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Abstract. Soil erosion is a significant threat to agricultural food production. Determination of erosion rates
is essential for quantifying land degradation, but it is challenging to determine temporally dynamic erosion
rates over long time scales. Optically Stimulated Luminescence (OSL) dating can provide temporally-resolved
deposition rates by determining the last moment of daylight exposure of buried colluvial deposits. However,
these deposition rates may differ substantially from the actual hillslope erosion rates.

In this study, hillslope erosion rates were derived from OSL-based deposition ages through inverse modelling
with soil-landscape evolution model ChronoLorica. This model incorporates geochronological tracers into simu-
lations of soil mixing and redistribution. The model was applied to a closed catchment in north-eastern Germany,
which has experienced tillage erosion over the last 5000 years. Previously reconstructed pre-erosion topography
and land-use history, with known uncertainties, allowed for an uncertainty analysis to quantify the impacts of
various sources of uncertainty on the model output.

The inverse modelling provided local tillage parameters for different land-use phases that aligned well with
a global compilation from comparable studies. The simulated erosion and deposition rates, which increased by
two order of magnitude over time, correspond well with independent age controls at both the catchment and
point scales. On average, deposition rates were 1.5 times higher than the erosion rates, with recent increases up
to five times, indicating that deposition rates cannot be used as direct proxies for erosion rates. The uncertainty
analysis showed that the initial topography was the dominant source of variance in the model output, followed
by land-use history and model parameters. Reconstruction of these initial and boundary conditions with their
uncertainty is essential for representing uncertainty in model output and avoiding overconfidence in the model.
This study demonstrates the suitability of ChronoLorica for upscaling experimental geochronological data to
better understand landscape evolution in agricultural settings.

1 Introduction

Soil erosion is one of the main threats to agricultural land
and food provision, because it reduces agricultural produc-
tivity by loss of fertile soil (Rhodes, 2014). Soil erosion is
not only a problem of recent times. Already in the prehis-
toric, the first land use activities, such as deforestation and
manual hoeing, triggered soil loss by removing the protec-
tive vegetative cover and loosening up the soil (Dreibrodt et
al., 2010; Vanwalleghem et al., 2017). With developments in
agricultural practices and an increase in food demand, agri-
cultural activity and consequently soil erosion increased over

time. In current intensively managed landscapes, where land
use is heavily mechanized, averaged rates of soil loss can ex-
ceed 15 t ha−1 a−1 (Nearing et al., 2017).

Historical anthropogenic erosion rates were significantly
lower compared to modern-day rates, yet their cumulative
impact over centuries of agricultural use may have con-
tributed substantially to overall land degradation. It is in-
herently challenging to resolve temporally dynamic erosion
rates over long time scales, especially in systems where land
use and erosion rates have changed over time (Loba et al.,
2022). Geochronometers such as radionuclides can provide
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erosion rates that are averaged over timescales that depend
on their half-lives, such as cosmogenic nuclides (Granger
and Schaller, 2014), or on the moment of introduction in the
landscape, such as fallout radionuclides (Mabit et al., 2008;
Peñuela et al., 2023). Other geochronometers, such as radio-
carbon dating or optically stimulated luminescence (OSL)
dating do have the ability to provide temporally resolved
rates by dating layers from different depths. However, these
techniques provide deposition rates instead of erosion rates,
as they rely on deposited or buried material. These deposi-
tion rates can act as proxies for erosion rates, but will also be
affected by other factors, such as the ratio between erosional
and depositional area, the sedimentological connectivity of
the hillslope and the capacity to store sediments in deposi-
tional locations. Deposition rates can therefore deviate sub-
stantially from the actual erosion rates, which could lead to
erroneous evaluation of land degradation.

In this work, deposition ages determined with OSL dating
will be translated into erosion rates using inverse landscape
evolution modelling. OSL dating measures the built-up lumi-
nescent signal in soil minerals (often quartz or feldspar), that
accumulates due to ionizing radiation in the subsurface and
incoming cosmic radiation. The luminescence signal resets
when the soil particle is exposed to daylight and is therefore a
proxy for the duration of burial (Murray and Roberts, 1997).
Advances in numerical soil-landscape evolution models en-
able the tracing of geochronometers such as OSL particles
and radionuclides with simulated mixing and transport pro-
cesses over decadal to millennial timescale (e.g. Furbish et
al., 2018; Van der Meij et al., 2023). Through inverse mod-
elling, soil mixing and erosion rates could be derived from
OSL ages. For transient landscapes, such as agricultural land-
scapes, such a modelling exercise requires detailed informa-
tion on the major erosion processes that occur in the land-
scape, the initial shape of the terrain and land use history
during the evolution of the landscape (Tucker and Hancock,
2010; Perron and Fagherazzi, 2012; Finke et al., 2015). These
initial and boundary conditions come with uncertainty, espe-
cially when they have to be reconstructed beyond timespans
where observations are available. This uncertainty should be
quantified and incorporated in simulations of soil and land-
scape evolution to better convey our confidence in the model
results (Perron and Fagherazzi, 2012; Minasny et al., 2015).
Through comparison with independent data and age controls,
the validity of the calibrated parameters and their uncertainty
can be tested (Temme et al., 2017).

The objectives of this paper are to test (1) whether OSL-
based deposition ages can be translated into erosion rates
through inverse soil-landscape evolution modelling, (2) how
these rates are affected by uncertainties from initial condi-
tions, boundary conditions and calibrated parameters, and
(3) how the reconstructed rates compare to rates derived from
other geochronological methods. The simulations were per-
formed with soil-landscape evolution model ChronoLorica,

which couples geochronological tracers to simulations of soil
redistribution (Van der Meij et al., 2023).

2 Study area

2.1 Site description

The study area is the agricultural landscape laboratory
CarboZALF-D (Fig. 1, Sommer et al., 2016). This site is lo-
cated in the young morainic landscape in north-eastern Ger-
many, which formed after the last glacial retreat in the We-
ichselian around 19 ka ago (Lüthgens et al., 2011). The par-
ent material is illitic, calcareous glacial till. Annual rainfall is
around 480 mm and annual mean temperature is 8.7 °C. The
first agricultural practices started around ∼ 5 ka ago, with in-
tensification in the last 1000 years (Kappler et al., 2018; Van
der Meij et al., 2019; Öttl et al., 2024). The area remained
under agricultural use until it was converted into a landscape
laboratory in 2010. Now, only certain sections are still culti-
vated.

