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Abstract. Accurate segmentation of pebbles in complex 3D scenes is essential to understand sediment transport
and river dynamics. In this study, we present a curvature-based instance segmentation approach for detecting and
characterizing pebbles from 3D surface reconstructions. Our method is validated using high-resolution full 3D
models, allowing for a quantitative assessment of segmentation accuracy. The workflow involves reconstructing
a sandbox scene using available open-source or commercial software packages; segmenting individual pebbles
based on curvature features; and evaluating segmentation performance using detection metrics, primary axes es-
timation, 3D orientation retrieval, and surface area comparisons. Results show a high detection precision (0.980),
with segmentation errors primarily attributed to under-segmentation caused by overly smooth surface reconstruc-
tions. Primary axis estimation via bounding box fitting proves more reliable than ellipsoid fitting, particularly
for the A and B axes, while the C axis remains the most challenging due to partial occlusion. 3D orientation
estimation reveals variability, with cumulative errors ranging from less than 5° to more than 45°, highlighting
the difficulty in retrieving full orientations from incomplete segments. Surface area metrics indicate that our
approach prioritizes precision over recall, with 9 out of 10 test pebbles achieving intersection-over-union values
above 0.8. In addition, we introduce a Python-based segmentation tool that provides detailed morphological and
color-based metrics for each detected pebble. Our findings emphasize the potential of 3D analysis over tradi-
tional 2D approaches and suggest future improvements through refined segmentation algorithms and enhanced

surface reconstructions.

1 Introduction

The characteristics of eroded material on hillslopes, river
channels, and sedimentary deposits inform us about the phys-
ical, biological, and chemical mechanisms of sedimentary
transport. Tectonic, climatic, hydrologic, and geomorphic
driving forces generate a given size and shape distribution.
By studying these distributions in time and space, we can
gain insight into universal processes across different scales
(e.g., Domokos et al., 2015, 2020; Szab6 et al., 2015; Novak-
Szabé et al., 2018). In particular, there is great interest in the
size and shape distribution of pebbles in gravel-bed rivers,
which can unravel downstream fining processes (e.g., Paola
et al., 1992; Ferguson et al., 1996; Domokos et al., 2014;
Miller et al., 2014; Lamb and Venditti, 2016), help us man-

age resources (e.g., Kondolf and Wolman, 1993; Kondolf,
1997; Grant, 2012), and calibrate transport and erosion mod-
els (e.g., Sklar et al., 2006; Attal and Lavé, 2006).

Accurate empirical measurements are paramount when
studying pebbles. In traditional grain sieving, a sample of the
local population is passed through progressively finer sieves,
and the weight of the sample left behind on each sieve is
measured. Then, the relative weight of each sieve-determined
size class is converted into a percentage of that size. Con-
sidering the pebbles as approximating ellipsoids, this size is
defined by the long a axis or intermediate b axis, and conver-
sion factors from square holes are used to retrieve axes pa-
rameters (Bunte and Abt, 2001). The main alternative to siev-
ing is manual measurement with rulers or calipers (e.g., Wol-
man, 1954; Wohl et al., 1996). Manual measurement with
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calipers provides a continuous distribution of grain sizes but
requires subjective determination of axis length in the field
by an operator and is generally a time-intensive process lead-
ing to small sample sizes. Particle templates are sometimes
used instead of calipers, which can increase speed but, again,
lead to binned measurements (Bunte and Abt, 2001).

Recently, (semi-)automated image segmentation (e.g., De-
tert and Weitbrecht, 2012; Buscombe, 2013; Purinton and
Bookhagen, 2019), sometimes referred to as photo-sieving
(Ibbeken and Schleyer, 1986), has become a popular alter-
native to manual measurement. For 2D image segmentation
methods (as opposed to image texture methods; cf. Purinton
and Bookhagen, 2019), it is typical to use the ellipse model
to retrieve a and b axes (e.g., Graham et al., 2005). These
methods can lead to much larger sample sizes in far less time
than manual measurement (e.g., Purinton and Bookhagen,
2021), but this is complicated by partially buried material,
lighting, irregular pebble shapes, and image quality, all lead-
ing to high uncertainties (Graham et al., 2010; Purinton and
Bookhagen, 2021; Chardon et al., 2022; Mair et al., 2022).
Many recent studies have also explored the utility of machine
learning (convolutional neural networks) for measuring peb-
bles on 2D imagery (Buscombe, 2020; Soloy et al., 2020;
Takechi et al., 2021; Lang et al., 2021; Chen et al., 2022;
Mair et al., 2024), but these techniques require significant
calibration and training data, and their universal applicability
is yet to be determined. Furthermore, we note that any peb-
ble shape determination on a 2D projected plane will likely
suffer from an additional bias introduced by tilting the peb-
ble, such that the ¢ axis is not pointing directly upwards (cf.
Fig. 1).

Pebble shapes are determined from simple a-, b-, and c-
axis ratios (Krumbein, 1941); descriptors like platy, bladed,
or elongated (cf. Bunte and Abt, 2001); and equations based
on axis measurements (e.g., sphericity = (b-c/a*)'/3; Bunte
and Abt, 2001). However, such metrics are based on the el-
lipsoid model, which reduces the entire shape of the pebble
to three-axis measurements and may also be prone to un-
certainty caused by subjective manual measurements or the
2D projection bias of the tilted grain. The ellipsoid model
does not take advantage of the full, irregular pebble surface.
Some authors have expanded on axis measurements to look
at roundness and curvature of the pebble surface but often
measured in a 2D image projection (e.g., Durian et al., 2007;
Roussillon et al., 2009; Miller et al., 2014; Cassel et al.,
2018) and less frequently from a 3D model (Hayakawa and
Oguchi, 2005; Domokos et al., 2014; Fehér et al., 2023). The
proliferation of point-cloud data in geosciences, spurred on
by the widespread adoption of low-cost structure from mo-
tion with multi-view stereo processing (SfM-MVS; Smith
et al., 2015) of photographs, has ushered in a new age of
3D environmental analysis (Eltner et al., 2016). Whereas li-
dar point clouds may be expensive and/or time-consuming
to collect and require co-registration of different views,
point clouds from SfM-MVS can be quickly gathered with
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Figure 1. Schematic cross section (side view) highlighting the dif-
ferences between 2D and 3D A-axis estimates and the true A-axis
length. By design, a 2D estimate will underestimate the axis length
as soon as the true axis is tilted. However, a 3D estimate can un-
derestimate the axis length as well if crucial parts of the pebble are
below the ground or not well reconstructed.

a consumer-grade camera and provide a 3D triangle mesh
model of the object from various sides without the need for
point-cloud co-registration (cf. Fig. 2). However, the accu-
racy of SfM-derived point clouds or triangle meshes depends
on several parameters, including image quality, image direc-
tion and orientation, number of images, and image contrast
(Smith et al., 2015; Carrivick et al., 2016). An assessment
of the accuracy of the SfM point cloud for millimeter-scale
pebble measurements has not been performed but is required
to assess measurement-related uncertainties. In this study, we
estimate the necessary number of photos for a surface recon-
struction with sub-millimeter accuracy.

Point clouds and triangle mesh surfaces allow accurate
axis measurements by avoiding the 2D projection bias and
allow measurement of additional 3D parameters in addition
to axis lengths, like volume and surface area, which cannot
be calculated in 2D.

Point clouds have already been used to measure grain size
on riverbeds but primarily via their texture, or roughness,
which can be related to average grain size rather than a full
distribution (e.g., Brasington et al., 2012; Rychkov et al.,
2012; Westoby et al., 2015). An exciting prospect is the seg-
mentation of individual grains from a mesh or point cloud, al-
lowing for a partial 3D model of every visible pebble down to
a measurement limit determined by the model accuracy. Wal-
icka and Pfeifer (2022) presented a method based on random
forest classification and then clustering to segment grains,
and Steer et al. (2022) presented a method that segments the
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(b) Different camera views

(a) Photo of scene with marker boards
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Figure 2. Reconstructed high-resolution triangle mesh as a 3D pebble model using structure from motion (SfM). (a) Overview photo of the
entire scene that is also used in the SfM reconstruction. (b) Visualization of all camera views used. (¢) Resulting high-resolution unfiltered
dense point cloud and (d) the corresponding triangle mesh, zoomed in to reveal the individual triangles.

point cloud into watersheds to obtain grain boundaries. These
methods provide reasonable segmentation results, although
both have several parameters that must be set, and the perfor-
mance remains qualitative.

