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Abstract. Using grain-resolved LES-DEM simulations, Zhang et al. (2025) aimed to validate a grain-shape-
corrected bedload transport equation proposed earlier by the same group. It states that grain shape effects are
captured through a modified Shields number that depends, among others, on the drag coefficient, CDsettle , de-
termined from the force balance for a grain settling in a fluid at rest. To independently vary CDsettle in their
simulations, the authors changed the boundary conditions on the grains’ surfaces: By artificially shifting the
locations of the no-slip conditions from the actual grain surface to a virtual surface a distance l into the grain
interior, they hoped to well approximate Navier-slip conditions with a slip length l. Here, we argue that this
approximation is appropriate only if the thickness of the boundary layer that forms around the virtual surface
is much larger than l, which we demonstrate was not the case for the authors’ simulations. In particular, using
independent DNS-DEM grain settling simulations for the same hydrodynamic conditions, we directly show that
this approximation substantially overestimates the value of CDsettle of a Navier-slip sphere. This implies that the
conditions created with their artificial method do not correspond to physically realistic scenarios and therefore
do not support the authors’ grain shape correction. To support this conclusion, we demonstrate that their entire
numerical data can be alternatively explained by a simple null hypothesis model, without grain shape correction,
based on the virtual-grain rather than the actual-grain size.

1 Introduction

Sediment transport occurs when a sufficiently strong flow of
fluid shears a bed of loose sedimentary grains (Pähtz et al.,
2020). In the case that the fluid is a liquid and the charac-
teristic volume-equivalent grain diameter dp on the order of
1 mm or larger, most grains roll, slide, and hop along and in
close vicinity to the bed surface, a regime known as bed-
load transport (Ancey, 2020a, b). A key interest of many
researchers has been the rate q at which bedload transport
occurs, here termed bedload flux, when driven by a nearly
steady, uniform flow along a nearly flat bed (Ancey, 2020a).
Over the last century, numerous equations predicting q have
been proposed for such idealized conditions (e.g., Meyer-

Peter and Müller, 1948; Bagnold, 1956, 1973; Pähtz and
Durán, 2020; Deal et al., 2023). However, while most such
studies treated transported grains as spheres, only a single
study, to our knowledge, attempted to account for the typi-
cally non-spherical shape of transported grains, the one by
Deal et al. (2023). They proposed the following bedload flux
equation:

q

dp
√

(ρs/ρf− 1)gdp
= αo

(
C∗

µ∗

τb

(ρs− ρf)gdp
− τ ∗co

)3/2

, (1)

where ρs and ρf are the sediment and fluid densities, respec-
tively, g is the magnitude of the bed-normal component of the
gravitational acceleration g = gx x̂+gzẑ= (Sg,0,−g) (with
S the bed slope), τb the bed shear stress, and αo and τ ∗co are
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76 Y. Chen et al.: Bedload transport equations with grain-resolved numerical simulations

dimensionless constants. Equation (1) resembles the classi-
cal bedload flux equation by Meyer-Peter and Müller (1948),
but with a Shields number that has been multiplied with the
dimensionless coefficient C∗/µ∗, where

µ∗ ≡
µs− S

µo− S
and C∗ ≡

SfCDsettle

Co
. (2)

In these expressions, µs is the static bulk friction coefficient
of the granular material, µo = tan(24°) its associated value
for an assembly of spheres, Sf the Corey shape factor, CDsettle

the drag coefficient for the settling of a single grain in a fluid
at rest (S = 0), and Co its associated spherical-grain value,
calculated from the model by Dietrich (1982) as described
by Deal et al. (2023). The settling drag coefficient CDsettle is
determined through the classical balance between the drag,
gravitational, and buoyancy forces acting on a grain settling
with terminal velocity ωs (Bagnold, 1956):

1/8πd2
pρfCDsettleω

2
s = 1/6πd3

p (ρs− ρf)g, (3)

resulting in (Deal et al., 2023)

CDsettle =
4(ρs/ρf− 1)gdp

3ω2
s

. (4)

