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Abstract. Numerical models rely on the parameterization of processes that often lack a deterministic descrip-
tion. In this contribution we demonstrate the applicability of using machine learning, a class of optimization
tools from the discipline of computer science, to develop parameterizations when extensive data sets exist. We
develop a new predictor for near-bed suspended sediment reference concentration under unbroken waves using
genetic programming, a machine learning technique. We demonstrate that this newly developed parameteriza-
tion performs as well or better than existing empirical predictors, depending on the chosen error metric. We
add this new predictor into an established model for inner-shelf sorted bedforms. Additionally we incorporate
a previously reported machine-learning-derived predictor for oscillatory flow ripples into the sorted bedform
model. This new “hybrid” sorted bedform model, whereby machine learning components are integrated into a
numerical model, demonstrates a method of incorporating observational data (filtered through a machine learn-
ing algorithm) directly into a numerical model. Results suggest that the new hybrid model is able to capture
dynamics previously absent from the model – specifically, two observed pattern modes of sorted bedforms.
Lastly we discuss the challenge of integrating data-driven components into morphodynamic models and the
future of hybrid modeling.

1 Introduction

Parameterizations become necessary in morphodynamic
models when processes cannot be described entirely from
conservation laws. This is often the case with descriptions
of sediment transport, where the mechanics are multidimen-
sional and highly nonlinear (e.g., have thresholds). Param-
eterizations are often developed through the collection and
processing of experimental data. This results in formulas
that, because they have been developed through inductive
methods, are subject to many caveats: constraints regard-
ing the applicable forcing conditions or the appropriate set-
ting for use. The inaccuracy of individual predictors has sig-
nificant consequences in nonlinear morphodynamic models

because errors accumulate as inaccuracy is (1) propagated
through the nonlinear pieces of the model (e.g.,Bolaños et
al., 2012) and (2) propagated in time (e.g.,Pape et al., 2010).

Some prediction schemes may perform well only in spe-
cific settings or under specific hydrodynamic conditions
(Cacchione et al., 2008; Bolaños et al., 2012). This is an ex-
ample of locally optimal predictors, performing well with a
single set of data but not necessarily transferable to other set-
tings (both physical locations and hydrodynamic conditions).
The existence of many locally optimal predictors (each de-
veloped from its own data set) leads to the problem of select-
ing the appropriate predictor for a morphodynamic model.
One solution to this difficulty is to sidestep it entirely and in-
stead develop globally optimal predictors from multi-setting
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data sets that encompass wide ranges of forcing conditions
and independent variables. The hope is that differences in lo-
cally optimal solutions may be attributed to an independent
variable that may become apparent when building a single,
unified globally optimal model.

The construction of globally optimal predictors is diffi-
cult because large multi-setting data sets with nonlinear re-
lationships and multiple independent variables are difficult
to visualize and interpret. Traditional techniques for devel-
oping successful parameterizations include converting mul-
tidimensional data sets into low-dimensional spaces and then
fitting a curve. However, collapsing data into combined pa-
rameters may inherently bias the resultant predictor and may
obscure subtle relationships in the data. One method to de-
tect relationships in large, nonlinear, multidimensional data
sets is machine learning (ML), a class of computational op-
timization routines. A range of ML techniques have previ-
ously been used successfully to develop data-driven parame-
terizations: artificial neural networks (ANN) have been used
to parameterize alongshore suspended sediment transport in
the surf zone (van Maanen et al., 2010), sediment suspen-
sion in the surf zone (Yoon et al., 2013), and near-bed ref-
erence concentration (Oehler et al., 2012). Boosted regres-
sion trees (BRT) have been used to parameterize suspended
sediment reference concentration (Oehler et al., 2012), and
genetic programming techniques have been used to develop
predictions of wave-generated ripple geometry (Goldstein et
al., 2013), roughness in vegetated flows (Baptist et al., 2007),
and fluvial sediment transport (Kitsikoudis et al., 2013).
Aside from small-scale process descriptions, data-driven ap-
proaches have also been used as stand-alone morphodynamic
models (Pape et al., 2007, 2010) and to calibrate model
parameters (Knaapen and Hulscher, 2002, 2003; Ruessink,
2005).

In this contribution we focus on the data-driven predic-
tion of near-bed reference concentration under unbroken
waves. As the bottom boundary condition for calculating sus-
pended sediment transport, reducing error is of paramount
importance for accurate predictions of total suspended sed-
iment load. Several parameterizations already exist, notably
Nielsen(1986) andLee et al.(2004). Recent work byOehler
et al. (2012) demonstrated the ability of ML predictors to
outperform traditional empirical prediction schemes for ref-
erence concentration (i.e.,Lee et al., 2004; Nielsen, 1986).
The BRT and ANN model developed byOehler et al.(2012)
is an accurate predictor of reference concentration, but the
predictor is not smooth, physically interpretable, or econom-
ical in length; all problems when attempting to incorporate
the results into a morphodynamic model. Here we use genetic
programming (GP) to develop a smooth and physically inter-
pretable parameterization of near-bed reference concentra-
tion. GP is a population-based optimization technique where
the population is composed of individual predictors (Koza,
1992). Using evolutionary principles (e.g., crossover, muta-
tion) to develop new solutions, the functional form of the pre-

Figure 1. Sorted bedforms present in∼ 5 m of water off the coast
of Tairua Beach, New Zealand (Coco et al., 2007a). White areas are
composed of coarse sediment, while dark areas are floored by fine
sediment. Shoreline is towards the bottom of the panel.

dictor and the location and presence of the variables within a
given predictor are adjusted and optimized to find a globally
optimum solution.

The development of a new near-bed suspended sediment
reference concentration predictor using GP is the first ob-
jective of this work. The second objective is to incorpo-
rate this new predictor (and a previously developed predic-
tor for ripple geometry, built with GP) into a previously de-
veloped model of inner-shelf sorted bedforms (Coco et al.,
2007a) to develop a “hybrid” numerical model (Krasnopol-
sky and Fox-Rabinovitz, 2006), where data-driven compo-
nents are combined with widely accepted formulas for hy-
drodynamics and sediment transport. Previous examples of
the hybrid approach are found in studies of shoreline change
(Karunarathna and Reeve, 2013), hydrology (Corzo et al.,
2009), and the atmospheric and climate system (Krasnopol-
sky and Fox-Rabinovitz, 2006).

