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Abstract. Thresholds of motion (τ ∗c ) strongly control bedload transport in gravel-bed rivers. Uncertainty in
τ ∗c limits the accuracy of predictions of transport and morphologic change. To improve our quantitative under-
standing of morphodynamic feedbacks in rivers, we propose a flow-history-dependent model where τ ∗c evolves
temporally as a function of bed shear stress. Relatively low shear stresses strengthen the bed, increasing τ ∗c and
reducing transport. Larger floods rapidly weaken the bed, decreasing τ ∗c and increasing transport. We calibrate
the model to a 23-year record of flow and bedload transport from the Erlenbach torrent, Switzerland, and find
that the model predicts the field-based τ ∗c record more accurately than assuming a constant τ ∗c . Calibrated pa-
rameters describing strengthening are more tightly distributed than weakening parameters, which suggests that
magnitudes of bed weakening may be more variable and difficult to accurately predict as a function of flood
characteristics than bed strengthening during lower flows.

1 Introduction

Erosion, deposition, and morphological change in gravel-bed
rivers result from bedload transport. Gravel transport rates
are notoriously difficult to accurately predict in natural rivers
because they are influenced by a wide variety of factors in-
cluding water discharge, local channel morphology, and up-
stream sediment supply. These factors can vary both spa-
tially and temporally. Nonetheless, most equations to pre-
dict bedload flux simplify this complexity using a determinis-
tic parameterization which only considers flow intensity and
a transport threshold. For example, the classic Meyer-Peter
and Müller (1948) equation (MPM) can be expressed simply
as q∗s = 4

(
τ ∗− τ ∗c

)1.5 for τ ∗ ≥ τ ∗c (Wong and Parker, 2006),
where q∗s is dimensionless sediment flux per unit channel
width (Einstein number), τ ∗ is nondimensional shear stress
(Shields stress), and threshold parameter τ ∗c is the critical

Shields stress. Shields stress is τ ∗ = τ/ (ρs− ρ)gD, where
τ , ρs,ρ, g, andD are dimensional bed shear stress (Pa), sedi-
ment density (kg m−3), water density (kg m−3), gravitational
acceleration (m s−2), and median sediment diameter (m).
Einstein number is defined as q∗s = qs/

√
(ρs/ρ− 1)gD3,

where qs is the volumetric bedload transport rate per unit
width (m3 s−1 m−1). While the threshold parameter (τ ∗c ) de-
scribes the nondimensional shear stress at the onset of sedi-
ment motion, it is also often used as a physically meaning-
ful, but empirically determined, fitting parameter in bedload
transport models (e.g., Engelund and Fredsoe, 1976; Luque
and Van Beek, 1976; Meyer-Peter and Müller, 1948; Wong
and Parker, 2006; Shields, 1936; Wiberg and Smith, 1987;
Wilcock and Crowe, 2003). For bedload equations such as
the MPM, τ ∗c is a lumped parameter that implicitly accounts
for alłof the factors that influence bedload transport rates
apart from τ ∗.
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Even during large floods, bedload transport often occurs at
shear stresses only slightly exceeding threshold conditions,
making transport rate predictions particularly sensitive to
threshold values (e.g., Parker, 1978; Phillips and Jerolmack,
2016; Phillips et al., 2022; Pretzlav et al., 2020). Transport
thresholds also strongly influence gravel-bed channel reach
morphologies (e.g., Parker, 1978; Phillips et al., 2022) and
modulate the mapping of climate onto fluvial processes, in-
forming short- and long-term sediment fluxes and the relative
importance (or unimportance) of extreme events for chan-
nel evolution (e.g., Blom et al., 2017; DiBiase and Whipple,
2011; Lague et al., 2005; Shobe et al., 2018; Tucker and Bras,
2000). For these reasons, improving our ability to calculate
thresholds of motion is critical not only for predicting trans-
port rates but also for predicting mountain river morphody-
namics and channel stability.

Early work assumed that thresholds were primarily con-
trolled by grain weight relative to the fluid. By accounting for
these variables through nondimensionalization, τ ∗c was ini-
tially thought to be approximately constant for typical condi-
tions in gravel-bed rivers (e.g., Buffington and Montgomery,
1997; Shields, 1936 ). However, Buffington and Montgomery
(1997) showed that τ ∗c varied systematically with the ratio of
the median grain size to flow depth, independently of shear
stress. More recent work has explored how both flow and
grain interactions lead to inherent variability in τ ∗c . Thresh-
olds vary spatially with the surrounding grain size distri-
bution (Parker, 1990; Chen and Stone, 2008), reach slope
(Lamb et al., 2008; Mueller et al., 2005), bed morphology
(Dietrich et al., 1989; Gran et al., 2006; Powell et al., 2016;
Monsalve and Yager, 2017; Powell and Ashworth, 1995;
Roberts et al., 2020), and changes in riverbed microtopog-
raphy (Brayshaw, 1985; Hodge et al., 2019; Kirchner et al.,
1990; Masteller and Finnegan, 2017; Yager et al., 2018).

Thresholds for motion also evolve over time. For exam-
ple, hysteresis in bedload transport rates is often observed be-
tween the rising and falling limbs of individual floods (Hsu
et al., 2011; Mao, 2018; Mao et al., 2014; Pretzlav et al.,
2020; Reid et al., 1985; Roth et al., 2017). Predicting hys-
teresis using the MPM and similar bedload models requires
the threshold parameter to evolve over the course of a flood
event (assuming that the prefactor and exponent remain con-
stant). Changes in τ ∗c over multiple events have also been ob-
served, and, in most cases, τ ∗c values remain correlated across
events, indicating a memory of past conditions (Downs and
Soar, 2021; Hassan et al., 2020; Johnson, 2016; Lenzi et al.,
2004; Mao, 2018; Masteller et al., 2019; Rickenmann, 2018,
2020; Saletti et al., 2015; Turowski et al., 2011).