We are motivated by these developments to present an-
other approach and algorithm for 3D segmentation for grain-
size analysis based on triangle meshes. A mesh is a network
structure consisting of vertices connected by triangle edges.
The vertices are XY Z point positions in 3D space, and to-
gether with corresponding triangles a continuous surface is
defined explicitly. This also circumvents common pitfalls in
the estimation of surface normals. Each triangle has a well-
defined surface normal, and typically vertex normals are then
computed by the average of all normal vectors of triangles
touching that vertex. Meshes are an inherent output product
of SfM processing and provide a convenient data structure
for high-resolution surface analyses. In this study, we pro-
pose segmenting pebbles from a reconstructed scene based
on the mean curvature of the corresponding triangle mesh,
which we derive via the divergence of normals (cf. Fig. 3).
Each triangle in a triangle mesh is a plane with a well-defined
normal vector. Although pebbles are not always fully con-
vex, they are well bounded by concave parts in reconstructed
surfaces. This is the key assumption in our segmentation ap-
proach (see Sect. 2.4).
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Vertex normal divergence

Figure 3. Coarse triangle mesh of a sphere partially buried in a
flat surface. Each triangle is connected to three vertices with ver-
tex normals. The mesh is colored by the vertex normal divergence,
with diverging or convex parts being in shades of green, whereas
converging or concave parts are colored in shades of purple.

2 Material and methods

2.1 Material

For our experiments, we used a 0.5 m x 0.5 m stainless steel
sandbox filled with fine sand obtained from a hardware store.
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To facilitate accurate scaling and alignment of the recon-
structed 3D models, we placed calibration chess boards and
custom-made boards designed with special markers for auto-
matic detection by Agisoft Metashape (cf. Fig. 2).

To validate the accuracy of our 3D surface reconstruction,
we created a structured formation by stacking colored table
tennis balls in sand in the above-mentioned sandbox. These
spheres provide an ideal test case for evaluating the geomet-
ric fidelity of the reconstructed surface, as their known size
and smooth curvature allow for precise error analysis.

However, the final sandbox setup consisted of a fully pop-
ulated scene containing 318 pebbles with diverse color, size,
and angularity (cf. Fig. 2a), including 10 numbered pebbles
for which we have full 3D models. This scene represents a
realistic and complex test case for evaluating our segmenta-
tion approach under natural occlusions. Photos were taken
outside during daylight conditions, and no artificial light
sources were used. Light-colored grains with calcitic litholo-
gies range from 40 to 60 mm in size, while mixed quartzitic
lithologies range from 16 to 32 mm in size. The surface re-
construction and segmentation results from this test form the
core of our analysis. We did not rearrange the pebbles to test
different packing and sorting configurations, which could be
a focus for future work with the proposed segmentation al-
gorithm.

2.2 Camera and photo capture

We used a Sony alpha6000 (ILCE-6000 v3.20) with 24MP
(6000 x 4000 pixels) and a fixed 35 mm lens (Sony E 35 mm
F1.8) to generate full 3D reconstructions of the 10 individ-
ual pebbles. We used the same camera for the reconstruction
of the table tennis scene. We used a Sony alpha71Il (ILCE-
7RM3) with 42.2MP (7952 x 5304 pixels) with a fixed lens
(Sony FE 35 mm F1.8) for the sandbox pebble scene. Al-
though the Sony alpha7IIl has a larger number of pixels,
we did not observe relevant quality differences between the
24MP and 42MP reconstructions because the images were
taken from close range.

For the reconstruction of the table tennis scene and the
pebble sandbox scene, we used several marker boards as a
scale (cf. Fig. 2). We created A4-sized boards with 6 num-
bered markers that can be automatically detected by soft-
ware. The distances of the markers were 12 cm in the x and
y directions. We used four boards, one on each side, with
a total of 24 markers to scale and orient photos. In addi-
tion to markers used by Agisoft Metashape, we used camera
calibration boards by calib.io to scale reconstruction within
OpenMVS and perform camera calibration experiments. We
note the benefit of multiple marker boards in the scene to
guide photo alignment during the SfM process and to expe-
dite camera optimization routines.
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2.3 3D surface reconstruction

Since we propose to count, measure, and characterize river
pebbles in virtual reality, we need to retrieve 3D reconstruc-
tions of real scenes. This is convenient with modern open-
source structure-from-motion (SfM) and multi-view stereo
(MVS) software such as OpenMVG/OpenMVS (Moulon
et al., 2016; Cernea, 2020) or commercial software such as
Agisoft Metashape (Metashape, 2018). The software pro-
cesses a set of photos from a scene of interest by performing
a bundle adjustment to estimate camera parameters and po-
sitions, with a following multi-view stereo depth-map gen-
eration to retrieve a dense RGB-colored point cloud of the
scene. This point cloud can also be converted to a trian-
gle mesh, which is more useful because it provides an ex-
plicit surface. Our segmentation approach requires a trian-
gle mesh that can be generated directly from MVS software
or calculated from an existing point cloud using surface re-
construction techniques such as Poisson surface reconstruc-
tion (Kazhdan et al., 2006).

For the 3D surface reconstruction of our sandbox
scene and individual pebbles, we employed an incremental
structure-from-motion (SfM) and multi-view stereo (MVS)
pipeline using the open-source software OpenMVG and
OpenMVS. This workflow enabled the generation of dense
point clouds and reconstructed meshes from input images.
In the following, we outline the key steps used in the re-
construction process. The incremental SfM pipeline in Open-
MVG was used to compute camera poses and a sparse point
cloud. After obtaining the camera poses and sparse point
cloud from OpenMVG, we performed dense reconstruction
and meshing using OpenMVS’s DensifyPointCloud and Re-
constructMesh commands. This workflow allowed us to ob-
tain high-resolution 3D models of both the entire sandbox
scene and individual pebbles.

As an alternative, we tested the 3D surface reconstruc-
tion with the commercial software Agisoft Metashape. The
quality of the output point clouds of Agisoft Metashape and
OpenMVS is largely comparable, and we do not intend to
provide a quality comparison. Instead, we only present an
alternative approach using familiar, paid software. We note
that the triangle meshes produced by OpenMVS have higher
resolution, i.e., more and smaller triangles, and are therefore
used throughout this study. However, for the case of many
photos taken from a short distance, the differences are not
important for the segmentation.

Our alternative tests rely on Agisoft Methashape (Ver-
sion 2.1.2) to align, bundle-adjust, and generate dense point
clouds. After photo import, we detect markers and add scale
bars. Automatic marker detection allows for faster align-
ment of photos without accurate GNSS photo tags. We filter-
detected SIFT features (called tie points in Metashape) and
remove unreliable matches. We use projection error, re-
construction uncertainty, and projection accuracy to itera-
tively remove tie points with large covariances and generate
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a homogeneous covariance distribution. Bundle adjustment
(camera optimization) is performed after each tie-point re-
moval step. We calculate depth maps (or dense point clouds)
only after sufficient filtering of the tie points. We emphasize
the importance of a clean tie-point dataset before proceeding
to the depth-map generation. The accuracy of the point cloud
largely depends on an accurate estimation of camera posi-
tions, which is achieved during the bundle adjustment step.

Agisoft Metashape allows the generation of meshes di-
rectly from depth maps, and we suggest directly exporting
meshes as PLY files for further processing. However, the
mesh generation within Metashape performs smoothing and
filtering steps to reduce the number of vertices. You may be
required to customize the number of vertices that you want. If
you decide to use point clouds, we suggest exporting points
with normals to speed up the mesh generation step via Pois-
son reconstruction.

2.4 Curvature-based segmentation

Our curvature-based mesh segmentation algorithm offers an
efficient approach to identifying and isolating convex parts
within a 3D mesh. The process begins by computing the
mean curvature for each triangle in the mesh, distinguish-
ing between concave, convex, and flat regions (cf. Figs. 3
and 4b). Triangles with concave curvatures are discarded,
leaving only those with convex or zero curvature. The re-
tained regions are grouped into connected components (cf.
colored parts in Fig. 4c) and refined through post-processing
steps, such as topological hole filling, to ensure continuity
and erosion to eliminate thin bridges that might otherwise
connect distinct pebbles. Finally, the components are filtered
based on their sphericity, removing predominantly flat seg-
ments. This ensures that the resulting segments consist of
convex regions that may include flat areas but maintain an
overall curved structure. These pre-processing and filtering
steps make the algorithm ideal for isolating meaningful con-
vex features in complex geometric data (cf. colored segments
in Fig. 4d).

At the core of our segmentation algorithm is an accurate
and robust method for estimating mean curvature, which is
derived from the divergence of the normal field (Eq. 1). Con-
ceptually, the divergence of surface normals provides a clear
distinction between surface types: diverging normals indi-
cate convex regions, while converging normals correspond to
concave surfaces. Mathematically, mean curvature H relates
to surface normals # in 3D in the following way:

2H=—-V-n. (1

Our normal field, though inherently defined only on the
mesh surface, is extended into the surrounding 3D space us-
ing inverse distance interpolation. The divergence at a point
is computed as

_ ony  0dny

ong
V-n= -
ox dy

a9z’

(@)
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where n represents the interpolated normal field. For each
vertex, the normal field around it is calculated using inverse
distance weighting from nearby triangle normals. Each trian-
gle in a triangle mesh is a plane with a well-defined normal
vector. The partial derivatives for the divergence computa-
tion are estimated using finite differences, requiring offset
positions along the x, y, and z axes. The offsets are auto-
matically determined as twice the mean distance to the 25
nearest neighbors of the triangle, ensuring local adaptivity.
Results are robust to changes in the number of 25 neighbors.
If the number is much larger, it will introduce a smoothing
of the curvature field. Generally, this number should be as
small as possible while still retaining good statistics for the
offset as the mean distance. This extension of the surface
normal field into 3D enables a precise computation of the
divergence, which serves as the basis of mean curvature H
estimation (cf. Eq. 1). Finally, each vertex has its own curva-
ture estimate, which can be extended to triangles by averag-
ing the three vertex curvatures corresponding to that triangle,
making it either convex, concave, or flat. Pebbles are mostly
convex (H < 0) or flat and should always have a boundary
on the surface with concave mean curvature (H > 0).