The bedload transport Eq. (1) rests on shaky foundations,
since the grain-shape-parametrizing coefficient C∗/µ∗ var-
ied by less than 20 %, only between 0.84 and 1.05, in the
experiments by Deal et al. (2023), with four of their five
tested grain materials even exhibiting nearly no variation at
all (C∗/µ∗ ∈ [1.01,1.05]). Furthermore, they were unable to
vary C∗ independently from µ∗, which is particularly prob-
lematic because the inclusion of C∗ in their correction of
the Shields number conflicts with long-standing established
knowledge about the physics of sediment transport. In fact,
a very large number of successful aeolian and fluvial sed-
iment transport models (Pähtz and Durán, 2018, and refer-
ences therein), and bedload transport models in particular,
are based on Bagnold’s hypothesis that the friction coeffi-
cient at the interface between sediment bed and transport
layer is a sole property of the granular bulk material (Bag-
nold, 1956). For equilibrium transport conditions, this in-
terface friction coefficient is equal to the ratio between the
average streamwise drag and bed-normal submerged gravi-
tational forces acting on transported grains (Bagnold, 1956).
Hence, if Bagnold’s hypothesis is true, and numerical simula-
tions based on the Discrete Element Method (DEM) suggest
that it is (Pähtz and Durán, 2018), then drag-induced effects
on transported grains should be insensitive to the qualitative
and quantitative nature of the drag force law and, thus, to C∗.

To address some of these shortcomings, Zhang et al.
(2025) conducted grain-resolved bedload transport simula-
tions using Large Eddy Simulation (LES) for the fluid phase
coupled with the DEM for the sediment phase consisting of
naturally-shaped grains. Then, keeping the grain shape, and

thus µ∗, constant, they aimed to solely vary C∗ through con-
ducting further simulations with changed boundary condi-
tions at the grains’ surfaces: By artificially shifting the lo-
cations of the no-slip conditions from the actual grain sur-
face to a virtual surface a distance l into the grain interior,
they hoped to well approximate Navier-slip conditions with
a slip length l. Navier-slip conditions, where the tangential
component of the slip velocity, ut, satisfies ut = l∂ut/∂n, are
typically used for hydrophobic particles (Tao et al., 2023) or
for fluid-particle systems in which the particle size is compa-
rable to the mean-free path (∼ l) or characteristic separation
distance between fluid molecules, such as for rarefied gases
(Tao et al., 2017). In other words, they correspond to phys-
ically meaningful scenarios and therefore represent a valid
means to numerically probe the phase space of grain proper-
ties in the context of bedload transport. However, the same
cannot necessarily be said about the, in their own words,
“artificial-shrinkage method” that Zhang et al. (2025) used
to approximate Navier-slip conditions. In fact, if this approx-
imation method were inappropriate, there would be no good
physical justification to base the drag force on the grain size
dp, as done in Eqs. (3) and (4). Instead, from taking their
artificial-shrinkage method literally, one would actually have
to base it on the shrunk grain size d ′p corresponding to the
virtual grain surface seen by the LES solver. However, this
results in an alternative settling drag coefficient C′Dsettle

that is
different from CDsettle :

1/8πd ′2p ρfC
′
Dsettle

ω2
s = 1/6πd3

p (ρs− ρf)g, (5)

⇒ C′Dsettle
=

4(ρs/ρf− 1)gd3
p

3ω2
s d
′2
p

. (6)

Note that, in Eq. (5), the buoyancy force, even though it is
also a fluid force, is still calculated based on the actual grain
size dp rather than d ′p, since Zhang et al. (2025) computed the
buoyancy force by adding − 1

6πd
3
pρfgzẑ manually to the ver-

tical force on the grains whilst eliminating the actual buoy-
ancy force contribution to the total fluid force via consider-
ing only a streamwise driving ρfgx x̂, but no vertical driving
ρfgzẑ, in the fluid momentum balance.

