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Abstract. Active rock glaciers and landslides are dynamic landforms in high mountain environments, where
their geomorphic activity can pose significant hazards, especially in densely populated regions such as the
European Alps. Moreover, active rock glaciers reflect the long-term thermal state of permafrost and respond
sensitively to climate change. Traditional monitoring methods, such as in situ differential Global Navigation
Satellite System (GNSS) and georeferenced total station (TS) measurements, face challenges in measuring the
rapid movements of these landforms due to environmental constraints and limited spatial coverage. Remote
sensing techniques offer improved spatial resolution but often lack the necessary temporal resolution to capture
sub-seasonal variations. In this study, we introduce a novel approach utilising monoscopic time-lapse image se-
quences and artificial intelligence (AI) for high-temporal-resolution velocity estimation, applied to two subsets
of time-lapse datasets capturing a fast-moving landslide and rock glacier at the Grabengufer site (Swiss Alps).
Specifically, we employed the Persistent Independent Particle tracker (PIPs++) model for 2D image point track-
ing and the image-to-geometry registration to transfer the measured 2D image points into 3D object space and
further into velocity data. For the latter, we use an in-house tool called GIRAFFE, which employs the Al-based
LightGlue matching algorithm. This methodology was validated against GNSS and TS surveys, demonstrating
its capability to provide spatially and temporally detailed velocity information. Our findings highlight the po-
tential of image-driven methodologies to enhance the understanding of dynamic landform processes, revealing
spatiotemporal patterns previously unattainable with conventional monitoring techniques. By leveraging exist-
ing time-lapse data, our method offers a cost-effective solution for monitoring various geohazards, from rock
glaciers to landslides, with implications for enhancing alpine safety. This study marks the pioneering application
of Al-based methodologies in environmental monitoring using time-lapse image data, promising advancements
in both research and practical applications within geomorphic studies.
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1 Introduction

Active rock glaciers are creeping permafrost features
(Barsch, 1996; Kaidb and Reichmuth, 2005), serving as in-
dicators of permafrost distribution in high mountain envi-
ronments (Marcer et al., 2017; RGIK, 2023). Their velocity
results from various parameters, such as topographic condi-
tions, rock glacier material, and internal structure, and it re-
flects long-term, temperature-driven changes in permafrost
structure (Cicoira et al., 2021; Delaloye et al., 2010). Higher
creep rates typically occur towards the lower permafrost
limits, where mean annual air temperatures approach 0°C
(Frauenfelder et al., 2003). They efficiently transport sedi-
ment (Delaloye et al., 2010; Kummert and Delaloye, 2018),
and this becomes more pronounced as rock glacier creep
rates increase in a warming climate (Delaloye et al., 2013;
Pellet et al., 2023). Similarly, large volumes of sediment
can be mobilised by permafrost-affected rock slope failures,
such as deep-seated slides, topples, or deformations that in-
volve in situ bedrock (McColl and Draebing, 2019). This
can pose significant geohazards when direct connections to
downslope infrastructure exist. Precise monitoring of these
fast-moving high-alpine landforms is thus essential for future
alpine safety (Hermle et al., 2022), as it provides information
about the environmental drivers and enhances process under-
standing.

The monitoring of fast-creeping rock glaciers (> 3ma~!,
Marcer et al., 2021) or landslides is particularly challeng-
ing. Traditional techniques that require frequent field access,
such as in situ differential Global Navigation Satellite Sys-
tem (GNSS) measurements, face environmental and logisti-
cal obstacles. Permanent GNSS installations can offer dis-
placement observations with millimetre accuracy at a con-
tinuous temporal resolution, but they may not have the de-
sired longevity on fast-moving landforms due to extreme
cases of block sliding, rotation, and rockfall, necessitating
re-levelling or instrument replacement (Cicoira et al., 2022).
Both GNSS and total station (TS) measurements only mea-
sure discrete points, resulting in a limited spatial distribu-
tion. However, spatial heterogeneity of landform movement
can be expected depending on internal rock glacier struc-
ture and terrain characteristics (RGIK, 2023). Improved spa-
tial coverage can be achieved using remote sensing data,
such as 3D point clouds derived from uncrewed aerial ve-
hicles (UAVs) and terrestrial or airborne laser scanning (TLS
or ALS). These techniques minimise the need for exten-
sive field access, enabling operators to avoid in-person expo-
sure to the fastest-moving areas while still capturing detailed
data from these regions. However, these methods often lack
the temporal resolution necessary to capture sub-seasonal
variations in the landform to its environmental drivers, es-
sential to increase process understanding. Time-lapse im-
agery or webcam data have the capability to capture the
kinematics of alpine landforms with e.g. hourly resolution.
Fixed photogrammetric camera systems, which are increas-
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ingly implemented, involve multiple time-lapse cameras to
reconstruct high-resolution 3D point clouds similar to those
from UAVs or TLS and at a fraction of the cost (Blanch et
al., 2023; Eltner et al., 2017; Ioli et al., 2024; Ulm et al.,
2025). Nonetheless, deploying multiple cameras in dynamic
alpine environments can be challenging, often requiring wide
baselines that complicate point cloud generation (Ioli et al.,
2024). Recent studies have demonstrated that metric mea-
surements can be obtained from 2D images alone when a
3D model is available, reducing the need for extensive cam-
era arrays (Altmann et al., 2020; Elias et al., 2023; Wegner
et al., 2023). Furthermore, monoscopic camera data, which
are more readily available than stereo images, often span
1 decade or more in the European Alps (Kummert et al.,
2018). Generally installed in stable terrain, these cameras
tend to have greater longevity than permanent GNSS instal-
lations. However, most time-lapse camera systems are highly
weather-dependent. Changes in the camera’s intrinsic and ex-
trinsic properties caused by thermal variations (e.g. Elias et
al., 2020) and external disturbances such as snow and wind
are common, significantly affecting the image configuration.
Additionally, maintaining a perfectly stable camera position
over the long term can be very challenging in a dynamic
mountain environment.