Variable flow strength influences threshold evolution
through time. Reid et al. (1985) first suggested the influ-
ence of antecedent flows based on field-based bedload trans-
port monitoring, hypothesizing that longer inter-flood du-
rations led to increases in τ ∗c and reduced sediment trans-
port rates. Experiments have confirmed that the magnitude
of inter-event flow affects τ ∗c evolution (Haynes and Pen-

der, 2005; Masteller and Finnegan, 2017; Monteith and Pen-
der, 2005; Ockelford et al., 2019; Ockelford and Haynes,
2013; Paphitis and Collins, 2005). With little to no active
sediment transport, grain-scale changes in interlocking and
surface reorganization increase particle resistance to motion
(Masteller and Finnegan, 2017; Ockelford and Haynes, 2013;
Yager et al., 2018). Pretzlav et al. (2020) documented sys-
tematic discharge-dependent increases and decreases in mo-
tion thresholds and associated diurnal transport hysteresis
during several weeks of snowmelt flooding, using instru-
mented “smartrocks” to measure transport. Reduction in τ ∗c
following larger floods has been attributed to significant re-
organization of the riverbed (Lenzi et al., 2004; Turowski et
al., 2009).

Sediment supply also influences threshold evolution. Hys-
teresis can be caused by sediment supply variations through
time (Moog and Whiting, 1998; Mao et al., 2014), changing
thresholds. Increased sediment supply from channel banks
and hillslopes can be important in destabilizing the bed sur-
face or introducing mobile unconsolidated material, reduc-
ing thresholds of motion (Turowski et al., 2011; Recking et
al., 2012; Rickenmann, 2020). Building on observations by
Recking et al. (2012), Johnson (2016) developed a model in
which τ ∗c evolves as a function of net erosion or deposition,
which are controlled by sediment supply in relation to trans-
port capacity. After calibration to laboratory experiments, the
evolving τ ∗c model successfully predicted how transport rates
responded to pulses in sediment supply.

Decades of monitoring data from the Erlenbach torrent in
Switzerland similarly provide evidence for transport thresh-
olds evolving with both sediment supply and discharge vari-
ability. Rickenmann (2020) showed that variations in sedi-
ment availability on the bed correlated with sediment trans-
port rate fluctuations and evolving thresholds, suggesting
that thresholds depend on upstream sediment supply. For the
same stream, Masteller et al. (2019) showed that the mag-
nitude of antecedent flows also influenced the evolution of
τ ∗c for individual years. Consistent with experiments, Mas-
teller et al. (2019) observed that the start of transport events
showed increases in critical Shields stress with increasing
inter-event flow magnitude (herein termed “strengthening”)
for an intermediate range of flows spanning inter-event peri-
ods and floods with observable sediment transport. However,
following even higher magnitude flows, the threshold for
motion decreased (herein termed “weakening”). Masteller et
al. (2019) hypothesized that the transition from bed strength-
ening to bed weakening was associated with a transition from
local rearrangement of particles to more intense transport
disrupting bed structure via particle collisions, and/or en-
hanced upstream sediment supply through upstream bed ero-
sion (Yager et al., 2012), and/or enhanced hillslope–channel
coupling (Golly et al., 2017). Thus, both flow strength and
sediment supply likely influence thresholds of motion in the
Erlenbach torrent (Rickenmann, 2020; Masteller et al., 2019;
Turowski et al., 2011).
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The ability to accurately predict threshold evolution
through time – thereby improving bedload transport rate pre-
dictions – remains elusive due to a lack of validated mod-
els. Equations have been proposed to describe temporal bed
strengthening as a function of the duration of bed exposure
to a constant inter-event flow magnitude and an initial τ ∗c
based on experimental data (e.g., Ockelford et al., 2019; Pa-
phitis and Collins, 2005). However, because these models
only focus on inter-event strengthening effects, they cannot
capture decreases in τ ∗c . The model of Johnson (2016) pre-
dicts τ ∗c evolution as a function of changing sediment supply.
Nonetheless, this model is an incomplete description of τ ∗c
evolution because it does not account for riverbed strength-
ening or weakening directly caused by the flow. Notably, to
our knowledge, none of these equations have been used to
describe field observations of temporally varying τ ∗c .

Our goals in the present work are (i) to propose a new
model in which τ ∗c evolves as a function of flow magni-
tude and encapsulates some memory of past shear stresses
as reflected in the changing state of the riverbed and (ii) to
evaluate whether this discharge-dependent model can cap-
ture annual strengthening and weakening trends observed in
Erlenbach field data (Masteller et al., 2019). While sediment
supply variations can also influence threshold evolution in
general (Johnson, 2016), and in the Erlenbach in particular
(Rickenmann, 2020), we explore how well threshold evolu-
tion can be predicted using only a time series of river dis-
charge.