Spatially extensive (kilometer scale) patches of segre-
gated coarse and fine-grained sediment (Fig. 1) with only
slight bathymetric relief (centimeter to meter scale) relative
to bedform pattern wavelength (10 m–km) are present on
many continental shelf systems (Coco et al., 2007b). Unlike
most bedforms that develop solely as an interaction between
bathymetry and flow, recent work implicates a sorting feed-
back as the mechanism for the development of inner-shelf
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Table 1. Summary of experiments used in this study.

Study Mean Sediment Sampling Burst Sorted
water depth grain size rate duration bedform

(m) (mm) (Hz) (min) field?

(Green, 1999; Green and Black, 1999) 7 0.23 4–5 10–17.06 No
(Green et al., 2004; Trembanis et al., 2004) 15 0.22 1 15 Yes
(Green et al., 2004; Trembanis et al., 2004) 22 0.22 4 8.5 Yes
(Green et al., 2004; Trembanis et al., 2004) 22 0.75 1 15 Yes
(Vincent and Green, 1999) 25 0.33 4 10 No
(Green and MacDonald, 2001) 1.7 0.15 4–5 4.267–5 No

“sorted bedforms” (Murray and Thieler, 2004; Coco et
al., 2007a, b). The sorting feedback is initiated by wave-
generated ripples whose size is a function of seabed compo-
sition and hydrodynamic forcing conditions (e.g.,Cummings
et al., 2009). Regions covered with fine sediment support
smaller wave-generated ripples than areas mantled by coarse
sediment. Strong turbulence above the large wave ripples on
coarse domains enhances the erosion of fine material from
the bed (and also functions as a barrier to the deposition of
suspended fine sediment). Near-bottom currents lead to the
advection of suspended fine material and the preferential set-
tling of suspended fine sediment in areas where the seabed is
composed of predominantly fine sediment with small wave
ripples (and correspondingly less turbulence induced by the
smaller features). Through self-organization this local sort-
ing feedback leads to spatially extensive features. The nu-
merical model ofCoco et al.(2007a) indicates that the sort-
ing feedback operates in a wide range of forcing conditions
(Coco et al., 2007b).

Sorted bedforms show several configurations that we di-
vide into two distinct end-member patterns typified by the
location of the coarse domain, either in the trough of the bed-
form or on the flanks of the bedforms (appearance on both
the updrift and/or downdrift are possible; e.g.,Goff et al.,
2005; Ferrini and Flood, 2005). We note that within an in-
dividual sorted bedform field the pattern configuration can
change (Thieler et al., 2014; Ferrini and Flood, 2005). Pre-
vious work with the finite-amplitude models byMurray and
Thieler (2004) andCoco et al.(2007a) showed the presence
of coarse domains solely on the downdrift flank of bedforms.
While Coco et al.(2007b) did show the potential for coarse
domains to occur in the trough of bedforms, this configu-
ration was highly path dependent (i.e., the result of a high
wave event that is preceding and followed by smaller waves).
Van Oyen et al.(2010, 2011), through linear stability analy-
sis, showed the presence of two pattern modes in the initial
infinitesimal-amplitude instability that correspond to these
two distinct configurations. HoweverVan Oyen et al.(2010,
2011) showed that each pattern mode is the result of sep-
arate feedback mechanisms, where coarse domains present
in troughs occurred as the result of a flow–bathymetry feed-

back, while coarse domains present on bedform flanks is the
result of the previously described sorting feedback (refereed
to as the “roughness” feedback byVan Oyen et al.(2010,
2011).

With the goal of presenting a new hybrid model, we first
describe the development of the near-bed suspended sedi-
ment reference concentration predictor from the large data
set of Green and colleagues (Green, 1996, 1999; Green and
Black, 1999; Vincent and Green, 1999; Green and MacDon-
ald, 2001; Green et al., 2004; Trembanis et al., 2004). We
then outline the sorted bedform model and the modifications
to incorporate the new data-driven components. This new
model is meant as an update to theCoco et al.(2007a) model.
The new predictors in the hybrid model are more accurate
and better performing than the formulations used in theCoco
et al.(2007a) model. Finally, we present a novel experiment
with the new hybrid model to show autogenic behaviors that
were not present in theCoco et al.(2007a) model (i.e., the ap-
pearance of two pattern configurations solely from a sorting
feedback) and discuss advantages and disadvantages of this
data-driven approach.This paper does not attempt to quanti-
tatively compare the new hybrid model against older model-
ing efforts: instead we offer this new model as a refinement
to the previous model that is additionally able to capture new
dynamics.

2 GP methods

2.1 Data set

Figure 2 shows the multi-setting field data set composed of
1748 individual measurements from 6 separate field experi-
ments at different locations in New Zealand. We briefly sum-
marize the experiments below and in Table 1; a detailed sum-
mary of each experiment and the specific methodology used
to determine the near-bed suspended sediment reference con-
centration (C0; g L−1), significant near-bed orbital velocity
(Usig; m s−1), wave orbital diameter at the bed (d0; m), mean
grain size (d50; m), and mean spectral wave period at the bed
(Tmean; s) is available in the associated references. A single
experiment (Green and Black, 1999; Green, 1999) collected
127 measurements seaward of the surf zone with mean water
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Table 2. Solutions for reference concentration.

Solution Complexity MSE

C0 = 0.182 1 0.070
C0 = U2

sig 2 0.057
C0 = 0.637Usig 3 0.056

C0 =
(
1.19Usig

)2
4 0.052

C0 = Usig−0.647(1000d50) 5 0.048

C0 =

(
0.235Usig

(1000d50)

)2

7 0.048

C0 =

(
0.328Usig

0.0688+(1000d50)

)2

9 0.045

C0 =
(
1.27

√
Usig−1.21(1000d50)

)2
12 0.045

C0 =
0.179U2

sig−0.00538

d0(1000d50)
+

0.0185+0.179U2
sigd0−0.179U2

sig−0.0319U4
sig

(1000d50)
41 0.043

depth of 7 m. Data from three experiments (Green et al.,
2004; Trembanis et al., 2004) were collected from separate
locations in a field of sorted bedforms (669, 126, and 554
measurements). A single instrument frame was located in a
domain composed of coarse sand (22 m depth) and two in-
strument frames were located in fine sand domains (15 and
22 m depth). The fifth experiment was deployed off of a head-
land in 25 m of water depth (56 measurements;Vincent and
Green, 1999). The final experiment in the database collected
241 measurements in a microtidal estuary in a mean water
depth of 1.7 m (Green and MacDonald, 2001). All data were
gathered in burst mode, with burst durations ranging from
4.267 to 17.06 min. In addition to the multiple settings and
significant amount of data, this data set is ideal for applica-
tion in the sorted bedform model because three of the six ex-
periments in the composite data set are derived from a sorted
bedform field (Green et al., 2004; Trembanis et al., 2004).