Measuring the velocity of boulders in the camera’s field
of view is possible by measuring homologous point corre-
spondences between images in a series, a common chal-
lenge in computer vision called feature tracking using op-
tical flow-based methods and feature matching (Fortun et
al., 2015). Feature tracking is essentially an optimisation
problem, where the location of highest similarity between a
reference template and a template in the destination image
is considered a match (Eltner et al., 2022). Common simi-
larity measures include normalised cross-correlation (NCC)
(Heid and Kiib, 2012) and least squares matching (LSM;
Schwalbe and Maas, 2017). While traditional motion estima-
tion methods are commonly applied in natural hazard man-
agement, they face decorrelation challenges with large dis-
placements, strong illumination changes, and occlusions. Im-
age pre-selection is crucial to minimise illumination vari-
ations (e.g. selecting images from the same time of day),
thereby limiting temporal resolution (How et al., 2020). In
the era of artificial intelligence (Al), traditional feature track-
ing can leverage the power of deep learning. Convolutional
neural networks (CNNs), employed as feature extractors, re-
place handcrafted features or the use of image intensities or
gradients (Hur and Roth, 2020). This approach offers the ad-
vantage of representing each pixel with a high-dimensional
feature vector, blending distinctiveness and invariance to, for
example, appearance changes, thereby improving feature ro-
bustness over time. This enhances, on the one hand, image
feature tracking (e.g. Persistent Independent Particle tracker
(PIPs++; Zheng et al., 2023), VideoFlow (Shi et al., 2023),
Raft (Teed and Deng, 2020)) and, on the other hand, image
matching algorithms, as seen with models such as SuperGlue
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(Sarlin et al., 2020), LightGlue (Lindenberger et al., 2023),
or LoFTR (Sun et al., 2021).

This study aims to derive high-resolution spatiotemporal
landform velocities from monoscopic time-lapse cameras,
verified through permanent in situ GNSS and TS surveys.
We tested the deep learning model called Persistent Indepen-
dent Particle tracker (PIPs++-) (Harley et al., 2022; Zheng
et al., 2023) to track landslide and rock glacier movements
and the Al-based image matcher LightGlue (Lindenberger
et al., 2023) for 2D-to-3D registration. This process is im-
plemented in our in-house, open-source tool, Geospatial Im-
age Registration And reFErencing (GIRAFFE), which ren-
ders synthetic images from scaled 3D point clouds and esti-
mates a linear camera model to match the 2D image perspec-
tive. Originally introduced by Elias et al. (2019) for water
level monitoring using SIFT (Lowe, 2004), GIRAFFE was
later improved with the Al-based SuperGlue matcher (Sarlin
et al., 2020) for multi-modal image-to-geometry registration
(Elias and Maas, 2022; Elias et al., 2023). In this study, we
use the stable and open-source LightGlue matcher and re-
lease the GIRAFFE source code to support flexible, time-
lapse-based velocity analysis. We introduce a novel low-
cost image-based remote measurement technology designed
for challenging and hard-to-access terrains. The proposed
method has been validated for two time-lapse image datasets
by extracting image-based velocity information. Two rapidly
moving alpine landforms, a landslide and a rock glacier, were
observed at the Grabengufer site in Switzerland (Kenner et
al., 2014). We highlight the potential of our methodology to
manage large datasets effectively and enhance the spatiotem-
poral understanding of landform dynamics. Our approach not
only improves analytical capabilities but also facilitates the
use of basic systems, such as monoscopic cameras, for auto-
mated, cost-effective monitoring and quantification of land-
form movements.

2 Study area

The Grabengufer study area features two fast-moving alpine
landforms (Fig. 1a). The upper section (2700-2880 ma.s.1.)
consists of an extensive deep-seated landslide moving up
to 1.5ma~"! (Fig. 1a, blue polygon). According to installed
ground surface temperature (GST) loggers, its mean annual
surface temperature is still below 0° despite recent warm-
ing. The southern part of the landslide is frozen and ice-
saturated (unpublished geophysical data and local inspection
of fresh scars after rockfalls). Maximal intra-annual veloci-
ties are reached around November, and the velocities multi-
plied by 4 (from 0.3 to 1.2ma~") between 2009 and 2024.
However, due to the absence of rock glacier morphology and
the uncertainty of driving factors for the landform’s motion,
we use the generic term “landslide”. The frontal section of
the southern part of this landslide is highly unstable and a fre-
quent source of rockfalls. Downslope, it gradually transitions
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into a zone of very rapid mass movement, referred to as the
“(rock glacier) feeding section”. The transition between these
two areas is gradual, without a clear boundary: the frontal
section marks the upper part of the landslide, where debris of
various sizes detach, while the feeding section moves signifi-
cantly faster and shows no further detachment. Both areas are
monitored by a permanently installed webcam (hereinafter
Wcam04; Fig. 1c, orange polygon). For the purpose of this
study, and to simplify terminology, we do not distinguish be-
tween the two in the analysis and refer to them collectively
as the “frontal feeding section”. The fed rock glacier (2400—
2600 ma.s.l., Wcam05; Fig. 1b, red polygon) is very active
and was considered destabilised during the 1940s and 2000s
(Delaloye et al., 2013). As of summer 2023, in situ measure-
ments indicate that it has again been moving exceptionally
fast at a rate of 91 to 255ma~! (0.25 to 0.70md~"), mark-
ing a third phase of destabilisation. The rock glacier tongue
terminates on a very steep slope section leading into a gully
prone to debris flows, which is observed by a separate web-
cam not included in this study.

3 Dataset description

The site is extensively monitored through bi-annual differen-
tial GNSS surveys (conducted at the end of June and Oc-
tober), several permanent GNSS installations operated by
PermaSense (Cicoira et al., 2022) and Canton of Valais,
10 fixed reflectors for repeated TS measurements (approxi-
mately once a month), three time-lapse cameras operational
since 2010/2013 (Wcam02, Wcam04, and Wcam05), and
three GST loggers. For this study, we used the monthly TS
measurements and a permanent GNSS installed and operated
by the Canton of Valais (providing continuous data saved as
2 h means) to validate the velocities derived from the time-
lapse image sequences. This GNSS uses a local fixed ref-
erence station in stable terrain located approximately 3 km
away and 250 m lower in elevation, to provide accurate dif-
ferential positioning. The image data analysed in this study
were captured by the webcams Wcam04 and Wcam035, pow-
ered by solar panels. The characteristics of these webcams
are summarised in Table 1.