2 Model development

Johnson (2016) argued that τ ∗c is a “state variable” for gravel-
bed river morphodynamics because it simultaneously con-
trols transport rates and evolves due to feedbacks with fluid
shear stresses and transport rates. Our new equations take
a similar form to Johnson (2016), where changes in τ ∗c de-
pend not only on discharge-dependent shear stress but also
on the current state of the transport system as characterized
by τ ∗c itself. The rate of change in τ ∗c depends on two terms,
which both evolve as a function of the transport capacity,
τ ∗/τ ∗c . Conceptually, the first right-hand-side term (starting
with k1) represents strengthening processes that increase τ ∗c ,
while the second term (starting with k2) represents weaken-
ing processes that reduce τ ∗c :

∂τ ∗c
∂t
= k1B

(
1+

(
τ ∗

τ ∗c

)−γ)−1

− k2 (1−B)
(
τ ∗

τ ∗c
− 1

)ε
H
[
τ ∗/τ ∗c − 1

]
, (1)

where t is time, and

B =
τ ∗cmax− τ

∗
c

τ ∗cmax− τ
∗

cmin
for τ ∗cmin < τ

∗
c < τ

∗
cmax. (2)

The scaling factor k1 and exponent γ influence the form
and magnitude of the strengthening term, while k2 and ε do

the same for the weakening term (Fig. 1); these parameters
are empirically calibrated below. Both k1 and k2 have units of
1/time, where the units of time will depend on the time step
of the discharge time series used as model input. H is the
Heaviside step function (H [τ ∗/τ ∗c − 1] = 0 for τ ∗/τ ∗c < 1;
H [τ ∗/τ ∗c −1] = 1 for τ ∗/τ ∗c >= 1) such that weakening only
occurs when transport occurs (τ ∗ > τ ∗c ) (Fig. 1a). B is called
the “feedback parameter,” described below. τ ∗cmin and τ ∗cmax
are upper and lower bounds imposed on τ ∗c , representing
physical limits for how loosely packed and mobile, or tightly
packed and immobile, the bed surface can become (John-
son, 2016).

The strengthening and weakening terms combine to cause
increases and decreases in ∂τ ∗c /∂t (Eq. 1; Fig. 1). The
strengthening term is generally sigmoidal for γ > 1; it goes
to zero as τ ∗ approaches zero, and asymptotes to a value of
k1B for τ ∗/τ ∗c � 1 (Fig. 1a). We chose a sigmoidal form to
allow strengthening over a wide range of flows but also limit
the amount of incremental strengthening that can result from
changes in grain organization at higher transport capacities.
When τ ∗/τ ∗c < 1, flow causes the bed to become stronger but
not weaker, consistent with previous observations (Haynes
and Pender, 2005; Masteller et al., 2019; Masteller and
Finnegan, 2017; Monteith and Pender, 2005; Ockelford et
al., 2019). Strengthening increases as τ ∗/τ ∗c approaches 1,
consistent with some (Paphitis and Collins, 2005) but not
all previous work (Haynes and Pender, 2007). Strengthening
increases further for τ ∗/τ ∗c > 1, consistent with protrusion-
dependent thresholds (Masteller and Finnegan, 2017, Yager
et al., 2018; Masteller et al., 2019) and with coarse grain clus-
tering, which increases bed stability and requires transport to
develop (Brayshaw, 1985; Church et al., 1998; Hassan et al.,
2020; Johnson, 2017; Strom et al., 2004).

At the same time, as τ ∗/τ ∗c exceeds 1, the weakening term
becomes increasingly important (Eq. 1; Fig. 1). In the ab-
sence of other constraints on the functional form of weaken-
ing with increasing τ ∗/τ ∗c , we chose a power-law relation for
simplicity. It seems likely to us that beds rapidly lose their
strength as transport rate increases and fewer grains are in-
terlocked through intergranular friction (Yager et al., 2018).
Higher shear stresses capable of mobilizing more sediment
grains can destabilize a larger fraction of the bed. Impacts
from transported grains may also directly contribute to desta-
bilization (Ancey and Heyman, 2014; Heyman et al., 2014;
Lee and Jerolmack, 2018; Martin et al., 2014). Nonetheless,
we note that Eq. (1) is agnostic towards any specific pro-
cesses driving strengthening and weakening. The combina-
tion of terms results in the transition from strengthening to
weakening occurring at different τ ∗/τ ∗c , depending on γ , ε,
k1, k2, and τ ∗c (Fig. 1b).
B is considered a “feedback parameter” because it con-

tributes to ∂τ ∗c /∂t being a function of τ ∗c (Johnson, 2016).
B has a value between 0 and 1, and changes the importance
of the strengthening and weakening terms, depending on the
current value of τ ∗c relative to τ ∗cmin and τ ∗cmax. A loosely
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packed bed, with τ ∗c close to τ ∗cmin and B close to 1, can
strengthen significantly in a low flow (increasing τ ∗c ), but a
high flow would not cause a significant decrease in τ ∗c be-
cause the bed is already relatively weak. Conversely, a bed
that was nearly as tightly packed as physically possible, with
τ ∗c close to τ ∗cmax and B close to 0, will minimally increase
τ ∗c in response to a low flow, but a destabilizing flood would
cause a significant decrease in τ ∗c (Johnson, 2016).

To estimate the range of possible τ ∗cmin and τ ∗cmax val-
ues, we use a compilation of τ ∗c as a function of channel
reach slope (Johnson, 2016; Lamb et al., 2008; Prancevic and
Lamb, 2015). A best-fit power-law regression of the com-
piled data gives τ ∗c = 0.42S0.7

+0.03, with R2
= 0.41 where

S is channel reach slope (an approximation of energy or
water surface slope). The constant is included so that the
function asymptotes to a physically reasonable value (i.e.,
τ ∗c = 0.03) as slope approaches zero. Field and flume data
were weighted equally in the nonlinear best-fit regression,
removing possible bias from there being ∼ 3.5 times more
flume data points. We then visually determined the following
minimum and maximum bounds to accommodate almost all
compilation data points, assuming the same best-fit exponent
(0.7).