In our segmentation algorithm, post-processing steps such
as hole filling, erosion, and dilation are implemented di-
rectly for triangle meshes, drawing inspiration from well-
established concepts in mathematical morphology and im-
age analysis. Although these techniques are widely available
for image-based data, we are unaware of software that pro-
vides equivalent functionality for triangle meshes, prompting
us to develop our own implementation. Here, triangles play
the role of pixels, enabling these operations to be adapted to
3D geometry.

For hole filling, instead of permanently discarding trian-
gles with concave curvature, we initially mark them for po-
tential removal. During post-processing, holes are detected
topologically by identifying connected components among
the concave triangles. If a set of concave triangles is found
to be touching only a single segment, it is classified as a hole
in that segment and merged back with it. This ensures that
holes within otherwise convex regions are accurately filled.

Erosion is performed by iteratively removing triangles
from a segment if they are adjacent to other triangles already
marked for removal. This approach allows for the progressive
thinning of segments by peeling away layers of triangles. Di-
lation, the reverse process, adds triangles back to a segment if
they are adjacent to the segment and were previously marked
for removal. This optional step helps mitigate over-shrinking
caused by erosion while ensuring that new additions do not
connect previously distinct segments. These operations, tai-
lored specifically to triangle meshes, enable precise refine-
ment of convex segments while preserving their structural
integrity and topological boundaries. For a very high quality
mesh with clear and not smoothed-out curvatures between
pebbles, erosion and dilation would not be required because
the pebbles would be well separated by concave curvatures.

Earth Surf. Dynam., 13, 923-940, 2025
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Figure 4. Workflow pipeline for the 0.5 m x 0.5 m test sandbox filled with sand and pebbles, including the 10 numbered pebbles for which we
also have full 3D models that we can match into the scene. First, a 3D triangle mesh is reconstructed from RGB photos (a). RGB information
is only used for visualization. Second, the mean curvature is computed from the divergence of mesh vertex normals (b). Third, all concave
parts (purple) of the mesh are removed, and the remaining parts (green and white) are labeled as connected components (c). Fourth, the
components are filtered based on size and sphericity, as well as topologically filled to retrieve the final pebble segments (d). Colors in (c) and

(d) are only for differentiating segments.

We provide the Python source code and Jupyter Notebook
guides in a GitHub repository that explain pre-processing and
filtering steps with multiple examples.

2.5 Validation using high-resolution full 3D models

In addition to reconstructing the entire sandbox scene con-
taining sand and river pebbles, we also generated separate
high-resolution full 3D models for 10 marked and numbered
pebbles from the scene. A full 3D model is a model that
represents the object from all sides. Each of these pebble
models was independently reconstructed using a dedicated
set of photos captured under controlled conditions. For this
process, the pebbles were placed against a white background
and rotated to ensure full coverage. Each dataset consisted
of 66 to 158 photographs taken from very short distances,
resulting in very high resolution full 3D triangle mesh mod-
els with average triangle areas ranging between 0.003 and
0.009 mm? (cf. Fig. 5).

Individual pebble models exhibit a diverse range of sizes
and shapes, some containing approximately half a million
vertices and others reaching up to 4 million vertices (Fig. 5).
This variety ensures a broad representation of the geometries,
enhancing their utility as benchmarks. The primary purpose
of these detailed pebble models is to align them with the

Earth Surf. Dynam., 13, 923-940, 2025

reconstructed sandbox scene and to compare the retrieved
pebble segments with these high-resolution full 3D models,
which serve as the ground truth. This allows us to evaluate
the segmentation algorithm’s accuracy in identifying and re-
constructing individual pebbles within the scene.

Additionally, these full 3D high-resolution models pro-
vide an independent means of validating the overall scene re-
construction. By comparing the integrated, lower-resolution
pebble representations within the scene to their correspond-
ing high-resolution counterparts, we can further assess the
fidelity of the reconstruction process. This dual-purpose ap-
proach strengthens the reliability of the reconstructed sand-
box scene while offering robust ground-truth data for testing
segmentation accuracy.

After segmentation of the real scene, we align these full
3D models with the reconstructed sandbox scene using the
Fast-Point-Feature-Histogram-based fast global registration
method (Rusu et al., 2009; Zhou et al., 2016). This alignment
ensures accurate positioning of the full 3D high-resolution
pebble models within the reconstructed scene, providing a
reliable basis for comparison.

Once aligned, we evaluate the segmentation approach us-
ing several metrics derived from the retrieved pebble seg-
ments in the scene and their corresponding full 3D models.

https://doi.org/10.5194/esurf-13-923-2025
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Number of vertices:

1.1M 2.0M 40M 3.8M 22M
Average triangle area:
0.003 mm? 0.009 mm? 0.005 mm? 0.004 mm? 0.003 mm?
Main axis length:
A: 56 mm A: 147 mm A: 143 mm A: 113 mm A: 69 mm
B: 47 mm B: 108 mm B: 98 mm B: 96 mm B: 67 mm
C: 25 mm C: 79 mm C: 94 mm C: 65 mm C: 50 mm
Volume:
35 mL 474 mL 580 mL 380 mL 103 mL
Sphericity:
0.86 0.83 0.93 0.93 0.94
A/B axis ratio:
1.21 1.36 1.45 1.18 1.02

0.8 M 0.6 M 1.1M 0.5M 0.4M
0.003 mm? 0.004 mm? 0.003 mm? 0.005 mm? 0.003 mm?
A: 55 mm A: 42 mm A: 53 mm A: 50 mm A: 39 mm
B: 48 mm B: 38 mm B: 35 mm B: 37 mm B: 32 mm
C: 29 mm C: 27 mm C: 36 mm C: 31 mm C:12 mm

31mL 24 mL 35 mL 24 mL 7 mL

0.87 0.96 0.92 0.91 0.76

1.14 1.12 1.50 1.34 1.21

Figure 5. Overview of 10 individual reference pebbles with various characteristics of their corresponding full 3D model. These models are
globally matched into the scene with all remaining pebbles and sand and can be compared to pebble segments from our algorithm. Pebbles

are shown in a top-down view as being matched into the scene.

These metrics focus on both geometric and structural aspects,
ensuring a comprehensive assessment:

— Pebble dimensions (A, B, and C axes): The primary axes
of each pebble, denoted as A (longest), B (intermedi-
ate), and C (shortest), are extracted from both the seg-
mented pebbles and the full 3D models. The comparison
of these axes provides insights into the accuracy of the
shape and size representation in the segmentation pro-
cess.

— 3D orientation (yaw, pitch, and roll): The orientation of
each pebble is evaluated using the yaw, pitch, and roll
angles. These angles describe the rotation of the peb-
bles in 3D space and are compared between the seg-
mented pebbles and their full 3D counterparts to assess
alignment accuracy. While the full 3D counterparts are
matched into the scene, their internal datum derived via
principal component analysis (PCA) might vary with
one of the segments due to hidden parts in the scene.

— Surface area metrics (intersection over union, preci-
sion, and recall): To evaluate how well the segmented
pebble surfaces correspond to the ground truth, i.e., the
high-resolution full 3D models, we compute the inter-
section over union (IoU), sometimes also referred to as
Jaccard index. This measures the overlap between the
retrieved surface area of a segmented pebble and its cor-
responding full 3D model, normalized by the union of
both surface areas. Additionally, precision and recall are
calculated to quantify the accuracy and completeness of
the retrieved surface area. Precision reflects the propor-
tion of correctly identified pebble surfaces within the

https://doi.org/10.5194/esurf-13-923-2025

segmentation, while recall indicates the proportion of
the ground truth surface correctly captured in the seg-
mentation. Note that all surface area metrics are com-
puted in 3D and not in a 2D projection. Surface area
estimations are computed at the level of individual trian-
gles in the triangle mesh. Each triangle has a 2D planar
surface area in 3D space.

For the validation of pebble dimensions, we focus on the
primary axes, A (longest), B (intermediate), and C (shortest).
As a first step, the A axes of the real pebbles were measured
using calipers prior to their inclusion in the sandbox. These
measurements were used to scale the corresponding full 3D
high-resolution models, ensuring an accurate physical corre-
spondence between the models and the real-world pebbles.

