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Abstract. The use of Fourier Neural Operators (FNOs) to learn how landscapes evolve is introduced. The ap-
proach makes use of recent developments in deep learning to learn the processes involved in evolving landscapes
(e.g., erosion). An example is provided in which FNOs are developed using input–output pairs (elevations at dif-
ferent times) in synthetic landscapes generated using the stream power model (SPM). The SPM takes the form
of a non-linear partial differential equation that advects slopes headwards. The results indicate that the learned
operators can reliably and very rapidly predict subsequent landscape evolution at large scales. These results sug-
gest that FNOs could be used to rapidly predict landscape evolution without recourse to the (slow) computation
of flow routing and time stepping needed when generating numerical solutions to the SPM. More broadly, they
suggest that neural operators could be used to learn the processes that evolve actual and analogue landscapes.
Interesting future work could involve assessment of whether learned operators can be applied to other settings
or model parametrizations.

1 Introduction

This paper addresses two challenges in geomorphology. The
first is a general one: development of landscape evolution
“laws” or “rules”. The second concerns generating predic-
tions of landscape evolution efficiently and rapidly. Doing so
is important for establishing the processes (e.g., uplift, ero-
sion, climate, biota) that play a role in generating landscapes.
Efficient prediction of landscape geometries (e.g., elevation
as a function of space and time) is central to the recovery
of histories of such processes from observed landscapes via
inverse modeling (e.g., Roberts and White, 2010; Croissant
and Braun, 2014; Goren et al., 2014; Glotzbach, 2015; Fer-
nandes et al., 2019; Barnhart et al., 2020). I explore the use of
recently developed Fourier Neural Operators (FNOs) to ad-
dress these challenges (Li et al., 2022; Kovachki et al., 2023).

Understanding how landscapes evolve is a cornerstone of
geomorphology and provides useful information for many
problems in geology and paleobiology and for hazard and
resource assessment (e.g., Anderson and Anderson, 2010;
Fernandes et al., 2019; Perrigo et al., 2020; Hoggard et al.,

2021; Turner et al., 2023; and references therein). A vari-
ety of approaches exist to predict how they evolve in re-
sponse to tectonic, climatic, and other forcings. These in-
clude physical experimentation, e.g., at the scale of flume
tanks, and field observations (e.g., Bonnet and Crave, 2003;
Scheingross et al., 2017; and references therein). They also
include phenomenological and physics-based deterministic
and stochastic landscape evolution models (LEMs). Such
models are used to predict landscape evolution from ero-
sional “atomistic” scales, e.g. < 1 m and < 1 s, up to the
largest scales, e.g., continents and tens of millions of years
(e.g., Hobley et al., 2017; Roberts and Wani, 2024; and ref-
erences therein). Such models can be developed by com-
bining observations and physics-based insights across scales
of interest and can be calibrated with independent geologi-
cal and geophysical information (e.g., Anderson and Ander-
son, 2010; Lague, 2014; Fernandes et al., 2019; Roberts and
Wani, 2024; and references therein).

In contrast, the neural operator approach seeks to learn the
mapping between function spaces from observations. In our
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case, the function spaces are landscapes at different times and
the mapping could be regarded as learning, say, the erosional
processes that evolved the landscape. In other words, we seek
to answer the following question: what is the operation that
has occurred to convert (evolve) a landscape from one time to
another? So, instead of assuming that we know the erosional
processes responsible for evolving a landscape, for instance,
we seek to learn them from the information available, e.g.,
a landscape at different stages of its evolution. Similar ques-
tions have been addressed in other branches of the physical
sciences. For instance, Fourier Neural Operators have been
used to learn mappings between function spaces generated
by solutions to partial differential equations (PDEs), includ-
ing Burgers’, Darcy flow, and Navier–Stokes (e.g., Li et al.,
2022). Physics-informed neural operators (PINOs) have been
developed to combine training data (e.g., input–output pairs)
and constraints from physics to learn solution operators for
partial differential equations (e.g., Li et al., 2024).

Despite knowing modern topography very well (from
satellite-derived measurements, for instance), developing
neural operators using actual landscapes is a very difficult
problem because we do not usually know their histories
(previous function spaces) with much precision. In contrast,
realistic-looking “landscapes” have been produced in flume
tank experiments, which could yield time series, i.e., “snap-
shots” (function spaces) of evolving landscapes that could be
used to learn the mapping, e.g., erosional processes and per-
haps uplift histories. Similarly, advective and diffusive PDEs
are widely used to generate predictions of landscape geome-
tries (e.g., fluvial, glacial, and hill slope topography) and
their evolution. Function spaces (i.e., synthetic landscapes)
can easily be generated from the solutions to such equations,
which could be used to develop neural operators. A useful
benefit of the neural operator approach is that, once the learn-
ing is done, future function spaces (maps of elevations) can
be predicted very rapidly (see Sect. 5.5 in Li et al., 2022, for
a fluid mechanics example).

