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Abstract. pyTopoComplexity is a Python package designed for efficient and customizable quantification of
topographic complexity using four advanced methods: two-dimensional continuous wavelet transform analysis,
fractal dimension estimation, rugosity index, and terrain position index calculations. This package addresses the
lack of open-source software for these advanced terrain analysis techniques essential for modern geomorphology
and geohazard research, enhancing data comparison and reproducibility. By assessing topographic complexity
across multiple spatial scales, pyTopoComplexity allows users to identify characteristic morphological scales of
studied landforms. The software repository also includes a Jupyter Notebook that integrates components from the
surface-process modeling platform Landlab (Hobley et al., 2017), facilitating the exploration of how terrestrial
processes, such as hillslope diffusion and stream power incision, drive the evolution of topographic complexity
over time. When these complexity metrics are calibrated with absolute age dating, they offer a means to estimate
in situ hillslope diffusivity and fluvial erodibility, which are critical factors in determining the efficiency of
landscape recovery after significant geomorphic disturbances such as landslides. By integrating these features,
pyTopoComplexity expands the analytical toolkit for measuring and simulating the time-dependent persistence
of geomorphic signatures against environmental and geological forces.

1 Introduction and overview of the package

Topographic complexity, often referred to as topographic
roughness or surface roughness, provides critical insights
into surface processes and the interactions among the geo-
sphere, biosphere, and hydrosphere (Dietrich and Perron,
2006; Wilson et al., 2007). With the increasing availability
of digital terrain model (DTM) data, quantifying topographic
complexity has become an essential step in terrain analy-
sis across various research fields. This necessity spans ap-
plications such as terrain classification and mapping at vari-
ous spatial scales (e.g., Weiss, 2001; Robbins, 2018; Lindsay
et al., 2019; Pardo-Igúzquiza and Dowd, 2022b, a), evalu-
ating the depositional age of hazardous event sedimentation
(e.g., landslides, terrace creation due to avulsions on allu-
vial fans) and subsequent erosion processes (e.g., Hetz et al.,
2016; Johnstone et al., 2018; Booth et al., 2017; Herzig et al.,

2024; LaHusen et al., 2020; Woodard et al., 2024; Doane et
al., 2024), estimating soil organic carbon storage and nutrient
dynamics in landscapes (e.g., Hunter et al., 2024), and iden-
tifying habitats to assess ecological diversity on land and on
the seafloor (e.g., Frost et al., 2005; Hetz et al., 2016; Wilson
et al., 2007).

In recent years, several advanced methods for quantify-
ing topographic complexity have been developed, including
two-dimensional continuous wavelet transform (2D-CWT)
analysis (Booth et al., 2009; Berti et al., 2013), fractal di-
mension (FD) estimation (Taud and Parrot, 2005; Glenn et
al., 2006; Robbins, 2018; Pardo-Igúzquiza and Dowd, 2020),
and rugosity index (RI) calculation (Jenness, 2004; Du Preez,
2015). These newer metrics were developed to better identify
complexity signals from surface morphology at various spa-
tial scales of interest and are considered effective in capturing

Published by Copernicus Publications on behalf of the European Geosciences Union.



418 L. S.-H. Lai et al.: Short communication: Multiscale topographic complexity analysis with pyTopoComplexity

geomorphic features associated with physical and ecologi-
cal processes relative to traditional metrics like slope, relief,
or curvature (e.g., Wilson et al., 2007; Badgley et al., 2017;
Booth et al., 2017). Despite their importance, comprehen-
sive publicly available tools that incorporate these advanced
methods are lacking. Common open-source geospatial anal-
ysis software, such as QGIS (QGIS Development Team,
2024), GRASS GIS (GRASS Development Team, 2024), and
WhiteboxTools (Lindsay, 2016), only implement basic con-
ventional methods, limiting the reproducibility and compara-
bility of these newer approaches. Although specialized pro-
grams for calculating the RI exist (Walbridge et al., 2018;
Benham, 2022), they have been confined to marine bathy-
metric studies and involve various mathematical limitations,
assumptions, and designs.

To address this gap, we have developed an open-source
Python toolkit called pyTopoComplexity. This toolkit of-
fers computationally efficient and easily customizable im-
plementations for performing and visualizing the results of
2D-CWT, FD, and RI calculations (Fig. 1). Additionally, py-
TopoComplexity includes a module for calculating the ter-
rain position index, a widely used metric in geomorphology
research (Newman et al., 2018; Deumlich et al., 2010; Liu et
al., 2011) and often used alongside RI in marine geological
and ecological studies (Wilson et al., 2007; Walbridge et al.,
2018). Each module of pyTopoComplexity includes a corre-
sponding example Jupyter Notebook file with usage instruc-
tions. These examples utilize 3 ft (∼ 0.9144 m) resolution li-
dar bare Earth DTM data (Washington Geological Survey,
2023) from the 2014 Oso deep-seated landslide along the
North Fork Stillaguamish River valley in Washington State,
USA (Iverson et al., 2015; Wartman et al., 2016; Collins and
Reid, 2019). In the software repository, we also include an
additional Jupyter Notebook file Landlab_simulation.ipynb,
which allows users to simulate the change of topographic
complexity over time via terrestrial processes including non-
linear hillslope diffusion (Roering et al., 1999) and fluvial
stream power incision (Whipple and Tucker, 1999; Braun
and Willett, 2013). This is achieved by running the landscape
evolution simulation in the Landlab environment (Hobley
et al., 2017) and integrating it with the functionality of py-
TopoComplexity.

2 Methods

The pyTopoComplexity package is available for installa-
tion on Windows, Linux, and macOS systems. Users can
install it directly from the Python Package Index (PyPI)
using the pip command pip install pytopocomplexity or
from the conda-forge repository by using the conda pack-
age manager with the command conda install pytopocom-
plexity. Alternatively, users can clone the pyTopoCom-
plexity GitHub repository (https://github.com/GeoLarryLai/
pyTopoComplexity, last access: 10 March 2025) to a local

directory and then use the conda command conda env create
-f environment.yml to create a Python environment with the
necessary packages installed.

This package includes four modules for performing two-
dimensional continuous wavelet transform analysis (2D-
CWT), fractal dimension (FD) estimation, rugosity index
(RI) calculation, and terrain position index (TPI) calculation
(Table 1). Users only need to specify the directories for in-
put and output files, as well as the spatial scale for anal-
ysis (e.g., the Fourier wavelength, λ) for the Mexican hat
wavelet (i.e., 2D Ricker or Marr wavelet) in 2D-CWT anal-
ysis or the size of the moving window (1) for other meth-
ods. When loading a raster DTM file (acceptable in the Geo-
TIFF format) into pyTopoComplexity, the toolkit automati-
cally detects grid spacing and units of the projected coordi-
nate system (supported units include meters, US survey feet,
and international feet) and applies any necessary unit conver-
sions to maintain consistency in analysis (Fig. 1). By default,
results from nodes affected by edge effects due to no-data
values are excluded. Users can specify the appropriate spa-
tial scale for their research and select computational methods
(e.g., chunk processing, faster mathematical approximations)
to optimize performance.