The other two axes, B and C, were estimated from the
full 3D models by fitting a bounding box aligned to each
model’s internal datum or coordinate system (cf. Fig. 6). This
coordinate system is derived from the pebble’s geometry us-
ing PCA, ensuring alignment to its primary axes. For consis-
tency, the same bounding box approach was used to estimate
the A, B, and C axes of the pebble segments from the re-
constructed scene. The differences between the axes derived
from the segmented pebbles and those of the full 3D models
were then calculated to evaluate the accuracy of the segmen-
tation.

In addition to the bounding box method, we also estimated
the primary axes of the pebble segments using ellipsoid fit-
ting, a common technique in the literature for approximating
pebble dimensions (e.g., Steer et al., 2022). This method in-
volves fitting an ellipsoid to the segmented pebble and using
its semi-principal axes as proxies for the A, B, and C axes
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Figure 6. Illustration of the difference between the bounding box and ellipsoid-based main axis length estimation for pebble number 2.
Shown are B-plane profiles on the left-hand side and C-plane profiles on the right-hand side for the segment from a reconstruction (incomplete

profiles) as well as from the full 3D model.

(cf. Fig. 6). However, our results show that the bounding box
method generally produces more accurate estimations with
lower deviations from the full 3D models.

Although pebble orientations have not been widely stud-
ied, they have the potential to reveal important information
about river flow dynamics, riverbank collapses, and pebble
movements. Our primary objective in this validation is to as-
sess whether pebble orientations can be accurately estimated
from typically incomplete segments of pebbles within the re-
constructed scene.

To evaluate orientation accuracy, we compare the internal
datum of the full 3D models with that of the corresponding
pebble segments. The internal PCA-derived datum for each
model and segment identifies the primary axes of the object
and aligns them with a local coordinate system. This orien-
tation of a local coordinate system (cf. Fig. 7) provides the
basis for comparing yaw, pitch, and roll angles between the
full 3D models and their segmented counterparts.

For the validation of our segmentation approach using sur-
face area metrics, we also leverage the high-resolution full
3D models of the pebbles. These 10 models contain complete
surface information, including portions of the pebbles that
cannot be recovered from the reconstructed scene, as they
may be hidden behind other pebbles or buried in sand. Con-
sequently, our segmentation approach can only recover the
visible portion of each pebble present in the scene.

To address this limitation, we first determine the retriev-
able part of each full 3D model by applying a distance thresh-
old of 2mm. This threshold identifies the triangles in the
scene’s mesh that are within 2 mm of the surface of 1 of the
10 full 3D models. The resulting region represents the best-
case segment — the portion of the full 3D model that is theo-
retically recoverable from the scene. This best-case segment
serves as a reference for evaluating the segmentation.

Earth Surf. Dynam., 13, 923-940, 2025

Pebble axis
directions

A
B

Figure 7. Illustration of pebble main axis directions and the internal
datum of the pebble number 2. Pebbles can be characterized by a
xyz position of the centroid, as well as the orientation of its main
axes in terms of three rotations: roll, pitch, and yaw.

For comparison, we overlay the best-case segment with
the corresponding segmented region obtained from our algo-
rithm. Each triangle in the scene is then categorized as one
of the following: true positive is a triangle that belongs to
both the segmented region and the best-case segment. False
positive is a triangle that belongs to the segmented region
but not to the best-case segment. False negative is a triangle
that belongs to the best-case segment but is missing from the
segmented region.

Using these classifications and the fact that each triangle
has a 2D surface area in 3D, we compute the total surface ar-
eas true positive (TP), false positive (FP), and false negative
(FN) (cf. Fig. 8). From these areas, we derive the following
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Figure 8. Schematic cross section (side view) of a pebble segment
and its reconstructed surface area, highlighting the true positive re-
gion (TP), false negative region (FN), and false positive region (FP),
from which precision, recall, and intersection over union (IoU) are
calculated.

metrics:
.. TP 3)
recision = ——
P TP+ FP
TP
recall = ——— @
TP + FN
TP
IoU= ———. ()]
TP +FP +FN

This evaluation framework ensures that the performance of
our segmentation approach is rigorously assessed in terms of
its ability to accurately recover the retrievable portion of each
pebble. By comparing these metrics across multiple pebbles,
we can quantify both the strengths and limitations of the seg-
mentation algorithm and identify areas for potential improve-
ment.

3 Results

3.1 3D scene reconstruction accuracy

Although modern digital cameras capture photos in unprece-
dented detail, 3D scene reconstructions will never be per-
fect. For segmenting and measuring pebbles, it is important
to know how accurate a reconstruction is, what parameters
influence the quality, and how. For a control on that, we pre-
pared a 0.5 m x 0.5 m steel sandbox with sand and table ten-
nis balls. In total, we took 68 photos of that sandbox from
various angles (cf. Fig. 9). From this set of photos, we made
three separate reconstructions: one with only 8 of the top-
down view photos (cf. Fig. 10a), another with 18 of the still
relatively top-down view photos (cf. Fig. 10b), and a third
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Camera views for three different sets of photos
Initial camera views for the set of 8 photos.
Additional camera views for the set of 18 photos.

W Additional camera views for the set of 68 photos.

Figure 9. Visualization of the 68 different camera views for the ta-
ble tennis validation setup. Photos are grouped into three sets for
the analysis of reconstruction accuracies. Although top-down views
are crucial, additional, more oblique views can increase the recon-
struction accuracy tremendously (cf. Figs. 10 and 11).

with all 68 photos (cf. Fig. 10c). We apply our segmentation
routine for all three reconstructions and generate a single tri-
angle mesh for each table tennis ball. Since table tennis balls
are manufactured as spheres with a radius of exactly 20 mm,
the geometry is known precisely, and we can compare seg-
ments from reconstructions. We compare by least-squares fit-
ting the model of the sphere to each triangle mesh segment,
which provides us with a radius for every vertex of that mesh
segment. We use those to calculate a distribution of radii for
each reconstructed table tennis ball (cf. Fig. 10). The more
narrow and centered the distribution is around the true radius
of 20mm, the better.

As expected, reconstructions are more accurate if more
photos with varying perspectives are used. This is reflected
in a more accurate confirmation of the radii of table tennis
balls with more photos. For a maximum of 68 photos, all
radius distributions are more or less centered around 20 mm
and well confined between 20.0 0.5 mm. The accuracy can
also be quantified by the root mean square error (RMSE) of
the radii of the table tennis balls. With 8 photos from near-
nadir positions, a single table tennis ball has an RMSE of
above 1 mm; for 68 photos, all table tennis ball radii are well
confined with an RMSE of below 0.4 mm; i.e., RMSE is be-
low 2 % (cf. Fig. 11).

Overall, this makes photogrammetry a viable option for
3D surface reconstruction of river pebbles if the density of
photos matches the required accuracy. In our segmentation
application scene of the same sandbox filled with sand and
pebbles, we use 157 photos for 3D surface reconstruction.
Hence, we can expect an even more accurate surface recon-
struction compared to the table tennis experiment.
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Figure 10. Reconstruction accuracy calculated for the number of photos used. Results for 8 (a), 18 (b), and 68 photos (c) from a real scene
with 17 table tennis balls with radius 20 mm. All are individually segmented using our approach, and mesh vertices of a segment are used
to least-squares fit the model of a sphere. Depending on the residuals of this model, each vertex corresponds to a slightly different radius,
leading to a distribution of radii for each segment. These radius distributions are shown in shades of yellow to blue depending on the retrieved
surface area of the true, full table tennis ball. The most complex part of the scene is a stack of 10 table tennis balls, shown in insets. Here,
segments are colored according to radius residuals. The more photos used, the smaller the residuals, and the more narrow and centered around
the true radius of 20mm the radius distributions get. For 68 photos, most radii are well constrained within the interval of 20.0 £ 0.5 mm,

constituting an uncertainty of about 2.5 %.
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Figure 11. From the same experiment of Fig. 10 the reconstruction
accuracy is shown in terms of root mean square error (RMSE) of
model residuals. Each segment is represented by a circle in shades
of yellow to blue. The color and size indicate the retrieved surface
area of the segment. Better-represented segments tend to be closer
to the mean RMSE. The latter is going down with an increase in
photos used, but generally, the RMSE goes towards zero. For the
best case of 68 photos, the RMSE is below 0.4 mm for all segments.
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3.2 Detection of pebbles in the scene

The first segmentation result concerns the detection accuracy
of all pebbles in the reconstructed sandbox scene. A pebble
is considered successfully detected (true positive) if it is rep-
resented by a distinct segment (cf. Fig. 12). False positives
occur due to over-segmentation, where a single pebble is rep-
resented by multiple segments, while false negatives arise
from small pebbles being missed or multiple pebbles being
grouped into a single segment (cf. Fig. 12 red circles).

In our reconstructed scene, which contains 318 visible
pebbles, we measure 297 true detection positives, 6 false de-
tection positives, and 21 false detection negatives. From these
counts, we calculate the following metrics for detection per-
formance:

. .. 297
— detection precision: 5746 = 0.980,

297

297+21 — 0.934,

— detection recall:

2x297

— detection F1 score: 5539712176 — 0.957.