CarboZALF-D is a closed kettle hole catchment, mean-
ing that almost all eroded sediments are stored in the central
depression, providing unique opportunities for studying ero-
sion processes and landscape reconstruction. This includes a
reconstruction of the paleo-topography before anthropogenic
erosion using truncation of soil profiles (Van der Meij et
al., 2017), determination of deposition rates and patterns us-
ing optically stimulated luminescence (Van der Meij et al.,
2019), determination of short-term and long-term erosion
rates using 239+240Pu and meteoric and in-situ 10Be (Calitri
et al., 2019), and determination of recent erosion rates using
137Cs (Aldana Jague et al., 2016). Altogether, this resulted
in a large geochronological dataset covering different spatial
and temporal scales (Fig. 1).

2.2 Landscape evolution at CarboZALF-D

CarboZALF-D underwent a complex landscape evolution.
Van der Meij et al. (2019) identified five different periods
of plough use and land-use intensity (Table 1) and dated 32
OSL samples from five different locations in the colluvium
(Figs. 1 and 2). Based on the datings and land-use history,
they could identify two distinct layers of colluvium (Fig. 2).
The first layer of old colluvium, with ages from 5 ka up to
300 a, was deposited at the fringes of the colluvium, but did
not reach into the central kettle hole. This centre area was
probably too wet for agricultural practices, as identified by
the peaty layer that is still present under the colluvium. Fol-
lowing drainage at the start of the 19th century to increase
agricultural acreage, the central depression became accessi-
ble for agricultural practices. Continued erosion in the catch-
ment, including re-erosion of the old colluvium, led to the
deposition of a younger layer of colluvium in the central de-
pression, that also covered the older colluvium at the fringes
(Fig. 2). With modernization of agricultural tools and in-
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Figure 1. Map of the study area CarboZALF-D, showing the locations where the geochronological samples and soil descriptions were taken.
The grey shaded areas indicate where colluvium and peat are currently present.

creased tractive power, recent erosion rates far exceed the
(pre-)historical erosion rates (Sommer et al., 2008; Van der
Meij et al., 2019). Overall, the hillslopes experienced an av-
erage erosion of 30 cm and the colluvial layers are on av-
erage 51 cm thick (Van der Meij et al., 2017). Most erosion
occurred where the slope gradients increased around the cen-
tral depression. The upper parts of the slope experienced less
erosion. Deposition mainly occurred in the central depres-
sion, but there are also small colluvial patches located on the
hillslopes. The reconstructed elevation changes are provided
in Fig. 5a.

The CarboZALF-D catchment was split by a railroad con-
structed around 1900 CE. The southwestern part of the catch-
ment is relatively flat and most soil profiles are still intact
(Van der Meij et al., 2017). Therefore, the assumption in this
paper is that that part didn’t contribute substantially to the
build-up of the colluvium in the central depression. It was
therefore left out of the analysis.

2.3 The erosion processes

In the young morainic landscape of north-eastern Germany,
tillage is currently the dominant erosion process and played a
substantial role in the past as well (Aldana Jague et al., 2016;
Van der Meij et al., 2019; Wilken et al., 2020; Öttl et al.,
2024). This is best expressed in the erosion and deposition
patterns, with most intensive erosion on convex hillslopes
and deposition in concave positions (De Alba et al., 2004),
which are observed in current agricultural landscapes and

Figure 2. Positions of the OSL sampling locations projected on a
SE–NW transect through the colluvial infilling of the depression.
The indicated ages, corresponding to the modes of the measured
age distributions, were used for the inverse modelling in this study.

in comparable long-term (> 240 a) forested landscapes (Van
der Meij et al., 2017; Calitri et al., 2020, 2021). These find-
ings indicate that diffusive soil transport, caused by tillage
erosion, has been the dominant erosion process in the study
area. There are no visible traces of water erosion in the sedi-
ments, probably due to reworking of the sediments after de-
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Table 1. Overview of reconstructed land management history at CarboZALF-D. Periods of different plough uses with corresponding mixing
depths and their uncertainties are indicated. Modified from Van der Meij et al. (2019).

Management type Introduction year of Mixing Corresponding
management type depth (cm) tillage parameter

Ard plough 3700–3200 BCE 5–7 TIpot_1

Medieval mouldboard plough 200–900 CE 8–15 TIpot_2

Early modern mouldboard plough 1795–1800 CE 15–17 TIpot_3
Contemporary mouldboard plough 1954–1965 CE 25–30
Current mouldboard plough 1989 CE 20

Artificial drainage 1787–1826 CE – –

position by tillage. Therefore, and to facilitate the modelling
exercise, tillage is considered the sole erosion process in this
study.

3 Methods

3.1 ChronoLorica

3.1.1 Model architecture

Soil-landscape evolution model ChronoLorica was used
for simulating the landscape evolution (Van der Meij and
Temme, 2022; Van der Meij et al., 2023). ChronoLorica is
based on soil-landscape evolution model Lorica (Temme and
Vanwalleghem, 2016), with the addition of a geochrono-
logical module. This module couples the soil and land-
scape forming processes to the redistribution of different
geochronometers, in this case particle ages that are analo-
gous to OSL ages. The landscape surface is represented by
a raster-based elevation model. Below each raster cell there
is a pre-defined number of soil layers. Inside each layer,
the model keeps track of five texture classes (gravel, sand,
silt, clay, fine clay). Changes in the mass of the soil con-
stituents due to additions or removals is converted into a
change in layer thickness and consequently elevation of the
surface through the bulk density. The original Lorica model
uses a pedotransfer function from Tranter et al. (2007) to
calculate bulk density. This function predicts bulk densities
of 1570± 40 kg m−3 for the parent material of CarboZALF-
D, which is a systematic underestimation of measured bulk
densities of 1720± 110 kg m−3 (Van der Meij et al., 2017).
Therefore, a constant bulk density of 1720 kg m−3 was ap-
plied in this study. A more detailed description of the
model architecture can be found in Temme and Vanwal-
leghem (2016) and Van der Meij et al. (2023).

The model results a three-dimensional representation of
the soil landscape at different timesteps. This representation
includes information on geochronometers at different depths,
which facilitates comparison between simulated and mea-
sured depth functions of luminescence ages. This is not pos-
sible with most other landscape evolution models that only

consider two-dimensional landscape surfaces without depth
information.

