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Abstract. Here we consider the 1-D morphodynamics of an erodible bed subject to bedload transport. Fluvial
bed elevation variation is typically modeled by the Exner equation, which, in its classical form, expresses mass
conservation in terms of the divergence of the bedload sediment flux. An entrainment form of the Exner equa-
tion can be written as an alternative description of the same bedload processes, by introducing the notions of an
entrainment rate into bedload and of a particle step length, and assuming a certain probability distribution for
the step length. This entrainment form implies some degree of nonlocality, which is absent from the standard
flux form, so that these two expressions, which are different ways to look at same conservation principle (i.e.,
sediment continuity), may no longer become equivalent in cases when channel complexity and flow conditions
allow for long particle saltation steps (including, but not limited to the case where particle step length has a
heavy tailed distribution) or when the domain of interest is not long compared to the step length (e.g., labora-
tory scales, or saltation over relatively smooth surfaces). We perform a systematic analysis of the effects of the
nonlocality in the entrainment form of the Exner equation on transient aggradational/degradational bed profiles
by using the flux form as a benchmark. As expected, the two forms converge to the same results as the step
length converges to zero, in which case nonlocality is negligible. As step length increases relative to domain
length, the mode of aggradation changes from an upward-concave form to a rotational, and then eventually
a downward-concave form. Corresponding behavior is found for the case of degradation. These results may
explain anomalously flat, aggradational, long profiles that have been observed in some short laboratory flume
experiments.

1 Introduction

The Exner equation of sediment conservation, when com-
bined with a hydrodynamic model and a sediment transport
model, is a central tool to evaluate the bed evolution (e.g.,
aggradation and degradation) in the field of morphodynam-
ics of Earth’s surface.

The Exner equation, in its classical formulation, relates
the bed evolution to the divergence of the bedload sediment
flux (q), which is assumed to be a local function of the flow
and the topography. However, certain sediment dynamics,
such as (i) particle diffusion in river bedload (e.g., Nikora

et al., 2002; Bradley et al., 2010; Ganti et al., 2010; Martin
et al., 2012), (ii) bed sediment transport along bedrock chan-
nels (Stark et al., 2009) and (iii) particle displacements on
hillslopes (Foufoula-Georgiou et al., 2010) may show non-
local behavior that is not easily captured by the classical
form of the Exner equation (the notation used throughout the
manuscript is defined and listed after the conclusions).

The nonlocality of interest here is embedded in the step
length r of a bedload particle, i.e., the distance that a par-
ticle, once entrained into motion, travels before being de-
posited. The existence of a finite step lengthr implies a
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244 A. Pelosi and G. Parker: Morphodynamics of river bed variation

nonlocal connection between pointx (where a particle is de-
posited) and pointx− r (where it was entrained). The degree
of nonlocality can be characterized in terms of the proba-
bility density (PDF) of step lengthsfs(r). This PDF can be
hypothesized to be thin-tailed (e.g., exponential) or heavy-
tailed (e.g., power).

In recent years, considerable emphasis has been placed
on asymptotic nonlocality associated with heavy-tailed PDFs
for step length (e.g., Schumer et al., 2009; Bradley et al.,
2010; Ganti et al., 2010). This is motivated by the desire to
preserve nonlocality in the limit of long time, thus leading to
fractional advective–diffusive equations (fADE) for pebble
tracer dispersion corresponding to the now-classical fADE
model (e.g., Schumer et al., 2009). Here we consider nonlo-
cality in a more general sense, as outlined below.

Experiments conducted under the simplest possible condi-
tions (including steady, uniform flow, single-sized sediment
and the absence of bedforms) yield thin-tailed and, more
specifically, exponential distributions for step length PDF
(Nakagawa and Tsujimoto, 1980; Hill et al., 2010). Ganti et
al. (2010), however, showed (a) the bed to consist of a range
of sizes, (b) the PDF of size distribution to obey a gamma dis-
tribution and (c) the PDF of for step length of each grain size
to be exponential, the resulting PDF for step length would be
heavy-tailed. Hassan et al. (2013) analyzed 64 sets of field
data on pebble tracer dispersion in mountain rivers (which
by nature contain a range of sizes). They found that all but 5
cases either showed thin-tailed PDFs, or could be rescaled as
thin-tailed PDFs. Their results, combined with those of Ganti
et al. (2010), however, do suggest that the gradual incorpo-
ration of the many factors in nature that lead to complexity
can also lead to nonlocal behavior mediated by heavy-tailed
PDFs.