These results demonstrate the effectiveness of the segmen-
tation approach, with high precision indicating a low rate of
over-segmentation and strong recall highlighting the ability
to identify most pebbles in the scene.

3.3 Estimation of primary axes for full 3D pebbles

The second segmentation result focuses on the estimation of
the primary axes (A, B, and C) for the 10 pebbles in the scene
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Total number TP: 297
. ", . =
of pebbles: 318 v ] :;621
. 'Q; $3F 6P -

- Precision:
297/303 = 0.980

Recall:
297/318 = 0.934

Figure 12. From this specific example scene of 318 pebbles, 297
were correctly identified (true positives, TP); i.e., 21 pebbles were
missed (false negatives, FN). However, due to over-segmentation,
6 additional false pebbles were detected (false positives, FP). This
gives us a precision of 0.980, a recall of 0.934, and an F1 score of
0.957. Red circles highlight a missing segment, an over-segmented
pebble, and a case of under segmentation, i.e., a single segment for
two pebbles.

that correspond to our full 3D models of them. We com-
pare two methods for estimating these axes: the bounding-
box method and ellipsoid fitting (cf. Fig. 13).

When analyzing the cumulative axes errors (sum of A,
B, and C errors) across the 10 pebbles, the bounding box
method had lower cumulative errors compared to the ellip-
soid fitting method in eight of the 10 pebbles. The smallest
cumulative error was well below 0.5cm and was achieved
using the bounding box method for pebble no. 1. The largest
cumulative error occurred with the ellipsoid fitting method
for pebble no. 2 and was larger than 2cm. Across both meth-
ods, errors were dominated by inaccuracies in estimating the
C axis (shortest axis), indicating a consistent challenge in re-
solving this dimension.

These results confirm that the bounding box method pro-
vides more accurate and reliable axis estimations than ellip-
soid fitting, particularly for pebbles with complex or irregular
shapes.

3.4 Estimation of 3D orientations

The third result evaluates the accuracy of 3D orientation es-
timations (yaw, pitch, and roll angles) for the 10 full 3D peb-
bles in the scene (cf. Fig. 14 for an example). Orientation
errors are highly variable across the pebbles, with cumula-
tive angle errors ranging from below 5° to above 45° (cf.
Fig. 15). The smallest cumulative orientation error (< 5°)
was observed for pebble no. 7, and the largest (> 45°) oc-
curred for pebble no. 5. Five pebbles had cumulative angle
errors of 20° or less, while the remaining five exhibited larger
errors.

3.5 Surface area metrics

The fourth result focuses on our surface area metrics pre-
cision, recall, and intersection over union (IoU) for the 10
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full 3D pebbles. Overall, the results are highly encouraging
(cf. Fig. 16). For 9 of the 10 pebbles, precision, recall, and
IoU values exceeded 0.8. Pebble no. 2, which had the low-
est IoU, still achieved a very high precision value (close to
1), although its recall was above 0.75. If IoU values are or-
dered from lowest to highest, pebble no. 2 has the lowest
IoU (< 0.8) and pebble no. 7 the largest IoU close to 0.95
(cf. Fig. 16).

A notable observation is that our segmentation approach
tends to optimize precision over recall, as the majority of
pebbles exhibit higher precision values. However, for pebbles
no. 7, 4, and 10, recall values are higher than precision. In-
terestingly, these three pebbles also have the smallest cumu-
lative orientation errors, suggesting a possible link between
accurately recalling segments and correctly estimating orien-
tations.

4 Discussion

Our proposed curvature-based mesh segmentation algorithm,
combined with validation using high-resolution full 3D mod-
els as the ground truth, demonstrates strong potential for ac-
curately segmenting and characterizing pebbles in complex
3D scenes. Such scenes are successfully reconstructed using
structure-from-motion (SfM) and multi-view stereo (MVS)
software with the required accuracy if a sufficient number
of photos are taken from various perspectives. This discus-
sion highlights key insights derived from our segmentation
analysis, explores challenges, and considers implications for
future applications and research.

4.1 Detection performance

The segmentation approach achieved high detection accu-
racy, with a precision of 0.980, a recall of 0.934, and an
F1 score of 0.957 for the detection of 318 visible pebbles in
the reconstructed sandbox scene. These metrics indicate that
the algorithm effectively minimizes false positives caused
by over-segmentation and false negatives caused by under-
segmentation or missed pebbles. In particular, the number
of false positives (6) is significantly lower than the num-
ber of false negatives (21). False positives are mostly due
to over-segmentation, where a single pebble is incorrectly
split into multiple segments. In contrast, false negatives arise
from under-segmentation or missed detections, often caused
by small pebbles being overlooked or multiple pebbles being
merged into a single segment.

Both types of error are likely influenced by the quality of
the surface reconstruction. A highly smoothed mesh of the
scene leads to washed-out features, making it difficult for the
segmentation approach to identify boundaries between peb-
bles or the boundary around a small pebble. The worse the
quality of the reconstructed surface, the smoother the curva-
tures, resulting in a reduced segmentation performance. Ad-
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Figure 13. Comparison of ellipsoid and bounding box derived principal axis errors. For 10 archetypical pebbles, full 3D models were
matched into the scan of a real scene also containing these pebbles. After segmentation and principal axis estimation from bounding boxes
or ellipsoid fits, segment axes are compared to their true full 3D model axes. Axis estimations from bounding boxes are most often more
accurate than those retrieved from ellipsoid fits.
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Figure 14. Orientation errors for pebble no. 2 as an example. Orientations retrieved from segments are generally different from orientations
of full 3D models. We define orientation in terms of yaw, pitch, and roll angles and differences in these as orientation errors. The roll error
is visible in the side view along the A axis (a), the pitch error in the side view along the B axis (b), and the yaw error in the top-down view
along the C axis (c).
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Figure 15. Cumulative absolute pebble orientation errors for the
10 numbered pebbles. While cumulative errors reach almost 50°,
orientations of individual axes are always below 30°, which is about
17 % of the maximum error of 180°.

dressing this limitation may require enhancing the surface
reconstruction process to preserve finer geometric details.

We emphasize the need for a high-quality mesh to accu-
rately segment pebbles. The mesh quality is mostly related to
the distance the photos are taken and their direction. While
drone-based acquisition with low flight height and near-nadir
camera perspective will result in good orthomosaics, the 3D
segmentation approach will require oblique views to capture
the vertical component of pebbles. An alternative to airborne
acquisition is mast-mounted cameras in 2—4 m height (Purin-
ton and Bookhagen, 2021).

4.2 Primary axes estimation

The bounding box method outperformed ellipsoid fitting in
estimating primary axes in 8 out of 10 cases, demonstrating
its robustness, particularly for irregular pebble shapes. The
dominance of C-axis errors in cumulative errors underscores
the challenge of accurately estimating this axis, which is of-
ten the shortest and most affected by incomplete segmen-
tation. This difficulty arises because pebbles typically rest
flat in the scene, meaning their bottom portions are often ob-
scured by sand or other pebbles. Consequently, the mesh of
the scene usually only represents the top and sides of pebbles,
making it harder to estimate the shortest axis.

4.3 3D orientation estimation

Estimating 3D orientations (yaw, pitch, and roll) remains a
challenging task, especially when segments are incomplete
due to occlusions or burial in sand. The variability in ori-
entation errors across pebbles, ranging from less than 5° to
more than 45°, reflects the sensitivity of principal compo-
nent analysis (PCA)-based methods to incomplete surface
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data. Interestingly, there appears to be no clear relationship
between pebble size and orientation errors. Instead, the vari-
ability in errors is likely influenced by pebble shape, geome-
try, and possibly surface area recall. Orientation and primary
axis estimation errors are also not independent. The five peb-
bles with the largest cumulative orientation errors are also
those with the largest cumulative primary axes errors. De-
spite these challenges, the strong correlation between high
recall and accurate orientation estimation, as observed for
pebbles no. 7, 4, and 10, suggests that prioritizing recall dur-
ing segmentation can improve orientation accuracy. This re-
lationship merits further exploration, particularly in the con-
text of applications, where pebble orientation is critical for
understanding sediment dynamics. The orientation estima-
tions for some pebbles, such as no. 7, were remarkably accu-
rate.

A key challenge in 3D orientation estimation arises from
the incomplete nature of the pebble segments in the real
scene. Significant portions of the full 3D models are often
occluded by other pebbles or sand in the reconstructed scene,
which can lead to discrepancies between the two orientation
estimates. The less a pebble is exposed, the greater the ori-
entation error. In other words, as pebble exposure decreases,
orientation errors increase. Despite this, our results indicate
that the orientation estimates are generally robust.

In contrast to traditional methods based on orthomosaics
or 2D projections, our approach retrieves complete 3D orien-
tations and not just one orientation angle. For example, while
yaw can sometimes be estimated from orthomosaics if the C
axis is perfectly aligned with the nadir, any slight tipping of
the C axis leads to the underestimation of yaw. Pitch and roll
are completely irretrievable from 2D data. Our method, by
leveraging the internal datum derived from PCA, ensures a
more accurate and comprehensive representation of pebble
orientations in three dimensions.