The 3D reference data utilised for image-to-geometry reg-
istration were derived from UAV parallel-axis nadir image
flights conducted using a DJI Phantom 4 RTK. These flights
were performed on 3 July and 22 July 2023 to reference im-
ages from Wcam04 and WcamO5, respectively. The 3 July
dataset consists of 1000 images captured at 85 m above
ground level, yielding a 2.5cm ground sampling distance
(GSD). Four ground control points (GCPs) were used for
georeferencing, with positional errors of 1cm horizontally
and vertically. The challenging terrain limited the inclusion
of additional checkpoints. The 22 July dataset covers a larger
area, extending to the valley, with 1800 images taken at 88 m
altitude, maintaining a similar GSD. Seven GCPs were dis-
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Figure 1. Overview of the Grabengufer study area in the Mattertal, Swiss Alps. (a) The locations of the webcams and the extent of the
studied landforms: the landslide (blue), the frontal feeding section (orange), and the rock glacier (red). (b) Example image from webcam
WcamO05, capturing the rock glacier. (¢) View from webcam Wcam04, focused on the frontal section of the landslide that gradually feeds into
the rock glacier — referred to as the frontal feeding section in this study. (d) Image from webcam Wcam02, which covers a lower portion of
the rock glacier and an adjacent upper gully; this webcam was not used in the present study. (e) Geographic location of the study area within

southwestern Switzerland.

tributed across the site, with two independent checkpoints.
GCP residual errors averaged 4 cm, while checkpoint errors
were higher (7.5 cm horizontal, 9.5 cm vertical). The georef-
erencing of these 3D point clouds employed an integrated
approach, combining RTK measurements of image position
and onboard IMU data. The image blocks were processed
using Structure-from-Motion Multiview Stereo (SfM-MVS)
techniques implemented in Agisoft Metashape v.1.7, result-
ing in high-resolution 3D point clouds enriched with RGB
colour information. Additional GCPs were used to ensure a
stable configuration (e.g. Elias et al., 2024). The resulting 3D
point clouds were resampled to a point spacing of 5 cm. This
resampling facilitated the management of the large volume
of 3D data, comprising hundreds of millions of points, while
preserving detailed topographic representation.

4 Methods

The workflow, visualised in Fig. 2, consists of two main steps
designed to efficiently and accurately derive 3D trajectories
from time-lapse image sequences. Firstly (1), translation vec-
tors (pixel-based trajectories) for predefined tracking points,
either arranged on a regular grid or at specified pixel coor-
dinates, are extracted from the image sequence. In the next
step (2), these 2D trajectories, estimated between consecu-
tive images, are mapped to real-world coordinates using a
3D point cloud of the region of interest, which defines the
reference system (see Fig. 2). This transformation enables
the calculation of 3D coordinates for the tracked points to
generate 3D trajectories. Finally, these trajectories are used
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to compute velocities, with units determined by the temporal
resolution of the input data, such as the time-lapse interval
(e.g. md™ Y

The primary requirement of our workflow is a set of time-
lapse images from fixed or otherwise stabilised cameras,
preferably captured at consistent intervals (e.g. hourly, daily,
or weekly) with date and time information embedded in the
filenames. Additionally, approximate values for the camera
pose and intrinsic parameters, such as focal length and pixel
size, are necessary.

4.1 Application of the Persistent Independent Particle
tracker (PIPs + +)

The first step in our workflow involves feeding the image
sequence into the Persistent Independent Particle tracker
(PIPs++). The Al-based tracker, developed by Harley et
al. (2022) and improved by Zheng et al. (2023), operates
without retraining on our specific data. PIPs++ operates as a
low-level tracker, relying on appearance-matching cues just
like traditional methods (Eltner et al., 2020) but leveraging
the full information that is available from the image sequence
within the temporal window. It employs a 2D residual CNN
for feature extraction in the initial step (He et al., 2016),
generating a feature map for each frame independently of
the image before or after. Following feature extraction, the
algorithm feeds into a deep 1D CNN (ResNet) with fixed-
length kernels applied to arbitrary temporal spans (Zheng
et al., 2023). PIPs++ calculates descriptors and then es-
timates the local similarity of each feature to match them
over time. Using spatial pyramids, it iteratively refines the
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H. Hendrickx et al.: Al-based tracking of fast-moving alpine landforms 709

Table 1. Camera and image dataset specifications.

Wcam04 Wcam05

Camera Camera model Mobotix M12 Mobotix M15
specs Sensor/pixel size (ps) 1/2” CMOS (6.4 x 4.8 mm)/3.1 um

Image resolution 2048 x 1536 px (3.15 MPx)

Focal length (f) 5.4 mm (43 mm in 35 mm equivalent), crop factor 8
Camera Location in CH1903+! X:2628628m, Y: 1104523 m, X:2629114m,Y:1105319m,
pose Z:2790ma.s.l. Z:2870ma.s.l.

View direction (NESW) 100° 235°
Acquisition  Date of installation 01.09.2013 17.01.2011
specs Sampling interval hourly during daylight

Data transmission GSM (Global System for Mobile Communication) internet connection (server storage)

# of images (start-2023) 48 118 51919

Distance to landform 100-350 m 700-1100 m

Approx. image GSD? 0.06-0.21m 0.40-0.63m

Subsample for this study

Weekly images for summer 2022 (06.06 to 10.10.2022, 19 images)

1 CH1903+ is a commonly used Swiss coordinate system. 2 GSD: ground sampling distance. Size of the pixel on the landform of interest.
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Figure 2. Schematic overview of the workflow presented in this study.

position of these matched features, similarly to the RAFT
model (Teed and Deng, 2020). Correlation matrices are cal-
culated to align the feature templates as in already estab-
lished approaches. PIPs++ operates within a multi-frame
temporal context, considering all frames in a temporal win-
dow or batch of size S to search for the target. After a match
is found, the trajectory of the feature within the batch is
updated with one position per frame, resulting in a single
continuous trajectory per batch for that feature. The corre-
lation matrices are recalculated iteratively to refine the track-
ing process. If tracking fails in one frame due to occlusion
(e.g. fog), the trajectory of the feature can still be estimated
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by interpolating the position, provided that the feature reap-
pears in subsequent frames within the batch (as long as the
fog does not last longer than the batch size S; see Fig. 3b).
To increase robustness, the model computes similarity using
multiple templates per feature. This means that the model
not only relies on the feature’s initial appearance in the first
frame but adapts to changes in appearance along the trajec-
tory, i.e. throughout the sequence. If the feature’s appearance
changes, due to snow cover (Fig. 3d), lighting shifts, or ro-
tation, the model can update templates along the trajectory,
storing multiple representations (templates) for the same fea-
ture. This multi-template approach allows tracking to con-
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tinue even with appearance variations caused by environmen-
tal factors such light changes, snow cover, or self-occlusion
(e.g. rolling boulders). Thus, the model handles appearance
changes flexibly and tracks the feature over time using these
multiple templates. The output of the model is a simple tra-
jectory .txt file per frame (see Fig. 2, lower right), with the
pixel coordinates of each tracked point. This file can be visu-
alised on the respective image for visual inspection (Fig. 3).
If a regular grid is used, it is reset each time a new batch
starts.