2.1 Two-dimensional continuous wavelet transform
(2D-CWT) analysis

The pycwtmexhat.py module in pyTopoComplexity imple-
ments the 2D-CWT method for terrain analysis, providing
detailed information on how amplitude is distributed across
spatial frequencies at each position in the data by transform-
ing spatial data into position–frequency space. When used
with the Gaussian family of wavelets, this method is par-
ticularly effective for depicting the Laplacian of topography
(Torrence and Compo, 1998; Lashermes et al., 2007), re-
vealing concave and convex regions of topography at various
smoothing-length scales (Malamud and Turcotte, 2001; Stru-
ble et al., 2021; Perron et al., 2008b), identifying deep-seated
landslides (Booth et al., 2009; Berti et al., 2013), and esti-
mating the depositional chronologies for landslides (Booth
et al., 2017; Herzig et al., 2024; LaHusen et al., 2020; Un-
derwood, 2022) as well as alluvial-fan avulsions (Johnstone
et al., 2018).

The 2D-CWT is computed by convolving the elevation
data z with a wavelet family ψ at every location (x,y):

C(s,x,y)= δ2
∫
∞

−∞

∫
∞

−∞

z(x,y)ψ(x,y) dxdy , (1)

where the resultant wavelet coefficient C(s,x,y) provides a
measure of how well the wavelet ψ matches the elevation (z)
at each grid point (Torrence and Compo, 1998). δ is the grid
spacing of the input DTM raster. The 2D-CWT method iso-
lates specific landform features at the scale of the designated
wavelength while filtering out noise from terrain variations
at longer or shorter wavelengths. In this implementation, we
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Figure 1. Schematic diagram illustrating the workflow of applying pyTopoComplexity in surface complexity analyses.

Table 1. Modules contained in the pyTopoComplexity package.

Modules Classes Method descriptions References

pycwtmexhat.py CWTMexHat Quantifies the wavelet-based curvature of the land surface
using two-dimensional continuous wavelet transform with
a Mexican hat wavelet

Booth et al. (2017, 2009)

pyfracd.py FracD Conducts fractal dimension analysis on the land surface
using variogram procedures

Wen and Sinding-Larsen (1997),
Pardo-Igúzquiza and Dowd (2020)

pyrugostiy.py RugosityIndex Calculates the rugosity index of the land surface Jenness (2004), Du Preez (2015)

pytpi.py TPI Calculates terrain position index of the land or seafloor sur-
face

Weiss (2001), Walbridge et al.
(2018)
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use the Mexican hat wavelet function to define ψ (Ricker,
1943):

ψ =−
1

π (sδ)4

(
1−

x2
+ y2

2s2

)
e

(
−
x2
+y2

2s2

)
, (2)

which depicts concave and convex landforms according to
the wavelet scale s. When s is large, ψ is spread out, cap-
turing long-wavelength features of z; when s is small, ψ be-
comes more localized, making it sensitive to fine-scale fea-
tures of z. The Mexican hat wavelet, as defined above, cor-
responds to the second derivative of a Gaussian envelope. Its
Fourier wavelength (λ) depends on the chosen wavelet scale
(s) and the grid spacing (δ) of the input DTM raster:

λ=
2πs
√

5/2
δ. (3)

Users can specify the wavelength λ in meters as the target
spatial scale for land surface complexity analysis (Fig. 1).
The pycwtmexhat.py module will automatically compute the
wavelet scale s based on the grid spacing (δ) of the input
raster file. In this module, users can choose to perform convo-
lution either in the original domain (i.e., direct convolution)
or in the frequency domain (i.e., using fast Fourier transform)
with the “convolve2d” and “fftconvolve” functions from the
SciPy package, respectively (Virtanen et al., 2020). By de-
fault, the module uses the fftconvolve function for greater
computational efficiency.

We note that the equations for C and ψ presented here
are mathematical approaches adopted in recent publications
(Herzig et al., 2024; LaHusen et al., 2020; Underwood, 2022)
on landslide mapping and age dating studies. There are mi-
nor differences in the proportionality constant used to de-
fine ψ and the conventions used to present the magnitude
of the wavelet coefficients C, compared to earlier similar re-
search (Booth et al., 2009). Specifically, Booth et al. (2009)
used a different proportionality constant in order to calculate
a power spectrum for a range of spatial frequencies rather
than curvature, while Booth et al. (2017) reported the mean
of C2 rather than mean of its absolute value. These dif-
ferences in mathematical approach will by definition result
in different units and order of magnitude (e.g., C2 values
around 10−3 to 10−4 m−2 in Booth et al., 2017, and prior
studies; C values around 10−2 to 10−3 m−1 in LaHusen et
al., 2020, thereafter). Despite this discrepancy, the complex-
ity measures yielded from these approaches that only differ
in their proportionality constant are linearly scaled and inter-
convertible (Fig. S1 in the Supplement), and they both reflect
identical spatiotemporal patterns of topographic complexity
(i.e., surface roughness).

2.2 Fractal dimension analysis

The pyfracd.py module in pyTopoComplexity calculates the
fractal dimension (FD), which measures the fractal charac-
teristics of natural features (Mandelbrot and Wheeler, 1983).

This method provides insights into the self-similarity of land-
scapes, helping quantify their irregularity and fragmentation,
which is crucial for studying the essence of the surface topog-
raphy (Xu et al., 1993; Pardo-Igúzquiza and Dowd, 2020). A
surface with a higher FD (closer to 3) indicates a rougher
surface with more complex topographic structures, revealing
additional irregularities at smaller scales and appearing self-
similar across multiple levels of observation. Conversely, a
surface with a lower FD (closer to 2) generally reflects a
smoother or less detailed plane, where little new complex-
ity emerges at finer scales.

In this module, we adapt the variogram method to esti-
mate the local FD within a moving window centered at each
cell of the DTM (Taud and Parrot, 2005; Pardo-Igúzquiza
and Dowd, 2022a, b). This approach simplifies the problem
to estimating the FD of one-dimensional topographic pro-
files (Dubuc et al., 1989) within a two-dimensional mov-
ing window. For a one-dimensional profile of length R (r =
1, . . .,R), the variogram γ1(p) can be estimated at the P lag
distances (p = 1, . . .,P ) by

γ1(p)=
1

2(R−p)

R−p∑
r=1
[z(i)− z(i+ r)]2 , (4)

where z(i) is the elevation at location i along the profile.
The local FD is estimated from one-dimensional profiles in
principal directions (i.e., horizontal, vertical, and diagonal)
within a square moving window. Assuming that fractional
Brownian motion is an appropriate stochastic model for nat-
ural surfaces, its variogram follows a power-law model with
respect to p (Wen and Sinding-Larsen, 1997),

γ1(p)= αrβ , α ≥ 0; 0≤ β < 2 , (5)

and its exponent β is related to the local FD by

FD= TD+ 1−
β

2
, (6)

where TD is the topological dimension in the Eu-
clidean space of the fractional Brownian motion. For one-
dimensional fractional Brownian motion, TD= 1. The frac-
tal dimension of the two-dimensional surface (FD)∗2 can
be estimated as the average fractal dimension of the one-
dimensional profiles (FD)∗1:

(FD)∗2 = 1+ (FD)∗1. (7)

Users can specify the size (number of grids along each edge)
of the moving window to study fractal characteristics at de-
sired spatial scales (Fig. 1). In addition to calculating the FD,
the pyfracd.py module also computes reliability parameters
such as standard error and the coefficient of determination
(R2) to assess the robustness of the analysis.