Here, however, we focus on the case of nonlocality me-
diated by thin-tailed (exponential) PDFs for step length. Re-
gardless of the thin tail of the PDF, the degree of nonlocality
nevertheless increases with increasing mean step length ¯r.
This nonlocality may become dominant when ¯r approaches
the same order of magnitude as the domain length Ld un-
der consideration. We show that patterns of bed aggradation
and degradation are strongly dependent on the ratio ¯r/Ld,
a parameter that may be surprisingly large in some small-
scale experiments. Our results may explain anomalously flat,
aggradational, long profiles that have been observed in some
short laboratory flume experiments, without relying on either
of the fractional partial differential equations or heavy-tailed
distributions invoked or implied by Voller and Paola (2010).
We use our framework to explore the consequences of heavy-
tailed PDFs for step lengths as well.

2 Methods

2.1 Theoretical framework

1-D riverbed elevation variation is classically described by
the 1-D Exner equation of sediment conservation in flux form
(or equivalently in the 2-D case, divergence form):

∂η (x, t)
∂t

= −
∂q(x, t)
∂x

, (1)

where η (L) denotes the bed elevation,t (T) denotes the
time, x (L) denotes the streamwise distance andq (L2T−1)
is the volume bedload transport rate per unit width. (Here,
the porosity of the bed sediment is set to 0 and bedload only
is considered, both for the sake of simplicity.) There is, how-
ever, a completely equivalent entrainment form of sediment
conservation (e.g., Tsujimoto, 1978):

∂η (x, t)
∂t

= D (x, t)−E (x, t) , (2)

whereE (L T−1) denotes the volume rate of entrainment of
bed particles into bedload per unit area per unit time andD
(L T−1) denotes the volume rate of deposition of bedload ma-
terial onto the bed per unit area per unit time.

The deposition rate can be related to the entrainment rate
by means of the probability density of the step lengthfs(r)
(L−1); that is, the probability density of the distance that
an entrained particle moves before being re-deposited. As-
suming that, once entrained, a particle undergoes a step with
length r before depositing, and that this step length has the
probability density fs(r) (PDF of step length), the volume
deposition rateD can be specified as follows in terms of en-
trainment rate upstream and travel distance (e.g., Parker et
al., 2000; Ganti et al. 2010),

D(x) =

∞∫
0

E(x− r) fs(r)dr , (3)

so that the entrainment form of sediment mass conservation
can be written as

∂η

∂t
= −E (x)+

∞∫
0

E (x− r) fs(r)dr . (4)

As has been shown by Tsujimoto (1978), the two Eqs. (1)
and (4), are in principle equivalent in so far as the following
equation precisely describes the bedload transport rate:

q(x) =

∞∫
0

E (x− r)

∞∫
r

fs
(
r ′
)
dr ′dr . (5)

Yet in any given implementation, Eqs. (1) and (4) are rarely
equivalent. More specifically, in most implementations of the
flux Eq. (1),q is taken to be a local function of the flow (e.g.,
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bed shear stress), whereas in most implementations of the
entrainment Eq. (4),E is taken to be a local function of the
flow (again, e.g., bed shear stress). The presence of the spatial
convolution term in the entrainment Eqs. (3) and (4) ensures
nonlocality in the entrainment form as compared to the flux
form. This nonlocality is present regardless of whether the
PDF of step lengthfs(r) is thin-tailed or heavy-tailed, and
vanishes only whenfs(r) becomes proportional toδ(r), where
δ denotes the Dirac function. In the present implementation
of Eq. (4), then, we take E to be a local function of flow
conditions, so thatq is nonlocal according to Eq. (5).

It should be pointed out that the formulation of Eq. (4) in-
volves a purely kinematic description of particle step length,
with the trajectory of the particle unmodified by interven-
ing flow conditions. This is in line with the work of Ein-
stein (1950), Nakagawa and Tsujimoto (1980) and Ganti et
al. (2010). In a more detailed analysis, particle momentum
balance, and in particular relaxation effects involving, e.g.,
particle inertia (Parker, 1975; Charru, 2006), should be in-
cluded. In so far as a step length generally consists of many
individual particle saltations (Nino et al., 1994), however, the
present kinematic formulation may be sufficient for a first-
order analysis. One other way to formulate the problem is
in terms of mass and momentum conservation of two sedi-
ment phases; i.e., a static bed phase and a moving bedload
phase above it, with exchange between the two (e.g., Charru,
2006). An Eulerian version of such a model would, however,
preclude the analysis of nonlocality associated with varying
step length, which is a purely Lagrangian parameter. A La-
grangian analysis that includes the dynamics of a particle as
it saltates its way through one step length could lead to an
improved formulation.

Before continuing, it is of value to specifically indicate
what we mean by nonlocality. Equations (3) and (4) are non-
local in so far as the deposition rate is not determined at a
point, but is instead determined from a convolution involving
the entrainment rate at every point upstream. The problem
is thus nonlocal in the sense of Du et al. (2012). The prob-
lem becomes nonlocal in the asymptotic sense only when
the PDF of step lengthfs(r) is heavy-tailed, such that mo-
ments beyond a specific value fail to exist (e.g., Schumer et
al., 2009). Both cases are considered here; we specifically
address the problem of asymptotic nonlocality in Sect. 4.