2.2 Selection of training, validation, and testing data sets

The database is split into three subsets to be used as train-
ing, validation, and testing. The training data set is used to
develop candidate solutions. The validation data set is used
to evaluate the generality of a predictor, the fitness of GP-
derived solutions against more data, and ultimately to deter-
mine which predictors persist. The testing data set is unused
and unseen by the GP algorithm; it is reserved as an inde-
pendent test of the final predictors (and other published pre-
dictors). Because our database does not cover the entirety
of the forcing space with equal density (Fig. 3), the selec-
tion and partitioning of data into these three categories is
crucial for developing a well-performing predictor applica-
ble to a range of environments (e.g.,Bowden et al., 2002).
TheC0 data set is sparse in areas because of a lack of col-
lected data, while dense in other regions of phase space as
a result of similar field settings, forcing conditions, and the
number of data points collected in a given experiment. If
the data are randomly divided, there is a potential that the

training data exclude data from sparse regions in the data set
(i.e., coarse-grained and/or strong hydrodynamic data). How-
ever, in the genetic programming literature we could find no
proven “best practice” for selection of the data subsets or an
optimal percentage of training, validation, and testing data
(Kuschu, 2002; Panait and Luke, 2003; Gagné et al., 2006);
we therefore use a technique that was successful in a previous
study (Goldstein et al., 2013).

Informed data selection has been shown to produce better
results with ML predictors than “blind” or random data se-
lection (e.g.,Bowden et al., 2002; May et al., 2010). In this
study we select training data through the use of a maximum
dissimilarity algorithm (MDA;Camus et al., 2011). This al-
gorithm is not a clustering routine (where centroids denote a
representative value of the data in the cluster), but is instead
a selection routine (where a centroid represents the most dis-
similar data point from the previous centroids;Camus et al.,
2011). This selection routine allows the use of a minimum
of training data that is able to capture the variance present in
the entire data set while leaving the majority of the data to be
utilized as validation and testing.

The maximum dissimilarity algorithm is described inCa-
mus et al.(2011) and we review the method. Selection starts
with the linear normalization of the independent variables to
a value between 0 (minimum value of a given variable) and 1
(maximum value of a given variable). A single data point, a
“seed”, is selected as the first centroid. The algorithm then se-
lects the additional centroids (the number determined by the
user) through an iterative process: each data point is a four-
dimensional vector (normalizedTmean, Usig, d0, d50 space)
and is associated with a distance to the nearest centroid. The
single data point with the maximum distance between itself
and the nearest centroid is selected as the next centroid (Ca-
mus et al., 2011). The MDA routine continues until the user-
defined number of centroids is reached and the data are then
denormalized.

There remains significant ambiguity in determining the ap-
propriate number of centroids needed to accurately represent
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Figure 2. Observations of suspended sediment reference concentration data setC0 and concomitant measurements of significant wave
velocity at the bed (Usig), wave orbital excursion at the bed (d0), mean grain size of bed material (d50), and mean spectral wave period at the
bed (Tmean). Note that mean grain size of bed material is shown here in millimeters. A similar figure appears in Oehler et al. (2012).

a data set, especially continuous data (e.g.,May et al., 2010;
Goldstein et al., 2013). Selecting too many centroids can rob
the validation and testing data sets of poorly represented data
(e.g., largeTmean, Usig, d0, d50) and may tend to cause the GP
to produce overly complex predictors (e.g.,Gonçalves and
Silva, 2013; Oates and Jensen, 1997, 1998). The selection of
too few centroids can leave the testing data with too few data
points to capture the variability in the data set (Goldstein et
al., 2013). We use 40 centroids for the prediction ofC0 (cen-
troid locations can be seen in Fig. 3), the same asGoldstein
et al.(2013). Data selected as the centroid locations are used
for the training data, while the remaining data are used for
validation and testing data. The data set is split between val-
idation and testing randomly, without using a selection rou-
tine. The final breakdown for the data sets is∼2 % training,
∼49 % validation, and∼49 % testing.

2.3 Genetic programming

We operate on this data set using the ML technique of genetic
programming (GP;Koza, 1992; Poli et al., 2008), where can-

didate solutions (i.e., randomly generated initial equations)
are evaluated and subsequently modified by adjusting the in-
dependent variables as well as the mathematical relationships
between variables (i.e., the mathematical form). Independent
variables used in this study to predictC0 areTmean, Usig, d0,
andd50. We useTmean, Usig, andd0 as separate independent
variables for input to the GP (though they are related) in an
attempt to introduce no additional information about which
of these parameters is most relevant. Mathematical operators
used in this study are+ (addition),− (subtraction),× (mul-
tiplication),÷ (division), and√ (square root), as well as in-
teger powers (e.g.,x2, x3, etc.). We omit logical functions in
this analysis (e.g., if-then-else) because we aim to develop a
smooth final solution.

Candidate solutions are evaluated based on a “fitness func-
tion”, a user-defined error metric that determines how well a
given candidate fits the validation data. Mean squared error
(MSE) is used as the fitness function:

MSE=

∑n
i=1 (pi −bi)

2

n
, (1)
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Figure 3. Visualization of the range of conditions in theC0 data set. Each plot represents a two-dimensional projection of the entire data
set onto the set of axes shown. For instance, the first panel with data projected onto thed0−Usig plane shows no information aboutd50 or
Tmean. Stars denote centroid locations (training data), while points denote unselected data (validation and testing). Note that centroids are
distributed throughout the data set.

wheren is the sample size,p are the predicted values, and
b are the observed values. Candidate solutions that minimize
mean squared error are retained and poor performing solu-
tions are discarded. Retained solutions are rearranged, com-
bined, and manipulated in a probabilistic manner according
to combinatorial processes: solutions “crossover” by com-
bining elements of other solutions to develop a new solu-
tion and “mutations” develop new mathematical expression
to substitute or tack on to a previous solution. Candidate so-
lutions are commonly encoded in GP software as graphs or
“trees”. The evolutionary processes that modify candidate
solutions (change of variables and/or mathematical expres-
sion) is accomplished by adjusting tree “limbs” (Fig. 4). Pre-
dictors range from simple (small trees) to complex (large
trees) as they are recombined in a variety of ways. The range
of candidate solutions enables the searching of a large solu-
tion space, and the search process continues until a solution
with zero error is found or the routine is halted.