2.3 Rugosity index (RI) calculation

The pyrugosity.py module in pyTopoComplexity measures
the rugosity index (RI) of the land surface, which is deter-
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mined as the ratio of the contoured area Ac (i.e., true ge-
ometric surface area) to the planimetric area Ap within the
square moving window:

RI=
Ac

Ap
. (8)

By definition, the RI has a minimum value of one, repre-
senting a completely flat surface. This module uses the trian-
gulated irregular network method, as adapted from Jenness
(2004), to approximate the contoured area by summing eight
truncated-triangle areas. These triangles connect the central
grid point to four corner grid points and four midpoints on
the edges within the moving window. When no local slope
correction is applied in RI calculation (i.e., conventional RI),
the planimetric area is treated as the horizontal planar area
of the moving window, as described by Jenness (2004). Typ-
ical values for the conventional RI range from one to three,
though larger values can occur in very steep terrains. A newer
method, described by Du Preez (2015), involves slope cor-
rection, where the planimetric area is projected onto a plane
of the local gradient. This slope-corrected version, known
as the arc–chord ratio rugosity index (ACR-RI), may offer
a more accurate depiction of local surface complexity since
it is unaffected by slope bias (Fig. 1). Users have the option
to calculate either the conventional RI or the ACR-RI in this
module.

The RI highlights smaller-scale variations in surface
height, which is widely used to assess structural complexity
of topography and has been applied in classifying seafloor
types by marine geologists and geomorphologists, under-
standing small-scale hydrodynamics by oceanographers, and
studying available habitats in the landscape by ecologists and
coral biologists (Lundblad et al., 2006; Wilson et al., 2007).

2.4 Terrain position index (TPI) calculation

The pytpi.py module in pyTopoComplexity calculates the ter-
rain position index (TPI) of the land surface. The TPI, also
known as the topographic position index in terrestrial studies
(Weiss, 2001), measures the relative topographic elevation of
a point compared to those of its surrounding landforms. This
metric highlights regions that are relatively higher or lower
than their surroundings, which is useful for distinguishing
landscape features such as hilltops, valleys, flat plains, and
slopes. In oceanography, an equivalent metric is the bathy-
metric position index (BPI), which applies the TPI algorithm
to bathymetric data to evaluate seafloor complexity.

TPI is widely applicable for various purposes, including
determining surface complexity (Newman et al., 2018), clas-
sifying terrain (Zwoliński and Stefańska, 2015), assessing lo-
cal soil formation and hydrodynamics (Deumlich et al., 2010;
Liu et al., 2011), and identifying habitat hotspots (Wilson et
al., 2007). It is calculated by comparing the elevation of a
grid cell (z) to the mean elevation of its surrounding grid cells

(znb) within a specified neighborhood:

TPI= z− znb. (9)

In this module, the TPI is calculated for the central grid
within a square moving window. Users can specify the size
of the window (i.e., the number of grids along each edge) to
evaluate topographic positions at various spatial scales. Posi-
tive TPI values indicate generally convex, elevated features
(e.g., ridges), while negative values represent concave de-
pressions (e.g., valleys, saddles). Values close to zero denote
a relatively flat surface or area with near spatially constant
slope (Fig. 1). The pytpi.py module also returns the absolute
values of the TPI, which only indicate the magnitude of the
vertical position at each grid point relative to its neighbors.

2.5 Integrating Landlab with pyTopoComplexity

The Jupyter Notebook file Landlab_simulation.ipynb in the
pyTopoComplexity repository offers a sophisticated tool for
simulating time-dependent changes in topographic complex-
ity driven by hillslope and fluvial processes (Fig. 1). This
tool runs the landscape evolution modeling in the Landlab
environment (version = 2.7) (Hobley et al., 2017) by em-
ploying two components: (1) the TaylorNonLinearDiffuser
component from the terrainbento package (Barnhart et al.,
2019), which simulates topographic smoothing over time
through nonlinear hillslope diffusion processes caused by
near-surface soil disturbance and downslope soil creeping,
and (2) the core StreamPowerEroder component from Land-
lab v1.0 that simulates topographic dissection through fluvial
incision over time. To run this notebook, users need to install
Landlab in addition to pyTopoComplexity, following Land-
lab’s installation instructions (https://landlab.readthedocs.io/
en/latest/installation.html, last access: 26 Feburary 2025).

The TaylorNonLinearDiffuser component applies the non-
linear diffusion model to predict changes in surface elevation
z over time t (i.e., erosion rate E = dz/dt) on a land surface:

dz/dt =−∇ · qs. (10)

Here, qs represents the 2D vector of the sediment flux per
unit slope width at the surface. This sediment flux vector is
further defined by a nonlinear flux law (Roering et al., 1999)
that is approximated using a Taylor series expansion (Ganti
et al., 2012):

qs =DShd

[
1+

N∑
i=1

(
Shd

Sc

)2i
]
. (11)

Shd =−∇z represents the vector of topographic downslope
gradient at each grid point (calculated using the elevation (z)
of that grid cell and its surrounding grid cells), and Shd is its
magnitude. Sc is the magnitude of the critical slope represent-
ing the asymptotic maximum hillslope gradient. The parame-
terD is a diffusion-like transport coefficient with dimensions
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of length squared per time (m2 yr−1). N denotes the number
of terms in the Taylor expansion, while i specifies the number
of additional terms included. IfN = 0, the expression simpli-
fies to linear diffusion (Culling, 1963). By default,N is set to
2, which gives the behavior consistent with the Taylor series
expansion described in Ganti et al. (2012).

