

Supplement of

Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering

Mirjam Schaller et al.

Correspondence to: Mirjam Schaller (mirjam.schaller@glasgow.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Figures

Figure S1 A) Simplified lithologic map for the investigated catchments around the Swabian Alb escarpment (based on map from Bundesanstalt für Geowissenschaften und Rohstoffe. Geologische Übersichtskarte der Bundesrepublik Deutschland 1:250 000 (GÜK250, WMS), 2019). The points give locations of measurement stations providing data to calculate physical erosion and chemical weathering rates. B) Cross-section through the Swabian Alb from Northeast to Southwest (A to B).

Figure S2: Plots of total suspended sediment TSS versus river discharge Q: A) Neckar at Rottweil; B) Fils, a Neckar Swabian Alb tributary; C) Danube at Hundresingen; and D) Lauchert, a Danube Swabian Alb tributary.

Figure S3: Decadal-scale total denudation rates versus topographic metrics; A) Mean elevation of drainage basin; B) Maximum relief; C) Mean slope; and D) Mean k_{sn}.

Figure S4: Decadal-scale total denudation rates versus climatic metrics: A) Mean annual precipitation; and B) Mean annual temperature; C) NDVI as vegetation cover; and D) Soil depth,

Figure S5: Decadal-scale total denudation rates versus percent exposure area of four selected anthropogenic impact: A) Connectivity status index (100% = undisturbed system); B) Human footprint index (50 = highest footprint); C) Artificial constructions; and D) Cultivated area.

Figure S6: Decadal-scale total denudation rates versus percent exposure area of four selected lithologies: A) Lower Triassic; B) Lower Jurassic; C) Middle Jurassic; and D) Upper Jurassic.

Figure S7: Plots for different chemical parameters: A) Ca^{2+} plus Mg^{2+} versus calculated HCO_3^- corrected for atmospheric input; B) Mg^{2+}/Ca^{2+} versus Na^+/Ca^{2+} ; C) Ca^{2+} versus SO_4^{2-} ; D) Chemical weathering rate over SO_4^{2-} .

Figure S8: Total denudation rate based on river load (cred circles, this study) compared to cosmogenic nuclidederived denudation rates from in situ-produced ¹⁰Be in quartz (Schaller et al., 2001 and 2002; black squares). A) Denudation rate versus catchment area. B) Chemical weathering rate versus total denudation rates based on river load and the combination of river load and cosmogenic nuclide-derived rates. Lines indicate different chemical weathering over total denudation rates *W/D*.