In this study we use a proven software package developed
by Schmidt and Lipson(2009, 2013). This software package,

“Eureqa”, outputs a suite of solutions with increasing math-
ematical “complexity”, where complexity is a count of the
numbers of operators and variables are used in the candidate
solution. Each solution of a given complexity represents the
equation with the least error compared to identically “com-
plex” candidate solutions. Additionally, solutions must have
less error compared to all previous less complex solutions.
The line that traces the suite of solutions in complexity–
fitness space is the “Pareto front”, and is a graphical rep-
resentation of increasing fitness with increasing complexity.
Many predictors along the Pareto front, from simple to com-
plex, are retained in the solution set, requiring the user to pick
a single solution as the final predictor of choice.

In the results presented here there is no single zero-error
solution found; therefore we cease the search after roughly
1010 formulas have been evaluated – continued search shows
only marginal increases in predictive power (and this in-
crease occurs only on more complex, likely overfitted, pre-
dictors). Several methods exist for eliminating overfitted
solutions (e.g.,Gonçalves et al., 2012). We use several
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Figure 4. Example of the genetic programming process. Potential
solutions are encoded as a population of trees. Here a hypothetical
population of two solutions is shown. The first solution has a low
MSE and therefore persists to the next iteration. The second solu-
tion has a high MSE and therefore is subject to removal, mutation,
or crossover. An example of “crossover” is shown here, whereby
the old solution is combined with parts of other, better performing
solutions to create a new potential solution in the next iteration.

techniques in parallel to determine a single appropriate solu-
tion: (1) bias toward shorter, physically reasonable solutions,
(2) examining “cliffs” in the Pareto front, and (3) examina-
tion of solution fit.

Compact, simple solutions tend to offer more generaliza-
tion power and are likely less overfitted (the minimum de-
scription length principle; e.g.,O’Neill et al., 2010). Addi-
tionally, shorter solutions reappear with repeat initialization
of the genetic programming algorithm, suggesting that these
reappearing candidates represent the globally optimum so-
lutions for a given function size. Longer solutions do not
tend to reappear, a result of a large search space that is
not repeated during repeat initializations or the presence of
multiple, equally optimal solutions in the large phase space
(i.e., local minima). The inherent reproducibility of simple,
weakly nonlinear solutions suggests their use as predictors
until further data can be used to justify the use of highly non-
linear predictors.

Areas along the Pareto front where large gains in predic-
tion are obtained with small gains in solution complexity,
“cliffs”, are a natural place to observe potential solutions
(Fig. 5). Schmidt and Lipson(2009) observed many phys-
ically relevant solutions at the bottom of the last cliff of a
given Pareto front, and therefore we focus our search for a
final solution at the cliffs. Additionally, as candidate solu-
tions are evaluated by minimizing error functions, solutions
occasionally minimize mean squared error but are unphys-
ical (e.g., functions that have poor extrapolation ability be-
yond the domain of the training data). These solutions must
be manually disregarded, as there is as yet no means of ex-
cluding them.

Figure 5. Reference concentration Pareto front; MSE is mean
squared error of candidate solution versus the validation data set.
Complexity is a quantification of the candidate solution length (both
mathematical operators and variables).

Once a single predictor is selected, it is evaluated using
the independent testing data (data that the ML algorithm
has not seen) with the normalized root-mean-squared error
(NRMSE):

NRMSE=

√
MSE

b
, (2)

whereb is the mean of the observed values. Additionally
we report the correlation coefficient (Pearson’sr) for each
predictor evaluated against the independent testing data. The
NRMSE and correlation coefficient are also reported for the
reference concentration predictor ofNielsen(1986) andLee
et al.(2004) evaluated against the independent testing data.

3 GP results

The GP algorithm output is shown in Table 2 (note that nu-
merical coefficients listed in the table are dimensional). This
experiment evaluated 1010 formulas to develop the Pareto
front shown in Fig. 5. Cliffs occur along the Pareto front at
complexities of 2, 4, 5, 9, and 41 (Fig. 5). Predictors gen-
erally show nonlinear dependence onUsig/d50, qualitatively
similar to the predictors developed byNielsen(1986) and
Lee et al.(2004), which both show dependence on the modi-
fied Shields parameter. We focus our analysis on the last cliff

before the proliferation of very complex, nonlinear terms (so-
lution 9):

C0 =

(
0.328Usig

0.0688+ (1000d50)

)2

. (3)

Note that the coefficients of Eq. (3) are dimensional. Re-
served testing data are used as an independent data set to
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Figure 6. GP predictor ofC0, Nielsen(1986) andLee et al.(2004) predictor evaluated using only the independent testing data set. Top row
shows the predictors in linear space; bottom row shows log–log space.

compare the GP predictor as well as those developed by
Nielsen(1986) andLee et al.(2004): the NRMSE for each
predictor is 1.1, 2.6, and 1.3, respectively, and the correla-
tion coefficient is 0.58, 0.58, and 0.57, respectively. Results
are shown in Fig. 6. The GP-derived predictor outperforms
other predictors based on the NRMSE and is roughly iden-
tical to the other predictors based on correlation coefficient.
However, we note that at very low concentrations the perfor-
mance of Eq. (3) deteriorates.