Inspired by Braun and Willett (2013), the StreamPow-
erEroder component adapts the stream power erosion model
that predicts the erosion rate (E) according to the following
equation:

E =KAmSnsp−� when KAmSnsp >�, (12)

where A represents the drainage area. Ssp denotes the mag-
nitude of channel slope (positive in the downslope direction)
calculated from the steepest descent from each grid cell to
its surrounding grid cells (using the D8 method from Fair-
field and Leymarie, 1991, by default). K is a positive con-
stant representing the erodibility coefficient, which correlates
positively with climate wetness or storminess and negatively
with rock strength. m and n are positive exponents, typically
assumed to have a ratio m/n≈ 0.4–0.6 (Kirby and Whipple,
2012; Whipple, 2004; Tucker and Whipple, 2002). � rep-
resents the erosion threshold in the stream power equation.
When the stream power does not exceed the erosion thresh-
old (KAmSnsp ≤�), the model considers the erosion rate to
be zero (E = 0). When � is set to zero, the model repre-
sents a purely detachment-limited erosion system (i.e., with-
out substantial fluvial sediment effects). In this case, fluvial
erosion acts at every point on the surface, following the con-
ventional stream power law (Howard, 1994).

This notebook offers a comprehensive workflow that
guides users through setting up Landlab components, im-
porting raster DTM files, running simulations, and analyz-
ing topographic complexity on simulated landforms using
pyTopoComplexity. Because Landlab primarily processes
DTM data in ESRI ASCII format, the notebook converts
the raster DTM files between GeoTIFF and ESRI ASCII to
meet the required data formats for each toolkit. For land-
scape evolution modeling, users must specify values for key
parameters Sc, D, and K , as well as the duration of the to-
tal simulation time and each time step (in years). The exam-
ples provided in the notebook use the 2014 Oso landslide li-
dar DTM data (Washington Geological Survey, 2023) to run
simulations of landscape evolution over 15 000 years, acti-
vating either or both hillslope diffusion and fluvial incision
components (Fig. 2). By setting D = 0.0029 (m2 yr−1) and
Sc = 1.25, the hillslope-diffusion-only simulation success-
fully reproduces results from Booth et al. (2017) (Fig. 2a).
Upon completing the Landlab simulation, users can apply
the notebook’s customized functions to measure topographic
complexity on the simulated landscape at each time step us-
ing pyTopoComplexity, and the resulting GeoTIFF rasters
can then be utilized for further geospatial analysis.

3 Case study of multiscale
surface-complexity-based age estimation for
landslide deposits

In regions prone to catastrophic landslides, obtaining com-
prehensive information on the spatial and temporal distri-
bution of historical landslides over a large area is essential.
Such data enable a more accurate quantitative assessment of
landslide susceptibility for each location and help evaluate
potential connections to other geohazards (earthquake shak-
ing, wildfire, intense storm precipitation, outburst flooding
from landslide dam failure, etc.). These insights are criti-
cal for effective hazard mitigation and preparedness. How-
ever, finding suitable and reliable dating constraints for ev-
ery mapped landslide deposit is time-consuming and imprac-
tical. Researchers, particularly in the Pacific Northwest re-
gion of the United States, have attempted to calibrate a few
types of surface complexity metrics using radiocarbon dat-
ing, and these calibrated metrics have subsequently been em-
ployed to estimate the frequency of landslides over the past
thousands of years in large mapping areas (e.g., Booth et
al., 2017; Herzig et al., 2024; LaHusen et al., 2020, 2016).
Although previous research has demonstrated success with
this approach, not all known surface complexity metrics have
been thoroughly evaluated. Additionally, the optimal and ac-
ceptable spatial scales for analyzing these metrics using dif-
ferent approaches remain uncertain, and there is no publicly
available tool to explore these questions before the develop-
ment of pyTopoComplexity.

Here we present a case study applying each method from
pyTopoComplexity to a published landslide inventory of the
North Fork Stillaguamish River (NFSR) valley (Booth et al.,
2017) in the Pacific Northwest (Fig. 3a). Our goal was to val-
idate and evaluate the effectiveness of different metrics used
to quantify topographic complexity across various scales and
understand their significance to geomorphology. Complexity
measurements were conducted across multiple spatial scales,
ranging from ∼ 3 to ∼ 75 m, using lidar DTM data (Wash-
ington Geological Survey, 2023) for seven mapped landslides
with radiocarbon age constraints from Booth et al. (2017).
Areas with extreme linear depressions (e.g., gullies), flat wa-
ter surfaces (e.g., ponds), and artificial modifications (e.g.,
roads, power lines) were excluded from the analysis, con-
sistent with Booth et al. (2017). To evaluate the quality and
predictability of the age–complexity relationship, we iden-
tified the best-fit exponential-decay functions between the
dated landslide ages and the measured complexity metrics
at each scale. We calculated the coefficient of determina-
tion (R2) and root-mean-square error (RMSE) between the
log-transformed radiocarbon ages and the function’s predic-
tions (Figs. S2–S7 in the Supplement). In exploring these
best-fit functions, we conducted standard linear regression
on the log-normal scale of the mean of the seven data points
and also constrained the functions to pass through either the
youngest (2014 Oso landslide) or the oldest (unnamed-55
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Figure 2. Hillshade maps of the 2014 Oso landslide and landscape evolution over 15 000 years predicted by models of nonlinear hillslope
diffusion and stream power incision in the Landlab_simulation.ipynb.

landslide, dated to∼ 11693 years before present) data points
(Booth et al., 2017). In our assessment, only the best-fit func-
tions with R2 > 0.7 and relatively low RMSE values were
considered suitable for predicting the age of landslide de-
posits based on the evolution of surface complexity. The fit-
ting with the highest R2 value and/or the lowest RMSE in-
dicates the optimal spatial scale for age–complexity correla-
tion, likely representing the characteristic scale of geomor-
phic features influenced by substrate geology, landsliding
mode, dominant weathering processes, and environmental
forces (Booth et al., 2009, 2017; Herzig et al., 2024; LaHusen
et al., 2020). Best-fit curves with negativeR2 values were ex-

cluded from our discussion, as they suggest an exponential-
decay model does not adequately explain the data trend.

The results indicate that 2D-CWT and TPI measurements
provide the most accurate predictions for the NFSR valley
data, followed by the RI and then the FD (Fig. 3b and c).
Curve fitting models constrained to pass through either the
youngest (2014 Oso landslide) or oldest (unnamed-55 land-
slide) data point generally offer better predictability for land-
slide ages compared to unconstrained regressions. While pre-
vious studies have employed unconstrained regression (e.g.,
LaHusen et al., 2016; Herzig et al., 2024; Underwood, 2022)
or regression constrained to the oldest dated landslide (e.g.,
LaHusen et al., 2020; Woodard et al., 2024), our findings
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Figure 3. Evaluation of surface complexity metrics in pyTopoComplexity for estimating landslide deposit ages. (a) Seven landslides with
radiocarbon ages before present (BP) from Booth et al. (2017) used in the evaluation. (b) Example of the complexity–age relationship at
∼ 15 m spatial scale, showing best-fit exponential-decay functions and their 95 % confidence intervals. (c) Coefficient of determination (R2)
and root-mean-square error (RMSE) values between radiocarbon ages and predicted functions across spatial scales from ∼ 3 to ∼ 75 m.
Best-fit curves with negative R2 values are excluded. Shaded bars highlight the optimal spatial scales for age estimation for each method.
See complete plots in Figs. S2–S7 and further details in the main text.