4.2 From 2D to 3D: image-to-geometry registration
using GIRAFFE

Image-to-geometry registration in GIRAFFE aligns 2D im-
ages with a photorealistic synthetic image rendered from a
3D point cloud. This process enables the transfer of 2D im-
age data into 3D object space by estimating the camera’s pose
within the point cloud’s coordinate system. This subsection
aims to give a brief overview of the processing steps done in
GIRAFFE; for more details, refer to the code documentation
on GitHub.

4.2.1 Synthetic image generation

A synthetic image is rendered from an RGB-coloured 3D
point cloud using an initial estimate of the camera’s focal
length and pixel size. The rendering simulates the real cam-
era perspective while preserving spatial information from the
3D point cloud.

During the process, 3D points are projected onto a vir-
tual image plane using a linear pinhole camera model. Frus-
tum culling defines the view frustum (illustrated in Fig. 4),
while a k-nearest neighbour (kNN) approach addresses gaps
— when no points fall into a pixel — through radiometric
gap-filling. Note that, in computer graphics, a frustum is the
3D volume visible through a camera or perspective projec-
tion, shaped like a pyramid with its top cut off, bounded by
near and far clipping planes. Though these gap-filled pixels
lack actual 3D information, they assist in subsequent image
matching between the real and synthetic image. Once the
synthetic image is generated, it provides a photorealistic de-
piction of the 3D point cloud, matching approximately the
perspective of the original true camera image and retaining
the original 3D information.

4.2.2 Image matching and camera pose estimation

Using LightGlue (Lindenberger et al., 2023), homologous
points between the real and synthetic image are identified
and matched, resulting in a list of corresponding 2D-3D im-
age coordinates. Thereby, a kNN approach is applied to the
synthetic image to find, for each image coordinate, the near-
est valid 3D point, using a default maximum distance of 2.5
pixels.
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These correspondences act as pseudo-control points to
determine the camera pose and intrinsic parameters via
an extended space resection approach, formulated as a
perspective-n-point (PnP) problem. Optimisation is per-
formed using the Levenberg—Marquardt algorithm (imple-
mented in OpenCV v4.10). If the spatial distribution of con-
trol points is sufficient, lens distortion parameters can also be
estimated; otherwise, distortion is neglected.

4.2.3 Accuracy considerations

The accuracy of image-to-geometry registration depends on
the following:

— Point cloud quality. Higher density and accuracy im-
prove precision in space resection.

— Spatial distribution of matches. Uniformly distributed
2D-3D correspondences across the whole image en-
hance model stability, while poorly distributed points
(e.g. along collinear alignments) can degrade results.

— Distance threshold for matching. A lower threshold
(here set to 2.5 pixels) improves precision but reduces
the number of valid matches, affecting robustness.

An automatic distribution control mechanism imple-
mented in GIRAFFE ensures an adequate pseudo-control
point configuration before estimating non-linear camera
models. To achieve this, the image is divided into quadrants,
ensuring a balanced distribution of pseudo-control points
across the image domain. Striking an appropriate balance be-
tween precision and the density of control points is also es-
sential for optimising the overall calibration process. More-
over, GIRAFFE executes image-to-geometry registration it-
eratively, refining the camera model over multiple iterations.
By default, three iterations are performed, balancing com-
putational efficiency and convergence reliability. Each itera-
tion improves alignment of the synthetic image with the real
camera image, improving both the number and spatial distri-
bution of pseudo-control points. This leads to a more stable
camera model adjustment.

4.3 Combining PIPs++ and GIRAFFE
4.3.1 Image pre-processing

We assumed that the poses of both webcams remained stable
over the 19-week observation period. However, we noticed
slight movements of Wcam04 caused by wind, which we cor-
rected using a homography-based transformation. Thereby,
the first image of the time-lapse sequence is considered the
reference to which all subsequent images are registered using
SIFT to estimate the points for homography calculation. This
calculation is done using the RANdom SAmple Consensus
(RANSAC) method to account for potential outliers, such as

https://doi.org/10.5194/esurf-13-705-2025
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Figure 3. Some examples of velocity vectors as output from the PIPs++ model. (a) View of Wcam05, clearly identifying the moving rock
glacier body despite its suboptimal viewing angle. (b) Same view occluded by fog, but tracking is interfered from the image before and after.
(c) Same view displaying a systematic shift in the stable areas due to camera movement. (d) View of Wcam04 proving the good performance

of PIPs++ in varying snow conditions.

moving image features in the area of the rock glacier or land-
slide, which could otherwise introduce errors. The derived
homography is then applied to perform a projective trans-
formation of all consecutive images. In this way, the camera
model can be considered consistent across all images in the
analysed time-lapse sequence; i.e. the images appear as if
they were captured from the same perspective. Accordingly,
we employed GIRAFFE only to the reference image to as-
certain the configuration of the image geometry and utilised
the estimated camera model to reference all pixels tracked by
PIPs++ throughout the sequence in object space.

In contrast to this image-based stabilisation, the camera
model of each image of the time-lapse sequence could have
been calculated independently of the others via GIRAFFE
and then applied to the respective PIPs4+ image measure-
ments. However, this method was not employed due to the
superior robustness of image-based stabilisation, particularly
under poor image quality conditions, such as those caused
by fog. Note that this type of image pre-processing is only
necessary if the camera’s geometry appears to change. Oth-
erwise, Al-based feature tracking can proceed directly from
the initial images.