4 Hybrid sorted bedform model overview

We now incorporate this newC0 predictor into a previously
described model of inner-shelf sorted bedforms developed
by Coco et al. (2007a) that is based on the initial work of
Murray and Thieler(2004). We briefly review the model
below; a detailed treatment of the sediment transport rela-
tions, hydrodynamic equations and their computational im-
plementation are presented inCoco et al.(2007a). A three-
dimensional model domain with periodic horizontal bound-
ary conditions is used to represent a seabed composed of
two grain sizes (dcoarse= 0.0005 m anddfine = 0.0002 m; fall
velocity wcoarse= 0.07 m s−1 andwfine = 0.02 m s−1). An ini-
tially flat bed (with slight bathymetric perturbation below
0.01 m) has a bulk composition of 70 % fine sediment and

30 % coarse sediment with individual cells that deviate from
this ratio no more than 10 %. The model domain has a plan
view size of 500 m×500 m, a vertical resolution of 0.05 m
and a horizontal resolution of 5 m. Small-scale sorted bed-
forms are modeled in the interest of computational efficiency
(observed sorted bedforms range from the scale modeled to
kilometers in plan view). In the experiments presented the
initial water depth is 9 m, the wave period is 10 s, wave height
is 2 m, the mean current is 0.2 m s−1, and the current is uni-
directional. Sediment transport, computed independently for
each size fraction, occurs only as suspended load and results
in the change of bed elevation.

Suspended sediment transport is based on a simplified
advection–diffusion framework, neglecting horizontal dif-
fusion and assuming steady-state suspended sediment con-
centration profiles (Murray and Thieler, 2004; Coco et al.,
2007a). The flux of suspended sediment (qsusp,s), evaluated
separately for each size fractions, is the vertically integrated
product of the current velocity profile (V(z)) and the sus-
pended sediment concentration profile (Cs(z), wherez is the
vertical coordinate) combined with a “morphodynamic dif-
fusion” term to incorporate the role of bed slope (∇z) on sed-
iment transport:

qsusp,s =

∫
CsVdz− γs

1
5ws

U5
w∇z, (4)
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γs = γc
16Eρ
3πws

Cd, (5)

whereUw is the maximum wave orbital speed at the bed
(m s−1; evaluated with linear wave theory),γc is the mor-
phodynamic diffusion coefficient,ρ is the density of water,
Cd is the drag coefficient, andE is an efficiency factor (set
to 0.035). The integration of suspended sediment flux begins
at the height where reference concentration is defined. The
second term in Eq. (4) represents a “morphodynamic diffu-
sion” term derived from energetics arguments (Bowen, 1980;
Bailard, 1981). The calibration parameter in this framework
is γc and is adjusted to maintain an order of magnitude differ-
ence between the two terms on the right-hand side of Eq. (4),
similar to the methodology ofCalvete et al.(2001). For all
experiments in this contribution,γc = 0.07. The role of this
parameter is addressed further in the discussion section.

Previous work byCoco et al.(2007a) demonstrates negli-
gible sensitivity to different vertical current profile parame-
terizations (i.e., descriptions that include current–wave inter-
actions). In these experiments we use a logarithmic vertical
current profile:

V (z) =
1
κ

U∗ log
z
z0
. (6)

whereU∗ is the shear velocity andκ is the von Kármán con-
stant. The current profile begins at the roughness heightz0,
which is related to wave-generated ripples (van Rijn, 1993):

z0 =
1
30

(2d50+28ηϑ) , (7)

whereη is ripple height andϑ is ripple steepness.
The wave-period-averaged vertical suspended sediment

profile above wave-generated ripples (Cs) is calculated based
onNielsen(1992):

Cs(z) =C0,se
−

wsz
εs (8)

whereC0,s is the near-bed reference concentration for grain
size s and εs is the vertical sediment diffusivity. Coco et
al. (2007a) relied on the formulation developed byNielsen
(1986) to determine the near-bed reference concentration.
We use the new GP-derived formulation developed in the
previous section. To make the GP-derivedC0 predictor com-
patible with this model formulation, we assumeUsig = Uw

andd50 = ds, and therefore Eq. (3) becomes

C0 =

(
0.328Uw

0.0688+ (1000ds)

)2

. (9)

The reference concentration is applied at the height of the
ripple crest, as inCoco et al.(2007a). In contrast to the work
of Coco et al.(2007a) in this work we evaluate the sediment
diffusion coefficient based on the work ofNielsen(1992):

εs = ΩksUw, (10)

ks = 25ηϑ, (11)

whereks is the equivalent roughness andΩ is a scaling coeffi-
cient.Thorne et al.(2009) demonstrated that this parameter-
ization underpredicts vertical sediment diffusivity by a factor
of ∼ 2 when using the original value ofΩ = 0.016 suggested
by Nielsen(1992). We therefore setΩ = 0.032. Ripple pre-
diction is performed using a new equilibrium scheme devel-
oped using GP byGoldstein et al.(2013):

η =
0.313d0 (1000d50)

1.12+2.18(1000d50)
, (12)

ϑ =
3.42

22+
(

d0

1.12(1000d50)+2.18(1000d50)2

)2
. (13)

We evaluate the mean grain size at each model celli (d50,i) at
each time step as

d50,i =
(
1− Bcoarse,i

)
dfine+ Bcoarse,idcoarse, (14)

where Bcoarse,i is the percentage of coarse sediment in the
active layer at locationi, anddfine anddcoarseare the diam-
eter of the fine and coarse fraction, respectively. An active
layer vertically restricts sediment–flow interactions. All ex-
periments presented here have a constant active layer thick-
ness of 0.15 m. Sensitivity analyses performed byCoco et al.
(2007a) demonstrate that the nature of the sorting feedback
is not changed by modification of the active layer thickness.

5 Hybrid sorted bedform model results

The initially flat, well-mixed conditions can be seen in Fig. 7.
This configuration is unstable, and sorted bedforms emerge
within 50 model days to form the rhythmic segregated pattern
shown in Fig. 7. This self-organization is a consequence of
the sorting feedback. Compared to previous modeling, bed-
forms develop more slowly in the hybrid model. The flux of
suspended sediment is smaller for the hybrid model because
of the change in reference concentration predictor. Bedforms
show an abundance of pattern defects (bifurcations, termina-
tions, and “eyes”), and after initial development the pattern
continues to develop through time as a result of bedform in-
teractions: a process of coarsening and pattern maturation oc-
curs as defects move through the system and coarse domains
merge to form combined features. This leads to fewer pattern
elements (coarse domains) seen through time in Fig. 7. Under
unidirectional forcing the sorted bedforms migrate slowly
in the direction of the current and profile views show that
coarse sediment domains are located along the updrift flank.
Fine material is advected downdrift and deposited on the lee
side of the coarse domains. Coarse sediment is also trans-
ported downdrift, but its mobility is limited on upslope sur-
faces and in fine domains (where wave-generated bedforms
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Figure 7. Plan view and profile view of sorted bedform model
output (note the vertical exaggeration of profile view). Black and
white pixels indicate fine (dfine = 0.0002 m) and coarse (dcoarse=

0.0005 m) sediment, respectively. Current direction is from lower
left to upper right and the profile is taken along this axis. The well-
mixed and flat initial condition is shown in the top panels. Sorted
bedforms appear within 50 days (middle panels) and are well de-
veloped by model day 100 (bottom panels). These are mode 2 bed-
forms; note that coarse domains appear on the updrift flank of the
bedforms and wavelength and height are relatively small

are smaller), and therefore it tends to occupy the updrift flank
of the bedform only.