demonstrate that regressions passing through the youngest
landslide data point yield the highest R2 values and the
lowest RMSE for most complexity metrics (Figs. S2–S9 in
the Supplement; see detailed comparisons in Appendix A).
Among the RI types (mean of ACR-RI and conventional RI)
and TPI measures (standard deviation of TPI and mean of ab-
solute TPI values), similar predictability is observed, though
the mean of ACR-RI and absolute TPI show slightly bet-
ter performance (Figs. S4–S7). Notably, only the mean of
the absolute C value of 2D-CWT (called “mean 2D-CWT”
hereafter) and absolute values of TPI achieve best-fit func-

tions with R2 > 0.98 and RMSE< 500 years, highlighting
them as the most effective surface complexity metrics for
estimating landslide ages. This is likely because they focus
on quantifying the extent and variability of surface concavity
and convexity, which effectively represents the hummocky
topography formed by displaced blocks and closed depres-
sions. Conversely, the FD fails to establish a satisfactory
relationship with R2 > 0.7. Although this method can de-
tect scale-invariant complexity features (Huang and Turcotte,
1990; Mark and Aronson, 1984), it may not be suitable for
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explaining the scale-dependent smoothing trends observed in
landslide-prone landscapes.

We also applied the same NFSR valley dataset to compa-
rable analyses using other traditional topographic complex-
ity metrics available through native and GRASS plugins in
QGIS software (QGIS Development Team, 2024; GRASS
Development Team, 2024). The evaluated metrics include
standard deviation of slope, roughness index, total curvature,
maximum curvature, absolute minimum curvature, curved-
ness index, unsphericity, profile curvature, plan curvature,
tangential curvature, difference curvature, mean curvature
(Shary, 1995; Florinsky, 2017), and the terrain ruggedness
index (TRI) (Riley et al., 1999). Of these, only QGIS’s TRI
tool allows for multiscale assessment of surface complex-
ity. The results indicate that most traditional metrics, except
the standard deviation of plan curvature, provide acceptable
predictability (R2 > 0.7) for the complexity–age regression
(Figs. S8 and S9, Appendix A). The standard deviation of
slope stood out as the best conventional metric for predict-
ing landslide ages when the regression is constrained to pass
through the oldest landslide, consistent with the findings in
LaHusen et al. (2016). Nevertheless, the 2D-CWT and TPI
methods from pyTopoComplexity still outperform all tested
traditional metrics in terms of regression quality, showing
higher R2 and lower RMSE values.

From the multiscale analysis using the two most effective
metrics – mean 2D-CWT and absolute values of TPI – we
identified the optimal spatial scales for achieving the best-
fit regression as ∼ 40 and ∼ 54 m, respectively (Fig. 3c).
These characteristic scales are notably larger than those sug-
gested in previous studies for similar analyses in the NFSR
valley (∼ 15 m), Seattle fault zone (∼ 15 m), and Oregon
Coast Range (∼ 20 m) (Booth et al., 2017; Herzig et al.,
2024; LaHusen et al., 2020, 2016). This discrepancy may
stem from differences in regression approaches (e.g., uncon-
strained regression or those constrained to pass through the
oldest landslide data point therein) and the fact that earlier
studies only examined spatial scales between 10 and 30 m.
We also emphasize the unique capability of spectral analy-
sis methods, such as 2D-CWT, in isolating landform signals
at specific spatial scales (Perron et al., 2008b; Booth et al.,
2009). This indicates that the ∼ 40 m optimal scale derived
from the 2D-CWT method is likely more representative of
the characteristic size of landform features associated with
landslide deposits in the NFSR valley rather than the ∼ 54 m
suggested by the TPI method. The exponential-decay linear
relationship between landslide age and the mean 2D-CWT
measure deteriorates when the spatial scale (λ) exceeds 50 m,
indicating that the lengths of hummocks and depressions in
these landslide deposits, influenced by substrate geology and
failure mode, are generally smaller than 50 m (Figs. 3c and
S2).

Although using a 40 m spatial scale for 2D-CWT analysis
improves the predictability of the complexity–age regression
compared to the previously used 15 m scale (Booth et al.,

2017), we note that larger spatial scales can introduce greater
uncertainties for smaller landslide deposits. For example, the
unnamed-29 landslide, dated to ∼ 518 years before present,
has a relatively small preserved deposit in the modern land-
scape (Fig. 3a). When larger-scale complexity measures are
applied, results are more likely influenced by surrounding
landform features. This effect is evident in our multiscale
analyses, as the unnamed-29 landslide data point progres-
sively becomes an outlier as the spatial scale increases (e.g.,
Fig. S2). To reduce the influence of surrounding landforms,
a buffer that increases in width with the spatial scale of anal-
ysis could be imposed inside the mapped landslide deposit.
However, larger buffers would result in smaller fractions of
the central part of the landslide deposit being used to de-
termine its average complexity, introducing bias or possi-
bly eliminating the landslide from the analysis completely.
Because pyTopoComplexity’s multiscale analysis provides a
range of acceptable spatial scales for complexity–age regres-
sion, users can select the most appropriate scale based on the
quality and nature of their dataset.

4 Applications in exploring erosivity parameters in a
landslide-prone landform

Landscape erosivity parameters, such as hillslope diffusiv-
ity D (Eq. 11) and channel erodibility K (Eq. 12), are crit-
ical in process geomorphology studies for understanding a
landscape’s susceptibility to erosion under specific environ-
mental and geological conditions. These parameters are also
essential for linking real-world observations to numerical
modeling. Constraining D and K typically requires a quasi-
equilibrium landscape that has undergone continuous erosion
over a long period under known, stable climatic and tec-
tonic conditions. In such cases, D can be estimated from the
steady-state curvature of hillslopes or hilltops (e.g., Roering
et al., 2001; Hurst et al., 2012; Struble et al., 2024), while K
can be derived by inverting the longitudinal channel profile
using the stream power model (e.g., Stock and Montgomery,
1999). However, in complex and unstable landscapes like the
NFSR valley, which are prone to frequent landslides, estimat-
ing D and K becomes challenging. Although it is possible
to approximate D based on its correlation with mean annual
precipitation (Richardson et al., 2019), constraining K in a
non-steady-state landscape remains impractical. To address
this, we present an approach that combines landslide inven-
tory data, modeling results, and surface complexity analysis,
providing a potential solution to the problem.