τ ∗cmin = 0.14S0.7
+ 0.0075 (3)

τ ∗cmax = 1.4S0.7
+ 0.075 (4)

These empirical τ ∗cmin and τ ∗cmax relations capture the slope
dependence of gravel thresholds of motion compiled in both
flume and field settings. Equations (1) and (2) assume that
τ ∗cmin and τ ∗cmax are limits that the threshold can approach but
does not reach due to the feedbacks implemented by the B
parameter. Equations (1) and (2) are only defined between
these bounds. We acknowledge that many factors beyond
slope may influence the possible range of τ ∗c at a given site,
including grain size distributions (e.g., Parker, 1990) and dif-
ferences in relative roughness (Buffington and Montgomery,
1997; Schneider et al., 2015). In the absence of independent
constraints on τ ∗cmin and τ ∗cmax that could be used to describe
a particular field site, the compilation should reasonably rep-
resent the range of possible values.

We calibrated γ using experimental data from Paphitis and
Collins (2005) to reduce the number of free parameters in the
model (i.e., γ , ε, k1, k2). Paphitis and Collins (2005) con-
ducted experiments using fine, medium, and coarse sand, in
which they systematically varied the conditioning time (ED,
the duration of flow below the threshold condition) between 5
and 120 min and the ratio of shear velocity (uτ ) to initial crit-
ical shear velocity (uτci). The ratios of shear velocities they
explored were between 70 % and 95 % of critical, which cor-
responds to conditioning flow shear stresses between 50 %
and 90 % of the initial critical shear stress. Based on their ex-
perimental results, they presented the following equation to

describe their data:
uτc(t)

uτci
= 1.05

[
1− 0.01e(−0.005ED)

]
+

[
0.005+ 0.1

(
uτ

uτci
− 0.7

)]
ln (ED)

+ 0.06
[

10
−7
(

0.97− uτ
uτci

)]
(5)

for 0.7≤ uτ
uτci
≤ 0.95 and ED ≤ 120 min, where uτc(t) is the

critical shear velocity following low-flow conditioning. Pa-
phitis and Collins (2005) reported that this function fit their
experimental data with a correlation coefficient of 0.83 (i.e.,
R2
= 0.69).

To calibrate γ , we calculate uτc(t)/uτci, for a range of
ED and uτ , using values of uτci reported for their coarse
sand (D = 0.774 mm) experiments, corresponding to an ini-
tial critical shear velocity of uτci = 0.0195 m s−1. We then
square uτc(t)/uτci to convert to a Shields stress ratio (i.e.,(
uτc(t)/uτci

)2
= τc/τci = τ

∗
c /τ
∗

ci, where the i subscript indi-
cates the initial value and τc and τ ∗c evolve through time).
We then numerically calculate the partial derivative of Eq. (5)
with respect to time, ∂τ ∗c /∂t . Figure 2b shows a nonlinear re-
gression (using MATLAB’s cftool) of the strengthening term
in our model (Eq. 1) to ∂τ ∗c /∂t calculated from Eq. (5). This
regression provides a best-fit estimate of γ , including empir-
ical regression uncertainties. For below-threshold conditions
explored in the Paphitis and Collins (2005) experiments, the
weakening term in Eq. (1) is zero. Given this, the calibration
of γ described here is not influenced by other model param-
eters, particularly the weakening exponent ε. Our reported
95 % confidence interval on γ only represents the empirical
regression uncertainty when fitting our function to Eq. (5).
Therefore, it is likely that a somewhat wider range of γ may
be able to fit the range of the experimental data from Paphitis
and Collins (2005), and the true range of possible values may
be somewhat larger than 2.5± 0.32.

We use the data and fitting function of Paphitis and Collins
(2005) to calibrate γ because it is the most complete and in-
ternally consistent dataset that we are aware of with suffi-
cient constraints to describe the evolution of τ ∗c as a func-
tion of both transport capacity and time. Nonetheless, a pos-
sible limitation of applying these experimental data to cali-
brate our model is that the Paphitis and Collins (2005) ex-
periments were conducted with unimodal sand. Specifically,
boundary Reynolds numbers in their experiments are transi-
tional between hydraulically smooth and hydraulically rough
flow. For the coarsest grains they use (D50 = 0.0774 mm),
the boundary Reynolds number Rew = uτ ks/υ ≈ 15 , where
ks is a roughness length scale assumed to beD50 and υ is the
kinematic viscosity of water. If ks were instead assumed to be
a multiple of D50 (such as ks = 3.5D84), then Rew would be
closer to the hydraulically rough flow criteria of Rew ≥ 100.
It is also worth noting that grain size did not explicitly factor
into Eq. (5) beyond its implicit control on uτci. The insen-
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Figure 1. (a) Predicted change in threshold for strengthening (blue) and weakening (red) terms for a range of γ and ε values. k1, k2, and B
are constant. (b) Predicted change in threshold for the full model for different B and ε. k1, k2, and γ are held constant. This example uses
Erlenbach values calculated as τ∗cmin = 0.036 and τ∗cmax = 0.36 using Eqs. (3) and (4).

Figure 2. (a) Compiled τ∗c data as a function of slope from both field studies (gray diamonds) and flume experiments (open circles). The
range of τ∗c from the Erlenbach field site is plotted in red. Compiled data are limited to slopes S < 0.2 and median grain sizes D50 ≥ 2 mm.
Most data were compiled by Prancevic and Lamb (2015), building on Buffington and Montgomery (1997), with additional data from Olinde
(2015) and Lenzi et al. (2006). (b) Calibration of strengthening term exponent, γ , based on Paphitis and Collins (2005) for both the shortest
conditioning time (5 min) and the longest conditioning time (120 min) spanned by the Paphitis and Collins (2005) data. Regressions to their
best-fit empirical equation give gamma exponents within uncertainty of each other.

sitivity of their results to grain size suggests that the results
may not depend significantly on grain size or on hydrauli-
cally rough flow being fully developed. Furthermore, con-
verting critical shear velocities from their coarse sand exper-
iments to critical Shields stress yields τ ∗c ≈ 0.031, consistent
with typical critical Shields stresses reported at low slopes
(consistent with their experiments) for gravel river datasets
(Fig. 2a).