4.4 Surface area metrics and representation

The evaluation of surface area metrics such as precision, re-
call, and IoU revealed that our segmentation approach tends
to optimize precision over recall. For 9 out of 10 pebbles,
all three metrics exceeded 0.8, demonstrating the algorithm’s
ability to capture retrievable segments with high fidelity.
Notably, pebble no. 2, with the lowest IoU, still achieved
near-perfect precision, highlighting the segmentation algo-
rithm’s tendency to avoid under-segmentation at the expense
of slightly lower recall.

Interestingly, the three pebbles with recall greater than pre-
cision — pebbles no. 7, 4, and 10 — also had the smallest
orientation errors and lowest represented surface area ratios.
This finding underscores the importance of ensuring that seg-
ments accurately represent the portions of pebbles visible in
the scene mesh. In addition, we computed the represented
surface area ratio, which measures the proportion of the full
3D pebble model that is present in the scene mesh. This ratio
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Figure 16. Segmentation quality in terms of precision, recall, and IoU of the segmented surface area versus the represented surface area in
the scene. Pebbles are sorted by IoU. Not all pebbles are represented equally; some have a higher surface-area ratio than others. Although
pebble no. 2 has the best-represented surface area ratio, it has the worst recall and IoU. On the other hand, pebble no. 7 has the worst

surface-area ratio but the best recall and IoU.

was lowest for the same three pebbles (no. 7, 4, and 10) that
showed the smallest cumulative orientation errors. This sug-
gests that it may be more critical for a segment to accurately
recall the part of a pebble represented in the scene, rather
than for the pebble to have a high surface area ratio in the
reconstructed scene. Future refinements could explore adap-
tive thresholds for balancing precision and recall, potentially
leading to improved performance across all metrics.

4.5 Example application of the segmentation software

To illustrate the practical utility of our segmentation ap-
proach, we apply our Python software to the sandbox scene
and demonstrate the resulting segmentation and quantita-
tive analysis. While surface reconstructions from many high-
resolution images often require hours of computation on a
modern desktop computer with a GPU, our Python software
for segmenting such a surface reconstruction takes less time
by an order of magnitude in comparison. The software per-
forms instance segmentation and generates a table (see Ta-
ble 1) where each segmented pebble is assigned various at-
tributes:

— segment ID: a unique identifier for each pebble;

— segment color: a locally unique identifier useful for vi-
sualization, derived via graph coloring;

— centroid (X, Y, Z): mean coordinates of the segment;

— A, B, and C axes: derived using the bounding-box
method for efficiency and accuracy;

yaw, pitch, and roll: pebble orientation in degrees;
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— color statistics: mean and standard deviation values for
the red, green, and blue channels extracted from the
mesh;

— surface metrics: segment surface area, convex hull sur-
face area, convex hull volume, and convex hull spheric-
ity.

As an example analysis, we estimate and visualize the dis-
tributions of A-, B-, and C-axis lengths across the segmented
pebbles (cf. Fig. 17). The resulting histograms estimated us-
ing logarithmic binning highlight the variability in pebble
sizes, providing insights into grain-size distribution within
the scene. This example demonstrates the broader potential
of our methodology, offering a detailed, automated way to
extract and analyze pebble attributes from 3D reconstruc-
tions.

4.6 Implications and future directions

Our findings have several implications for riverine and sed-
imentological studies. The ability to accurately segment and
characterize pebbles, including their primary axes and 3D
orientations, provides valuable data for the understanding
of river flow dynamics, sediment transport, and depositional
processes. Additionally, the use of high-resolution full 3D
models as a validation tool ensures rigorous assessment of
segmentation accuracy, setting a standard for future research
in this domain.

However, challenges remain, particularly in handling
highly irregular shapes, small pebbles, and occlusions. In-
tegrating complementary data sources, such as RGB color or
hyperspectral information, could enhance segmentation ro-
bustness. Further, refining the algorithm’s component-based
approach to segmentation could improve its ability to handle
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Table 1. Example output in table format from the Python software. Each segment ID denotes an individual pebble segment from our

curvature-based algorithm.

Segment ID 0 1 2 3 4 -
Segment color 0 1 0 0 0 -
Centroid x [m] 0.055 0.083  —0.047 0.038 0235 -
Centroid y [m] —0.352 —0312 —0349 —0200 —0.490 -
Centroid z [m] 0.042 0.073 0.039 0.078 0.032 -
A axis [m] 0.052 0.065 0.042 0.146 0.033 -
B axis [m] 0.050 0.068 0.031 0.108 0.028 -
C axis [m] 0.044 0.052 0.023 0.073 0.016 -
Yaw [°] —171 88 —106 126 168 —
Pitch [°] -5 4 -13 —14 -2 -
Roll [°] -17 180 19 -19 —42 -
Red mean 0.497 0.656 0.366 0.358 0452 -
Green mean 0.486 0.652 0.266 0.324 0386 —
Blue mean 0.484 0.656 0.212 0.296 0290 -
Red STD 0.239 0.216 0.139 0.177 0.196 -
Green STD 0.240 0.223 0.113 0.162 0.172 -
Blue STD 0.237 0.233 0.100 0.156 0.139 -
Mesh surface area [m?] 0.00215 0.00856 0.00203 0.02484 0.00121 -
Convex hull area [m?] 0.00582 0.01135 0.00312 0.03427 0.00195 -
Convex hull volume [1075 m?] 3.19 10.41 1.38 45.37 0.62 -
Convex hull sphericity [m% m~2] 0.836 0.943 0.893 0.833 0.838 —

Grain size distributions
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—6— Caxis [cm]
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=
Q
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Figure 17. Example analysis of the sandbox scene and its corre-
sponding grain-size distributions estimated by histograms with log-
arithmic binning for the A-, B-, and C-axes lengths as computed by
our Python software and available on GitHub.

complex topologies in the mesh. In particular, more advanced
techniques used in image segmentation approaches, such as
random walks, will likely outperform our approach.

Finally, while our approach focuses on pebbles, its un-
derlying principles are broadly applicable to other domains

https://doi.org/10.5194/esurf-13-923-2025

requiring curvature-based segmentation of 3D meshes, such
as isosurfaces in medical imaging, size and orientation of
speleothems in caves and karst, and trees in a forest. Future
work could explore these applications, expanding the algo-
rithm’s impact beyond sedimentology.

5 Conclusions

The precision of point cloud or triangle mesh surface re-
constructions depends on the number of photos. With near-
field photo acquisitions, we constrain uncertainties using ta-
ble tennis balls to an RMSE of below 2 % in the ideal case of
68 photos. With only eight nadir photos, it is only below 6 %.

We present a Python pipeline for our curvature-based
mesh segmentation to delineate individual pebbles from a
3D scene. Our test field with 318 individual pebbles inside
a 0.25 m? sandbox indicates a high detection accuracy, with
segmentation errors primarily linked to under-segmentation
due to overly smooth surface reconstructions. Bounding-box-
based primary axis estimation proves to be more reliable than
an ellipsoidal fit for the A and B axes, while C-axis esti-
mation remains challenging due to occlusions. Surface area
metrics highlight the trade-off between precision and recall,
with our approach favoring precision.

Compared to 2D approaches, 3D pebble segmentation pro-
vides a more complete representation of individual pebbles.
3D pebble segments allow for the estimation of all three pri-
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mary axes and orientations, including the possibility of re-
trieving surface or volumetric parameters.

We emphasize the need for a high-quality mesh that can
be derived from multiple photo views from varying angles
to successfully segment pebbles. Future work should focus
on refining segmentation algorithms and improving surface
reconstruction fidelity to enhance accuracy and applicability.

Code availability. The code used for pebble segmentation is
provided at https://doi.org/10.5281/zenodo.14987825 (Rheinwalt
et al., 2025). This software is also maintained at https://github.
com/UP-RS-ESP/mesh-curvature-instance-segmentation (last ac-
cess: September 2025).

Data availability. Captured photos, from the reconstructed tri-
angle mesh 3D models used in this study, as well as the
Python software, together with a tutorial, can all be found at
https://doi.org/10.5281/zenodo.14987825 (Rheinwalt et al., 2025).

Author contributions. AR: conceptualization, methodology,
software, validation, formal analysis, visualization, writing
(original draft). BP: methodology, validation, writing (review and
editing). BB: methodology, validation, writing (review and editing),
resources.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors thank Harald Schernthanner
for help with camera setup and equipment maintenance. The study
relied on the Universitit Potsdam Remote Sensing Computational
Cluster.

Review statement. This paper was edited by Anne Baar and re-
viewed by two anonymous referees.

References

Attal, M. and Lavé, J.: Changes of bedload characteristics along the
Marsyandi River (central Nepal): Implications for understanding
hillslope sediment supply, sediment load evolution along fluvial
networks, and denudation in active orogenic belts, Geol. S. Am.
S., 398, 143-171, https://doi.org/10.1130/2006.2398(09), 2006.