Here, we show in two distinct manners that the artificial-
shrinkage method by Zhang et al. (2025) constitutes, indeed,
an inappropriate approximation of Navier-slip boundary con-
ditions for their studied hydrodynamic conditions (Sect. 2).
First, we analytically estimate that the thickness δ of the
boundary layer that forms around a settling sphere is, de-
pending on the location on the sphere’s surface, compara-
ble or even substantially smaller than the slip length l, even
though δ would need to be much larger than l for the ap-
proximation to make physical sense. Second, using indepen-
dent Direct Numerical Simulation (DNS)-DEM simulations
of a settling sphere, a direct comparison between the values
of CDsettle obtained from simulations with Navier-slip con-
ditions and those obtained from simulations based on the
artificial-shrinkage method reveals that the former are sub-
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stantially smaller than the latter. The consequence of these
findings is that the conditions Zhang et al. (2025) created
with their method do not correspond to physically realistic
scenarios and therefore do not support the grain shape cor-
rection in Eq. (1). To support this conclusion, we demonstrate
that their entire numerical data can be alternatively explained
by a simple null hypothesis model, without grain shape cor-
rection, based on the virtual-grain rather than the actual-grain
size (Sect. 3). The results and their implications are briefly
summarized in Sect. 4.

This paper does not contain a Methods section, since the
applied methods are either described in just a few sentences
(Sect. 2.2) or consist of analytical derivations (Sects. 2.1
and 3) that cannot be separated from the results because they
are a major part of the results. For these reasons, Sects. 2
and 3 are written as self-contained sections.

2 Zhang et al. (2025)’s Navier-slip approximation

Zhang et al. (2025) simulated systems consisting of
naturally-shaped grains, each of which created via gluing
a number of spheres together. To approximate Navier-slip
boundary conditions in their numerical model, they Taylor-
expanded the tangential slip velocity ut one would expect
in the case of Navier-slip conditions, ut = l∂ut/∂n, from
the surface of each such composite sphere to the surface
of a virtual shrunk sphere of a radius that is a distance l =
Sk1x smaller than the actual radius, where Sk is a shrink-
age coefficient and 1x = 0.5 mm the grid size of their nu-
merical mesh. Due to ut = l∂ut/∂n, the first-order Taylor-
expanded value of ut at each virtual shrunk composite sphere
is then equal to precisely zero, like for a no-slip condi-
tion. They argued that this simple mathematical result jus-
tified approximating Navier-slip conditions on the surfaces
of their naturally-shaped grains by no-slip conditions at the
corresponding shrunk composite spheres’ surfaces. Further-
more, Zhang et al. (2025) claimed that this “artificial-shrink-
age method” constitutes “a typical approximation”, citing a
number of previous studies throughout their paper (Nguyen
and Ladd, 2002; Boutt et al., 2011; Cui et al., 2012; Fuku-
moto et al., 2021; Jiang et al., 2022). However, in actual-
ity, none of these studies were discussing Navier-slip condi-
tions at all. Instead, the study by Nguyen and Ladd (2002)
was about lubrication force implementation, while the other
cited studies proposed grain shrinkage as a means to artifi-
cially match the pore space connectivity of two-dimensional
to three-dimensional simulations. In addition, in our own lit-
erature research, we were unable to find a single study back-
ing this claim.

Zhang et al. (2025) also presented numerical justification
for using their artificial-shrinkage method in their Supple-
ment (their Sect. S4 and Figs. S11 and S12). However, the
description of the numerical setup underlying their Supple-
ment Figs. S11 and S12 is very vague (e.g., quantitative de-

tails of the simulated setup and conditions are completely
missing), and their publicly available code does not contain
the procedures or modules required to reproduce the simu-
lations behind these figures. Moreover, even after repeated
inquiries over a period of several months, Zhang et al. (2025)
have remained unwilling to share with us any of the code
they used to produce their Figs. S11 and S12.

In what follows, we present analytical (Sect. 2.1) and
numerical (Sect. 2.2) falsifications of the claim that their
artificial-shrinkage method approximates Navier-slip condi-
tions.

