(2002)
(2) Uniaxial Compressiv	UCS	101	MPa	UCS test**, unfrozen,
Strength				$\bar{x}, n = 5$
Young's modulous intact	E_i	39	GPa	UCS test**, unfrozen,
rock				$\bar{x}, n = 5$
(3) Young' modulous	E_{rm}	4.3	GPa	calc. acc. to Hoek et al.
rock mass				(2002)
Poisson ratio rock mass	$ u_{rm}$	0.38	-	estimated acc. to
				Vásárhelyi(2009)
Compressive modulous	K_{rm}	5.886*	GPa	calc. acc. to K_{rm} =
rock mass				$\frac{E_{rm}}{3(1-2\nu_{rm})}$
Shear modulous rock	G_{rm}	1.536*	GPa	calc. acc. to G_{rm} =
mass				$\frac{E_{rm}}{2(1+\nu_{rm})}$

*These values were rounded to $K_{rm} = 6 GPa$ and $G_{rm} = 1.5 GPa$ and assigned to the blocks for all UDEC simulations.

** UCS tests conducted according to recommendations of Mutschler (2004) under constant strain.

References

5

Hoek, E. and Brown, E. T.: The Hoek–Brown failure criterion and GSI – 2018 edition, Journal of Rock Mechanics and Geotechnical Engineering, 11, 445–463, https://doi.org/10.1016/j.jrmge.2018.08.001, 2019.

Hoek, E., Carranza-Torres, C., Corkum, B., et al.: Hoek-Brown failure criterion-2002 edition, Proceedings of NARMS-Tac, 1, 267–273, 2002.

Marinos, P. and Hoek, E., eds.: GSI: a geologically friendly tool for rock mass strength estimation, OnePetro, 2000.

Mutschler, T.: Neufassung der Empfehlung Nr. 1 des Arbeitskreises "Versuchstechnik Fels" der Deutschen Gesellschaft für Geotechnik e. V.:

Einaxiale Druckversuche an zylindrischen Gesteinsprüfkörpern, Bautechnik, 81, 825–834, https://doi.org/10.1002/bate.200490194, 2004.
 Vásárhelyi, B.: A possible method for estimating the Poisson's rate values of the rock masses, Acta Geodaetica et Geophysica Hungarica, 44, 313–322, https://doi.org/10.1556/AGeod.44.2009.3.4, 2009.