We set up three modeling scenarios to explore the param-
eter space of D and K in the NFSR valley: (1) hillslope-
diffusion-only scenario, (2) stream-power-incision-only sce-
nario, and (3) coupled hillslope diffusion and stream power
incision scenario. In each scenario, we independently varyD
and K and run the simulation for 15 000 years on the 2014
Oso landslide (e.g., Fig. 2). For hillslope diffusion, we set
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Sc = 1.25 consistent with Booth et al. (2017) and examine
a range of D values from 0.00082 to 0.023 m2 yr−1, gen-
erally in line with measured values from the Pacific North-
west (Roering et al., 1999; Hurst et al., 2012). For stream
power incision, we assume m= 0.5, n= 1, and �= 0 as
convention (Whipple and Tucker, 1999) and test common K
values ranging from 0.000001 to 0.001 m0.5 yr−1 (Gasparini
and Brandon, 2011). In the coupled scenario, we explore
the parameter space by either fixing D = 0.0029 m2 yr−1 or
K = 0.0001 m0.5 yr−1, while varying the other. After com-
pleting the simulations, we applied 2D-CWT analysis with
pyTopoComplexity to the simulated landscapes at each time
step, extracting surface complexity signals across various
spatial scales and monitoring their evolution over time. Fi-
nally, we compared these simulation trends with the real-
world NFSR valley data.

The results show that, as expected, hillslope diffusion
smooths the landscape over time at all spatial scales, while
fluvial incision increases complexity by dissecting the ter-
rain (Fig. 4). In the hillslope-diffusion-only scenario, higher
D values accelerate the reduction of surface complexity, with
smaller-scale (< 15 m) complexity diminishing more quickly
and showing greater sensitivity to changes in D (Figs. 4a, b
and S10a). In the stream-power-incision-only scenario, chan-
nelization significantly increases surface complexity, partic-
ularly at smaller scales (< 30 m) (Figs. 4g–i and S10b). Re-
gardless of the value ofK , there exists a consistent maximum
complexity value at every spatial scale. Simulations employ-
ing higher K values attain this maximum value more rapidly
in time. Once this time threshold is exceeded, surface com-
plexity declines rapidly as the entire topography of the land-
slide deposit is progressively eroded by the retreating head-
waters and drainage systems.

By comparing real-world NFSR landslide data to these
scenarios running with separate models, we assure that
the fluvial incision process alone cannot produce the natu-
ral smoothing trend of the post-landslide landscape recov-
ery. While the hillslope-diffusion-only scenario can gener-
ate an increasingly smoothed landscape over time, no sin-
gle run using a constant D value can replicate the observed
exponential-decay relationship between surface complexity
and landslide age across the entire real-world dataset. For a
given D, the non-linear diffusion model tends to underpre-
dict the reduction rate of surface complexity during the early
stages of landscape recovery following a catastrophic land-
slide. The timescale for this reduction appears to be scale-
dependent: smaller-scale features (e.g., ∼ 5–15 m) experi-
ence underprediction within 101 to 102 years (Fig. 4a–c),
while larger features (e.g.,> 25 m) are affected over a longer
period of 102 to 103 years (Fig. 4d–f). After 103 to 104 years,
the model tends to over-smooth small-scale features. These
observations suggest the need for a mechanism that acceler-
ates complexity reduction during the initial recovery phase,
a roughening process to counteract over-smoothing by diffu-

sion over longer timescales, and an explanation for the ob-
served scale dependency.

Since the position of the NFSR river bed at the toes of
the studied landslides remained relatively stationary during
the Holocene (LaHusen et al., 2016), the rate of landform
smoothing on these landslide deposits is unlikely to have
been affected by changes in the local base level within the
time frame of our investigation (the last ∼ 15000 years).
Thus, the observed initial acceleration of smoothing can be
attributed to higher in situ diffusivity D, reflecting increased
hillslope sediment transport efficiency at the beginning of
landscape recovery when loose and unconsolidated materials
covered the barren landslide deposits (Booth et al., 2017).
The reactivation of landslides, which commonly occurs in
the early stages of recovery before the deposits settle, could
also offer an additional roughening process over shorter time
frames. An example is the Hazel landslide in the NFSR val-
ley, where hillslope movement persisted for decades before
the Oso landslide occurred in the same area (Miller and Sias,
1998). However, since the natural reestablishment of vege-
tation and soil development typically spans 101 to 102 years
(e.g., Fu et al., 2017; Kennedy et al., 2012; Seidl et al., 2014;
White et al., 2022; Russell and Michels, 2011), other rough-
ening mechanisms are necessary to sustain surface complex-
ity over longer periods. One possible factor that maintains to-
pographic complexity after revegetation is tree throw, which
can continuously create new small-scale (∼ 7.5 m) roughen-
ing features over decadal time frames (Roering et al., 2010).
Long-term climate change could be another important factor.
In the Pacific Northwest, research suggests a drier climate
from approximately 10 000 to 6000 years ago, followed by a
transition to wetter conditions similar to those of the present
day in the last ∼ 6000 years (Leopold et al., 1982; Brubaker,
1991). This climate shift implies that hillslope diffusivity
may have increased over the Holocene as precipitation lev-
els rose (Richardson et al., 2019), potentially explaining the
complexity–age patterns observed in smaller-scale features.

Another possibility, without changing D over a longer
timescale, is to consider the combined effects of channel in-
cision (which roughens the landscape) and hillslope diffusion
(which smooths it). In our modeling scenario with these cou-
pled processes, we produce a complexity–age trend that more
closely matches the observed NFSR valley data at smaller
spatial scales while keeping D and K constant (Figs. 5 and
S11 in the Supplement). For the 5 m scale, the NFSR valley
data are roughly bounded by modeled curves with K val-
ues between 0.0001 and 0.00037 m0.5 yr−1 and D values be-
tween 0.0011 and 0.0041 m2 yr−1 (Fig. 5a and g). Comparing
the simulation results between fixedD and fixed K indicates
that the pattern of complexity reduction is more sensitive to
variations in K . Only a narrow range of K values for a given
D results in the observed exponential-decay relationship be-
tween surface complexity and landslide age, suggesting a
natural scaling relationship between D and K for a given
environmental and geological setting. This finding is con-
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Figure 4. Changes in mean 2D-CWT surface complexity measures for the simulated landscape of the 2014 Oso landslide over a 15 000-year
period, predicted by models of nonlinear hillslope diffusion (a–f) and stream power incision (g–l) in Landlab_simulation.ipynb, with varying
hillslope diffusivity (D in m2 yr−1) and channel erodibility (K in m0.5 yr−1). Black circles represent real-world data from the seven dated
landslide measurements in the NFSR valley (Fig. 3a). The right panel shows an example of simulated results at 5000 years after present. See
complete simulation results in Fig. S10 in the Supplement.

sistent with observations from steady-state landforms, where
the length scale (i.e., the scale of landform complexity) be-
tween evenly spaced channels and ridgelines is governed by
a specific constant D/K ratio (Perron et al., 2008a, 2009),
reflecting the balance and self-regulation between diffusive
smoothing and channel dissection. If this model-coupling hy-
pothesis holds, it suggests that the time required for a land-
scape to recover from a rugged landslide surface to its back-
ground complexity level may be longer than previously es-
timated using diffusion-only simulations (cf. Woodard et al.,
2024) due to the prolonged resistance to smoothing by con-
tinuous channel incision.