Here, I focus on exploring whether such operators can be
established from synthetic landscapes generated using the
deterministic stream power model (SPM). This model has
the form of a non-linear advective PDE and is used to pre-
dict fluvial landscape evolution at a range of scales, from
river reaches to continents. I seek to establish whether a deep
learning algorithm can determine the operator required to
map (convert) a stream-power-derived landscape from one
time step to another. In turn, I want to understand if the oper-
ator can be used to reliably predict evolution of the landscape
at subsequent time steps. Positive answers to those questions
would indicate that Fourier Neural Operators can be used to
model landscape evolution, providing a step change in the
speed at which the evolution of landscapes can be computed
once the operators are learned. More broadly, it would, with
further work, perhaps provide new tools to generate novel
insight into the processes that drive landscape evolution.

2 Methodology

2.1 Generating the training information from an LEM

The training information (a set of landscapes: z(x,y)|t∗=0,
z(x,y)|t∗=1, . . .,z(x,y)|t∗=9, where elevation, z, is a function
of spatial coordinates, x,y, and t∗ indicates time step index-
ing) was produced by solving the stream power model using
Landlab routines (Hobley et al., 2017; see Code availability
statement). The model solved has the form

∂z

∂t
=−vAm∇z, (1)

where z is elevation, t is time, and A is upstream drainage
area (e.g., see Lague, 2014; Hobley et al., 2017; and ref-
erences therein for additional information about the stream
power model and its parametrization in two dimensions).
In the examples in this paper, the erosional parameters are
v = 0.3 Myr−1 andm= 0.5. The model domain is an (x×y)
128km×128km square with a cell size of1x =1y = 1 km.
The starting condition is a 1 km high block of topography
across the entire domain, and additional small-amplitude uni-
form (white) noise, as is typical in such models, is included
so that channel networks with realistic geometries form. All
boundaries are fixed at zero elevation for the duration of
the model. Figure 1 shows example output from the model
for a few of the first time steps. As expected, the resultant
landscape resembles four escarpments advecting headwards
(upstream) from the boundaries, more or less towards the
center of the square domain. The exact arrangement of the
channels, including their headwaters, depends on the spe-
cific noise function (e.g., Kwang and Parker, 2019; Morris
et al., 2023). The first 10 time steps (t∗ = 0,1, . . .,9; time
step length1t = 1 Ma) are used to train the Neural Operator.

A note on computational speed of existing LEMs

There are two main concerns with regard to computation time
when solving the stream power model numerically, e.g., via
finite-difference or finite-volume methods. Firstly, as is typ-
ical in such numerical problems, time step length, 1t , plays
an important role in determining the computational time re-
quired to generate solutions at specific (model) times and
also in their accuracy and stability. Such properties are often
established by ensuring that the Courant–Fredrichs–Lewy
(CFL) condition is met (e.g., Press et al., 2007; Roberts and
White, 2010). In this problem, it has the form

|vAm|1t

1x
≤ 1. (2)

Inserting the maximum possible value of A into Eq. (2)
should ensure stability at all times across the entire spa-
tial domain. As an example, if we use the maximum pos-
sible drainage area (i.e., the entire domain: 16 384 km2) and
use the values of the erosional parameters given above, the
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Figure 1. Evolution of the synthetic landscape used to train the
Neural Operator. The entire training set incorporates digital eleva-
tion models at 10 time steps (t∗ = 0,1, . . .,9; 1T = 1 Myr), gener-
ated by solving Eq. (1). Examples of the training “function spaces”
(i.e., digital elevation models) at time steps (a) 0, (b) 3, (c) 6, and
(d) 9 are shown. The domain is 128× 128 with a grid resolution of
1 km (16 384 cells in total).

CFL-derived 1t ≤ 0.026 Myr. If we set 1t = 0.02 Myr, this
forward model, using Landlab routines, takes 24.3 s on a
computer with a 2.6 GHz Intel Core i7 processor to produce
50 Ma of model time, by which time the initial topographic
block is almost completely eroded. In practice, fairly reliable
results (i.e., demonstrable convergent landscape geometries
at large scales) can be obtained (for this parametrization)
even when 1t = 1 Ma if the nominally implicit Fastscape
scheme is used to compute erosion, resulting in a reduced
run time of 2.4 s (Braun and Willett, 2013). Nonetheless, in-
verse modeling of landscapes for, for instance, their uplift
rate histories or erosional parameter values might require in
excess of O(105) forward model runs even for a modestly
sized landscape, which is a considerable computational bur-
den (e.g., Croissant and Braun, 2014).