2.1 Analytical falsification

In order for the first-order Taylor expansion of the tangen-
tial slip velocity ut to be a physically reasonable approxima-
tion of the fluid-particle velocity difference around a Navier-
slip grain’s surface, the distance from the surface at which
this expansion is evaluated, and therefore the slip length l,
must be sufficiently small. In the present case, “sufficiently”
means much smaller than the thickness δ(xs) of the bound-
ary layer that forms around the corresponding virtual shrunk
no-slip grain, which varies with the location xs on its sur-
face, since a distance δ away from xs in the normal direc-
tion, the flow velocity has approximately reached that of the
outer layer and therefore no longer conveys any information
about the flow disturbance caused by the no-slip boundary
conditions. The largest values of δ are expected to occur at
surface locations xs where the flow separates. For an order-
of-magnitude estimate of δ at such points, let us consider
a sphere settling in still water (ρf = 1000 kg m−3, viscosity
ν = 10−6 m2 s−1) at the same value of the particle Reynolds
number Re′p ≡ ωsd

′
p/ν as in the simulations by Zhang et al.

(2025), Re′p ≈ 914 (using d ′p = dp − 2l). For this condition,
flow separation occurs at a polar angle of about θ = 80°
(Schlichting and Gersten, 2017), where θ = 0 corresponds
to the bottom-most point of the settling sphere. Then, from
analogy to the boundary layer development on a flat plate
(Schlichting and Gersten, 2017), one obtains

δmax ≈ 5

√
νθd ′p/2

1.5ωs sinθ
≈ 0.11d ′p (7)

as an upper limit for δ at the surface of the sphere, in which
1.5ωs sinθ is an estimation of the outer flow velocity from
potential flow approximation.

For the naturally-shaped grains (dp = 3.9 mm) and
two shrinkage coefficients Sk= [0.55,0.7] tested by
Zhang et al. (2025), the corresponding slip lengths
l = Sk1x = [0.275,0.35]mm are comparable to δmax ≈

[0.381,0.364]mm calculated from Eq. (7) using d ′p ≈ dp −
2l = [0.86,0.82]dp and ωs = [0.2726,0.2858]m s−1. How-
ever, l should actually by much smaller than δ(xs) in order
for the first-order Taylor approximation to make sense. Fur-
thermore, for surface points xs sufficiently away from the
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flow separation points, at sufficiently lower polar angles θ , δ
will even be much smaller than l.

In summary, the fact that δ is of comparable size down
to much smaller than l falsifies the physical reasoning be-
hind approximating Navier-slip conditions with the artificial-
shrinkage method by Zhang et al. (2025).

2.2 Falsification with independent DNS-DEM
simulations

We conducted independent DNS-DEM simulations of a
sphere of diameter dp = 4.2 mm settling in a fluid at rest
for two conditions: ρs = 2500 kg m−3, ρf = 1000 kg m−3,
and ρfν = 0.8 Pa s (condition 1) and ρs = 2471 kg m−3, ρf =

998.23 kg m−3, and ρfν = 1.002× 10−3 Pa s (condition 2).
Condition 1 is close to Stokes flow, whereas condition 2
is very similar to those studied by Deal et al. (2023) and
Zhang et al. (2025). The simulations are based on the
commercial code COMSOL Multiphysics® (COMSOL AB,
2024a), which contains modules for Navier-slip conditions.
The mesh grid size 1x is recommended to be larger than the
slip length l for the simulations to work well (COMSOL AB,
2024b). At the same time, the mesh must be sufficiently fine
to resolve the salient features of the flow around the sphere.
We found that 1x = dp/16 is a good compromise in that re-
gard, since this value corresponds to about the coarsest mesh
that still reproduces the expected behaviors of the settling
drag coefficient CDsettle for spheres in situations where these
are known from previous studies, as shown below.

Figure 1 shows that, for condition 1, the “measured” set-
tling drag coefficient CDsettle obtained from Eq. (4) approx-
imately obeys the behavior previously determined by Feng
(2010) for particle Reynolds numbers Rep ≡ ωsdp/ν ≤ 150,
with deviations of less than 4% for l < 1x:

CDsettle =
24
Rep

1+ 4l/dp
1+ 6l/dp(

1+ 0.2415

√
1+ 4l/dp
1+ 6l/dp

(
Rep

2

)0.678

− 0.0546
l/dp

1+ 6l/dp

(
Rep

2

)1.104)
. (8)

Furthermore, when applied to condition 2, the simulations,
using Eq. (4), result in the value CDsettle = 0.45 for no-slip
conditions (l = 0 in Fig. 2), which is close to the prediction
CDsettle = 0.43 by the model of Dietrich (1982) for the same
conditions.