While our estimated D range with coupled models at 5 m
generally aligns with the estimation of diffusion-only mod-
eling from Booth et al. (2017) at 15 m scale, we note that we
are unable to reproduce the same bracketedD value range us-
ing 15 m scale complexity measurements (Figs. 4c and 5a, g).
In fact, the complexity reduction trend varies across differ-
ent spatial scales in all of our simulation scenarios, which
is different from the consistent exponential-decay pattern in
the real-world observation across the scales (at least for 5 to
50 m in 2D-CWT analysis) (Figs. S2, S10, and S11). Specifi-
cally, for the diffusion-only models, larger values ofD better
match the observed landslide age–complexity data as the spa-
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Figure 5. Changes in mean 2D-CWT surface complexity measures for the simulated landscape of the 2014 Oso landslide over a 15 000-
year period, predicted by coupled models of nonlinear hillslope diffusion and stream power incision in Landlab_simulation.ipynb. (a–
f) Simulations with a fixed D = 0.0029 m2 yr−1 and varying channel erodibility (K in m0.5 yr−1). (g–l) Simulations with a fixed K =
0.0001 m0.5 yr−1 and varying D in m2 yr−1. Black circles represent real-world data from the seven dated landslide measurements in the
NFSR valley (Fig. 3a). The right panel shows an example of simulated results at 5000 years after present. See complete simulation results in
Fig. S11.

tial scale increases (Fig. 4d–f). TheD values most consistent
with those that have been independently inferred from hill-
top curvature in the Pacific Northwest only fit our landslide
data reasonably well when surface complexity is quantified
at relatively short length scales (e.g.,< 15 m) (Figs. 4a, b and
5g, h). We suggest that this is because D values are typically
inferred from hilltop curvature with smoothed lidar data at
similarly short length scales (e.g., Hurst et al., 2012; Struble
et al., 2024).

When stream power incision is introduced into the model,
it roughens the landscape at smaller scales through channel

dissection (Figs. 2b, c and 3b). This indicates that a higher
initial diffusivity (D), as previously discussed, may still be
necessary to counterbalance the complex landforms created
by channel incision within the first 101 to 102 years follow-
ing a landslide event. On the other hand, the modeling bias
toward higher complexity at larger spatial scales (Fig. 4d–f)
suggests that the intricacies of natural behavior in landslide-
prone landscapes cannot be fully captured using simple mod-
els of nonlinear diffusion (Eqs. 10 and 11) and stream power
incision (Eq. 12) with constant erosivity parameters. The
deviation between the simulation results between the cou-
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pled modeling scenario and real-world data at a larger spatial
scale, particularly at the time frame of 102 to 103 years, may
reflect thatD andK values are scale-dependent. To approach
the observed real-world data trend using these simple mod-
els, it requires a much higher D (and/or a smaller K) to ex-
plain the reduction rate of the landform features with larger
length scale (Fig. 5). It seems plausible because the land-
slides produce a vast range of materials at different length
scales, and the mechanical properties and mobility of these
materials are likely size-dependent (Collins and Reid, 2019;
Wartman et al., 2016). Large, sharp, and fractured landslide
blocks may be more susceptible to rapid hillslope erosion
and smoothing, requiring a higher D to account for the age–
complexity relationship at larger scales. In contrast, the hills-
lope erosion rates for smaller, looser particles are more likely
limited by local variability in topography, hydrology, lithol-
ogy, and bioturbation, reflecting a smaller D.

Although these simple modeling tests presented in this
short communication do not fully resolve all observed ge-
omorphic questions in the NFSR valley, we emphasize the
potential of studying topographic complexity in landslide-
prone terrains to gain insights into the fundamental erosivity
parameters that drive landscape evolution at various spatial
scales. The integrated approach of Landlab and pyTopoCom-
plexity offers a quantitative method for evaluating the effi-
ciency of landform adjustments to erosion and understanding
dominant surface processes. Additionally, Landlab provides
several other components with advanced erosion models that
account for complex processes, such as variability in soil pro-
duction rates on hillslopes, mass wasting, stream power inci-
sion thresholds (e.g., in Eq. 12), and sediment transport and
cover effects in channels (e.g., Barnhart et al., 2020; Hob-
ley et al., 2017; Shobe et al., 2017; Campforts et al., 2022),
which were not included in our simulations. In our notebook
Landlab_simulation.ipynb, users can directly import those
components from Landlab and explore landscape evolution
through the lens of topographic complexity measures.

5 Conclusions

pyTopoComplexity is an open-source software package de-
signed for efficiently quantifying topographic complexity
using advanced methods such as two-dimensional continu-
ous wavelet transform analysis, fractal dimension estimation,
rugosity index, and terrain position index calculations. By
bridging the gap between traditional terrain analysis tools
and modern quantitative geomorphology, it offers users ro-
bust and reproducible measures of surface complexity across
multiple spatial scales, generating insights across research
fields, including geology, geomorphology, geography, ecol-
ogy, and oceanography.

A case study in the North Fork Stillaguamish River val-
ley, WA, USA, showcases software capability to accurately
assess the morphometric properties of landslide deposits,

revealing characteristic landform scales and enhancing our
understanding of geomorphic processes. The integrated ap-
proach using the notebook Landlab_simulation.ipynb com-
bines dated landslide inventories, Landlab’s landscape evolu-
tion modeling components, and multiscale topographic com-
plexity analysis, demonstrating pyTopoComplexity’s effec-
tiveness in linking real-world data with simulation-based in-
sights. This framework allows users to explore landscape
recovery rates and mechanisms by estimating in situ hills-
lope diffusivity (D) and channel erodibility (K), critical fac-
tors in understanding landscape evolution and response to
disturbances. Leveraging the modular flexibility of Landlab,
users can also integrate other erosion models to investigate
how different processes shape the dynamic evolution of to-
pographic complexity in response to natural forces and catas-
trophic geohazard events like landslides.
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Appendix A

Table A1. Comparisons among the tested surface complexity metrics. See complete testing results in Figs. S2–S9.