3.1.2 Process descriptions

In ChronoLorica, tillage is simulated as a two-part process.
The first part addresses the soil mixing. Over the range of
the plough depth pd [m], soil layers are completely homog-
enized. This includes the mineral soil, organic components,
stocks of radionuclides and particles with OSL ages.

The second part addresses lateral soil translocation by
tillage. Tillage erosion and deposition follows a linear
diffusion-type equation (Eq. 1, Govers et al., 1994). The
transport of tilled material to a lower-lying neighbouring cell
(TIlocal, [m]) is a function of the potential tillage parameter
TIpot [–], local slope3local [m m−1] and the plough depth pd.
TIpot is distributed over all lower-lying neighbouring cells J ,
proportional to their slopes 3j .

TIlocal = TIpot
3local∑J
j=13j

×3local× pd (1)

This formulation was used instead of the conventional diffu-
sion Equation from Govers et al. (1994), because it explic-
itly considers the effect of plough depth on tillage redistri-
bution. In Govers et al. (1994), this is included in the tillage
transport coefficient ktil. Both equations are equivalent and
can be transformed into each other through a bulk density
and plough depth value. The model works with an annual
timestep. After every tillage operation, the elevation model
is updated with the additions and removals of soil materials.
This also affects the slope gradients, which will be different
in each calculation step.

ChronoLorica’s particle age module keeps track of the lo-
cation of a finite number of OSL particles throughout the
simulations. The fate of the OSL particles is coupled to the
sand fraction in the model, which is the fraction that is com-
monly selected for OSL dating. The age of the OSL particles
increases with one year for every simulation year. The age
of particles present in the surficial bleaching layer is reset
to 0 every simulation year. Because the model works with
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a finite number of particles, a stochastic approach is used
to determine whether an OSL particle is transported from
a layer together with the bulk sediment. The uncertainty of
this stochastic approach is constrained by simulating a large
number of particles (∼ 150) per layer. The probability that
a particle is transported by vertical or lateral redistribution
processes (Ptransport) is equal to the mass of redistributed sand
[kg] divided by the total mass of sand in the source layer [kg]
(Eq. 2).

Ptransport =
sand redistributed
total sand present

(2)

3.1.3 Parametrization

The parent material of the soils was based on average par-
ent material properties from CarboZALF-D soils (53 % sand,
34 % silt, 13 % clay, Van der Meij et al., 2017). The initial
topography was derived from reconstructions based on soil
profile truncations and colluvial additions to the current land-
scape (reconstruction 2c in Van der Meij et al., 2017). The
initial soil profiles were 2 m deep, consisting of 40 layers of
5 cm. The amount of OSL particles was set to ∼ 150 grains
per layer and the bleaching depth was set to 5 mm, which was
based on model-based estimates (Furbish et al., 2018) and
is in line with light penetration depths in rocks (0–15 mm,
Meyer et al., 2018). Simulations were 5000 years with an
annual timestep, through which plough depth and tillage in-
tensity changed based on values in Table 1 and the calibrated
tillage intensities (Sect. 3.2). To mimic the two-stage land-
scape evolution at CarboZALF-D, the central kettle hole,
with the size of the current peat extent, was only included in
the last ∼ 200 years, following the artificial drainage. Model
output was provided every 100 years during most of the sim-
ulations and every 10 years after the artificial drainage.

3.2 Inverse modelling

The unknown parameter in the tillage equation (Eq. 1) is the
potential tillage parameter TIpot. This parameter was cali-
brated using the OSL dates from Van der Meij et al. (2019)
through inverse modelling. Samples taken from the soil
buried below the colluvium were excluded, leaving 27 OSL
samples from five locations (Fig. 2). To account for changes
in TIpot in time, the periods of different management types
were aggregated to three periods with each their own poten-
tial (but unknown) tillage rate TIpot (Table 1). For each pe-
riod, the average introduction year and plough depth were
used in the inverse modelling. The first period is the ard
plough period, from the start of the simulations (3000 BCE)
until 550 CE, with seven OSL dates covering this timeframe.
The second period is the Medieval mouldboard plough, last-
ing until 1800 CE. There are no OSL dates that fall in this
period, probably because sediments from this period located
on the fringes of the depression have been re-eroded when
the central depression was reclaimed. It was still possible to

calibrate a TIpot for this period based on the total amount
of sediments that was required for filling the central depres-
sion without eroding the fringes beyond where the OSL dates
from period 1 were located. The final period lasted until the
end of the simulations and represents the use of the mod-
ern mouldboard plough. For this period 20 OSL dates were
available.

Due to the intensive mixing during erosion, transport and
deposition, the OSL-age distributions show a clear mode
that corresponds to the depositional event (Van der Meij
et al., 2019). Therefore, the model was calibrated on the
modal ages of the age distributions. For each OSL sample,
the equivalent layer at the same location and same depth in
the simulated soil landscape was identified and the mode of
its simulated age distribution was derived. For samples for
which there was no equivalent layer, for example due to too
thinly simulated colluvium, a dummy age of two times the
simulation time was used to ensure that such an error was
penalized heavily. The three TIpots were calibrated by min-
imizing the mean absolute error (MAE) between the modes
of the measured and simulated age distributions.

3.3 Uncertainty analysis

There are several sources of uncertainty in this inverse mod-
elling exercise, stemming from model set-up, model input
and calibration and model evaluation (Perron and Fagher-
azzi, 2012; Temme et al., 2017; Skinner et al., 2018). It is
uncommon in landscape evolution studies to address all these
sources of uncertainty, as there is often limited or no infor-
mation to quantify their uncertainty. The CarboZALF-D area
provides a unique setting for assessing the effects of uncer-
tain initial and boundary conditions and parameter sets on
model output, as the initial and boundary conditions are re-
constructed and their uncertainties are well-known, the land-
scape evolution is complex but only subject to one main pro-
cess and there is independent data for verifying the calculated
erosion and deposition rates.

In this study, I performed an uncertainty analysis to quan-
tify the contributions of uncertainty from initial conditions,
boundary conditions and the calibrated parameters on the
model outputs (Fig. 3). The effect of other sources of un-
certainty on the model outputs are discussed in Sect. 5.