Here we explore the consequences of nonlocality by com-
paring the local and nonlocal Eqs. (1) and (4) for Exner over
a range of conditions. To do this, we assume that the PDF
fs(r) has a mean, and consider the dimensionless parameter
ε:

ε =
r̄
Ld
, (6)

where ¯r (L) denotes the mean particle step length andLd

(L) denotes the length of the domain of interest (e.g., flume
length or length of river reach). The flux and entrainment

forms become strictly equivalent only under the constraint:

ε =
r̄
Ld
� 1. (7)

Here we demonstrate that this equivalence forε� 1 breaks
down with increasingε. This is because a finite mean step
length ¯r in and of itself implies nonlocality, regardless of
whether or not the probabilistic distribution of particle step
length fs(r) is thin- or heavy-tailed. A further degree of non-
locality can be introduced by adopting a heavy-tailed distri-
bution for fs(r).

The standard thin-tailed form for the particle step length
probability density function is the exponential distribution
(e.g., Nakagawa and Tsujimoto, 1980; Hill et al., 2010):

fs(r) =
1
r̄

exp
(
−

r
r̄

)
,

{
r > 0
r̄ > 0 .

(8)

The heavy-tailed Pareto distribution with a shift, which en-
sures that the maximum value of the distribution is realized
at r = 0, can be considered as an alternative:

fs(r) =
αrα0

(r + r0)α+1
,

{
r0 > 0
α > 0 ,

(9)

whereα is the shape parameter andr0 (L) is the scale param-
eter. The mean value ¯r of the distribution of Eq. (9) can be
written as

r̄ =
αr0

α−1
− r0,

{
r0 > 0
α > 0 .

(10)

2.2 Numerical model

Here we solve the flux and entrainment formulations under
parallel conditions, the only exception being the formula-
tion for step length. To simplify the problem and focus on
this point, we approximate the flow as obeying the normal
(steady, uniform) approximation. Momentum conservation
then dictates that bed shear stressτb (M L−1T−2) can be rep-
resented as proportional to the product of depthH (L) and
slopeS (1):

τb = ρu
2
∗ = ρgHS, (11a)

S = −
∂η

∂x
, (11b)

whereu∗(L T−1) is the shear velocity.
The dimensionless Shields number governing particle mo-

bility is defined as

τ∗ =
τb
ρRgDc

, (12)

whereρ (M L−3) is water density,Dc (L) is characteristic bed
grain size (here taken to be uniform for simplicity) andRde-
notes the submerged specific gravity of the sediment (∼1.65
for quartz).
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The flow can be computed by introducing the Manning–
Strickler resistance relation:

U
u∗
= αr

(
H
kc

)1/6

, (13)

whereU (L T−1) is the depth-averaged flow velocity,αr is a
dimensionless coefficient between 8 and 9 (Chaudhry, 1993),
andkc (L) denotes a composite roughness height. In absence
of bedforms,kc is equivalent to the roughness heightks (L),
which is proportional to grain sizeDc by means of a di-
mensionless coefficient with typical values between 2 and 5
(Parker, 2004). Here,αr is set equal to 8.1, as suggested by
Parker (1991) for gravel-bed streams, whilekc, in absence of
bedforms, is taken to be 2.5 times the grain sizeDc (Parker,
2004).

The equation for water conservation for quasi-steady flow
is

Qw = UBH, (14)

whereQw (L3T−1) is the water discharge andB (L) denotes
the channel width.

Combining Eqs. (11–14), we relate the dimensionless
Shields number to the flow properties:

τ∗ =

[
(kc)

1/3 Q2
w

α2
r gB2

]3/10
S7/10

RDc
. (15)

The basis for our morphodynamic calculations is the form of
Meyer-Peter and Müller (1948), as modified by Wong and
Parker (2006). It takes the form

q= γ
√

RgDcDc
(
τ∗ − τ∗c

)3/2 , (16)

whereg (L T−2) denotes the gravitational acceleration. The
parameterτc denotes the threshold Shields number andγ is
a coefficient of proportionality; these parameters take the re-
spective values 0.0495 and 3.97 (as specified by Wong and
Parker, 2006).

The volume bedload transport rate per unit widthq at equi-
librium can also be written as

q= E · r̄, (17)

(Einstein, 1950) so that the entrainment rate takes the form

E =
γ

β

√
RgDc

(
τ∗ − τ∗c

)3/2 , (18a)

β =
r̄

Dc
. (18b)

Hereβ is a dimensionless parameter. Einstein (1950), sug-
gested, based on a simple flume-like configuration, that ¯r/Dc

takes a value on the order of 100–1000, so that a step length
is about 100–1000 grain sizes. This order of magnitude has
been confirmed by the experiments of Nakagawa and Tsuji-
moto (1980), Wong et al. (2007) and Hill et al. (2010).