Both the agreement with condition 1 for varying l and with
condition 2 for l = 0 support the reliability of the simulations
and, thus, lend credence to the predicted behavior of CDsettle

as a function of l/dp for condition 2 (blue symbols in Fig. 2),
at least for l < 1x. When comparing this behavior to the val-
ues of CDsettle obtained from the artificial-shrinkage method
by Zhang et al. (2025) (red symbols in Fig. 2), where the

Figure 1. The “measured” settling drag coefficient CDsettle ob-
tained from Eq. (4) approximately captures the expected behavior
of CDsettle predicted by Eq. (8) after Feng (2010). In both equa-
tions, CDsettle is calculated using the settling velocities ωs deter-
mined from DNS-DEM simulations of a settling sphere for con-
dition 1 (close to Stokes flow) and various slip lengths l. Note that,
to work well, l should be smaller than the mesh grid size1x, which
explains the slightly increasing deviation from the expected value
with increasing l.

fluid solver sees a virtual shrunk no-slip sphere of diameter
d ′p = dp − 2l (but gravity and buoyancy are based on the ac-
tual grain diameter dp), one can clearly see that this method
does not approximate Navier-slip boundary conditions. In-
stead, it results in CDsettle (l/dp)= CDsettle (0)(d ′p/dp)2 (solid
line in Fig. 2), which follows from Eqs. (4) and (6) when tak-
ing into account that the alternative drag coefficient C′Dsettle

in
Eq. (6) does not change much with grain shrinkage for the
large particle Reynolds numbers associated with condition 2.

In summary, our DNS-DEM simulations of a settling
sphere with Navier-slip boundary conditions on the one hand
and artificially shifted no-slip boundary conditions on the
other hand directly falsify approximating Navier-slip con-
ditions with the artificial-shrinkage method by Zhang et al.
(2025).

3 Alternative explanation of Zhang et al.’s data with
a null hypothesis model

From the previous section, we conclude that the artificial-
shrinkage method by Zhang et al. (2025) does not approx-
imate Navier-slip conditions and that simulations based on
this method therefore do not correspond to physically realis-
tic scenarios. In this section, to support this conclusion, we
first show that such simulations essentially solve the fluid
equations of motion and corresponding fluid-grain interac-
tion forces of a system with transformed values of ρs, g,
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Figure 2. Settling drag coefficient CDsettle obtained from Eq. (4) for
condition 2, using the settling velocities ωs determined from DNS-
DEM simulations of a settling sphere, versus nondimensionalized
slip length l/dp . The blue symbols correspond to actual Navier-
slip boundary conditions on the sphere surface, the red symbols to
the approximation from the artificial-shrinkage method by Zhang
et al. (2025), where a no-slip condition is applied to the surface of
a virtual shrunk sphere with diameter d ′p = dp − 2l. Note that the
values of CDsettle for the open blue symbols are less reliable and
should be treated with caution, since the slip length l exceeds the
mesh grid size 1x.

S, and dp, whereas grain-grain contact interactions are still
based on the non-transformed variables (Sect. 3.1). For the
settling of a single grain, where grain-grain interactions are
absent, this system is physically meaningful, whereas for
bedload transport, this system is also physically unrealistic.
However, a simple, straightforward argument based on the
geometry of the contact network between sedimentary grains
is then used to argue that this unrealistic system is essen-
tially equivalent to a physically realistic system (Sect. 3.2).
We show that this realistic system predicts the very same de-
pendence on the settling velocity ωs (which increases with
shrinkage) as Eq. (1), but without invoking a grain shape cor-
rection.