4.3.2 Image feature tracking and 3D referencing

We used a NVIDIA RTX A6000 GPU with 48 GB of mem-
ory to track 2000 points across a batch size of 19 weekly
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frames on 3MPx-large images before hitting computational
limits. For a temporal window of 19 frames, the same 2000
features were tracked continuously before the grid was reset,
after which tracking restarted with the reset grid as new input.
Processing 400 images with this setup took approx. 2 min.
For validation, specific points of interest, such as boulders
with available GNSS/TS data, were tracked in addition to the
grid points entered into PIPs++-. These specific points were
inserted into the script as pixel coordinates.

Initial camera specifications for the time-lapse webcams
were available from EXIF metadata (i.e. focal length) and
GNSS measurements of the camera housings, which were
used as approximation for the 3D coordinates of the cam-
era projection centres. For the orientation approximation, it
was assumed that the camera was not tiled or rotated along
the lateral axes of the reference system. The viewing angle
related to the geographic view direction (NESW) was deter-
mined by compass. The pitch and roll angles were assumed
to be 90° (looking parallel to the XY plane) and 0° (no rota-
tion around the viewing axis). The image points tracked by
PIPs++ were referenced registering the reference image of
the time-lapse sequence to the 3D object space. The camera
distortion coefficients could not be determined due to an un-
suitable distribution of pseudo-control point observations as
large portions of the image were covered by sky and terrain
not captured in the 3D UAV data (e.g. Fig. 4).
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Figure 4. (a) Visualisation of the image-to-geometry scaling (Elias et al., 2023). (b) Real 2D image from Wcam04 being matched (red
lines) to (c) the rendered synthetic image derived from the UAV data. Matches focus on the image centre (region of interest), ensuring strong
alignment there, while lens distortions remain unmodelled, since no matches are available at the edges, where distortion is expected to be

greater.

The resulting lists of 3D coordinates per timestamp,
matching the PIPs++ feature points, were accompanied by
an identifier that allowed the 3D coordinates to be uniquely
assigned across the timestamps, enabling the estimation of
the per-camera 3D trajectories. Finally, mean velocities in
metres per day were calculated dividing the displacement be-
tween two consecutive 3D points by the time interval (in this
case, 1 week), resulting in a total of 18 weekly velocity mea-
sures per tracked image point.

5 Results

5.1 Geomorphic results

Our image-based 3D trajectory and velocity measurements
were based on two subsets from time-lapse cameras of a
permafrost-affected landslide and its frontal section feed-
ing into a rock glacier. The results for both investigated re-
gions of interest for the entire summer period (6 June until
10 October 2022, 19 weekly images) are shown in Fig. Sa.
As expected from landform displacements, the results show
a largely homogenous flow velocity field with faster ve-
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locities on the rock glacier and in the lowermost part of
the investigated feeding area from the landslide. The feed-
ing area continues downward and is not captured by either
Wcam04 or Wcam05, as evidenced in Fig. 5a. An average
movement of 0.03md~! (0.21 m of absolute movement be-
tween weekly images) was observed across the entire in-
vestigated feeding section, while, in stable and slow-moving
areas, movement was typically below 0.01 md~! (Fig. 5c).
For the rock glacier, the average movement during the sum-
mer period was 0.10md~! (0.70m of absolute movement
between weekly images), with surrounding stable or slow-
moving areas generally showing displacement rates below
0.05md ! (0.35 m of absolute weekly movement). The feed-
ing section exhibits significant spatial variability: the lower-
most part moves fastest (Fig. 5a, b), and, in addition, certain
large boulders travel more quickly than their immediate sur-
roundings — unlike the rock glacier, where movement is more
uniform.

This revealed variability must be considered when using
discrete points from GNSS and TS measurements to charac-
terise landform movement. While the two TS points, used to
validate the WcamO5 velocity estimates, show a similar trend
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(a) summer 2022 (06.06-10.10)
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Stable or slow-
moving area
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section

Figure 5. (a) Velocity results (inmd_l) over the entire summer period (127 d) for both the frontal feeding section (upper area, observed
by Wcam04) and the rock glacier (lower area, observed by Wcam05), displayed on UAV point cloud data, including total station-measured
points (black and white labels) and the permanent GNSS installation (marked with a red location pin). (b) Close-up of the frontal feeding
section (Wcam04). (c) Plot of the weekly velocity distribution for both the frontal feeding section and the surrounding stable or slow-moving
areas (data from Wcam04), showing a clear noise level between £0.007 m d=1 in both regions. Dotted lines indicate the moving areas in
this study. Points in blue display areas moving less than about 0.02 m d~! for the considered time frame of 127 d.

to the overall movement of the rock glacier (Fig. 7b), the per-
manent GNSS reveals a distinctly different movement pat-
tern, with a marked acceleration in velocity at the end of July
that is not reflected in the feeding section’s overall movement
(Fig. 7a).

5.2 Error assessment and validation

The accuracy of the 3D trajectories and velocity derivations
essentially depends on three factors: the reliability of the
PIPs++ feature tracking, the determination of the camera
model by image-to-geometry registration, and the resolution
and accuracy of the 3D point cloud. To assess the accuracy
potential, a comprehensive analysis of all potential sources
of error was necessary. However, due to the numerous al-
gorithms, a classic error analysis is difficult, especially be-
cause Al-based tools such as PIPs++ often do not provide
any information on reliability. We have included the follow-
ing methods in our evaluations:

— Level of detection (LoD). Assessing pseudo-movements
in stable areas resulting from an accumulated error of
PIPs++ measurements and its translation into object
space define a so-called LoD, describing the threshold
of significant movements that could be detected with
our method.

— Theoretical accuracy analysis based on the reprojection
results of GIRAFFE.
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— Validation with ground truth data by comparing our 3D
trajectories based on time-lapse images with GNSS and
TS data serving as ground truth at selected 3D objects.

5.2.1 Level of detection

The LoD was experimentally determined analysing the de-
tected 3D movements in presumably stable or slow-moving
areas (Fig. 5¢). For Wcam04, the designated area lies within
the broader zone of the deep-seated landslide (Fig. 1a, blue
polygon). While this area moves significantly more slowly
than most of the frontal feeding section, its stability is rela-
tive and only valid when considered over a short time frame.
Here we detected an LoD of about 0.007 md ™" or an abso-
lute movement of +5 cm between weekly time-lapse images.
For Wcam03, the LoD was around 0.02m d~! or an absolute
movement of £14 cm between weekly image frames, which
is consistent with the larger camera-to-object distance (Ta-
ble 1).