In systems with higher degrees of complexity, however,β
is likely to vary over a wide range. Combinations of multi-
ple grain sizes, bedforms, scour and fill and partially exposed
bedrock are likely to give rise to connected pathways along
which particles may travel for an extended distance, so giv-
ing rise to larger values of ¯r (e.g., Parker, 2008). In order to
capture this effect in a simplified 1D model, we allow the ra-
tio r̄, and thusβ = r̄/Dc to vary freely, so that the ratio ¯r / Ld

of step length to domain length can vary from 0 (in which
case the flux and entrainment formulations become equiva-
lent) to unity (in which a particle starting at the upstream end
of the domain reaches the downstream end in a single step).

Linking Eq. (18a), the following relation arises at equilib-
rium conditions:

q
√

RgDcDc
= β

E
√

RgDc
. (19)

Our formulation is such that increased step length is adjusted
against reduced entrainment, so that the equilibrium bedload
transport rate is the same whether the flux or entrainment
formulation is used. A difference, however, arises under dis-
equilibrium conditions, in which case Eq. (16) is solved in
conjunction with Eq. (1) in the flux case, and Eq. (18a) is
solved in conjunction with Eq. (4) in the entrainment case.
This allows us to capture the difference between the two for-
mulations in a comparable way.

The flux formulation, Eq. (1), corresponds to a nonlinear
diffusion equation, i.e.,

∂η (x, t)
∂t

=
∂

∂x

(
ν
∂η

∂x

)
, (20)

where according to Eqs. (11), (15) and (16), the kinematic
diffusivity ν (L2T−1) is a function of bed slopeS = −∂η / ∂x:

ν =

√
RgDcDc

S
γ


[
(kc)

1/3 Q2
w

α2
r gB2

]3/10
S7/10

RDc
− τ∗c


3/2

. (21)

The governing equation is second order inx, and thus re-
quires two boundary conditions. Here we require that the bed
elevation at the downstream end is zero, and that the sediment
transport rate at the upstream end is given as a constant, spec-
ified feed rate:

η|x=Ld
= 0, (22a)

q|x=0 = qf . (22b)

The entrainment formulation of Eq. (4), however, is only first
order in x, in so far as the entrainment rateE is a speci-
fied function of bed slopeS= −∂η/∂x according to Eqs. (4)
and (18a). Thus there can be only one boundary condition
in x; here we use Eq. (22a) for this, so that both the flux
and entrainment formulations satisfy the condition of van-
ishing bed elevation (corresponding to set base level) at the
downstream end.
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Although no boundary condition can be set at the upstream
end for the entrainment formulation, it is still possible to
choose conditions so that the sediment transport rate at the
upstream equals the feed value under equilibrium conditions.

To do this, we assume that the entrainment rate everywhere
upstream ofx= 0 equals a specified valueE f , specified as
follows:

E f =
qf

r̄
. (23)

The deposition rateD(x) of Eq. (3) can then be rewritten in
terms of the sum of particles that originate within the domain
(x− r ≥ 0) and those that originate upstream of the domain
(x− r < 0):

D(x) =
∫ ∞

0
E(x− r) fs(r)dr

=
∫ x

0
E(x− r) fs(r)dr +

∫ ∞
x

E(x− r) fs(r)dr
=

∫ x

0
E(x− r) fs(r)dr +E f fls(x),

(24)

where

fls(x) =

∞∫
x

fs(r)dr (25)

is the probability (L−1), that a particle travels at least a dis-
tancex.

The entrainment form of sediment mass conservation thus
takes the ultimate form

∂η

∂t
= −E (x)+

x∫
0

E(x− r) fs(r)dr +E f fls(x). (26)

For the numerical computation, we nondimensionalize
Eqs. (1) and (26). We assume that the computation begins
from some equilibrium initial condition with spatially con-
stant slopeSin, bedload transport rate and entrainment rate
qin = r̄ Ein. At t = 0, however, the supply of sediment is im-
pulsively altered, causing subsequent bed aggradation or
degradation, but with an altered sediment feed rate fort > 0.
We normalize against initial equilibrium conditions using the
following definitions:

η̂ =
η

Ld ·Sin
, (27a)

x̂=
x
Ld
, (27b)

r̂ =
r
Ld
, (27c)

t̂ =
Ein · ε

Ld ·Sin
t, (27d)

ŝ=
S

Sin
. (27e)

In addition, we nondimensionalize the entrainment rate
(for the entrainment formulation) and the bedload transport

Figure 1. Discretization of the domain.