Henceforth, we introduce new notation: a quantity with
a prime shall indicate its general value, whereas a quan-
tity without a prime shall indicate its value for simulations
with Sk= 0, termed non-shrunk simulations; for example,
ωs = ω

′
s|Sk=0. This notation is consistent with the previous

definition of the volume-equivalent diameter d ′p of the vir-
tual, shrunk grain. However, Eq. (6) now changes to

C′Dsettle
=

4(ρs/ρf− 1)gd3
p

3ω′2s d ′2p
=
ω2

s d
2
p

ω′2s d
′2
p

CDsettle , (9)

since the meaning of ωs has changed. Furthermore, when
using this notation and limiting our considerations to

the varying-shrinkage simulations (Sk= [0,0.55,0.7]) by
Zhang et al. (2025), which apart from the value of Sk are oth-
erwise nearly identical to each other (µ∗ ≈ const due to only
very slight variation in S), the grain-shape-corrected bedload
model by Deal et al. (2023), Eq. (1), essentially condenses to
the functional form

q

dp
√

(ρs/ρf− 1)gdp
= f

(
ω2

s

ω′2s

τb

(ρs− ρf)gdp

)
, (10)

where f denotes the same power-3/2 law as in Eq. (1), but
with a modified prefactor. This is the relationship that will
be derived in Sect. 3.2, but without invoking a grain shape
correction.

3.1 Artificial-shrinkage method in transformed variables

In this section, we show that the simulations by Zhang et al.
(2025) based on their artificial-shrinkage method can be rein-
terpreted in a meaningful manner using transformed values
of ρs, g, S, and dp. To demonstrate this, we first discuss the
case of zero shrinkage, Sk= 0.

3.1.1 Non-shrunk grains

In the reference case of non-shrunk grains, the LES solver
numerically solves the following fluid momentum balance
(Zhang et al., 2025):

ρfDtuf =∇ · σ g+ ρfgx x̂, (11)

where Dt ≡ ∂t+uf ·∇ denotes the material derivative, uf is
the flow velocity, and σ g the hydrodynamic stress tensor,
with the subscript “g” indicating that the vertical component
of the gravitational body force term ρfgzẑ has been lumped
into the fluid pressure. Based on the solution of this equation,
the total force Fp on a grain p is then calculated as

Fp =

∫
Sp

np · σ gdS− ρfVpgzẑ+ ρsVpg+F
c
p, (12)

where Sp denotes the surface of “p” and np the outward-
directed normal vector on it, Vp = πd3

p/6 is the grain vol-
ume and F c

p the contact force acting on “p”. In Eq. (12), the
first term on the right-hand side represents the non-buoyancy
fluid-grain interaction force and the second term the buoy-
ancy force. It is important to be aware that Eqs. (11) and (12)
are a mathematically equivalent simplification of the actual
physical equations

ρfDtuf =∇ · σ + ρfg, (13)

Fp =

∫
Sp

np · σdS+ ρsVpg+F
c
p, (14)

in which σ is the actual physical fluid stress tensor respon-
sible for the total fluid-grain interaction (non-buoyancy and
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buoyancy). It is related to σ g through

σ = σ g+ ρfgz(h− z)I, (15)

with h the flow depth and I the identity tensor. That is, by
solving Eqs. (11) and (12), one actually solves the physical
Eqs. (13) and (14).

3.1.2 Shrunk grains

Zhang et al. (2025) state that, in the case of shrunk grains, the
LBM solver sees a smaller grain volume V ′p = πd

′3
p /6, but

the DEM solver still sees the non-shrunk grain volume Vp.
They further state that the buoyancy and gravitational forces
are calculated based on Vp rather than V ′p. In mathematical
terms, this means they solve the following equations:

ρfD
′
tu
′

f =∇ · σ ′g+ ρfgx x̂, (16)

F ′p =

∫
S ′p

n′p · σ
′
gdS− ρfVpgzẑ+ ρsVpg+F

c
p, (17)

where the prime indicates quantities associated with the
smaller grain volume V ′p (consistent with the earlier defini-
tion of primed quantities). The question is now, what are the
actual physical equations that are being solved through solv-
ing Eqs. (16) and (17)? In other words, what are the analogs
to Eqs. (13) and (14)? It can be shown that these are the fol-
lowing equations