Tested metrics Software Statistical
measure

Acceptable NFSR landslide age models

Unconstrained
regression

Forced fitting
the youngest

Forced fitting
the oldest

Scale range Optimal scale

2D-CWT pyTopoComplexity mean hi-R2: 0.881
lo-RMSE: 1011

hi-R2: 0.990
lo-RMSE: 415

hi-R2: 0.994
lo-RMSE: 319

5–45 m 40 m

Fractal dimension mean n/a n/a n/a n/a n/a

ACR-RI mean hi-R2: 0.880
lo-RMSE: 1762

hi-R2: 0.838
lo-RMSE: 1639

hi-R2: 0.925
lo-RMSE: 1116

∼ 2.7–60 m ∼ 10 m

Conv-RI mean hi-R2: 0.894
lo-RMSE: 1610

hi-R2: 0.854
lo-RMSE: 1596

hi-R2: 0.928
lo-RMSE: 1092

∼ 2.7–60 m ∼ 4.6–10 m

TPI SD hi-R2: 0.900
lo-RMSE: 1392

hi-R2: 0.978
lo-RMSE: 600

hi-R2: 0.730
lo-RMSE: 1634

∼ 2.7–75 m ∼ 60 m

mean abs hi-R2: 0.877
lo-RMSE: 1618

hi-R2: 0.995
lo-RMSE: 287

n/a ∼ 2.7–75 m ∼ 54 m

Slope GRASS plugins in
QGIS

SD hi-R2: 0.813
lo-RMSE: 4803

hi-R2: 0.846
lo-RMSE: 1602

hi-R2: 0.958
lo-RMSE: 831

unknown unknown

Roughness mean hi-R2: 0.784
lo-RMSE: 2324

hi-R2: 0.825
lo-RMSE: 1706

hi-R2: 0.917
lo-RMSE: 1173

unknown unknown

Total curvature mean hi-R2: 0.893
lo-RMSE: 2621

hi-R2: 0.794
lo-RMSE: 1849

hi-R2: 0.798
lo-RMSE: 0.689

unknown unknown

Profile curvature SD hi-R2: 0.870
lo-RMSE: 2310

n/a n/a unknown unknown

Plan curvature SD n/a n/a n/a n/a n/a

Tangential curvature SD hi-R2: 0.839
lo-RMSE: 1934

hi-R2: 0.770
lo-RMSE: 1957

hi-R2: 0.783
lo-RMSE: 1897

unknown unknown

Difference curvature SD hi-R2: 0.886
lo-RMSE: 2080

hi-R2: 0.744
lo-RMSE: 2064

hi-R2: 0.744
lo-RMSE: 2062

unknown unknown

Mean curvature SD hi-R2: 0.847
lo-RMSE: 2124

hi-R2: 0.728
lo-RMSE: 2128

hi-R2: 0.730
lo-RMSE: 2119

unknown unknown

Maximum curvature mean hi-R2: 0.876
lo-RMSE: 2180

hi-R2: 0.768
lo-RMSE: 1965

hi-R2: 0.803
lo-RMSE: 1808

unknown unknown

Minimum curvature mean abs hi-R2: 0.860
lo-RMSE: 1935

hi-R2: 0.771
lo-RMSE: 1950

hi-R2: 0.785
lo-RMSE: 1891

unknown unknown

Curvedness mean hi-R2: 0.866
lo-RMSE: 1983

hi-R2: 0.767
lo-RMSE: 1969

hi-R2: 0.790
lo-RMSE: 1868

unknown unknown

Unsphericity mean hi-R2: 0.869
lo-RMSE: 1965

hi-R2: 0.771
lo-RMSE: 1952

hi-R2: 0.795
lo-RMSE: 1845

unknown unknown

TRI mean hi-R2: 0.775
lo-RMSE: 1555

hi-R2: 0.813
lo-RMSE: 1763

hi-R2: 0.916
lo-RMSE: 1180

∼ 4.6–32 m ∼ 4.6 m

SD: standard deviation; abs: absolute values; 2D-CWT: wavelet coefficient (C) of two-dimensional continuous wavelet transform analysis; ACR-RI: arc–chord ratio rugosity index; Conv-RI: conventional
rugosity index; TPI: terrain position index; TRI: terrain ruggedness index; n/a: unavailable because there is no strong relationship between depositional age and that complexity metric; unknown: unknown
due to the lack of multiscale analysis capability in the GRASS plugins; NFSR: North Fork Stillaguamish River; hi-R2: the highest coefficient of determination of the linear regression (higher means better
predictability); lo-RMSE: the lowest root-mean-square error (in years) of the linear regression (lower means better predictability).
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Appendix B: Notation

A Upstream drainage area [m2]
Ac Contoured area (i.e., true geometric surface area)

within a square window of 12 [m2]
Ap Planimetric area within a square window of 12 [m2]
C Resultant wavelet coefficient of 2D-CWT analysis

[m−1]
D Hillslope diffusivity [m2 yr−1]
E Erosion rate [m yr−1]
K Channel erodibility coefficient (units vary with m

and n) [m0.5 yr−1 when m= 0.5 and n= 1]
m Exponent of drainage area (A) in stream power

equation
N Number of terms in the Taylor expansion of hillslope

sediment flux equation
n Exponent of channel slope (Ssp) in stream power

equation
p,P Lag distances (p = 1, . . .,P ) along the one-dimen-

sional topological profile for variogram analysis [m]
qs Two-dimensional vector of the sediment flux per unit

slope width at the surface
r,R Length steps (r = 1, . . .,R) along the one-dimensional

topological profile for variogram analysis [m]
Sc Asymptotic maximum hillslope gradient
Shd Two-dimensional vector of topographic downslope

gradient at each grid point
Shd Hillslope gradient (i.e., the magnitude of Shd)
Ssp Channel slope
s A wavelet-scale parameter for 2D-CWT analysis
t Time [year(s)]
x Distance in easting direction of each grid cell in the

DEM raster [m]
y Distance in northing direction of each grid cell in the

DEM raster [m]
z Distance in up direction (i.e., elevation) of each grid

cell in the DEM raster [m]
znb Mean elevation of grid cells surrounding each grid

point within a square window of 12 [m]
α Coefficient of the ideal power-law one-dimensional

variogram function
β Exponent of the ideal power-law one-dimensional

variogram function
γ1 One-dimensional variogram function
1 Designated window size for spatial analysis (number

of grids times δ) [m]
δ Grid spacing of the DEM raster [m]
λ Fourier wavelength of the wavelet function ψ [m]
ψ Mexican hat wavelet (i.e., 2D Ricker or Marr wavelet)

function
� Threshold of channel erosion [myr−1]

Code and data availability. The pyTopoComplexity software,
related Jupyter Notebooks, and example data are available
in https://doi.org/10.5281/zenodo.11239338 (Lai, 2025) and
https://github.com/GeoLarryLai/pyTopoComplexity (last access:

10 March 2025). An early version of the codes in MATLAB
for the 2D-CWT analysis, following methods in Booth et
al. (2009), is available on Adam M. Booth’s personal website
(https://web.pdx.edu/~boothad/tools.html, Booth, 2009). Lidar
DTM data used in this work are publicly available at the Washing-
ton Lidar Portal of the Washington State Department of Natural
Resources (http://lidarportal.dnr.wa.gov, Washington Geological
Survey, 2023). Data of mapped landslide polygons and radiocarbon
dating results in the NFSR valley are from Booth et al. (2017).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esurf-13-417-2025-supplement.
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Zwoliński, Z. and Stefańska, E.: Relevance of moving window
size in landform classification by TPI, in: Geomorphometry for
Geosciences, edited by: Jasiewicz, J., Zwoliński, Z., Mitasova,
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