Within a single time step, flow routing and calculation of
the upstream drainage area, A, from flow-routing algorithms
is nearly always the slowest computation and the second ma-
jor concern. Recent advances to reduce computation time
include careful parallelization, partitioning flow-routing cal-
culations to different computational nodes (Barnes, 2019).
Nonetheless, it would be helpful if flow routing and time
stepping could be avoided altogether. I now explore whether

time stepping and flow routing can be avoided by making use
of Neural Operators.

2.2 Neural Operator

A Fourier Neural Operator is used to learn the mapping be-
tween the evolving landscape at different time steps based on
the approach introduced in Li et al. (2022). This deep learn-
ing approach makes use of Fourier transforms to parametrize
a kernel integral operator, which is learned from the evolving
landscape.

For the specific problem of interest (and often in geomor-
phology generally), we wish to determine the operator G∗

that maps (e.g., via the erosional process) elevations in a
landscape at one time, Zτ , to those at another time, Zτ∗ . Di-
rectly approximating operators, G≈G∗, can be very com-
putationally cheap and fast (Li et al., 2022). For the problem
of interest, we seek to recover G from synthetic landscapes
at discrete time steps,

G : Zt → Zt+n, (3)

where t and t + n indicate time step indexing. In the exam-
ples examined in this paper, n= 1; i.e., we seek to learn G
from landscapes at adjacent time steps. Since elevation infor-
mation can usually be cast as point-wise data, it is straight-
forward to define input–output pairs, e.g., Zt = z(x,y)|t and
Zt+1 = z(x,y)|t+1.

The neural operator is formulated in three main steps (see
Li et al., 2022, for details). Firstly, the input data (e.g., Zt=0)
are lifted to a higher dimensional representation with an en-
coder network (see also Kovachki et al., 2023). Secondly,
four layers of integral operators and activation functions are
then applied. The “integral operators” are actually convo-
lution operators defined in Fourier space. The scheme uses
Fourier modes up to kmax and, as such, acts as a low-pass fil-
ter. Finally, the output is then projected back to the target di-
mension by another neural network. In each iteration, the up-
date Zt → Zt+1 is defined as the composition of a non-local
integral operator K and a local, non-linear activation func-
tion, σ (see Li et al., 2022, especially their Fig. 2, for an ex-
tended explanation). A minimum working example, demon-
strating how the calculations are performed, is provided (see
Code availability statement for details).

An Adaptive Moment Estimation (Adam) optimizer is
used to train the model, which minimizes differences be-
tween Zt+1 and Zt+1. Thus, the operator, G, is defined and
can now be used to generate predictions of landscape evolu-
tion at other, say, intermediate, and, perhaps more usefully,
later times. Specific implementations for the examples dis-
cussed in this paper are archived (see Code availability state-
ment). For the two examples shown in this paper, model A
was trained for 100 epochs (number of times the learning al-
gorithm uses the entire training set), with kmax = 2. Model B
was trained for 500 epochs, with kmax = 4. The initial learn-
ing rate (determining rate at which parameters in the model
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are updated) in both models was defined as 10−5, which was
halved every 100 epochs. The number of training and test-
ing sets (landscapes between 0–9 time steps; see Sect. 3) was
held constant at 100 and 20, respectively, and model “width”,
which plays a role in lifting the input to a higher dimensional
representation, was fixed to be 20. All computation was per-
formed on a single Nvidia GPU. Training took< 1 h for each
model tested.

3 Results and discussion

Figure 1 shows a subset of the space functions (landscapes)
at time steps 0 to 9 generated by the stream power model
(with 1t = 1 Ma) used to train the neural operator. The full
training set is archived (please see the Code availability state-
ment for details). Figure 2 shows predictions from the neural
operator models A and B at time steps 10, 20, 30, and 40. For
comparison, adjacent to those predictions are the solutions to
the stream model at the same times.