Earth Surf. Dynam., 13, 923-940, 2025

A. Rheinwalt et al.: Curvature-based instance segmentation

Brasington, J., Vericat, D., and Rychkov, I.: Modeling river bed
morphology, roughness, and surface sedimentology using high
resolution terrestrial laser scanning, Water Resour. Res., 48,
W11519, https://doi.org/10.1029/2012WR012223, 2012.

Bunte, K. and Abt, S. T.: Sampling surface and subsurface particle-
size distributions in wadable gravel- and cobble-bed streams for
analyses in sediment transport, hydraulics and streambed moni-
toring, Tech. rep., US Forest Service, Rocky Mountain Research
Station, Fort Collins, CO, https://doi.org/10.2737/RMRS-GTR-
74, 2001.

Buscombe, D.: Transferable wavelet method for grain-size distri-
bution from images of sediment surfaces and thin sections, and
other natural granular patterns, Sedimentology, 60, 1709-1732,
https://doi.org/10.1111/sed.12049, 2013.

Buscombe, D.: SediNet: a configurable deep learning
model for mixed qualitative and quantitative optical
granulometry, Earth Surf. Proc. Land., 45, 638-651,
https://doi.org/10.1002/esp.4760, 2020.

Carrivick, J. L., Smith, M. W, and Quincey, D. J.:
Background to Structure from Motion, chap. 3, John

Wiley & Sons, Ltd, 37-59, ISBN 9781118895818,
https://doi.org/10.1002/9781118895818.ch3, 2016.

Cassel, M., Piégay, H., Lavé, J., Vaudor, L., Hadmoko Sri,
D., Wibiwo Budi, S., and Lavigne, F.: Evaluating a 2D
image-based computerized approach for measuring river-
ine pebble roundness, Geomorphology, 311, 143-157,
https://doi.org/10.1016/j.geomorph.2018.03.020, 2018.

Cernea, D.: OpenMVS: Multi-View Stereo Reconstruction Library,
https://cdcseacave.github.io/openMVS (last access: September
2025), 2020.

Chardon, V., Piasny, G., and Schmitt, L.: Comparison of software
accuracy to estimate the bed grain size distribution from digi-
tal images: A test performed along the Rhine River, River Res.
Appl., 38, 358-367, https://doi.org/10.1002/rra.3910, 2022.

Chen, X., Hassan, M. A., and Fu, X.: Convolutional neural net-
works for image-based sediment detection applied to a large ter-
restrial and airborne dataset, Earth Surf. Dynam., 10, 349-366,
https://doi.org/10.5194/esurf-10-349-2022, 2022.

Detert, M. and Weitbrecht, V.: Automatic object detection to ana-
lyze the geometry of gravel grains—a free stand-alone tool, in:
River flow 2012: Proceedings of the international conference on
fluvial hydraulics, San José, Costa Rica, 5-7 September 2012,
Taylor & Francis Group, London, 595-600, ISBN 978-0-415-
62129-8, 2012.

Domokos, G., Jerolmack, D. J., Sipos, A. A., and Torok, A.: How
river rocks round: resolving the shape-size paradox, PloS one, 9,
e88657, https://doi.org/10.1371/journal.pone.0088657, 2014.

Domokos, G., Kun, F, Sipos, A. A, and Szabd, T.:
Universality of fragment shapes, Sci. Rep., 5, 9147,
https://doi.org/10.1038/srep09147, 2015.

Domokos, G., Jerolmack, D. J.,, Kun, F., and Torok, J.:
Plato’s cube and the natural geometry of fragmen-
tation, P. Natl. Acad. Sci. USA, 117, 18178-18185,
https://doi.org/10.1073/pnas.2001037117, 2020.

Durian, D. J., Bideaud, H., Duringer, P., Schroder, A. P., and Mar-
ques, C. M.: Shape and erosion of pebbles, Phys. Rev. E, 75,
021301, https://doi.org/10.1103/PhysRevE.75.021301, 2007.

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abel-
l4n, A.: Image-based surface reconstruction in geomorphometry

https://doi.org/10.5194/esurf-13-923-2025


https://doi.org/10.5281/zenodo.14987825
https://github.com/UP-RS-ESP/mesh-curvature-instance-segmentation
https://github.com/UP-RS-ESP/mesh-curvature-instance-segmentation
https://doi.org/10.5281/zenodo.14987825
https://doi.org/10.1130/2006.2398(09)
https://doi.org/10.1029/2012WR012223
https://doi.org/10.2737/RMRS-GTR-74
https://doi.org/10.2737/RMRS-GTR-74
https://doi.org/10.1111/sed.12049
https://doi.org/10.1002/esp.4760
https://doi.org/10.1002/9781118895818.ch3
https://doi.org/10.1016/j.geomorph.2018.03.020
https://cdcseacave.github.io/openMVS
https://doi.org/10.1002/rra.3910
https://doi.org/10.5194/esurf-10-349-2022
https://doi.org/10.1371/journal.pone.0088657
https://doi.org/10.1038/srep09147
https://doi.org/10.1073/pnas.2001037117
https://doi.org/10.1103/PhysRevE.75.021301

A. Rheinwalt et al.: Curvature-based instance segmentation

— merits, limits and developments, Earth Surf. Dynam., 4, 359—
389, https://doi.org/10.5194/esurf-4-359-2016, 2016.

Fehér, E., Havasi-T6th, B., and Ludmény, B.: Fully spherical 3D
datasets on sedimentary particles: Fast measurement and evalua-
tion, Central European Geology, 65, 111-121, 2023.

Ferguson, R., Hoey, T., Wathen, S., and Werritty, A.: Field evidence
for rapid downstream fining of river gravels through selective
transport, Geology, 24, 179-182, https://doi.org/10.1130/0091-
7613(1996)024<0179:FEFRDF>2.3.CO;2, 1996.

Graham, D. J., Reid, I., and Rice, S. P.: Automated Sizing of Coarse-
Grained Sediments: Image-Processing Procedures, Math. Geol.,
37, 1-28, https://doi.org/10.1007/s11004-005-8745-x, 2005.

Graham, D. J., Rollet, A.-J., Piégay, H., and Rice, S. P:
Maximizing the accuracy of image-based surface sediment
sampling techniques, Water Resour. Res., 46, WO02508,
https://doi.org/10.1029/2008 WR006940, 2010.

Grant, G. E.: The Geomorphic Response of Gravel-Bed
Rivers to Dams: Perspectives and Prospects, chap. 15,
Wiley-Blackwell, 165-181, ISBN 9781119952497,
https://doi.org/10.1002/9781119952497.ch15, 2012.

Hayakawa, Y. and Oguchi, T.: Evaluation of gravel spheric-
ity and roundness based on surface-area measurement
with a laser scanner, Comput. Geosci.,, 31, 735-741,
https://doi.org/10.1016/j.cageo.2005.01.004, 2005.

Ibbeken, H. and Schleyer, R.: Photo-sieving: A method
for grain-size analysis of coarse-grained, unconsolidated
bedding surfaces, Earth Surf. Proc. Land., 11, 59-77,
https://doi.org/10.1002/esp.3290110108, 1986.

Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface recon-
struction, in: Proceedings of the fourth Eurographics symposium
on Geometry processing, vol. 7, https://dl.acm.org/doi/abs/10.
5555/1281957.1281965, 2006.

Kondolf, G. M.: PROFILE: hungry water: effects of dams and
gravel mining on river channels, Environ. Manage., 21, 533-551,
1997.

Kondolf, G. M. and Wolman, M. G.: The sizes of salmonid spawn-
ing gravels, Water Resour. Res., 29, 2275-2285, 1993.

Krumbein, W. C.: Measurement and geological significance of
shape and roundness of sedimentary particles, J. Sediment.
Res., 11, 64-72, https://doi.org/10.1306/D42690F3-2B26-11D7-
8648000102C1865D, 1941.

Lamb, M. P. and Venditti, J. G.: The grain size gap and
abrupt gravel-sand transitions in rivers due to sus-
pension fallout, Geophys. Res. Lett.,, 43, 3777-3785,
https://doi.org/10.1002/2016GL068713, 2016.

Lang, N., Irniger, A., Rozniak, A., Hunziker, R., Wegner, J.
D., and Schindler, K.: GRAINet: mapping grain size distri-
butions in river beds from UAV images with convolutional
neural networks, Hydrol. Earth Syst. Sci., 25, 2567-2597,
https://doi.org/10.5194/hess-25-2567-2021, 2021.

Mair, D., Do Prado, A. H., Garefalakis, P., Lechmann, A., Whit-
taker, A., and Schlunegger, F.: Grain size of fluvial gravel bars
from close-range UAV imagery—uncertainty in segmentation-
based data, Earth Surf. Dynam., 10, 953-973, 2022.

Mair, D., Witz, G., Do Prado, A. H., Garefalakis, P., and Schluneg-
ger, F.: Automated detecting, segmenting and measuring of
grains in images of fluvial sediments: The potential for large and
precise data from specialist deep learning models and transfer
learning, Earth Surf. Proc. Land., 49, 1099-1116, 2024.

https://doi.org/10.5194/esurf-13-923-2025

939

Metashape, A.: AgiSoft PhotoScan Professional, http://www.
agisoft.com/downloads/installer/ (last access: September 2025),
2018.