3 Field application

The Erlenbach is a small (0.7 km2 watershed), steep (10 %
grade) channel in the Swiss Prealps. Bedload transport has
been actively monitored for over 30 years by a variety of
methods (Beer et al., 2015; Rickenmann, 2020; Rickenmann
et al., 2012; Rickenmann and McArdell, 2007). Previous
analyses have shown that the threshold for motion varies over

1 order of magnitude across the span of the record (Masteller
et al., 2019; Turowski et al., 2011). Masteller et al. (2019)
demonstrated that seasonal trends in τ ∗c were unlikely to be
random and that threshold evolution depends, in part, on the
magnitude of past flows.

Our goal is to evaluate how well discharge-dependent
Shields stress variations alone (Eqs. 1 and 2) capture first-
order seasonal trends in evolving τ ∗c from well-constrained
field data. We utilize publicly available 10 min interval dis-
charge and bedload transport records from the Erlenbach
over the last 23 years (Rickenmann et al., 2020). To calculate
thresholds of motion for model comparison, we measure the
discharge when the in-channel impact plate system registers
grain collisions near the beginning of a flow event, following
Turowski et al. (2011). Thus, the threshold data are indepen-
dent of any bedload transport model. Using a rating curve
from discharge to shear stress developed by Yager (2006) and
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a median grain size,D50 = 8 cm (Wyss et al., 2016), the flow
and transport time series were nondimensionalized to Shields
stress. The median grain size is assumed not to have changed
systematically across the Erlenbach record (as discussed by
Masteller et al., 2019), although hillslope sediment supply
may cause grain size variability both during and in between
transporting events.

Critical Shields stresses at the start of transport vary by
almost 1 order of magnitude in τ ∗c (0.03 to 0.26). The tempo-
ral variability in τ ∗c observed at the Erlenbach is equivalent
to the full range of τ ∗c observed in flume and field data for
equivalent slopes (Fig. 2a). Strengthening (i.e., a systematic
increase in τ ∗c for at least some portion of a given year) is
dominant in 10 of the 23 years (see Masteller et al., 2019)
and weakening is dominant in 3 years (1992, 2014, 2015),
while the remaining 10 years show both behaviors (Fig. 3e–
h).

4 Model parameterization and application

We implement the model separately to each year’s flow time
series, from the first transporting event in the spring through
the fall (following Masteller et al., 2019). We do not calibrate
τ ∗c to the single continuous multi-year discharge and trans-
port record because the bulk of landsliding occurs during
the winter months, supplying largely unconstrained amounts
of sediment to the channel bed from hillslope processes
(Schuerch et al., 2006). Hillslope sediment supply variations
also occur during the rest of the year and likely influence
thresholds and transport rates both during and in between
the transporting events we consider (e.g., Rickenmann, 2020,
2024). As possible evidence of sediment supply effects dur-
ing inter-event periods, Turowski et al. (2011) found that
threshold discharges were often, though not always, lower
at the start of a given flow event compared to the discharge at
the cessation of bedload transport at the end of the previous
event. This inter-event weakening cannot be captured by the
model. Because the model cannot predict every trend in the
field data, we focus on the start of events only to evaluate how
well discharge variations alone can improve transport predic-
tions over seasons, consistent with the analysis of Masteller
et al. (2019). Future analyses could focus on threshold eval-
uation and model calibration during individual flood events.

Equation (1) has four free parameters: k1, k2, γ , and ε.
We assign γ = 2.5 based on our calibration to Paphitis and
Collins (2005) (Fig. 2b). This leaves three parameters that
require calibration. For each year, we explored a range of
parameter combinations for k1 (1×10−2 to 1×10−6 min−1,
n= 40), k2 (1× 10−2 to 1× 10−6 min−1, n= 40), and ε (1
to 10, n= 10). k1 and k2 were varied with log-spacing to
explore all orders of magnitude equivalently. For each year
of the dataset, we ran 16 000 forward simulations, reflecting
all unique parameter combinations of k1, k2, and ε. For each
year, we assign an initial τ ∗c value as equal to the observed τ ∗c

at the first transport event and calculate changes in τ ∗c based
on 10 min discharge data until the end of the final observed
transport event.

We determined the best-fit parameter combinations that
minimized mean absolute error (MAE) to τ ∗c data for each
year. We use MAE (rather than RMSE) to reduce the influ-
ence of any single large difference between the continuous
model predictions and field-based data points which exhibit
large amounts of scatter. The field data points only represent
the discrete start of each event. “Annual” calibrations repre-
sent the best-fit parameters for each year. The “combined”
calibration represents the single best-fit k1, k2, and ε val-
ues which minimize MAE when MAE is averaged across all
sample years, with each year weighted equally. We compare
both the annual and combined best-fit model to a constant τ ∗c
(mean Erlenbach τ ∗c = 0.1548, SE= 0.0014).

5 Results

The annual calibrations show that, for all 23 years, Eq. (1)
provides a better fit to the data (lower MAE) than the mean
Erlenbach threshold, τ ∗c = 0.1547 (Fig. 3a). Annual best-
fit MAE ranges from 0.0046 (2015) to 0.0293 (1990). The
mean MAE= 0.0149 from the annual calibrations is less
than the mean MAE= 0.0254 when applying a constant τ ∗c =
0.1547. Annual best-fit values for k1 ranged from 1×10−6 to
2.73× 10−5 min−1 with a mean value of 6.55× 10−6 min−1

(Fig. 3b). In contrast, annual best-fit k2 values spanned the
entire parameter range (1× 10−6 to 10−2 min−1) with mean
k2 = 2.63× 10−4 min−1 (Fig. 3c). Best-fit annual ε values
also spanned the full range of parameter values explored (1
to 10) (Fig. 2c), with mean ε = 6 when calculated with each
year weighted equally.