rate (for the flux formulation) as

Ê =
E

Ein
, (27f)

q̂= ε · Ê. (27g)

Then, the nondimensional flux and entrainment forms of the
sediment mass conservation, Eqs. (1) and (26) take the re-
spective forms

∂η̂

∂t̂
= −

1
ε

∂q̂
∂x̂
= −
∂Ê
∂x̂
, (28)

∂η̂

∂t̂
= −

1
ε

Ê(x)+
1
ε

x̂∫
0

Ê(x̂− r̂) f̃s

(
r̂
ε

)
dr̂ +

1
ε

∞∫
x̂

f̃s

(
r̂
ε

)
dr̂ , (29)

where

f̃s

(
r̂
ε

)
=

1
ε

exp

(
r̂
ε

)
(30)

is the dimensionless step length PDF for the exponential dis-
tribution, and

f̃s

(
r̂
ε

)
=

αr̂α0
(r̂ + r̂0)α+1

(31)

is the corresponding form for the Pareto distribution, where
r̂0 is the dimensionless scale parameter equal tor0/Ld.

These are the upstream conditions, for the entrainment for-
mulation

Ê (x, t)
∣∣∣
x̂≤0
= Ê f (32)

and for the flux formulation

q̂(x, t)|x̂≤0 = εÊ f . (33)

The downstream boundary condition is the same for both

η̂ (x, t)|x̂=1 = 0. (34)

Here Ê f is an imposed upstream entrainment rate, and
εÊ f is an imposed upstream bedload feed rate, cho-
sen to be different from the initial equilibrium values so
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Figure 2. Bed profile evolution for the casêE f = 2: (a) flux form;
(b) entrainment form forε = r̄/Ld = 0.01, (c) entrainment form for
ε = 0.5 and(d) entrainment form forε = 1, using the thin-tailed ex-
ponential step length function of Eq. (8). Asε increases, it is clearly
seen that the differences between the results for the two formula-
tions increases. More specifically, asε increases, nonlocality ef-
fects mediate a transition from upward concave transient profiles
to downward concave transient profiles.

that the bed is forced to aggrade (or degrade) toward a
new equilibrium state.

Manipulating the relations of Eqs. (15) and (18a), with the
definitions of Eqs. (27),̂E can be at any given time as

Ê =

τ∗in ŝ7/10− τ∗c

τ∗in − τ
∗
c

3/2

, (35)

whereτ∗in is the dimensionless Shields number, calculated
from Eq. (15) with the initial flow and bed conditions and
ŝ is the local dimensionless slope.

The key parameter of interest here in describing the differ-
ence between the entrainment and flux formulations isε. In
the caseε� 1, both formulations become identical. We show
below, however, that asε increases, the response to change in
sediment supply differs between the two cases.

We discretize the relation between dimensionless slope
and dimensionless bed elevation as follows:

ŝ=


η̂1−η̂2
∆x̂ , i = 1

η̂i−1−η̂i+1

2∆x̂ , i = 2...M
η̂M−η̂M+1

∆x̂ , i = M +1
. (36)

The discretization of the domain is schematized in
Fig. 1: a central finite-difference scheme is used to
solve Eqs. (28) and (29).

3 Results

Here we compare the results for aggradation and degrada-
tion for the entrainment formulation with varying values of

Figure 3. Aggradation case: variation in time of the dimensionless
concavity parameterδ in the case of the flux formulation, and in
the cases of the entrainment formulation for different values ofε
ranging from 0.01 to 1. The result for the flux form overlaps with
the result for the entrainment form withε = 0.01. Note the reversal
in behavior asε increases beyond about 0.5.

Figure 4. Slope profile evolution for the casêE f = 2: (a) flux form;
(b) entrainment form forε = r̄/Ld = 0.01; (c) entrainment form for
ε = 0.5; and(d) entrainment form forε = 1, using the thin-tailed
exponential step length function of Eq. (8). In the case of the flux
form and the entrainment form withε = 0.01, slope increase is first
realized upstream and then propagates downstream in time. For the
caseε = 0.5, slope more or less increases simultaneously every-
where, corresponding to the rotational evolution in Fig. 2c. In the
caseε = 1, slope first increases downstream, the effect then gradu-
ally propagating upstream in time.

ε against those for the flux formulation. In Fig. 2, bed eleva-
tion profiles are shown, having set as an upstream boundary
condition Ê f = 2, so forcing the bed to aggrade. Case (a) is
the solution for the flux form of Eq. (28), while cases (b), (c)
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Figure 5. Bed profile evolution for the casêE f = 1/2: (a) flux form;
(b) entrainment form forε = r̄/Ld = 0.01; (c) entrainment form for
ε = 0.5; and(d) entrainment form forε = 1, using the thin-tailed
exponential step length function of Eq. (8). Asε increases, the dif-
ferences between the results from the two forms increase because
of the nonlocality of particle movement, with an evolution from
downward-concave transient profiles to upward-concave ones.

and (d) are the solutions for the entrainment form of Eq. (29)
solved, respectively, forε = 0.01, 0.5, and 1.