5.2.2 Theoretical accuracy analysis

For both the stable (Wcam0O5) and software-stabilised
(Wcam04) time-lapse image series, the GIRAFFE software
was employed once to estimate the linear camera model of
the reference image. To assess the precision of the image-
to-geometry registration, GIRAFFE calculates the overall
root-mean-square error (RMSE). This is achieved by pro-
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vV

Figure 6. Validation principle illustrated through direct comparison of two measured point trajectories (ground truth) and their corresponding
trajectories derived from time-lapse images. Illustration of the tracking principle used for 3D trajectory validation. (a) A 5 x 5 pixel grid
around each ground truth captures local movement. (b) Location of the two validation points on the rock glacier observed by Wcam05.

jecting the 3D pseudo-control points used for space resec-
tion back into the image using the estimated camera model
and measuring the mean distances between the original im-
age observations and their projected positions. The RMSE
for Wcam04 and WcamO5 was 4.8 pixels and 4.5 pixels, re-
spectively.

A theoretical accuracy analysis shows that, for Wcam04,
with a camera-to-object distance of 100-350m and GSDs
of 0.06-0.21 m (see Table 2), a 4.8-pixel error leads to po-
sitional errors of 0.3—-1.0m. For Wcam05, at 700-1100 m
with GSDs of 0.40-0.62 m, a 4.5-pixel error results in 1.8—
2.8 m errors. Increased distance amplifies errors from cam-
era geometry uncertainties, leading to higher inaccuracies
for Wcam05. GIRAFFE mitigates this with outlier filtering,
retaining 3D points with reprojection errors under 2.5 pix-
els, corresponding to object space errors of 0.10-0.40 m for
Wcam04 and 1.0-1.2 m for Weam05.

5.2.3 Validation with ground truth data

To validate our method, we used GNSS and TS ground truth
data for selected 3D objects visible in the camera’s field of
view. Objects with movement below the LoD were excluded.
Due to logistical and safety constraints, the ground truth data
does not cover the fast-moving areas of the frontal feeding
section. However, ground truth data is available in the upper
landslide area (Fig. Sb).

For Wcam05, two moving objects on the rock glacier were
suitable for direct validation, while, for Wcam04, a perma-
nently installed GNSS antenna provided a reference. Other
potential objects were either outside the camera’s field of
view or had movements below the LoD. Given the challenge
of precisely identifying the measured ground truth point in
the image data, we tracked 5 x 5 patches, i.e. 25 pixels,
around the presumably image position of the respective ob-
ject (Fig. 6a).

For the two objects in WcamO05, 3D trajectories were re-
constructed across five monthly timestamps, yielding eight
validation measurements. To improve robustness against
noise and outliers, we validated against fitted 3D trajectory
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lines using the detected positions in the five timestamps
rather than the individual 3D point coordinates. This ap-
proach assumes linear motion, which was supported by TS
reference data.

We quantified alignment quality by calculating the stan-
dard deviation of perpendicular distances between measured
points and the fitted trajectory lines. The PIPs++/GIRAFFE
measurements for Wcam05 (Fig. 6b) showed greater noise
than the TS reference data (Fig. 7). However, spatial dif-
ferences and Euclidean distances between vectors indicated
only minor discrepancies, within a few decimetres. This sug-
gests that fluctuations in measured 3D trajectories are ran-
dom rather than systematic errors. Directional differences be-
tween reference and measured trajectories varied by only a
few degrees (Table 2). These discrepancies are likely due to
imaging geometry challenges (linked to camera configura-
tion detailed in Table 1) and occlusion effects caused by the
camera perspective, particularly in the presence of boulders.
For Wcam04, the minimal movement of tracked points lim-
ited trajectory fitting. Instead, accuracy was estimated using
the centre of gravity of the respective 3D point sets. A 1.3 m
offset was observed for Wcam04 (Table 2), which is consis-
tent with the GNSS antenna’s 1.5-2m elevation above the
surface and its position on the opposite side of the boulder.
Because the boulder is roughly the size of a small truck, we
performed validation on the opposite side rather than at the
true antenna location. Despite this, velocity patterns in GNSS
and PIPs+-+/GIRAFFE data remained consistent (Fig. 8a).

6 Discussion and limitations

6.1 General performance of the proposed workflow

The methodology described above has the potential to tackle
entire time-lapse image datasets to determine landform ve-
locities, in this case creeping permafrost landforms. The re-
sults of our workflow show a good agreement with GNSS
and TS theodolite measurements considering the low-grade
cameras used (Table 2, Fig. 7), proving our method to be re-
liable, robust, and fast for creating a better spatial (Fig. 5)
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Table 2. Calculation of fitted 3D trajectories of significant objects tracked over 109 d with GNSS (one point, visible in Wcam04) and over
118d with TS (two points, visible in Wcam05) and with PIPs++ and GIRAFFE in the associated images, taken on the same days as the
GNSS/TS ground truth measurements. SD: standard deviation. Diff: difference.

ID Validation period SD linear line fit SD linear line fit Offset of the Offset in line
GNSS/TS (m) PIPs++/GIRAFFE (m) fitted lines (m) direction (°)
GNSS 18 timestamps (end of June—mid- - - 1.28 -
October 2022)
TS_65 Five monthly timestamps 0.08 0.29 0.25 14.38
(mid-June-mid-October 2022)
TS_73 0.05 0.59 0.14 8.23
+1.10496 Point TS_65 Point TS_65 Point TS_65
” N —&— 30 trajectory (ground truth, TS)
P08 xz view %1 vz view 30 trajectory (median, PIPs+-+/GIRAFFE)
62 o ——- Fitted 3D trajectory TS
P - Fitted 3 trajectory PIPs-++/GIRAFFE
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Ess E B
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Figure 7. Comparison of 3D trajectory estimations from theodolite measurements (TS) and tracking data (PIPs++/GIRAFFE) across dif-
ferent 2D projections for two points (named 65 and 73). The XY, XZ, and YZ views show individual point trajectories with their respectively
fitted 3D lines. Light-grey lines represent all time-lapse trajectories, while blue and orange markers correspond to the theodolite and median
of the tracking data, respectively. Dashed lines indicate the best-fit linear 3D trajectory for each method.