Topographic swaths, histograms, and hypsometric curves
summarizing the distribution of elevations from the three
models (stream power, FNO models A and B) are shown in
Fig. 3. The neural operator models do a reasonably good job
of capturing the large-scale structure of the evolving land-
scapes. Like the stream power model, they both include head-
ward “advection” of the four main escarpments. The FNO
approach, as implemented, acts as a low-pass filter; hence
fine details, such as valley networks, are lost. The resultant
landscapes tend to be smoother when compared to predic-
tions from the stream power model (Fig. 2). They also lack
the well-developed channels present in landscapes predicted
by the stream power model, which is unsurprising given the
low-pass filtering. Topographic swaths that traverse the cen-
ter of the landscapes and from corner to corner further em-
phasize the relative smoothness of topography predicted by
the FNO models, their tendency to be similar to each other
(for the model parametrizations tested), and their capture of
the overall lowering of topography (Fig. 3). Given the filter-
ing, it is not surprising that the FNO models predict greater or
less local (in space and time) erosion than the SPM. Nonethe-
less, as the histograms and hypsometric curves in Fig. 3 in-
dicate, changes (here only reductions) in elevation across the
domain are faithfully reproduced. Increasing the number of
epochs increases the presence of short wavelength structure
in landscapes predicted by the neural operators. However,
doing so can lead to development of local patches of noisy
and negative topography (see black pixels in Fig. 2i and l).

Unsurprisingly, the rougher parts of the FNO landscapes
(towards the center of the domain) tend to have more sinks
(local depressions). Consequently, drainage in the FNO land-
scapes tends not to be connected and through-going in up-
per reaches when calculated using the widely used D8 flow-
routing algorithm (using the Flow Accumulator Landlab
component; Tarboton, 1997; Hobley et al., 2017). These re-

sults are analogous to what happens to an SPM when noise
is inserted – a generally accepted step that enables realistic
planforms to emerge once sink-filling has been performed
(e.g., see Barnes et al., 2021, for a useful summary of sink-
filling approaches). I note that sink-filled versions of the two
FNO landscapes examined have connected drainage with
planforms that are broadly consistent with those predicted
atop equivalent SPM landscapes. It is an interesting and prob-
ably quite fundamental question whether we should regard
the presence of sinks as being important or not when we no
longer need a flow-routing algorithm to evolve a landscape.
A key question is, what do we want these models to predict?
For instance, we currently sacrifice realism in both the SPM
and FNO approaches at specific scales to obtain solutions
of interest. Perhaps it is encouraging that the FNO models
can produce reasonable predictions of landscape geometries
at large scales even when channel elevations are not mono-
tonic. It may be interesting to explore the use of FNOs to
learn landscape evolution from landscape evolution models
that more explicitly incorporate physics and generate realis-
tic geometries across the scales of interest; perhaps one way
to do so is to make use of landscapes predicted by stochastic
theory that naturally includes/can cope with the presence of
sinks (e.g., Roberts and Wani, 2024, and references therein).

These results suggest that erosion, at least at large scales,
can be learned from evolving landscapes even when the ero-
sional laws are quite complex, depending on, for instance,
advective velocities that depend non-linearly on upstream
drainage area. In turn, the learned operators can be used
to predict landscape evolution at relatively large temporal
scales. These results suggest that the use of such an approach
in the development of inverse methodologies that seek to
calculate uplift or denudation histories from observed flu-
vial landscapes could be fruitful. For instance, they might
find use in developing understanding of landforms generated
in response to tectonic or sub-plate processes. Such tech-
niques might find use in examining domal topographic swells
and continental escarpments, for example, where the spe-
cific details of geomorphic geometries (e.g., historic chan-
nel locations) are perhaps less crucial (or knowable) than the
larger-scale changes in landform geometries (e.g., Roberts
and White, 2010; O’Malley et al., 2021). This approach
could be particularly useful when the objective functions
used to minimize misfit between observed and theoretical
landscape are designed to “see through” the impact of lo-
cal noise when specific positions of calculated channels and
interfluves are largely unimportant (e.g., see the Wasserstein-
based approach introduced in Morris et al., 2023).

In may be fruitful to explore the use of alternative train-
ing information to develop useful operators; for instance, it
would be straightforward to develop training data (input–
output pairs) using maps of upstream drainage areas or sed-
imentary flux predicted by SPMs, or perhaps useful oper-
ators could be generated from solutions to different PDEs
or stochastic theory (e.g., Eq. 4 in Bonetti et al., 2020;
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Figure 2. Predicted landscape evolution from stream power and Fourier Neural Operator (FNO) models. (a–c) Predicted landscapes at time
step 10 from (a) the stream power model, (b) FNO model A, and (c) FNO model B. (d–l) Predicted landscapes at time steps 20, 30, and 40,
respectively. See main text for FNO model parametrizations.