As expected, the solutions of Eqs. (28) and (29) collapse
to nearly the same results in the caseε = 0.01; i.e., when the
mean particle step length is short compared to the length of
the domain. Under this condition the local (flux) form, essen-
tially coincides with the entrainment form. For higher values
of ε, however, the differences between the results increase
because the entrainment form is able to capture the nonlocal
feature of the particle movement. For the flux form and the
caseε = 0.01, the aggradational profile is strongly upward
concave, with bed slope declining downstream. The transient
aggradational bed profiles tend to assume a nearly linear pro-
file, and thus the bed rotates upward for values ofε close to
0.5. For higher values a downward-concave form profile is
realized.

To highlight and quantify this change in shape, we intro-
duce a concavity parameterδ, which measures the deviation,
in the center of the profile at ˆx= 0.5 relative to the constant
initial slope:

δ =
0.5 η̂|x̂=0− η̂|x̂=0.5

η̂|x̂=0
, (37)

where η̂|x̂=0 denotes the dimensionless bed elevation at ˆx= 0
and η̂|x̂=0.5 denotes the same quantity in the center of the pro-
file (x̂= 0.5). Positiveδ indicates upward concavity, while
negativeδ indicates downward concavity. In Fig. 3, the vari-
ation in time of δ is shown for the flux case, and differ-
ent values ofε for the entrainment case. It is seen thatδ
is positive for smallerε and but becomes negative forε

Figure 6. Degradation case: variation in time of the dimensionless
concavity parameterδ in the case of the flux formulation and in
the cases of the entrainment formulation for different values ofε
ranging from 0.01 to 1. The result for the flux form overlaps with
the result for the entrainment form withε = 0.01. Note the reversal
in transient behavior asε increases beyond about 0.5.

Figure 7. Slope profile evolution for the casêE f = 1/2: (a) flux
form; (b) entrainment form forε = r̄/Ld = 0.01; (c) entrainment
form for ε = 0.5; and(d) entrainment form forε = 1, using the thin-
tailed exponential step length function of Eq. (8). The observed be-
havior corresponds to that of Fig. 4. In the case of the flux form
and the entrainment form withε = 0.01, slope decrease is first re-
alized upstream, and then propagates downstream in time. For the
caseε = 0.5, slope more or less decreases simultaneously every-
where, corresponding to the rotational evolution in Fig. 5c. In the
caseε = 1, slope first decreases downstream, the effect then gradu-
ally propagating upstream in time.

greater than 0.5. The results for the flux form overlap with
the form forε = 0.01.
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Figure 8. Bed profile evolution for the casêE f = 2. (i) ε = 0.015:
(a) thin-tailed exponential step length PDF;(b) heavy-tailed Pareto
step length PDF (α = 1.5, r0 = 1.5 m). (ii) ε = 1 (c) thin-tailed ex-
ponential step length PDF;(d) heavy-tailed Pareto step length PDF
(α = 1.5, r0 = 100 m). The shape of the tail of the step length PDF
does not significantly change the results forε = 0.015, but does re-
sult in some change compared to the thin-tailed caseε = 1. It should
be realized that the numerical calculation has been carried out under
the constraints 0< ε = r̄/Ld ≤ 1 and 0≤ x̂= x/Ld ≤ 1, constraints
that preclude the evolution of asymptotic behavior.

In Fig. 4, the slope evolution is plotted: the typical upward
concave shape for the flux case andε = 0.01 is due to the
preferential proximal deposition of sediment, which causes
the sediment load and thus the Shields numberτ* to decrease
downstream (Parker, 2004). Thus, according to Eq. (15), a
downstream decreasing slope is realized (Fig. 4a, b). How-
ever, a downward concave shape forε = 1 is characterized by
an increasing slope downstream (Fig. 4d). This corresponds
to bedload particles that can jump from the upstream end of
the domain to the downstream end in one step.

For completeness, the case of degradation, due to an im-
posed entrainment and feed rate upstreamÊ f = 1/2, is de-
scribed by Figs. 5, 6 and 7. The results show a congruent
behavior with the aggradation case. In Fig. 5, forε = 0.01
and Ê f = 1/2, it is seen that the two profiles more or less
agree. In Fig. 6, the concavity parametersδ also more or less
agree for this case. Whenε increases to 1, the concavity of
the transient degradational profiles changes from downward
to upward. In Fig. 7, slope changes from increasing down-
stream to decreasing upstream. Whenε = 0.5, it is shown in
Fig. 7 that the transient profiles tend to keep a straight shape,
and the evolution of the bed is essentially rotational about the
downstream end.