and temporal (Fig. 8) coverage of the landform’s displace-
ment. Our pilot study demonstrates that significant motion
and velocity information can be rapidly extracted using Al-
based methods from a basic, cost-effective device such as a
single webcam, greatly enhancing temporal acquisition fre-
quency without the need for a camera array. Spatial hetero-
geneity of landform movement is evident as well, includ-
ing instances where larger boulders move faster, seemingly
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“surfing” on the main landslide body. This phenomenon, il-
lustrated in Fig. 8a, is supported by in situ GNSS data, which
indicate faster movement compared to the overall landform.
If this pattern were seen across the entire landform, it could
suggest motion linked to permafrost creep or specific move-
ment in the active layer, often triggered by significant wa-
ter input from snowmelt or rainfall (RGIK, 2023). However,
the movement is mostly restricted to large boulders, possibly
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Figure 8. Graphs showing weekly velocities and cumulative distances of tracked points measured using the PIPs+-+/GIRAFFE workflow,
including validation against ground truth data. (a) Feeding section (Wcam04) and (b) rock glacier (Wcam05) during summer 2022, derived
from time-lapse imagery. Note that the data from 26 October are excluded from panel (a) due to foggy conditions and were interpolated by the
model. Validation points, marked with a solid blue line, represent measurements from a permanent GNSS antenna installed on a large boulder
in the upper feeding area (a) and one theodolite point on the rock glacier (b). The corresponding tracked points by PIPs++/GIRAFFE are

displayed with a solid orange line.

pointing to a gravitational origin due to the steep terrain. The
uppermost landslide area and the lower rock glacier are pre-
sumably driven primarily by permafrost creep. However, the
driving mechanisms of the frontal feeding section observed
by Wcam04 remain unknown. To better understand the fac-
tors controlling velocity changes and the overall behaviour
of these landforms, further investigation into environmental
drivers such as rainfall and temperature is necessary — espe-
cially considering the exceptionally warm and dry summer
of 2022, which featured consecutive heat waves. Our devel-
oped method provides a framework for such future research,
enabling the analysis needed to address these open questions.

Although our proof of concept did not achieve the millime-
tre to centimetre accuracy of GNSS and TS measurements,
we were still able to detect absolute displacements of 5 and
14 cm between consecutive frames (in our case weekly) us-
ing the setups of Wcam04 and WcamO5, respectively (Ta-
ble 1). The measurements at the rock glacier (Wcam05) have
a significantly lower spatial resolution (41 vs. 364 points
tracked in the feeding area) due to the greater distance of the
webcam from the area of interest and its suboptimal view-
ing angle (Fig. 1b). The increased distance also made the
measurements more sensitive to slight camera movements,
which, along with the lower LoD, likely contributed to some
of the higher variation in computed rock glacier velocity
(Fig. 7b). The output of our workflow yields a sparse point
cloud for every image frame in the sequence with absolute
distance and velocity information as a scalar field, as visu-
alised in Fig. 5. This provides a great amount of spatial and
temporal data in a manageable file format suitable for big
data.

The superior performance of the PIPs++ model stems
from tracking multiple time steps jointly instead of frame by
frame, enhancing temporal smoothness and coherency and
improving flow estimation accuracy (Hur and Roth, 2020).
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This makes PIPs++ especially suitable for environmental
applications, where, for example, changes in light conditions
are a common problem. Moreover, PIPs++- is trained on a
very large and diverse artificial dataset, PointOdyssey (Zheng
et al., 2023), including rendered dynamic fog to account for
(partial) occlusion and realistic in- and outdoor scenes. This
is entirely absent from other synthetic datasets such as the
FlyingChairs dataset, which was utilised to train models such
as FlowFormer (Huang et al., 2022) or GMFlow (Xu et al.,
2022), i.e. transformer-based models, and justifies our use of
PIPs++ as a tracker in this proof of concept without the need
to re-train the model with a sample of our own data. While
previous research, using monoscopic images to track a land-
slide (Travelletti et al., 2012) and a rock glacier (Kenner et
al., 2018), was prone to mismatches because of its frame-by-
frame strategy, our approach surpasses this limitation and at
the same time makes it possible to process longer time peri-
ods and handle big data collected by hourly webcams more
adequately. By tracking points in stable areas using either
hand-crafted point operators such as SIFT or Al-based meth-
ods, shifts in camera position, a common problem in long
time-lapse imagery sequences, can be corrected to some de-
gree to stabilise the image sequence by software. When using
PIPs++ and GIRAFFE, two options exist to deal with cam-
era movements: (a) image stabilisation by software or (b) in-
dividual referencing of each time-lapse image, i.e. running
GIRAFFE image per image. The correction based on image
pixels is frequently accomplished through the calculation of
a homography to match a reference image. However, because
the method assumes a planar scene, it can only partially com-
pensate for perspective distortions caused by camera move-
ments. Consequently, it is suitable for smaller movements.
In cases of stronger movements, we recommend calculating
the camera model for each individual image of the image se-
quence. As a result, even major changes in perspective should
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be handled adequately when translating the image measure-
ment into object space.

6.2 Limitations

As PIPs++ still relies on appearance-matching cues similar
to traditional methods, it remains sensitive to abrupt changes
in appearance, such as substantial variations in snow cover or
alterations in surface morphology due to e.g. extensive rock-
falls. This issue was also highlighted as a major limitation
by Kenner et al. (2018). However, because the algorithm can
quickly process large amounts of data, we can leverage the
full temporal resolution, allowing tracking to succeed as long
as snow cover changes gradually, as shown in Fig. 3d.

Another important limitation of our approach is that
PIPs++ does not perform well in detecting movements for
every pixel in the image due to the use of a regular grid com-
pared to other frame-to-frame approaches. Currently, a reg-
ular grid size of 2000 points per image is used, limited by
computational power. While PIPs++ works well with the
low-resolution images in this study, higher-resolution images
quickly reach the limits of our available computational re-
sources. One major limitation is the need for specific and ex-
pensive computational setups (e.g. a NVIDIA RTX A6000
GPU with 48 GB). Even with these resources, increasing the
temporal window, image resolution, and tracked points can
quickly hit the limits. Considering appropriate GPU and CPU
computational power, around 15 min was needed to process
the example dataset of this paper in an end-to-end fashion,
from raw time-lapse images to velocity graphs. The major-
ity of this time is needed to scale the output of the PIPs{+
model with GIRAFFE, which is highly dependent on the size
of the 3D point cloud.