The single best-fit value from the combined MAE anal-
ysis was also ε = 6, with best-fit k1 = 5.22× 10−6 min−1

and k2 = 4.12×10−6 min−1. These best-fit ε, k1, and k2 val-
ues are consistent when averaging MAE across all years
and when only averaging for the 8 years with predicted
weakening behavior (defined as years with step drops in
τ ∗c > 2 %). Model runs using the combined best-fit param-
eters only perform better than the constant τ ∗c assumption in
12 out of 23 sample years (mean MAE= 0.217) (Fig. 3a).
Both annual and combined model performance are gener-
ally better for years which only have τ ∗c strengthening, as
evidenced by annual mean MAE= 0.0135 (combined mean
MAE= 0.0202) for these years compared to years with ob-
served weakening (annual mean MAE= 0.0163; combined
mean MAE= 0.0301). In 11 years, multiple combinations
of parameters resulted in the same minimum MAE value.
Most of these years only have systematic strengthening, not
weakening, so models are relatively insensitive to k2 and ε
values, allowing a range of best-fit model parameterizations.
The field data tend to be more variable in years with weak-
ening; nonetheless, the calibrated model captures first-order
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Figure 3. (a) Comparison of MAE fits for constant and evolving τ∗c values compared to τ∗c data from the Erlenbach for both annually
calibrated and combined calibration models. (b–d) Median and interquartile range of MAE for model runs binned by (b) k1, (c) k2, and (d)
ε parameters. All annual minimum MAE values and associated parameters are indicated by gray stars. In the event of multiple parameter
combinations yielding the minimum MAE (see Discussion), all parameter combinations are plotted. (e–h) Comparison of field data (black
dots represent τ∗c at the start of each transporting event) to the best-fit model(s). Example years with (e) strengthening only (1988); (f)
dominantly weakening, with strengthening as well (2007); (g) dominantly strengthening, with weakening as well (2010); and (h) dominantly
weakening (2014). Upper panels show the flow time series for each year in blue; the model parameter τ∗cmax = 0.36 is also indicated. The
feedback parameterB is shown for each year (right-hand y axis). “n” gives the number of models (i.e., parameter combinations) that minimize
MAE and provide an equivalent best fit to the data. Annual best-fit parameters are also specified.

annual trends across a range of scenarios (Figs. 3e–h, S1 in
the Supplement). Across all examples, the dominance of the
strengthening effects is demonstrated by B > 0.5.

Comparison of mean MAE values of all model runs as
a function (k1, k2, and ε) elucidates the relative sensitivity
of model performance to each parameter (Fig. 3b–d). Model
performance was most sensitive to k1 for the parameter space
we explored, with mean MAE values ranging from a mini-
mum value of MAE= 0.0438 at k1 = 8.38× 10−6 min−1 to
MAE= 0.181 at k1 = 10−2 min−1, reflecting the clustering
of best-fit k1 values (Fig. 3b). We note that γ = 2.5 was in-
dependently calibrated; it is possible that, if our analysis also
explored a range of γ values, the range of acceptable k1 may
be broader. In contrast, mean MAE values are higher and
less variable when binned by k2 (MAE= 0.105–0.122) and
ε (MAE= 0.109–0.114), suggesting that annual model per-
formance is less sensitive to variations in these parameters
(Fig. 3b, c).

6 Discussion

6.1 Model performance

Our flow history model for τ ∗c (Eqs. 1, 2) performs better
than a constant entrainment threshold, as indicated by lower
MAE between data and model (Fig. 3a). The model captures
both first-order strengthening and weakening trends seen in
the field data. These include progressive increases in τ ∗c from
lower discharges (Fig. 3e), to sudden decreases in τ ∗c follow-
ing a large flood early in the season (Fig. 3f), to a smaller de-
crease in τ ∗c following a late-season flood after the riverbed
may have had more time to strengthen (Fig. 3g), to intermit-
tent but repeated weakening events across a season (Fig. 3h).
When each year is calibrated separately (“annual” calibra-
tion), the model unsurprisingly performs better than when
using the single set of parameters that minimizes MAE aver-
aged across all years (“combined” calibration). Nonetheless,
the “combined” best-fit parameters still outperformed a con-
stant τ ∗c assumption in a majority of years – particularly those
with seasonal strengthening trends.
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Calibrated model performance varies most with k1, which
governs the efficacy of strengthening processes (Fig. 3b,
Eq. 1). γ also influences strengthening but was indepen-
dently calibrated and held constant in our analysis (γ =
2.5; Fig. 2b). At the Erlenbach, sediment-transporting flood
events only comprise about 2 % of the discharge record
(Masteller et al., 2019). Thus, weakening parameters k2 and
ε can only influence τ ∗c evolution during this portion of the
record, when τ ∗/τ ∗c > 1 (Eq. 1). More generally, the trans-
port capacity (τ ∗/τ ∗c ) at which the model terms combine to
transition from overall strengthening to weakening varies for
different parameter combinations (Fig. 1). In years without
large floods, the strengthening term of Eq. (1) dominates for
most of the year, resulting in steady increases in τ ∗c , such as
in 1988, when floods did not exceed τ ∗/τ ∗c = 1.64 (Fig. 3e).
Therefore, best-fit models for 1988 were insensitive to k2 and
ε, resulting in 248 parameter combinations that minimized
MAE (Fig. 3e).