Summarizing, (i) the flux model and the entrainment
model yield essentially the same results forε = 0.01; (ii) for
ε = 0.5, nearly rotational aggradation and degradation are ob-

Figure 9. Variation in time of the concavity parameterδ for the
case of the thin-tailed exponential distribution for step length, and
the case of heavy-tailed Pareto distribution for step length. The pa-
rameterε = r̄/Ld takes the value 0.015 in(a) and 1.0 in(b).

tained; and (iii) forε = 1, the pattern of concavity is reversed
compared to the flux case.

Then, a Pareto distribution with a shift, i.e., Eq. (9) for
particle step length distribution, is considered as well so as
to compare the case of heavy tail of the PDF of step length
with the thin-tail exponential form. In the calculations for
the entrainment rate witĥE f = 2, two cases are evaluated:
(a) ε = 0.015 and (b)ε = 1. It is seen that the two profiles
more or less agree for case (a). A more substantial differ-
ence is seen for case (b), but the concavity is quite small
for both the cases of thin-tailed and heavy-tailed PDFs for
step length. AssumingL = 200 m, with a thin-tailed PDF the
valueε = 0.015 corresponds to a mean step length equal to
3 m, and the valueε = 1 corresponds to 200 m. We have set
the shape parameterα in the Pareto PDF equal to 1.5, and the
scale parameterr0 equal to 1.5 m for case (a), andt at 100 m
for case (b). This yields values of ¯r from Eq. (10) that are
respectively equal to 3 and 200 m; i.e., the same values as for
the thin-tailed case.

The analysis shows that the shape of the tail of the step
length PDF does not significantly change the results forε =
0.015 but does result in some change compared to the thin-
tailed caseε = 1. Figure 8 shows the long profiles resulting
from both the thin-tailed and heavy-tailed cases, and Fig. 9
shows the corresponding evolution of concavity. As seen in
Fig. 9c and d corresponding to the case of aggradation with
ε = 1, the profiles are downward-concave for the thin-tailed
PDF of step length, and upward-concave for the heavy-tailed
case. The concavity in both cases, however, is so small that
the same rotational behavior for profile adjustment is seen,
as documented in Fig. 8c and d.

In interpreting the results regarding the thin-tailed and
heavy-tailed cases, it should be recalled that the problem is
solved numerically only over the domain 0< x̂≤ 1, with the
further constraint 0< ε = r̄/Ld ≤ 1. This constraint prevents
attainment of an asymptotic nonlocal state. An example of
an asymptotical form is given below.
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4 Sample asymptotic nonlocal relation for
entrainment form of mass conservation

Taking the spatial Fourier transform of Eq. (4) results in the
form

∂η̂

∂t
= −Ê+ Ê f̂s, (38)

where the Fourier transform of any parameterZ(x) is given
as

Ẑ(k) =

∞∫
−∞

Z(x)e−ikxdx. (39)

Following the analysis of e.g., Ganti et al. (2010), we assume
that the PDFfs(r) has a mean ¯r but no standard deviation, so
that f̂s(k) can be expanded in asymptotic form

f̂s(k) � 1− ikr̄ + cα, (ik)α, (40)

where 1< α < 2. The implication of this is thatfs(r) has a
power-law tail. Substituting Eq. (40) into Eq. (38), inverse-
transforming back to real space and reducing with Eq. (17),
it is found that Eq. (4) reduces to

∂η

∂t
� −
∂q
∂x
+

cα
r̄
∂αq
∂xα
. (41)

In so far asq is specified by Eq. (16), Eq. (41) takes the form
of a nonlinear fractional PDE (partial differential equation).
While the asymptotic form is of interest from a theoretical
point of view, numerical solutions of specific problems are
more easily carried out in terms of the original convolution
form of Eq. (4).

5 Discussion and conclusions

The main goal of the work is to show how the entrainment
form of the Exner equation of sediment continuity diverges
from the flux form of the Exner equation when nonlocal be-
havior in particle motion arises: (i) as the mean particle step
length ¯r increases from 0 to the order of magnitude of the
domain length Ld for a thin-tailed step length PDF and (ii) as
a heavy-tailed PDF for particle step length is used.

The dimensionless parameterε is defined as the ratio be-
tween the mean step length ¯r and the length of the domain of
interestLd. We analyzed the effect of variation ofε on bed
aggradational/degradational profiles by solving the entrain-
ment form of the Exner equation, with the assumption of a
thin-tailed PDF for particle step length. As expected, the two
forms collapse in the caseε� 1.