Ideally, the 3D point cloud used in GIRAFFE for image-
to-geometry registration reflects the imaging situation at the
time of the time-lapse image measurements, thereby avoid-
ing intersection errors resulting from significant changes in
surface topography (Fig. 9). Despite the temporal gap of ap-
proximately 1 year between the time-lapse image subsets and
the 3D data, we assume that the overall topography has re-
mained largely unchanged. Moreover, significant errors aris-
ing from potential discrepancies between the image content
and the 3D surface are expected to be rejected in the out-
lier analyses in GIRAFFE. Such mismatches are unlikely to
align with the estimated camera model, as the model calcu-
lation relies on pseudo-control points that are more evenly
distributed and exhibit strong agreement between the image
content and the object surface. Nevertheless, minor inaccura-
cies caused by isolated structural changes (e.g. displacement
of boulders) cannot be entirely ruled out. Such discrepancies
can only be identified when analysing the movement trajecto-
ries as a whole. Furthermore, the quality of the image-based
3D trajectories is heavily correlated to the quality of the point
cloud data.
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Additionally, a suboptimal oblique viewing angle, such as
with WecamO5 (Fig. 1b), can complicate the matching pro-
cess, as the rendered view will be limited to a narrow strip.
This can affect the distribution of matches and compromise
the estimation of the camera’s interior orientation and lens
distortions (Elias et al., 2019).

There is still potential to optimise the proposed workflow
to achieve full automation for processing entire image se-
quences. This includes automatically detecting moving and
stable areas, which currently relies on user-defined criteria
and thus depends on prior site knowledge. Additionally, we
need to conduct further investigations into the in-field cali-
bration of intrinsic camera parameters, especially the image
distortion, and their stability over time (Elias et al., 2020).
Improvements in 2D-to-3D tools (like GIRAFFE) also bene-
fit other disciplines, such as the quantitative analysis of his-
torical terrestrial photographs for mapping historical rock-
falls (Wegner et al., 2023) and changes in glacier forefields
(Altmann et al., 2020).

The developed workflow could prove valuable for
analysing monoscopic time-lapse image sequences of other
dynamic processes, such as lava flows (James and Robson,
2014), solifluction and gelifluction movements (Matsuoka,
2014), and flow velocities in rivers (Eltner et al., 2020;
Stumpf et al., 2016). Given the prevalence of time-lapse cam-
era data collection, a rapid and efficient method for automati-
cally processing such extensive datasets holds significant sci-
entific relevance. Furthermore, the fast and robust processing
of the time-lapse imagery makes it possible to function as an
early warning system when processing can be carried out in
near real-time, as indicated by Kenner et al. (2018).

7 Conclusions

This proof of concept demonstrates the potential of Al-based
algorithms for tracking and matching points to improve mo-
tion estimations in time-lapse image sequences of a moun-
tain landscape. Two fast-moving alpine landforms — a land-
slide and a rock glacier at the Grabengufer site in Switzer-
land — were selected as the pilot study area. The initial results
presented in this paper show that robust and reliable veloc-
ity information can be quickly derived with minimal input
data and user intervention. Our pilot study opens the door
to processing entire image datasets to reveal spatiotemporal
patterns that traditional monitoring methods have previously
overlooked, due to their limited spatial or temporal resolution
and the inadequate computational and algorithmic power to
handle large image datasets.

The PIPs++ model, used for tracking features in image
sequences, excels in widening the temporal window and in-
cludes a template update mechanism that allows changes in
feature appearance. Its key advantage is its ability to ac-
curately estimate occluded trajectories within the temporal
frame, avoiding suboptimal matches and enhancing track-
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Figure 9. Illustration of the georeferencing validity issue when using a 3D point cloud acquired at time fq to transfer image measurements
from a time-lapse image captured after significant topographic changes. In this example, boulders present during the initial 3D data acquisi-
tion have since disappeared. Consequently, image rays intersect the outdated modelled topography, resulting in erroneous coordinates. These
errors propagate into derived 3D trajectories and velocities. The greater the topographic changes between the reference data and affected
image measure, the larger the error. Therefore, the reference topography should ideally reflect the conditions at the time of image acquisition.

ing accuracy, making it especially robust for environmen-
tal applications and eliminating the need for filtering blurry
or foggy images as a pre-processing step. Additionally, the
model’s rapid performance, processing 400 images in 2 min
to track features through a temporal window of 19 frames,
is promising for handling large datasets and developing early
warning systems. The image-to-geometry approach, imple-
mented in GIRAFFE, provides an accurate way to scale the
2D image data into 3D object space, even under suboptimal
camera viewing angles and distance to the area of interest.

This paper represents an important step forward in using
monoscopic cameras and leveraging previously captured data
that have not been processed automatically with metric val-
ues before. By significantly enhancing temporal acquisition
frequency using basic time-lapse imagery, we can achieve a
level of data resolution that would be expensive with in situ
differential GNSS and georeferenced TS measurements or
UAV and TLS or ALS methods. Our approach provides a
spatially continuous understanding of landform movement.
It allows data acquisition in areas where in situ measure-
ments are impractical due to logistical and safety constraints
and where other remote sensing techniques fail due to high
landform displacements. Furthermore, depending on the im-
age resolution, distance to the landform, and its velocity, our
approach can achieve a sub-seasonal resolution of velocity
information with an accuracy of several centimetres. This
study introduces a new open-source tool for scientists to au-
tomatically extract metric information from existing webcam
datasets, extending its applicability to further environmental
process observations.

Code availability. Part of this work is based on existing algo-
rithms, available at https://github.com/aharley/pips2 (Harley, 2023)
for PIPs++ and https://github.com/cvg/LightGlue (Computer Vi-
sion and Geometry Lab (CVG, ETH Ziirich), 2023) for the Light-
Glue matching algorithm. GIRAFFE is available at https://github.
com/mel-ias/GIRAFFE (Elias, 2024). The code used for this proof
of concept is partly available at https://github.com/hannehendrickx/
pips_env (Hendrickx, 2024). Please follow this repository to receive
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further updates. All code is available upon reasonable request to
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