For the reconstructed initial topography, 10 realizations of
interpolated soil and colluvium thickness (Van der Meij et
al., 2017) were made using Sequential Gaussian Simulation
with the gstat package version 2.1-1 (Pebesma and Gräler,
2023), which randomly samples unique initial landscapes
from within the interpolation uncertainty. For the boundary
conditions, 10 land use histories with corresponding plough
depths were randomly sampled from the values in Table 1,
assuming uniform distributions for each range of values. For
the model parameters, the 10 parameter sets for TIpot_2 and
TIpot_3 that resulted the lowest calibration errors were se-
lected. Variation in TIpot_1 was not considered, as this param-
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Figure 3. Workflow for the inverse modelling and uncertainty analysis in this study. Rectangles indicate data sources or results, while
diamonds indicate methods and calculation steps.

eter showed a clear optimal value, while the other parameters
showed similar results for different parameter sets. The com-
bination of the different initial topographies, land use histo-
ries and parameter sets produced 1000 unique model runs,
which were used to quantify the sources of uncertainty and
to present the mean and error ranges of rates of landscape
change.

An ANOVA (analysis of variance) was conducted to quan-
tify the contribution of the different sources of uncertainty
to the variance in total erosion and total deposition. The
analysis considered three groups of parameters, representing
the initial conditions, boundary conditions and the param-
eter sets. These groups were used as independent variables
in a linear model, with the total erosion or total deposition
as dependent variable. The Sum of Squares of the ANOVA
was then used to calculate the relative contributions of each
group to the total variance. Assumptions of normality and
homoscedasticity for the linear model and the ANOVA were
tested with residual plots and QQ plots and were met.

3.4 Model evaluation

The simulated topographical changes and erosion and depo-
sition rates from ChronoLorica were evaluated with different
geochronological and erosion datasets. The simulated spatial
patterns of erosion and deposition in the calibrated model run
were compared with reconstructed elevation changes from
Van der Meij et al. (2017). The simulated erosion and depo-
sition rates resulting from the uncertainty analysis were com-
pared with rates derived from OSL, 10Be, 137Cs, 239+240Pu
and 14C data (Aldana Jague et al., 2016; Calitri et al., 2019;
Van der Meij et al., 2019). The comparison of these rates was
performed on a catchment scale and on a point scale for spe-
cific sampling locations.

4 Results

4.1 Model calibration

Figure 4a–e show the measured and calibrated age-depth pro-
files for all sampling locations for the model run with the
lowest mean absolute error (MAE). The calibrated depth pro-
files follow the measured profiles, although some profiles are
overall younger than simulated (P3, BP5), whereas other pro-
files are overall older than simulated (BP8). The mean abso-
lute error (MAE) is highest for P2 and P3, where ages from
the old colluvium were present (250 and 399 a). For the pro-
files from the central colluvium (BP5-8), the MAE ranges
from 7–75 a. There is a good overall fit between the simu-
lated and calibrated ages, with a MAE of 160 a and an R2 of
0.96 (Fig. 4f). For the fringe positions P2 and P3, the sim-
ulated colluvium thickness is 6 to 14 cm shallower than ob-
served, while the profiles in the central depression generally
have a thicker simulated colluvium than observed (0, 7 and
17 cm).

Since OSL particle tracing operates as a stochastic pro-
cess, the distribution and ages of particles will be different
between runs. To assess the impact of this on the calibration,
a simulation was performed multiple times using the same
parameter set. This resulted in a relative error of 0.2 % in the
calibration error and had no discernible effect on the overall
calibration outcomes.

Table 2 shows the calibrated values for the tillage parame-
ters for the different land-use periods. The parameters show
an increase through time, with 0.15 for the period of the
ard plough, 0.16 for the period of the Medieval mouldboard
plough and 0.46 for the period of the modern mouldboard
plough. The spread reported for TIpot_2 and TIpot_3 indicates
the values for the 10 model runs with the lowest errors. The
errors of these runs were within 2 % of the lowest error. The
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Figure 4. (a–e) Depth plots showing the modes of the measured and simulated ages of the calibration run with the lowest error for the
different sampled profiles. The horizontal dashed lines indicate the observed levels of the fossil surface below the colluvium and the current
soil surface. Mean absolute error (MAE) and R2 are reported for all profiles. (f) Scatter plot of measured versus simulated ages. Note the
logarithmic axes.

Table 2. Results of the calibration of the tillage parameters for the different land-use periods. The spread in the parameters shows the
calibration results from the 10 best runs, which were subsequently used in the uncertainty analysis. The corresponding ktil parameters were
calculated using the ploughing depths from Table 1 and the bulk density of 1720 kg m−3. The last column shows median and 95 % confidence
intervals of the reference values for tillage transport coefficient ktil compiled by Öttl et al. (2024), for similar plough types.

Management type Tillage Calibrated Corresponding Corresponding value
parameter value ktil from Öttl et al. (2024)

Ard plough TIpot_1 0.15 15 (13–18) 99 (20–286)

Medieval mouldboard plough TIpot_2 0.16 (0.12–0.16) 32 (17–41) 88 (19–291)

Early modern mouldboard plough TIpot_3 0.46 (0.46–0.54) 127 (119–158) 100 (19–291)
Contemporary mouldboard plough 218 (198–279) 241 (26–791)
Current mouldboard plough 158 (158–186) 241 (26–791)

error ranges are not normally distributed and the model run
with the lowest error has values at the edges of these ranges.
Parameter sets from the 10 best runs were used in the sub-
sequent uncertainty analysis. The corresponding ktil values
were calculated for each land-use period, using the bulk den-
sity of 1720 kg m−3 and the reconstructed plough depths (Ta-
ble 1). These values also show an increase through time, with
a small decrease in the most recent period. The intensity in
the ard plough period and Medieval mouldboard period were
7 % and 15 % of the contemporary tillage intensity.

Compared to the compilation of ktil values from Öttl et
al. (2024), the ktilcalibrated for the ard plough falls below
the reported values (Table 2). The other plough types fall
within the reported intervals, where the Medieval mould-
board plough is at the lower end and the more recent mould-

board ploughs have values comparable to the reported medi-
ans.

4.2 Reconstructed and simulated elevation changes

The simulated elevation changes with ChronoLorica resem-
ble the reconstructed elevation changes by Van der Meij et
al. (2017) (Fig. 5a, b). The extent of the central colluvium is
smaller in the simulations, while the size of depositional ar-
eas on the hillslope is slightly larger. The differences between
the reconstructed and simulated elevation changes (Fig. 5c)
indicate that the elevation changes due to erosion were more
similar between the reconstruction and simulation, compared
to the elevation changes by deposition. Overall, absolute dif-
ferences in simulated and reconstructed elevation were 16 cm
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on average, with greater overall erosion and deposition in the
reconstructed map compared to simulated map.