Previous work byCoco et al.(2007a) showed the effect of
variations in the size of the fine fraction while the coarse frac-
tion size was held constant. In these experiments we evalu-
ate the reverse: fine fraction diameter is held constant (dfine =

Figure 8. Variations in sorted bedform characteristics (wavelength
and height) after 100 days when coarse grain size is held constant.
No bedforms appear when the coarse material is too fine. Mode 1
bedforms (long wavelength, larger relief, coarse domains in trough)
appear when coarse grain size is large and relatively immobile.
Mode 2 bedforms (short wavelength, low relief, coarse domains on
updrift flank) appear when coarse grain is between these two limits.
No clear pattern was observed after 100 days whendcoarse= 0.9 mm.

0.0002 m;wfine = 0.02 m s−1), while the coarse fraction diam-
eter is varied between 0.0003 and 0.001 m (wcoarse= 0.04–
0.12 m s−1). This range of sizes for the coarse fraction is sim-
ilar to the values found in sorted bedform fields worldwide
(Coco et al., 2007b).

Results from this analysis can be seen in Fig. 8 (sorted bed-
form wavelength and height are evaluated after 100 model
days). Similar toCoco et al.(2007a) sorted bedforms do not
appear when the grain size contrast between size fractions is
too small (dfine/dcoarse<0.5). When coarse grains range from
0.004 to 0.008 m in diameter, larger coarse sediment tends
to cause sorted bedforms to appear faster, decrease in wave-
length, and increase in height. Within this range of grain sizes
the coarse domain is located along the updrift flank and bed-
forms migrate in the current direction.

When coarse sediment diameter is larger than 0.008 m,
bedforms are strikingly different: bedforms develop faster,
wavelengths and height increase significantly, coarse sed-
iment is only present in the trough of the bedform (not
along the updrift flank), and bedforms migrate upstream
(Fig. 9). This behavior is autogenic in the hybrid sorted bed-
form model. This pattern configuration is not observed un-
der steady wave climates in theCoco et al.(2007a) model
and only appears as the result of specific changes in forcing
(Coco et al., 2007b). Bedforms migrate rapidly upcurrent as
a result of the decreased mobility of coarse sediment: coarse
material is mobile but is not transported significantly up the
flank of the bedform and instead remains predominantly in
the trough. This is a result of low coarse sediment mobility
relative to the downslope transport term in Eq. (4). As fine
sediment is advected past the coarse domain in the bedform
trough, it can be deposited on the updrift side of the bedform
(there is no coarse sediment to prevent its deposition). Along
the downdrift side of the bedform the downstream increases
in downslope gradient (convex-upward curvature) tends to
cause the erosion of bed material and its suspension. This
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Figure 9. Plan view and profile view of mode 1 sorted bedforms
after 50 days. Conditions are identical to Fig. 7 exceptdcoarse=

0.001 m. From identical initial conditions sorted bedforms appear
much faster and are prominent features by 50 model days. Note that
coarse domains appear solely in the bathymetric trough of the bed-
forms and wavelength and height are relatively large.

suspended material is advected over the coarse domain (the
bedform trough) and subsequently deposited on the updrift
side of the following (downdrift) bedform.

In profile view a contiguous layer of coarse sediment ex-
ists directly below the sorted bedform field (Fig. 9). This
coarse layer occurs at the interface between the well-mixed
sediment below (the undisturbed model initial conditions)
and the reworked sediment above, a consequence of limited
coarse sediment mobility and bedform migration (Goldstein
et al., 2011). As bedforms migrate, the position of the sorted
bedform trough changes. Fine sediment under the bedform
trough, once too deep to experience fluid–sediment interac-
tions, is excavated and suspended. Winnowing of fine sedi-
ment and coarsening locally in the bedform trough, repeated
as the bedforms migrate, results in the development of a hor-
izontal layer of buried coarse sediment, a “sorting lag”.

In all results presented here, bedforms migrate and bed-
form wavelength continues to grow through the model run
and wavelength does not saturate. This perpetual coarsening
of wavelength under conditions of unidirectional currents is
identical to the behavior of theCoco et al.(2007b) andMur-
ray and Thieler(2004) model under unidirectional current
forcing. (In the previous results, wavelength coarsening also
occurs under the more realistic conditions of an asymmetri-
cally reversing current, although coarsening is more gradual
than under a unidirectional current.)

6 Discussion

6.1 GP-derived C0 predictor

The newly developedC0 predictor has a nonlinear depen-
dence ond50 and Usig, similar to other previous empirical
predictors (Nielsen, 1986; Lee et al., 2004). This dependence
is not imposed, but instead a result of the data sets used in the
GP algorithm.

The GP reference concentration predictor relies onUsig,
while the sorted bedform model usesUw. In the hybrid model
we assumeUsig = Uw, whereUw is calculated from linear
wave theory. We direct the reader to other methods available
to estimateUsig from surface wave parameters (e.g.,Wiberg
and Sherwood, 2008). We force the sorted bedform model
with a constant monochromatic wave field (height and pe-
riod) to eliminate the chance that changes in wave charac-
teristics influence the simulated seabed evolution. Therefore
the assumption ofUsig = Uw does not impact model results
shown here.