ρfD
′
tu
′

f =∇ · σ ′+ ρfg
′, (18)

F ′p =

∫
S ′p

n′p · σ
′dS+ ρ′sV

′
pg
′
+F c

p, (19)

in which

ρ′s ≡ (Vp/V ′p)ρs, (20)

g′ ≡ (S′g′,0,−g′), (21)

S′ ≡

(
1− ρf/ρ

′
s

1− ρf/ρs

)
S, (22)

g′ ≡

(
1− ρf/ρs

1− ρf/ρ′s

)
g, (23)

σ ′ ≡ σ ′g+ ρfg
′
z(h− z)I (24)

are the transformed variables. This can be readily confirmed
through substituting Eqs. (20)–(24) into Eqs. (18) and (19).
Equations (18) and (19) are, in terms of mathematical struc-
ture, equivalent to Eqs. (13) and (14). This means, in their
shrunk-grain simulations, Zhang et al. (2025) effectively
solve a physical system in which grains have an increased
density ρ′s and a decreased volume V ′p (but their mass ρ′sV

′
p =

ρsVp remains unchanged), while the bed slope exhibits the
larger value S′ and the magnitude of the vertical component
of the gravitational acceleration the smaller value g′.

For the settling of a single grain, where grain-grain inter-
actions are absent (F c

p = 0), the transformed system above
is physically meaningful. In particular, as required, the as-
sociated settling drag coefficient C′Dsettle

is the same in
transformed and non-transformed variables, consistent with
Eq. (9):

C′Dsettle
=

4(ρ′s/ρf− 1)g′d ′p
3ω′2s

=
ω2

s d
2
p

ω′2s d
′2
p

CDsettle . (25)

However, in the case of bedload transport, where F c
p 6= 0,

the contact force F c
p is still calculated under the assumption

that grains have the non-shrunk volume Vp rather than V ′p,
which means the simulated system is still unphysical. This
problem is addressed below.

3.2 Bedload flux for shrunk-grain simulations from
contact geometry similarity

Since the grains’ contact dynamics calculated by the DEM
solver depends on only the contact geometry (e.g., ratio of
contacting grain sizes), one expects that the behavior of the
unphysical transformed system is essentially equivalent to
that of a physical system in which all grains are shrunk by
the same ratio from dp to d ′p also from the point of view of
the DEM solver:

q ′(τ ′b,ρ
′
s,ρf,g

′,S′,d ′p,F
c
p)≈ q ′(τ ′b,ρ

′
s,ρf,g

′,S′,d ′p,F
c′
p ), (26)

where F c′
p is the corresponding transformed contact force.

The null hypothesis is that this physical system can be ex-
plained by a classical functional relationship of the form

q ′

d ′p

√
(ρ′s/ρf− 1)g′d ′p

= f

(
τ ′b

(ρ′s− ρf)g′d ′p

)
, (27)

like Eq. (1) by Deal et al. (2023), but without its grain-shape-
parametrizing modification by C∗/µ∗.

To evaluate the consequences of this null hypothesis, we
need to understand how τb and q transform to τ ′b and q ′, re-
spectively. First, using Eqs. (22) and (23), we obtain

τ ′b = ρfS
′g′h= ρfSgh= τb. (28)

Second, we employ the classical partition of q ′ into the sed-
iment load χ ′ and the average sediment transport velocity v′

(Bagnold, 1956),

q ′ = χ ′v′, (29)

to derive the transformation of q. The sediment load χ ′ can
be obtained from integrating the particle volume fraction
φ′ = φ from the bed surface elevation, z= 0, to the top of
the bedload layer, z= h′b (Bagnold, 1956):

χ ′ =

h′b∫
0

φdz= φh′b, (30)
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Figure 3. Test of null hypothesis model, Eq. (34), against varying-shrinkage simulation data by Zhang et al. (2025) for natural gravel (NG)
grains in a narrow-flume (“flume”) or wide-channel (“wide”) configuration. The symbol code is the same as in their Fig. 7c and d. Those of
the symbols of their Fig. 7c and d that do not appear in the present plot are from experiments or spherical grain (SP) conditions for which no
shrunk-grain simulations were carried out.