4.3 Erosion and deposition rates

The simulated erosion and deposition rates vary by two
orders of magnitude over the simulation time, following
changes in the land-use history (Fig. 6a). The catchment-
averaged erosion and deposition rates (solid lines) start with
0.4 mm a−1 at the start of the simulations and drop an or-
der of magnitude during the period of ard ploughing. The
transition to the period of the Medieval mouldboard plough
shows an increase of the rates to 0.08 mm a−1. The rates in
the period of the modern mouldboard plough are again much
higher, in the order of 4 mm a−1. The 95th percentiles of el-
evation change (dashed lines) show the same trend, but with
rates of 3–4 times higher than the catchment-averaged rates.
The rates start around a millimetre per year at the start of
the simulations after which they drop to 0.1 mm a−1. Dur-
ing the Medieval mouldboard plough period, the rates are
around 0.2 mm a−1 and increase 1 to 5 mm a−1 in the Mod-
ern mouldboard plough period, with a peak of up to 1 cm a−1

just after the transition to this final phase.
With the exception of the first ∼ 1000 years, deposition

rates are 1–1.5 times higher than erosion rates (Fig. 6b). In
the last∼ 220 years, following the drainage and cultivation of
the central depression, catchment-averaged deposition rates
are about 2 times as high as the erosion rates, while the 95th-
percentile deposition rates can increase up to five times as
high as the erosion rates.

On the catchment scale, rates derived from the experimen-
tal geochronological data follow the same trends as the sim-
ulated rates (Fig. 6a). In-situ and meteoric 10Be, representing
averaged erosion over the entire period that this landscape ex-
ists, show rates in and below the lower regions of the simula-
tion. The recent catchment-averaged rate derived with 137Cs
is in the same order of magnitude as simulated catchment-
averaged erosion and deposition rates from that same pe-
riod. Rates derived with OSL and 239+240Pu lean towards the
higher end of the simulated rates. The 95th-percentile depo-
sition rate curve follows the same temporal trend as the OSL-
derived rates, and falls largely inside the uncertainty of these
rates.

On a point scale, model-derived erosion and deposition
rates provide similar values as those derived from experi-
mental data from the same locations in the landscape over the
entire range of erosion and deposition rates (Fig. 7). For the
OSL-derived rates, most field-based and model-based rates
fall within 1σ or 2σ errors. There are some rates that are ei-
ther overestimated or underestimated by the model. There are
two samples where the model-derived rates show a different
sign (erosion instead of deposition). The order of magnitude
of OSL-derived rates ranges from 10−4 to 10−1 m a−1. 10Be-
derived rates show larger deviations between model- and
field-based rates. The order of magnitude is similar (10−5

to 10−4 m a−1), but the sign of the field-based rates indi-
cates erosion instead of deposition. Rates derived from 14C
and 137Cs fall within 1σ errors with their modelled coun-
terparts. The same goes for deposition rates derived with
239+240Pu, while erosion derived with 239+240Pu show higher
field-based rates than model-based rates. Rates derived from
these latter geochronometers are in the order of 10−4 to
10−3 m a−1.

4.4 Uncertainty analysis

The uncertainty band around the erosion and deposition rates
has a relatively constant width through time, except during
the switch from one plough regime to the next, which is es-
pecially evident for the uncertain transition from ard to Me-
dieval mouldboard period (Fig. 6a). On average, the relative
standard error is about 11 % of the erosion and deposition
rates. According to the ANOVA (Table 3), variation in initial
conditions explains the majority of variance in the total ero-
sion rates (78 %) and total deposition rates (58 %).Variation
in boundary conditions and parameter sets contribute to a
smaller degree to the variance, but play a larger role in ex-
plaining the variance in total deposition (33 % and 9 %) com-
pared to total erosion (17 % and 5 %). There is no residual
variance in the ANOVA models.

The sources of uncertainty also show different temporal
patterns. Variation in initial conditions mainly affect uncer-
tainty in erosion rates at the start of the simulations, while
its effect decreases exponentially over time (Fig. 6c). Varia-
tion in boundary conditions shows some initial variation that
also decreases exponentially, before it increases again dur-
ing changes of land-use periods. Variation in the parameter
sets starts to affect variation in the predictions from Medieval
mouldboard plough onwards, as the varied parameters corre-
spond to this and subsequent periods. Variation caused by
the parameter sets is overall lower than that caused by the
boundary conditions.

5 Discussion

In this research I derived hillslope erosion rates from OSL-
based deposition ages through inverse erosion modelling
with the ChronoLorica model. I first calibrated the model on
spatiotemporal OSL dates, followed by an uncertainty anal-
ysis to quantify different sources of uncertainty. Finally, I
compared the modelled rates of landscape change with in-
dependent data. Several sources of uncertainty are present
in this study. These sources are (i) the calibration process,
(ii) model inputs such as initial and boundary conditions and
model parameters, (iii) evaluation data and (iv) model formu-
lations, simplifications and assumptions. Here, I discuss the
different steps taken in this research and their outputs, how
these may have been influenced by the different sources of
uncertainty, and how these uncertainties could be addressed
in future studies.
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Figure 5. Elevation changes derived from (a) reconstructions with field data (Van der Meij et al., 2017), (b) the calibrated simulations and
(c) the difference between both maps (simulated minus reconstructed). Contour lines indicate elevation differences of 0 m.

Table 3. Results of the ANOVAs to test the contributions of each source of uncertainty to the variance in total erosion and total deposition.
Both tests were significant with P values� 0.001. The contributions to the total variance were calculated by dividing the Sums of Squares
by the total Sum of Squares.