Ripple geometry was not used as an independent variable
in the construction of theC0 predictor.Dolphin and Vincent
(2009) recently suggested that ripple geometry may not aid
in the prediction ofC0, contrary toNielsen(1986) andGreen
and Black(1999). Though we do not have data to either sup-
port or refute this claim, we can offer our results as an exam-
ple of a well-performing prediction of reference concentra-
tion without the explicit inclusion of ripple geometry. How-
ever, the nonlinear nature of the reference concentration pre-
diction and the constants embedded within Eq. (3) suggest
that ripple configuration may be encoded within the predic-
tor, either as a cause of the nonlinearity or a determinant of
the constants.

TheC0 predictor does not explicitly account for near-bed
currents that may be important mechanisms for enhancing
suspension in sorted bedform fields (e.g.,Gutierrez et al.,
2005). TheC0 predictor developed in this study is an equi-
librium predictor; therefore the role of time variance ofC0 is
not addressed (e.g.,Vincent and Hanes, 2002). However, the
data were collected in burst mode, a technique that involves
time averaging. Burst measurements may reduce the effect
of some time-dependent processes (e.g., advected clouds of
sediment, wave groups, etc.). The GP predictor is constructed
solely with regard to the measurement data and is not based
on “first principles”. Using the independent testing data, the
new GP predictor has a lower NRMSE and identical correla-
tion coefficient than theNielsen(1986) andLee et al.(2004)
predictors; however the GP predictor does not perform well
at low concentrations (Fig. 6). The poor performance may
be the result of nonlinearities in sediment transport that are
not captured by the prediction scheme, noise in the experi-
mental signal at low concentrations, or other as yet unknown
reasons. Notably, more energetic conditions are required to
move sediment using the GP predictor than compared to
theNielsen(1986) prediction scheme previously used in the
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sorted bedform model. This result is similar to previous work
that suggests theNielsen(1986) predictor may overestimate
reference concentration (Bolaños et al., 2012; Thorne et al.,
2002).

6.2 Hybrid sorted bedform model

The hybrid version of the sorted bedform model is able to
reproduce the sorting feedback using new parameterizations
built from data. The sorting feedback hypothesized byMur-
ray and Thieler(2004) is robust to changes in the mathemat-
ical description of the processes in sediment transport and
hydrodynamics on the continental shelf, and hybrid model
results are comparable to previous modeling efforts (Mur-
ray and Thieler, 2004; Murray et al., 2005; Coco et al.,
2007a). The behavior of the hybrid model and theCoco et al.
(2007a) model under identical hydrodynamic forcing is dif-
ferent because there are quantitative differences between the
mathematical description of sediment transport processes.
For instance, using the baseline conditions of theCoco et
al. (2007a) model the hybrid model produces no sorted bed-
forms. This is a direct result of changing theC0 predictor
from theNielsen(1986) formula (which overpredicts sedi-
ment transport; Fig. 6) to the new GP-derivedC0 predictor.
Changes to the sediment transport formulas prohibit us from
directly comparing the three models under identical forcing
conditions. Instead we offer this hybrid model as a refined
version of theCoco et al.(2007a) model. The hybrid model
has additional advantages beyond being more tightly coupled
to observational data, most notably in favorable comparison
to previous observational work.

Results shown in this contribution use two new prediction
schemes based on GP (i.e., ripple morphology and reference
concentration). We believe the new ripple prediction scheme
of Goldstein et al.(2013) is an improvement over the previ-
ous method used in theCoco et al.(2007a) model; however
ripples in this model only significantly impact the vertical
sediment diffusivity (εs) and the roughness height (z0). The
reference concentration, since it sets the magnitude of sus-
pended sediment, is more strongly related to the new behav-
iors in the model, and as a result we focus our analysis on the
reference concentration.

Observational work has previously detected several dis-
tinct varieties of sorted bedforms – those with coarse sedi-
ment in the trough and those where coarse sediment appears
either in the trough and bedforms where coarse sediment is
located on the flank (both the updrift and/or downdrift; e.g.,
Goff et al., 2005; Ferrini and Flood, 2005). Van Oyen et al.
(2010, 2011) found that these two pattern configurations ap-
pear in linear stability analysis as a result of two separate
feedback mechanisms. Mode 1 bedforms (flow–topography
feedback), where coarse domains are located in the bed-
form trough, have a faster growth rate when waves and cur-
rents are weaker and result in bedforms with longer wave-
length, larger amplitude, and faster migration rates. Mode 2

bedforms (sorting or “roughness” feedback), where coarse
grains appear along the updrift and downdrift flank of the
bedform, have a faster growth rate when waves and currents
are stronger and result in bedforms with smaller wavelengths,
smaller heights, and slower migration rates. Yet results from
linear stability analysis are applicable only at the scale of an
infinitesimal perturbation.

Results from the finite-amplitude hybrid model also show
that coarse domains can occur either on the updrift flank of
the sorted bedform or collocated with the bedform trough,
matching some aspects of previous observation work. How-
ever instead of relying on two separate feedback mecha-
nisms, the hybrid model is able to reproduce these two pat-
tern configurations solely via the sorting mechanism. The
presence of two distinct pattern modes occurs while current
and wave conditions remain unchanged but coarse grain size
is varied. When coarse grains are smaller (essentially iden-
tical to increasing wave conditions in terms of increasing
coarse sediment mobility) bedforms conform to the descrip-
tion of the mode 2 features ofVan Oyen et al.(2010, 2011)
with smaller features, slower migration rates, and coarse
sediment along the updrift flank of bedforms. When coarse
grains are larger (essentially identical to decreasing wave
conditions in terms of decreasing coarse sediment mobility)
bedforms show characteristics of the mode 1 features ofVan
Oyen et al.(2010, 2011) with larger bedforms, faster migra-
tion rates, and coarse sediment in the bedform trough. We
again note this behavior occurs solely from a sorting feed-
back. Bedform wavelength continues to grow in all model
results shown here as a result of unidirectional current. How-
ever, results in this contribution show that, for any given in-
stant in model time, modeled sorted bedform patterns dis-
play relatively homogenous wavelength and height (similar
to Coco et al.(2007a) andMurray and Thieler(2004)). Ob-
servational work shows sorted bedform fields have a well-
defined pattern scale (i.e., a similar height and wavelength
throughout the entire bedform field; see the compilation of
observed bedform features inCoco et al.(2007b) for more
details). It remains unknown whether the well-defined pat-
tern scale of observed sorted bedforms reflects a saturated
(steady state) wavelength or the uniformity of bedform wave-
length and height at a given moment of pattern evolution.