Roberts and Wani, 2024). An obvious concern is that the
functions used to generate the operators are sensitive to the
things we want to know about. For instance, using elevation
appeals to me because of my interests in solving for uplift
rate histories. In contrast, upstream drainage areas, at least at
large scales, appear to be quite insensitive to some uplift rate
histories, e.g., the extreme examples of uplift only varying as
a function of time or very smoothly as a function of space

(e.g., Roberts and White, 2010; O’Malley et al., 2021). The
general theme of structure, interconnectedness, and accuracy
of FNO-derived geometries is probably worth examining fur-
ther in future work.

Clearly, establishing whether FNOs (or other deep learn-
ing approaches) developed for one environment, or set of
model parametrizations, can be ported to predict landscape
evolution in other settings (e.g., driven by different uplift his-
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Figure 3. Comparison of topographic transects and histograms from evolving landscapes generated with stream power (SPM) and Fourier
Neural Operator (FNO) models. (a) Topographic transects across the landscapes shown in Fig. 2 from coordinates (0, 64) to (128, 64), i.e.,
“west” to “east”. Thick colored lines are transects through SPM at annotated time steps; dark- and light-gray lines are transects though FNO
models A and B at those time steps, respectively. (b) Transects from bottom-left to top-right corners, (0, 0) to (128, 128), across the landscapes
shown in Fig. 2. (c–f) Percentage frequency histograms of elevations shown in Fig. 2 and (g–j) associated hypsometric curves; line stylings
as for panel (a).

tories or erosional forcings) is likely to be important for fu-
ture work. Evidence from other domains is promising (e.g.,
see the results in Li et al., 2022). More work is also required
to establish optimal model parametrizations, e.g., numbers
of testing and training sets, epochs, learning rates. I note that
Li et al. (2022) and Kovachki et al. (2023) discuss how, de-
spite the truncation of higher-frequency modes in the Fourier
layer, the operators they produced, as a whole, approximated
the functions they examined (e.g., solutions to the Navier–
Stokes equation) to frequencies considerably higher than
kmax with low error. Li et al. (2022), in their response to re-
viewers’ comments, attribute those results to the lifting of
input functions to higher dimensional representations. It will
be interesting to establish whether increasing the dimension-
ality of input landscapes beyond what is explored in this
paper (“width” = 20; see Code availability statement) im-

proves predictions of fine structure (e.g., valleys and inter-
fluves) or whether landscapes are special in some way (e.g.,
perhaps because of flow routing). Preliminary results indi-
cate that changing “widths” between 1 and 32 (whilst holding
all other parameters constant) has little impact on predicted
landscapes.

Despite the work to be done, it seems clear at this early
stage that there can be benefits to using FNOs, including
the fact that, once an operator has been generated, predict-
ing landscapes (the “forward model”) is much more efficient
than solving the partial differential equations numerically.
Such an approach facilitates efficient parameter sweeping
and “filling in” gaps between time steps, for instance. More
broadly, it seems likely that the development of operators
from “analogue” landscapes generated in flume tanks or per-
haps from repeat topographic surveying could provide means
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to develop a new understanding of the processes at play
in evolving landscapes (e.g., Lachaise and Schweißhelm,
2023).

4 Conclusions

This paper introduces the use of Fourier Neural Operators
(FNOs) for predicting evolution of landscapes. This deep
learning methodology was trained using a simple synthetic
landscape that was evolved forward in time using the well-
known stream power erosional model. This deterministic
kinematic model advects slopes headwards with velocities
that depend on upstream drainage area and defined values of
erosional parameters. Time steps 0 to 9 were used to generate
“learning maps” between the function spaces (landscapes).
The learned operators were then applied to predict landscape
geometries at time steps 10 to 40. The resultant landscapes
were compared to solutions from the stream power model.
Two different FNO parametrizations were tested with differ-
ent Fourier mode filters and learning epochs. Both reproduce
solutions from the stream power model at large scales. These
results indicate that developing FNOs for landscapes might
be a fruitful way to increase the speed with which landscape
evolution can be modeled and generate a new understand-
ing of erosional processes. An important piece of work to
be done is to develop an understanding of whether operators
developed using observations or model output from one set-
ting can be ported to understand landscape evolution in other
contexts.

Code and data availability. Code, parametrization files, and ex-
ample output used to generate the training information and digital
elevation models for validation, along with code used to generate
the Fourier Neural Operator (FNO) and ancillary implementation
and plotting scripts, which contain information about how to run the
code on a GPU system and how to manage the resultant .mat files,
are archived at https://doi.org/10.5281/zenodo.14616760 (Roberts,
2025). Note that the material used to develop and run FNOs is based
on work from Li et al. (2022) and Kovachki et al. (2023).
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