Total erosion Total deposition

Source of Degrees of Sum of Contribution Sum of Contribution
uncertainty freedom Squares [%] Squares [%]

Initial conditions 9 0.81 78 0.66 58
Boundary conditions 9 0.17 17 0.38 33
Parameters 9 0.05 5 0.11 9
Residuals 972 0.00 0 0.00 0

5.1 Calibration on spatiotemporal OSL data

In this study, I calibrated the ChronoLorica model on 27 OSL
dates from Van der Meij et al. (2019), which were taken from
five different locations (Figs. 1 and 2). The calibration was
done using modal ages of the experimental and simulated
age distributions. This works well in the case of tilled sed-
iments, as the intensive reworking of the sediments at the
source, during transport and after deposition produces well-
bleached populations of particles (Van der Meij et al., 2019).
In contrast, other hillslope sediments often contain unclear
age signals due to poor bleaching (Fuchs and Lang, 2009)
or particles with younger or older ages due to biological
soil mixing (Bateman et al., 2003). By selecting the modal
age of the distributions in this study, the well-bleached pop-
ulation of grains is targeted, while incompletely bleached
or bioturbated particles were excluded. ChronoLorica ac-
counts for post-depositional mixing in its tillage simulations
as well. As a result, the simulated age distributions repre-
sented the same ages as the measured age distributions, fa-
cilitating calibration using their modal ages. For applications
of the ChronoLorica in settings with poor bleaching or more
intense bioturbation, it is necessary to simulate additional
processes that influence bleaching and redistribution of OSL
particles before a meaningful comparison with experimen-
tal data can be made. In addition, experimental and simu-

lated age distributions may require more sophisticated statis-
tical approaches, such as age models (Galbraith and Roberts,
2012), to derive a representative age for calibration.

There is an overall good fit between the measured
and modelled ages with a mean absolute error (MAE) of
160 years, but there are also spatial differences in the calibra-
tion performance (Fig. 4). The model overestimated ages for
profile BP5, and underestimated them for profile BP8, both
located at the edges of the central depression. Profile BP6,
located in the centre of the depression, shows a very good
fit of experimental and simulated ages, with a MAE of just
7 years. The discrepancies for BP5 and BP8 could be due to
the uncertainties in estimating the extent of the wet central
part of the depression, which was based on the present-day
occurrence of peat in the subsurface. This extent determines
the start and rates of deposition in these locations, so any un-
certainty in its estimation affects the timing of the deposition
process. Although the extent was estimated using a high soil
sampling density (Fig. 1), errors could have been introduced
by interpolation of these observations or by the loss of peat
in previously peated soils.

CarboZALF-D experienced a complex, multi-staged depo-
sition history, which was identified by high-resolution tem-
poral and spatial sampling (Van der Meij et al., 2019). Cali-
bration on the spatially distributed OSL therefore helped cap-
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Figure 6. (a) Compilation of simulated and measured erosion and deposition rates. Simulated rates are provided in the blue (erosion)
and orange (deposition) uncertainty bands and lines, for the catchment-averaged rates (solid lines) and the 95th percentile of erosion and
deposition rates to represent severe erosion and deposition locations (dashed lines). Experimental data is provided with either rectangles
representing their representative periods and corresponding rates with uncertainty, or as point information. Closed rectangles and symbols
represent erosion rates, while open rectangles and symbols represent deposition rates. All provided uncertainties are 1σ intervals, except
for 137Cs (80 % interval). (b) Ratio between deposition and erosion rates, for catchment-averaged and 95th-percentile rates, provided with
mean and 1σ uncertainty. Numbers larger than 1 indicate higher deposition rates. (c) Time-resolved variation in erosion rates coming from
uncertainties in initial conditions, boundary conditions and calibrated parameters, expressed as the standard deviation in catchment-averaged
erosion rates. Note the logarithmic x axis and y axis in panel (a).

ture both temporal and spatial dynamics in the deposition
process, which enabled calibration of tillage parameters for
distinct phases of landscape evolution. While calibration on
data from a single location might have yielded a more precise
calibration line, it would be based on a smaller dataset and
overlook spatial variations in the deposition process, which
are essential to understand the pre-historical erosion and de-

position processes in CarboZALF-D. A spatially distributed
sampling design, like the one used in this study, will not only
help to interpret landscape evolution through interpretation
of the OSL ages (e.g. Van der Meij et al., 2019), but also
enhance the representativeness of the point-based OSL sam-
ples for reconstructing erosion and deposition on a landscape
scale through inverse modelling. I recommend that future
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Figure 7. Point-based comparison of erosion (negative) and deposition rates (positive) for experimental, field-based data and model simu-
lations for the corresponding locations in the landscape. The rates are represented with mean and 1σ errors. Field-based rates were derived
or calculated from their original publications (See Sect. 3.4), while model-based rates were derived from the 1000 model runs performed as
uncertainty analysis. (a) Overview of all available data. (b) Close-up of the data around the origin of the graph. Location of this close-up
is indicated with the dashed rectangle in panel (a). (c) Close-up on the 10Be-derived rates. Location of this close-up is indicated with the
dashed triangle in panel (b). The diagonal lines represent the identity lines, where field-based rates and model-based rates are identical.

studies prioritize a spatially distributed sampling design over
a high vertical resolution, as this can provide valuable in-
sights in process dynamics which are otherwise overlooked.

The spatiotemporal calibration of the model resulted in
three potential tillage parameters for three phases of land-
scape evolution. The parameters can be recalculated into the
more commonly used tillage transport coefficient ktil by mul-
tiplying the tillage parameter with the plough depth and bulk
density. The ktil parameters from this study align with those
compiled by Öttl et al. (2024), except for the ard plough (Ta-
ble 2). This discrepancy can be attributed to the fact that the
compiled values are based on studies of modern-day tillage
erosion, likely using more efficient ards, in steep-sloped ar-
eas, whereas CarboZALF-D has flat to moderately sloped
terrain. The similarities between the other ktil values show
that, through inverse modelling with ChronoLorica, limited
geochronological data can provide accurate local estimates
of prehistorical and recent tillage erosion parameters.

5.2 Erosion and deposition rates

5.2.1 Evaluation of model results

The inverse modelling provided spatial and temporal vari-
ations in erosion rates, based on the deposition ages de-
rived from OSL dating (Fig. 6a). Pre-industrial catchment-
averaged erosion rates were in the same order of magni-
tude as natural soil production rates and erosion rates un-
der present-day conservation agriculture, but exceed erosion
rates under natural vegetation (∼ 1 t ha−1 a−1; Alewell et al.,
2015; Minasny et al., 2015; Nearing et al., 2017). Erosion
rates under the modern mouldboard plough are almost an

order of magnitude higher (5–10 t ha−1 a−1), with local ex-
treme erosion rates ranging up to 100 t ha−1 a−1. These rates
are consistent with erosion rates under conventional agricul-
ture (Minasny et al., 2015; Nearing et al., 2017).