Bedload is transported infrequently in gravel-bed rivers
because transport thresholds are rarely exceeded. Much of
bedload transport occurs during discharges that are often rel-
atively close to bankfull and when shear stresses only slightly
to moderately exceed τ ∗c (e.g., Emmett and Wolman, 2001;
Parker, 1978; Phillips and Jerolmack, 2016; Pretzlav et al.,
2020; Whiting et al., 1999). Therefore, weakening processes,
which in our model only occur when τ ∗/τ ∗c ≥ 1, can only re-
duce τ ∗c for a limited fraction of the full discharge record.
Thus, we may expect more generally that strengthening pro-
cesses are dominant for most of the time in gravel riverbeds
relative to weakening processes that may only occur dur-
ing floods. However, despite strengthening being active for
the vast majority of the discharge record, the approximately
normal distribution of τ ∗c suggests that weakening processes
must act more rapidly than strengthening processes to main-
tain values of τ ∗c intermediate between τ ∗cmin and τ ∗cmax. Fu-
ture work could further explore the consequences of this dif-
ference in the total time over which strengthening and weak-
ening processes may occur and their resultant impact on the
time-averaged state of the riverbed, as reflected by distribu-
tions of τ ∗c . At the Erlenbach, the model is largely successful
in matching annual strengthening trends (Fig. 3a, e–h) with
a narrow distribution of best-fit k1 values and a single, in-
dependently calibrated value of γ = 2.5. This suggests that
the physical processes that are encapsulated in the strength-
ening term of Eq. (1) may lead to predictable changes in
similar field settings (e.g., Church et al., 1998; Masteller and
Finnegan, 2017; Ockelford and Haynes, 2013).

In contrast, calibrations of weakening parameters find
much more variability in best-fit ε and k2, and MAE is
higher for weakening years (Fig. 2a). Annual best-fit re-
sults span the full range of both parameters (Fig. 3c, d).
High-magnitude floods that cause weakening are relatively
rare and short-lived. It is possible that a dataset with many
more discharge-driven weakening events could more nar-
rowly constrain these variables. However, a simpler inter-

pretation consistent with our analysis is that weakening is
inherently less deterministic than strengthening and there-
fore more difficult to predict accurately. Weakening events
can be de-coupled from flow, for example, if hillslopes sup-
ply sediment to the channel during inter-event periods, lead-
ing to a reduction in τ ∗c at low discharge. Indeed, Masteller
et al. (2019) identified a minimum discharge for inter-event
strengthening, below which τ ∗c becomes uncorrelated with
flow magnitude. This loss of correlation could reflect in-
stances where supply effects introduce event-scale variabil-
ity in τ ∗c . While we focus on evaluating a discharge-driven
model for τ ∗c , it is not intended to fully address all factors
influencing variability in τ ∗c . The discrepancies between ob-
served τ ∗c and model predictions may highlight conditions
where sediment supply significantly alters bed mobility, out-
weighing the flow history effects that are addressed here.

Figure 3e–h illustrates how feedback parameter B con-
trols how τ ∗c changes in response to a given shear stress.
Low τ ∗c (such as at the starts of 1988 and 2010 and fol-
lowing the large 2007 flood) corresponds to high B, which
increases the strengthening term and reduces the weaken-
ing term (Eqs. 1, 2). As relatively smaller shear stresses lead
to progressive strengthening, τ ∗c increases, B decreases, and
less strengthening occurs for a given increment of Shields
stress, resulting in a gradual rollover in the rate of strengthen-
ing through time (e.g., Fig. 3e). Model response (i.e., ∂τ ∗c /∂t)
is also influenced by τ ∗c through changes in transport capac-
ity. For example, under strengthening conditions, even if τ ∗

remains constant, increasing τ ∗c would cause a gradual de-
crease in τ ∗/τ ∗c , slowing the rate of strengthening.

Thus, the “memory” in this model is represented by the
value of τ ∗c , which integrates the effects of the history of
both flow conditions and channel bed conditions. Model
memories tend to be asymmetric through time in the sense
that floods large enough to cause significant weakening will
rapidly reset the memory to lower τ ∗c values; strengthening
can only occur gradually, as it requires the cumulative effects
of lower discharges over time. Conceptually, these memory
effects relate to τ ∗c being a state variable for gravel-bed chan-
nels (Johnson, 2016). For the Erlenbach, our results using
the calibrated model demonstrate that knowing τ ∗c prior to a
given flood improves the prediction of transport during that
flood. We view this model as a step towards a more com-
plete understanding of mountain river morphodynamics. Our
calibrated τ ∗c equation should be useful for improved mod-
eling of channel transport and evolution and as a component
of landscape evolution modeling. When high-resolution dis-
charge data are available for field sites, incorporation of a
flow-dependent τ ∗c may improve quantitative predictions of
transport in gravel-bed rivers, although calibration to local
conditions is likely necessary.
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6.2 Model implementation beyond the Erlenbach

The calibration that we have performed here leverages an
extensive dataset of direct measurements of τ ∗c . While sim-
ilar datasets are available for a small subset of rivers (e.g.,
Turowski et al., 2011), most gravel-bed rivers lack time se-
ries data of τ ∗c . However, we find that the range of tempo-
ral variability observed in our calibration dataset is consis-
tent with the existing data compilations of τ ∗c across a range
of slopes (Fig. 2a), suggesting that these data compilations
may provide reasonable preliminary constraints of minimum
and maximum bounds on τ ∗c in future applications of the
model. Reach-averaged starting values of τ ∗c could be esti-
mated based on bed grain size and bankfull geometry. Addi-
tional model calibration will vary depending on the intended
application of the equation. Calibration of the model over
approximately 30 transport events may be needed to reli-
ably capture the expected variability in τ ∗c . This assumes that
τ ∗c are normally distributed, as observed at the Erlenbach by
Masteller et al. (2019). However, the commonly used mini-
mum sample size of 30 to characterize normal distributions
also assumes independent observations, which does not ap-
ply here. An alternative approach could be to calibrate the
model based on the number of subsequent events over which
τ ∗c remains correlated. Masteller et al. (2019) also found a
loss of correlation between τ ∗c values after 10–13 transport
events. This number of events may be sufficient to calibrate
the model to capture the trajectory of τ ∗c over time. We rec-
ognize that requiring 10–30 measurements of τ ∗c may not
always be feasible. Future studies should assess the neces-
sary level of calibration for different applications. Further re-
search is needed to evaluate the potential variability in the k1,
k2, and ε parameters especially.