Several features of mode 1 bedforms in the hybrid model
warrant additional attention. Linear stability analysis (Van
Oyen et al., 2010, 2011) suggests infinitesimal mode 1 bed-
forms should migrate in the current direction. The large-
scale mode 1 bedforms formed in the finite-amplitude hybrid
model show upcurrent migration, which has not previously
been observed in field examples of sorted bedforms. Further-
more, mode 1 bedforms develop in the linear stability anal-
ysis as a result of a flow–bathymetry feedback (Van Oyen
et al., 2010, 2011). The finite-amplitude hybrid model pre-
sented here does not parameterize hydrodynamics at small
enough scales to permit the development of bedforms as a
result of a flow–bathymetry feedback. In contrast to the lin-
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ear stability analysis, mode 1 bedforms in the hybrid model
develop as result of the sorting feedback operating at finite
amplitude. Future work with more detailed hydrodynamic
parameterizations could shed light on the interplay between
flow–bathymetry interactions and the sorting feedback in the
mode 1 regime at finite amplitudes. However, these results do
suggest that the finite-amplitude hybrid model may be able to
capture the dynamics observed in the field. The presence of
two distinct pattern modes in the hybrid model is a direct
result of incorporating new data-driven parameterizations of
the sediment transport process. In this contribution we ex-
plore only one specific mechanism that results in mode 1
sorted bedforms, increasing the diameter of the coarse grain
size fraction. There are likely other mechanism by which
mode 1 bedforms may develop instead of mode 2 bedforms,
notably by increasing water depth, decreasing wave forcing,
or decreasing current velocity.

There are additional pattern-scale consequences to adjust-
ing the sediment transport formulations. The newC0 predic-
tor requires energetic conditions to move coarse sediment.
This matches the observations and interpretations ofGreen et
al. (2004), Trembanis et al.(2004), andTrembanis and Hume
(2011), who suggest that energetic conditions are the only
time when the coarse sediment of sorted bedforms is mobile.
However lower coarse sediment mobility results in the cre-
ation of more pattern defects, a common feature of field ex-
amples of sorted bedforms (e.g., Fig. 1). Furthermore, after
the work ofWerner and Kocurek(1997, 1999), defects have
been recognized as a fundamental variable in pattern-scale
dynamics of bedforms (Huntley et al., 2008; Maier and Hay,
2009; Goldstein et al., 2011; Skarke and Trembanis, 2011).
The presence of additional defects in the hybrid model may
exert fundamental controls on pattern evolution.

The hybrid model is able to reproduce sorting feedback
and two pattern modes when successfully calibrated. Cali-
bration is accomplished by adjusting the variableγc in the
morphodynamic diffusion term, Eqs. (4) and (5). The re-
sults shown in this contribution haveγc = 0.07. The sorting
feedback and the development of two sorted bedform pat-
tern modes occur in the range ofγc=0.05–0.08. This range
contrasts with the work ofCoco et al.(2007a, b), where the
γc term could be adjusted at least one order of magnitude.
This more limited calibration is the result of using multiple
nonlinear elements in the construction of the model. Specifi-
cally the morphodynamic diffusion term (thatγc modifies) is
highly nonlinear (i.e.,∝ U5

w) and is built from energy-based
theory (Bowen, 1980; Bailard, 1981). Coco et al.(2007a) re-
lied on a parameterization ofC0 that scaled withU6

w, effec-
tively scaling the two terms of Eq. (4) in a similar manner. In
contrast our newC0 predictor scales withU2

w, and therefore
does not scale in a similar manner to the morphodynamic
term (U5

w). We suggest that this mismatch, coupled with the
strong forcing condition that is required to move sediment
in the model (i.e., largeUw), has lead to a smaller permissi-
ble parameter space where the morphodynamic term and the

new GP derived predictor are interoperable. We define the
permissible parameter space by the scaling argument made
previously byCalvete et al.(2001): γc should be set to a
value that maintains the ratio between the two terms on the
right side of Eq. (4) to∼ 1 order of magnitude. Ifγc is set too
high, the slope-dependent term is too strong and no bathy-
metric perturbations develop. Ifγc is set too low, nonphysi-
cally steep bathymetric perturbations develop. These results
highlight the need to test theBailard (1981) term in a range
of conditions to see whether this description (or others) is
valid. Though this morphodynamic diffusion term is often
used in morphodynamic models, we could find no instance
where this term has been tested in a wide range of conditions.

Finally, the promising results of data-driven parameter-
izations as components in the sorted bedform model sug-
gests that this approach could be extended to other mor-
phodynamic models and other parameterizations. A specific
example from this work is the parameterization of vertical
sediment diffusivity (or, more generally, the shape function
that described the vertical suspended sediment concentra-
tion profile). Recent work has begun to investigate the fast
scale dynamics of vertical sediment diffusion over ripples
(e.g.,Davies and Thorne, 2005; van der Werf et al., 2007;
O’Hara Murray et al., 2011) and how best to parameter-
ize this process in large-scale coastal models (Amoudry and
Souza, 2011; Amoudry et al., 2013). Traditional equilibrium
parameterizations have also been evaluated with newly col-
lected data (e.g.,Thorne et al., 2002, 2009; Bolaños et al.,
2012). More data, collected in a range of conditions, would
enable a data-driven approach to the parameterization of the
vertical suspended sediment profile shape.

7 Conclusion

A new predictor for near-bed reference concentration devel-
oped using genetic programming performs as well or bet-
ter than previous empirical parameterizations. However the
GP predictor shows poor performance at low concentrations.
This predictor is incorporated, along with previously devel-
oped predictors for ripple morphology (developed by GP),
into a new “hybrid” model of sorted bedforms. This mod-
eling strategy is a viable option when large data sets can be
used to construct data-driven subcomponents of a morphody-
namic model. The sorting feedback is relatively invariant to
changes in hydrodynamic and sediment transport parameter-
izations. However, the new hybrid model is able to generate
novel autogenic behavior in the sorted bedform model: sorted
bedform morphology changes when the size of the coarse
fraction is modified. This model behavior more closely re-
sembles field observations showing sorted bedform coarse
domains that occur in multiple positions along the bedform
(however downdrift coarse domains still do not appear in this
model)
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