The close alignment between OSL-derived deposi-
tion rates and model-derived deposition rates (10−4 to
10−1 m a−1) was to be expected, as these data were used
to calibrate the model and the OSL-derived rates contain a
large uncertainty (Fig. 7). The simulated rates match with in-
dependent age controls as well, both on a catchment scale
(Fig. 6a) as well as on a point scale (Fig. 7), over a range
of different values. This is the case for low rates of long-
term erosion and deposition determined with 10Be and 14C
(10−5 to 10−4 m a−1), as well as higher recent rates deter-
mined with fallout radionuclides 137Cs and 239+240Pu (10−4

to 10−3 m a−1). It is important to note that these experimen-
tal rates also have inherent uncertainties and limitations. For
instance, the models used to calculate rates from in-situ and
meteoric 10Be produced erosion rates, even though the sam-
ples were taken from stable and depositional landscape po-
sitions (Calitri et al., 2019). Similarly, high erosion rates de-
rived with 239+240Pu were obtained from a site that was con-
sidered to be stable as well. The use of 137Cs inventories to
estimate erosion and deposition rates also face criticism, as
the underlying assumptions are often unmet, particularly the
estimation of reference inventories needed to calculate ero-
sion and deposition (Parsons and Foster, 2011). While a well-
designed sampling scheme could yield accurate estimates of
the reference inventory (Mabit et al., 2013), this remains a
source of uncertainty. Finally, geochronological samples are
often taken from characteristic locations where erosion or de-
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position is evident, for example in locations with thick col-
luvium or completely eroded soils. These samples will pro-
vide relatively high erosion or deposition rates, which are not
necessarily representative for the entire catchment. This is
also apparent in Fig. 6a, where most OSL- and 239+240Pu-
derived rates correspond to the 95th-percentile rates, but
not to the catchment-averaged rates. There is thus a risk
of overestimating erosion or deposition rates when relying
only on samples from these characteristic locations. Through
landscape evolution modelling, these rates can be translated
into catchment-averaged rates to better represent overall land
degradation.

Despite these limitations, the experimental and model-
derived rates have the same order of magnitude, within
their margins of error. This agreement is unlikely to shift
due to uncertainties associated with the reference meth-
ods and inverse modelling. Therefore, the provided erosion
and deposition rates, along with their associated uncertainty,
can be considered realistic rates of landscape evolution at
CarboZALF-D across different land management practices
and timescales.

5.2.2 Comparison of simulated erosion and deposition
rates

The simulated deposition rates are almost always higher than
the erosion rates (Fig. 6b), which confirms the hypothesis
that the deposition rates cannot be used as proxies for ero-
sion rates. In the period up to the artificial drainage, the ratio
of deposition rates and erosion rates of∼ 1.5 reflects the ratio
between the size of the erosional and depositional areas in the
catchment. This makes sense from a mass balance perspec-
tive, because the eroded material all accumulates in the de-
positional area in this catchment (Van der Meij et al., 2017).
The artificial drainage increased the size of the depositional
area by a small amount. However, the deposition-erosion ra-
tio did not decrease in a similar manner, but instead increased
up to 5. The large increase in topographic gradients towards
the centre of the depression triggered re-erosion of the pre-
viously deposited material on the fringes of the depression
and resulted in very high deposition rates in the previously
uncultivated centre, shifting the balance between erosion and
deposition rates. These high deposition rates comprise the
largest part of the OSL-derived deposition rates from Van der
Meij et al. (2019).

These findings indicate that indeed deposition rates do not
represent hillslope erosion rates. Ratios between eroding and
depositional areas could be used to recalculate erosion rates
into deposition rates, but special attention should be given
to other environmental factors that could affect the balance
of these rates. These factors include changes in land man-
agement, shifts in erosion and deposition patterns, and the
balance between sediment storage within the catchment and
exported sediment, a common consideration for most other
catchments.

5.3 Uncertainty analysis

Models are highly sensitive to uncertainties in their initial
and boundary conditions and parameter sets, as these prop-
agate through the model simulations and affect the accu-
racy of the model outcomes (Perron and Fagherazzi, 2012;
Temme et al., 2017; Skinner et al., 2018). In this study, the
reconstructed initial topography appeared to be the dominant
source of variance in the model output (Table 3). This is
in line with other soil and landscape evolution studies that
found that models are more sensitive to uncertainty from
initial conditions than from boundary conditions or process
formulations (Perron and Fagherazzi, 2012; Keyvanshokouhi
et al., 2016). The influence of initial conditions was most
prominent at the start of the simulations and reduced to a
low constant value as the simulations progressed (Fig. 6c).
This could point to equifinality in the simulations, where dif-
ferent initial landscape states can result in similar end states
(Peeters et al., 2006; Nicholas and Quine, 2010). This sug-
gests that, while initial topography may not significantly in-
fluence the final topography, it plays a key role in determin-
ing the erosion and deposition rates required to reach that
final state.

In this study, the boundary conditions were represented by
the reconstructed agricultural history (Table 1). In landscapes
with more dominant water erosion, the model would also re-
quire reconstructed climate and precipitation as input. This
will introduce additional uncertainty as these reconstructions
are often very uncertain as well (e.g. Mauri et al., 2015),
which might shift the balance between the contribution of
initial and boundary conditions to the overall uncertainty in
the model output.

The uncertainty analysis highlights the importance to rep-
resent different sources of uncertainty in landscape evolution
modelling, as these uncertainties can have a significant ef-
fect on the resulting rates of landscape change. It appears
to be especially important to reconstruct pre-erosion topog-
raphy, as this is a major source of uncertainty. In steady-
state landscapes, the current topography can be used as a
proxy for historical topography, as it is not changing over
time. However, this does not apply to transient landscapes,
where topography and soil depths are continually adjusting
to shifts in boundary conditions, such as land-use or climate
change. This is particularly true in tilled systems, where dif-
fusive transport gradually smoothens the landscape, reducing
elevation differences and topographic gradients, and conse-
quently erosion rates, over time (De Alba et al., 2004). Us-
ing the current-day topography to represent historical condi-
tions transient landscapes may thus underestimate past ero-
sion rates and lead to overconfidence in the model output.
Depending on the landscape, initial topography can be recon-
structed using soil or sediment descriptions (Vermeer et al.,
2014; Van der Meij et al., 2017), by removing erosional fea-
tures through topographic interpolation (Bergonse and Reis,
2015) or through backward erosion modelling (Peeters et al.,
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2006; Temme et al., 2011), where each method has its own
challenges and limitations. Reconstruction of boundary con-
ditions can be based on climate and vegetation reconstruc-
tions or demographic and archaeological proxies. The main
challenge here is that the uncertainty increases and the spa-
tiotemporal resolution decrease with reconstructions further
back in time (Mauri et al., 2015; Li et al., 2023), and there-
fore may not accurately reflect conditions at a specific loca-
tion. Despite these challenges, it is crucial to quantify these
uncertainties in model inputs to avoid overconfidence in the
model output and to communicate the inherent uncertainties
clearly.