Miller, K. L., Szabd, T., Jerolmack, D. J., and Domokos, G.: Quan-
tifying the significance of abrasion and selective transport for
downstream fluvial grain size evolution, J. Geophys. Res.-Earth,
119, 2412-2429, https://doi.org/10.1002/2014JF003156, 2014.

Moulon, P., Monasse, P., Perrot, R., and Marlet, R.: OpenMVG:
Open multiple view geometry, in: International Workshop on
Reproducible Research in Pattern Recognition, Springer, 60-74,
https://doi.org/10.1007/978-3-319-56414-2_5, 2016.

Novédk-Szabé, T., Sipos, A. A., Shaw, S., Bertoni, D., Pozze-
bon, A., Grottoli, E., Sarti, G., Ciavola, P., Domokos, G.,
and Jerolmack, D. J.: Universal characteristics of particle
shape evolution by bed-load chipping, Sci. Adv., 4, eaao4946,
https://doi.org/10.1126/sciadv.aa04946, 2018.

Paola, C., Parker, G., Seal, R., Sinha, S. K., Southard, J. B.,
and Wilcock, P. R.: Downstream Fining by Selective De-
position in a Laboratory Flume, Science, 258, 1757-1760,
https://doi.org/10.1126/science.258.5089.1757, 1992.

Purinton, B. and Bookhagen, B.: Introducing PebbleCounts: a
grain-sizing tool for photo surveys of dynamic gravel-bed rivers,
Earth Surf. Dynam., 7, 859-877, https://doi.org/10.5194/esurf-7-
859-2019, 2019.

Purinton, B. and Bookhagen, B.: Tracking Downstream Vari-
ability in Large Grain-Size Distributions in the South-
Central Andes, J. Geophys. Res.-Earth, 126, ¢2021JF006260,
https://doi.org/10.1029/2021JF006260, 2021.

Rheinwalt, A., Bookhagen, B., and Purinton, B.: Curvature-based
pebble segmentation for reconstructed surface meshes, Zenodo
[code, data set], https://doi.org/10.5281/zenodo.14987825, 2025.

Roussillon, T., Piégay, H., Sivignon, 1., Tougne, L., and Lavigne,
F.: Automatic computation of pebble roundness using digital im-
agery and discrete geometry, Comput. Geosci., 35, 1992-2000,
https://doi.org/10.1016/j.cageo.2009.01.013, 2009.

Rusu, R. B., Blodow, N., and Beetz, M.: Fast Point Feature His-
tograms (FPFH) for 3D registration, in: 2009 IEEE Interna-
tional Conference on Robotics and Automation, 3212-3217,
https://doi.org/10.1109/ROBOT.2009.5152473, 2009.

Rychkov, I., Brasington, J., and Vericat, D.: Computational
and methodological aspects of terrestrial surface analy-
sis based on point clouds, Comput. Geosci., 42, 64-70,
https://doi.org/10.1016/j.cageo.2012.02.011, 2012.

Sklar, L. S., Dietrich, W. E., Foufoula-Georgiou, E., Lashermes,
B., and Bellugi, D.: Do gravel bed river size distributions record
channel network structure?, Water Resour. Res., 42, W06D18,
https://doi.org/10.1029/2006 WR005035, 2006.

Smith, M., Carrivick, J., and Quincey, D.: Structure from
motion photogrammetry in physical geography, Progress in
Physical Geography: Earth and Environment, 40, 247-275,
https://doi.org/10.1177/0309133315615805, 2015.

Soloy, A., Turki, I., Fournier, M., Costa, S., Peuziat, B., and Lecoq,
N.: A Deep Learning-Based Method for Quantifying and Map-
ping the Grain Size on Pebble Beaches, Remote Sens., 12,
https://doi.org/10.3390/rs12213659, 2020.

Steer, P., Guerit, L., Lague, D., Crave, A., and Gourdon, A.: Size,
shape and orientation matter: fast and semi-automatic measure-
ment of grain geometries from 3D point clouds, Earth Surf.

Earth Surf. Dynam., 13, 923-940, 2025


https://doi.org/10.5194/esurf-4-359-2016
https://doi.org/10.1130/0091-7613(1996)024<0179:FEFRDF>2.3.CO;2
https://doi.org/10.1130/0091-7613(1996)024<0179:FEFRDF>2.3.CO;2
https://doi.org/10.1007/s11004-005-8745-x
https://doi.org/10.1029/2008WR006940
https://doi.org/10.1002/9781119952497.ch15
https://doi.org/10.1016/j.cageo.2005.01.004
https://doi.org/10.1002/esp.3290110108
https://dl.acm.org/doi/abs/10.5555/1281957.1281965
https://dl.acm.org/doi/abs/10.5555/1281957.1281965
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
https://doi.org/10.1002/2016GL068713
https://doi.org/10.5194/hess-25-2567-2021
http://www.agisoft.com/downloads/installer/
http://www.agisoft.com/downloads/installer/
https://doi.org/10.1002/2014JF003156
https://doi.org/10.1007/978-3-319-56414-2_5
https://doi.org/10.1126/sciadv.aao4946
https://doi.org/10.1126/science.258.5089.1757
https://doi.org/10.5194/esurf-7-859-2019
https://doi.org/10.5194/esurf-7-859-2019
https://doi.org/10.1029/2021JF006260
https://doi.org/10.5281/zenodo.14987825
https://doi.org/10.1016/j.cageo.2009.01.013
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1016/j.cageo.2012.02.011
https://doi.org/10.1029/2006WR005035
https://doi.org/10.1177/0309133315615805
https://doi.org/10.3390/rs12213659

940

Dynam., 10, 1211-1232, https://doi.org/10.5194/esurf-10-1211-
2022, 2022.

Szabé, T., Domokos, G., Grotzinger, J. P., and Jerolmack, D. J.: Re-
constructing the transport history of pebbles on Mars, Nat. Com-
mun., 6, 1-7, https://doi.org/10.1038/ncomms9366, 2015.

Takechi, H., Aragaki, S., and Irie, M.: Differentiation of River Sed-
iments Fractions in UAV Aerial Images by Convolution Neural
Network, Remote Sens., 13, https://doi.org/10.3390/rs13163188,
2021.

Walicka, A. and Pfeifer, N.: Automatic Segmentation of Individ-
ual Grains From a Terrestrial Laser Scanning Point Cloud of a
Mountain River Bed, IEEE J. Sel. Top. Appl., 15, 1389-1410,
https://doi.org/10.1109/JSTARS.2022.3141892, 2022.

Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Mar-
rero, S. M., Winter, K., and Sugden, D. E.: Sedimentolog-
ical characterization of Antarctic moraines using UAVs and
Structure-from-Motion photogrammetry, J. Glaciol., 61, 1088—
1102, https://doi.org/10.3189/2015J0G15J086, 2015.

Earth Surf. Dynam., 13, 923-940, 2025

A. Rheinwalt et al.: Curvature-based instance segmentation

Wohl, E. E., Anthony, D. J., Madsen, S. W., and Thomp-
son, D. M.: A comparison of surface sampling methods for
coarse fluvial sediments, Water Resour. Res., 32, 3219-3226,
https://doi.org/10.1029/96WR01527, 1996.

Wolman, M. G.: A method of sampling coarse river-bed material,
Eos, Transactions American Geophysical Union, 35, 951-956,
https://doi.org/10.1029/TR035i006p00951, 1954.

Zhou, Q.-Y., Park, J., and Koltun, V.: Fast global registration,
in: Computer Vision-ECCV 2016: 14th European Conference,
Amsterdam, the Netherlands, 11-14 October 2016, Proceed-
ings, Part II 14, 766782, Springer, https://doi.org/10.1007/978-
3-319-46475-6_47, 2016.

https://doi.org/10.5194/esurf-13-923-2025


https://doi.org/10.5194/esurf-10-1211-2022
https://doi.org/10.5194/esurf-10-1211-2022
https://doi.org/10.1038/ncomms9366
https://doi.org/10.3390/rs13163188
https://doi.org/10.1109/JSTARS.2022.3141892
https://doi.org/10.3189/2015JoG15J086
https://doi.org/10.1029/96WR01527
https://doi.org/10.1029/TR035i006p00951
https://doi.org/10.1007/978-3-319-46475-6_47
https://doi.org/10.1007/978-3-319-46475-6_47

	Abstract
	Introduction
	Material and methods
	Material
	Camera and photo capture
	3D surface reconstruction
	Curvature-based segmentation
	Validation using high-resolution full 3D models

	Results
	3D scene reconstruction accuracy
	Detection of pebbles in the scene
	Estimation of primary axes for full 3D pebbles
	Estimation of 3D orientations
	Surface area metrics

	Discussion
	Detection performance
	Primary axes estimation
	3D orientation estimation
	Surface area metrics and representation
	Example application of the segmentation software
	Implications and future directions

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