Perhaps the biggest mechanistic limitation of our model
is that it only accounts for discharge controls on evolv-
ing thresholds, even though sediment supply has also been
shown to explicitly influence transport rates in the Erlen-
bach data (Turowski et al., 2011, Rickenmann, 2020, 2024).
In flumes, it is straightforward to impose the upstream sedi-
ment supply, measure the flux exiting the flume, and simulta-
neously measure changes along the flume bed (e.g., surface
grain size distributions), allowing thresholds to be evaluated
through time as a function of supply (e.g., Johnson, 2016).
While it is possible to constrain temporal variations in up-
stream sediment supply in field settings (e.g., Hassan and
Church, 2001; Rickenmann, 2020), these data are far more
difficult to measure and less widely available than discharge
time series for gravel-bed rivers. We are unaware of field
monitoring sites that directly measure comparable time se-
ries of transport data in sequential channel reaches, making it
difficult to directly isolate supply controls on threshold evo-
lution in gravel-bed rivers. Some sources of sediment supply
into a given channel reach, such as shallow landslides a short
distance upstream not triggered by recent precipitation, may
be uncorrelated with channel discharge. However, the tim-

ing and magnitude of many processes that supply sediment
to channels, such as bank failures, debris flows, and shallow
landslides driven by recent precipitation, are likely correlated
with time series of channel discharge (Turowski et al., 2013).
In addition, sediment supplied from farther upstream in a
watershed is transported into a given reach by channel flow.
Seasonal trends in supply (such as from increased hillslope
deposition during winter months), followed by subsequent
snowmelt or storm flow that progressively transports the sed-
iment (e.g., Moog and Whiting, 1998; Mao et al., 2014), may
cause threshold evolution that correlates with cumulative sea-
sonal discharge (e.g., Pretzlav et al., 2020). In other words,
discharge and upstream sediment supply are not entirely in-
dependent over the timescales of threshold evolution due to
floods. Given these correlations between sediment supply de-
livered to a channel reach from upstream and discharge, the
local discharge time series may be able to implicitly account
for some temporal variations in local supply and therefore
may be able to explain some supply-dependent τ ∗c variabil-
ity. The degree of correlation between supply time series and
discharge time series would likely vary among watersheds
based on dominant processes. Future work should attempt to
disentangle how sediment supply influences parameter cali-
brations.

Nonlocal controls on sediment transport will fundamen-
tally limit how well local discharge time series can explain
local sediment transport rate. Previous work demonstrates
that bedload transport is a nonlocal process because the flux
at a location within the channel reflects not only local con-
ditions but also spatial and temporal variations in the flow
and sediment flux from upstream (e.g., Foufoula-Georgiou
and Stark, 2010; Furbish et al., 2017; Martin et al., 2012).
Variability from nonlocality limits the accuracy of all mod-
els for calculating bedload flux at a specific location based
on local shear stress. This challenge is not unique to our
threshold evolution equation. Local flux models also can-
not capture spatial and temporal grain dispersion, which is
as important as advection for understanding bedload trans-
port through river networks and responses to perturbations
(e.g., Bradley, 2017; Pretzlav et al., 2021; Fan et al., 2016).
Our model could be applied to better determine the extent
to which threshold variability (and associated transport rate
variability) is a deterministic function of discharge (as Eq. 1
attempts to represent) and how much of the local transport
rate signal is stochastic variability, influenced by a variety of
interrelated factors including nonlocality and sediment sup-
ply. Future work could also explore how the “memory” of
past conditions at a given location, imperfectly encoded in
τ ∗c , depends on both local discharge variability and nonlocal
supply effects.
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7 Conclusions

Our study presents a flow-history-dependent model for crit-
ical Shields stress τ ∗c (Eqs. 1, 2). Calibrated using a 23-
year record of river flow and the onset of sediment transport
events, our model successfully captures observed trends in τ ∗c
evolution at our field site, including seasonal strengthening,
rapid weakening following large floods, and gradual riverbed
recovery over time. While strengthening processes appear
to be relatively predictable across different years, weaken-
ing mechanisms exhibit greater variability, likely due to the
stochastic nature of high-magnitude floods and external sed-
iment supply effects. Despite these uncertainties, our results
demonstrate that accounting for flow history effects by evolv-
ing τ ∗c has the potential to significantly improve predictions
of sediment mobility and bedload transport compared to a
constant transport threshold.

Building on the development and calibration of the model
described in this contribution, the best-fit model parameter
values found in our study could be used as specific predic-
tions to be independently tested using other field and flume
data; we do not yet know how consistent model parame-
ters may be across gravel-bed channels. Model performance
could also be assessed at the scale of individual events using
continuous bedload measurements, rather than just thresh-
olds at the start of events as done here. The model does not
try to isolate granular interaction-based processes that likely
cause strengthening and weakening but rather lumps pro-
cesses together using empirical parameters. Quantifying the
systematics, inherent variability, and dominant processes in-
volved in bed weakening warrants additional study. We sug-
gest that a combination of discharge-based controls on τ ∗c
(as explored here) and sediment supply controls on τ ∗c (e.g.,
Recking, 2012; Johnson, 2016; Rickenmann, 2020; Ricken-
mann, 2024) may be able to explain much of the determinis-
tic variability in threshold evolution and sediment transport
rates in gravel-bed rivers.
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