Although the uncertainty analysis in this study involved
1000 model runs, equivalent to ∼ 4000 CPU hours, only
a limited amount of variation in the model inputs was ex-
plored. By simulating unique combinations of 10 variations
of initial conditions, boundary conditions and parameter sets,
the effects of each variation could be isolated (e.g. Fig. 6c).
This functional uncertainty analysis was sufficient to cap-
ture the main sources of variability and provides valuable
insights into the model behaviour within the tested parame-
ter space. A Monte-Carlo-based uncertainty analysis, where
each model run uses unique values for model inputs, could
be used to further explore the range of input variability and
its impact on model outputs.

5.4 Study limitations

Several assumptions and unresolved sources of uncertainty
were not covered in the uncertainty analysis. These limita-
tions and their effects on the model results are discussed here.

5.4.1 Model set-up

ChronoLorica is a reduced-complexity model, where the
complex geographical system is simplified by reducing the
number of processes, variables and spatial and temporal reso-
lution of the model domain. Reduced-complexity models aim
to capture the key processes, while reducing computational
and data demands (Hunter et al., 2007; Marschmann et al.,
2019). In the case of this study, the model works with an an-
nual timestep, relatively large cell sizes of 5 m and simulates
a simplified tillage process with lumped parameters as in-
put in order to simulate landscape evolution over 5000 years
using the available data and within reasonable calculation
times.

This reduced complexity introduces uncertainties in the
model output. The tillage parameter, for example, includes
effects of soil properties, management type, tillage speed and
direction. Other approaches separate these effects into indi-
vidual parameters to better represent effects of tillage direc-
tion in relation to slope (e.g. Quine and Zhang, 2004). Al-
though such a representation better represents the physics
behind tillage and can help to develop more sustainable till-
ing practices, it is not possible to accurately estimate these

parameters for (pre-)historical tillage erosion based on the
available data and the uncertain initial and boundary condi-
tions without the risk of overfitting the model. By provid-
ing a range of plausible tillage parameters and ktil parame-
ters based on the calibration and land-use reconstruction (Ta-
ble 2), the uncertainty in this parameter is acknowledged and
considered in the simulations.

Uncertainties stemming from model formulations and
simplifications can be addressed by performing ensemble
simulations using different tillage erosion models, similar
to studies with different landscape evolution models (e.g.
Temme et al., 2011). Through such a comparison, strengths
and weaknesses of different models and their formulations
can be identified for different spatial and temporal scales of
simulation.

5.4.2 Exclusion of part of the catchment

The CarboZALF-D catchment was split by a railroad at the
start of the 20th century, isolating the southwestern part of
the catchment (Fig. 1). This area, which is relatively flat and
contains mostly non-eroded soil profiles (Van der Meij et al.,
2017), was excluded from the simulations under the assump-
tion that it did not contribute significantly to overall erosion
and deposition rates. Most OSL sampling locations were also
situated away from the railroad, ensuring they were influ-
enced primarily by the rest of the catchment. Any contribu-
tion of the isolated part to the overall sediment budget would
at most have caused a slight overestimation of pre-historical
erosion rates. For rates after 1900, this effect is negligible, as
the simulated catchment corresponds to the remaining catch-
ment area.

5.4.3 Effects of water erosion

The available data at CarboZALF-D did not allow for sepa-
rate calibration of water erosion in the area, even though this
process likely played a role, especially when the field was fal-
low. Water-transported sediments would have been deposited
in the same areas as tilled sediments, and later reworked by
tillage activities. As a result, any evidence of water erosion
in the colluvial archive is overwritten by the dominant tillage
process, making it impossible to calibrate the water erosion
process with the available data. Tillage erosion has been the
dominant erosion process in landscapes such as CarboZALF-
D, both recently as historically (Van Oost et al., 2005; Wilken
et al., 2020; Öttl et al., 2024). Therefore, the results of this
study should be interpreted as representing total erosion in
the catchment, with tillage erosion as the primary contribu-
tor.

6 Conclusions

This study presents a modelling exercise aimed at determin-
ing (pre-)historical tillage erosion rates in a kettle hole catch-
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ment in north-eastern Germany, which has been subjected to
agricultural use for nearly 5000 years. For this area, a large
geochronological dataset and reconstructed initial topogra-
phy and land-use history including uncertainty were avail-
able. The study has two components: (i) derivation of erosion
rates from OSL-based deposition ages through inverse land-
scape evolution modelling with the ChronoLorica model, and
(ii) an uncertainty analysis to quantify the impacts of various
sources of uncertainty on the model output.

The inverse modelling provided tillage intensity param-
eters for three distinct phases of land use, which were in
line with a global compilation of parameters from compa-
rable studies. Erosion rates increased by nearly two orders
of magnitude, from 10−5 to 10−4 m a−1 during pre-historic
ard ploughing, to 10−4 to 10−3 m a−1 in recent times, with
extreme rates up to 10−2 m a−1. Deposition rates were on av-
erage 1.5 times higher than the erosion rates, but increased
to up to five times higher in recent times, indicating that
deposition rates cannot be directly used as proxies for ero-
sion rates. The simulated rates match well with the indepen-
dent age controls, both on point and catchment scale, over
a range of different values. These findings show that inverse
landscape evolution modelling can provide accurate local es-
timates of tillage intensity, as well as realistic estimates of
rates of landscape evolution for different time periods and
land management practices.

The relative standard error on the erosion rates was on
average 11 %. The uncertainty analysis showed that the re-
constructed initial topography had by far the largest effect
on total model variance, followed by the reconstructed land-
use history and the calibrated tillage parameters. This un-
derscores the importance of reconstructing these initial and
boundary conditions for an accurate representation of uncer-
tainty in model predictions and to prevent overconfidence in
the model results.

Overall, this study demonstrates the suitability of
ChronoLorica for upscaling geochronological data in space
and time and for assessing sources of uncertainty in land-
scape evolution modelling. The model provides a compre-
hensive framework for estimating temporally varying erosion
and deposition rates in transient landscapes.
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