For high values ofε, however, the differences between the
results from the two forms increase because of the nonlocal-
ity of particle movement, which is not captured by the clas-
sical flux form of the Exner equation: the transient aggra-
dational (degradational) bed profiles tend to assume, forε

greater than 0.5, a downward (upward) concave shape, rather
than the upward (downward) concave shape of the flux form.
When the value ofε is close to 0.5, an interesting behav-
ior for both cases of aggradation and degradation has been
found: the transient profiles tend to rotate around the down-
stream point, keeping almost a straight shape. For a value
of ε in the range [0,0.5), the concavity of the bed profiles is
still upward for aggradation and downward, for degradation,
but by increasingε to 0.5, the concavity is nearly vanish-
ing. These results may serve as an explanation for relatively
flat aggradational bed profiles, which have been achieved in
some short laboratory experiments (e.g., Muto, 2001; and
Voller and Paola, 2010), where the value of the ratio between
mean particle step length and length of the domain of inter-
est may not be negligible. At the laboratory scale, the mean
step length becomes comparable to domain length so that the
inclusion of nonlocal effects in the PDF of step length, which
this circumstance entails, should clearly be evaluated in order
to properly model the bed evolution.

The analysis also investigates the effect of the heavy tailed-
ness in the PDF of step length on the bed profile. For the case
studied, we show that the variation of the shape of the step
length distribution from thin- to heavy-tailed does not signif-
icantly influence the results when step length is small. This
is probably due to the “short” domain length compared to the
tail of the power law distribution. There is a somewhat larger
difference in the case when step length equals domain length,
but the bed elevation profiles are nearly linear for both thin-
tailed and heavy-tailed PDFs. Voller and Paola (2010) intro-
duced heavy-tailed behavior to explain profiles that evolve
with concavity that is small compared to the standard flux
case of Eq. (1). Here we find that a heavy-tailed behavior is
not necessary to obtain this result.

Recently Falcini et al. (2013) have presented a nonlocal
formulation for sediment transport and bed evolution that
bears comparison to the present work. They assume a locally-
determined “reference [sediment transport rate]qL whose
physical interpretation requires some care”, and then inte-
grate this with a nonlocal weighting function to determine
the actual sediment transport rateq at a section. Their analy-
sis can yield an upward concave nonlinear final equilibrium
state in the absence of subsidence (which is not included
in this analysis as well), whereas the present analysis pre-
dicts only equilibrium states with constant slope. That is,
in our analysis, profile concavity or convexity is a transient
phenomenon. We suggest that our analysis has a somewhat
clearer basis than that of Falcini et al. (2013), who determine
their weighting function from heuristic considerations.

Long step lengths of bedload particles in the field may
result from any bed pattern that induces preferential paths
for transport, including grain size mixtures (Ganti et al.,
2010), bedforms, scour and fill, and intermittent bedrock
exposure (Stark et al, 2009). Thus our results may be ap-
plicable to these cases. The case of sediment suspension
can also be represented in entrainment form (e.g., Parker,
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2004). This case is generally associated with much longer
mean path lengths than the case of bedload. As a result,
the suspension-dominated case may show much more non-
local behavior than the bedload case. This case deserves
further investigation.

Notation
B channel width (L)
D(x) deposition rate (L T−1)
Dc characteristic bed grain size (L)
E(x) entrainment rate (L T−1)
Ê normalizedE against initial conditions
E f entrainment rate upstream ofx= 0 (L T−1)
Ê f normalizedE f against initial conditions
fls(x) probability (L−1) that a particle travels at least a distancex
fs(r) probability density (PDF) of step lengths (L−1)
f̃s
(

r̂
ε

)
dimensionless step length PDF

g gravitational acceleration (L T−2)
H water depth (L)
kc composite roughness height (L)
ks roughness height (L)
Ld domain length (L)
L lenght unit
M mass unit
q volume bedload transport rate per unit width (L2T−1)
q̂ normalizedq against initial conditions
qf sediment transport rate at the upstream end (L2T−1)
Qw water discharge (L3T−1)
r step lengthr of a bedload particle (L)
r̄ mean particle step length (L)
r̂ dimensionless particle step length
r0 scale parameter for the Pareto step length PDF (L)
R submerged specific gravity of the sediment
S bed slope
ŝ normalized slope against initial conditions
T time unit
t time (T)
t̂ dimensionless time
u∗ shear velocity (L T−1)
U depth-averaged flow velocity (L T−1)
x streamwise distance (L)
x̂ dimensionless streamwise distance
α shape parameter for the Pareto step length PDF
αr dimensionless coefficient in the Manning–Strickler

resistance relation
β ratio between particle mean step length and grain size
γ coefficient of proportionality in the bedload transport formulae
δ concavity parameter
ε ratio between particle mean step length and domain length
η bed elevation (L)
η̂ dimensionless bed elevation
ν kinematic diffusivity (L2T−1)
ρ water density (M L−3)
τb bed shear stress (M L−1T−2)
τ∗ Shields number
τ∗c threshold Shields number
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