where φ is the bedload-layer-averaged particle volume frac-
tion. Since the bedload layer thickness h′b scales with d ′p, χ ′

transforms as

χ ′ =
d ′p

dp
χ. (31)

Furthermore, the appropriate scale for the sediment transport
velocity v′ is the settling velocity ω′s (Bagnold, 1956). Hence,
v′ transforms as

v′ =
ω′s
ωs
v. (32)

Using Eq. (9), Eqs. (31) and (32) lead to

q ′ =

√
CDsettle

C′Dsettle

q. (33)

Finally, inserting the transformations Eqs. (20), (23), (25),
(28), and (33) into Eq. (27) yields√
CDsettle

C′Dsettle

q

dp
√

(ρs/ρf− 1)gdp

= f

(
CDsettle

C′Dsettle

ω2
s

ω′2s

τb

(ρs− ρf)gdp

)
. (34)

Equations (34) is equivalent to Eq. (10), the condensed
version of Eq. (1) by Deal et al. (2023), except for addi-
tional rescalings of both sides by a power of CDsettle/C

′
Dsettle
=

C′Dsettle
|Sk=0/C

′
Dsettle

. This drag coefficient ratio is nearly
equal to unity for the conditions studied by Zhang et al.
(2025), where the dependence of C′Dsettle

on the shrunk-grain
particle Reynolds number Re′p is very weak. (This is also ev-
ident from the fact that the solid line in Fig. 2 captures the

trend of the red symbols.) In fact, the rescaling in Eq. (34)
collapses the varying-shrinkage simulations by Zhang et al.
(2025), as shown in Fig. 3.

In summary, when taking the artificial shrinkage method
by Zhang et al. (2025) literally and employing a mild as-
sumption – the preservation of the contact network with
shrinkage, encoded in Eq. (26) – classical models that do not
invoke a grain shape correction lead to a prediction, Eq. (34),
that is consistent with their varying-shrinkage simulations.

4 Conclusions

We have shown that a recently introduced numerical method
to independently vary the fluid-particle interaction force ex-
perienced by transported grains in grain-resolved bedload
transport simulations is unphysical. The method in question
was proposed by Zhang et al. (2025) and consists of artifi-
cially shifting the locations of the no-slip boundary condi-
tions from the actual grain surface to a virtual surface a dis-
tance l into the grain interior. These authors hoped that this
method would well approximate Navier-slip conditions with
a slip length l for hydrodynamic conditions that are typical
for turbulent bedload transport. However, our analytical and
numerical analyses clearly falsify this hypothesis (Sect. 2),
implying that their method does not correspond to physically
realistic scenarios.

Zhang et al. (2025) introduced their method as a simple
means to test the bedload transport model by Deal et al.
(2023), to date the probably only bedload transport model
that attempts to account for the typically non-spherical shape
of transported grains. The problem was that the grain-shape-
parametrizing coefficient in this model, C∗/µ∗ in Eq. (1),
varied by less than 20%, only between 0.84 and 1.05, in the
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original experiments by Deal et al. (2023), with four of their
five tested grain materials even exhibiting nearly no variation
at all (C∗/µ∗ ∈ [1.01,1.05]). However, the newly generated
numerical data by Zhang et al. (2025) do not alleviate this
shortcoming due to the falsification of their method. This
is further supported by the fact that an alternative bedload
transport model that does not invoke grain shape corrections
is also able to capture these data (Sect. 3). Hence, the ques-
tion of how to properly account for grain shape variations in
bedload transport remains an unresolved problem.

Code and data availability. The code used to produce Figs. 1
and 2 is commercially available at https://www.comsol.com
(COMSOL AB, 2024a). The data in Figs. 1 and 2 are
available at https://doi.org/10.5281/zenodo.18282256 (Chen,
2026). For the data and code in and behind Fig. 3, see
https://doi.org/10.1029/2024JF007937 (Zhang et al., 2025).
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