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Abstract. The 1-D saltation–abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which

the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance

over models that treat river erosion as a function of bed slope and drainage area. Their model is, however,

limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport.

It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously

everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical

consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation

that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so

by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather

than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts

waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes:

alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional

disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial

alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection–diffusion of a

sediment pulse over an alluvial bed. A solution for alluvial–incisional interaction in a channel with a basement

undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury

the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base

level fall, the transition point separating an alluvial reach upstream from an alluvial–bedrock reach downstream

migrates upstream in the form of a “hidden knickpoint”. A tectonically more complex case of rock uplift subject

to a localized zone of subsidence (graben) yields a steady-state solution that is not attainable with the original

saltation–abrasion model. A solution for the case of bedrock–alluvial coevolution upstream of an alluviated river

mouth illustrates how the bedrock surface can be progressively buried not far below the alluvium. Because the

model tracks the spatiotemporal variation in both bedload transport and alluvial thickness, it is applicable to

the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the

potential to capture the response of an alluvial–bedrock river to massive impulsive sediment inputs associated

with landslides or debris flows.
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1 Introduction

The pace of river-dominated landscape evolution is set by the

rate of downcutting into bedrock across the channel network.

The coupled process of river incision and hillslope response

is both self-promoting and self-limiting (Gilbert, 1877). Al-

though there are multiple processes that can lead to erosion

into bedrock, we here focus on incision driven by abrasion

of a bedrock surface as moving particles collide with it. Low

rates of incision entail some sediment supply from upstream

hillslopes, which provides a modicum of abrasive material in

river flows that further facilitates bedrock channel erosion.

Faster downcutting leads to higher rates of hillslope sedi-

ment supply, boosting the concentration of erosion “tools”

and bedrock wear rates, but also leading to greater cover of

the bedrock bed with sediment (Sklar and Dietrich, 2001,

2004, 2006; Turowski et al., 2007; Lamb et al., 2008; Tur-

owski, 2009). Too much sediment supply leads to choking of

the channels by alluvial cover and the retardation of further

channel erosion (e.g., Stark et al., 2009). This competition

between incision and sedimentation leads long-term eroding

channels to typically take a mixed bedrock–alluvial form in

which the pattern and depth of sediment cover fluctuate over

time in apposition to the pattern of bedrock wear.

Theoretical approaches to treating the erosion of bedrock

rivers have shifted over recent decades (see Turowski, 2012,

for a recent review). The pioneering work of Howard and

Kerby (1983) focused on bedrock channels with little sed-

iment cover; it led to the detachment-limited model of

Howard et al. (1994), in which channel erosion is treated as

a power function of river slope and characteristic discharge,

and the “stream-power-law” approach, in which the power-

law scaling of channel slope with upstream area underpins

the way in which landscapes are thought to evolve (Whip-

ple and Tucker, 1999; Whipple, 2004; Howard, 1971, fore-

shadows this approach). At the other extreme, sediment flux

came into play in the transport-limited treatment of mass re-

moval from channels of, for example, Smith and Brether-

ton (1972), in which no bedrock is present in the channel

and where the divergence of sediment flux determines the

rate of lowering. Whipple and Tucker (2002) blended these

approaches, and imagined a transition from detachment lim-

itation upstream to transport-limited behavior downstream.

They also discussed, in the context of the stream-power-

law approach, the idea emerging at that time (Sklar and Di-

etrich, 1998) of a “parabolic” form of the rate of bedrock

wear as a function of sediment flux normalized by transport

capacity. Laboratory experiments conducted by Sklar and

Dietrich (2001) corroborated this idea, and they led to the

first true sediment flux-dependent model of channel erosion

of Sklar and Dietrich (2004, 2006). This saltation–abrasion

model was subsequently extended by Lamb et al. (2008) and

Chatanantavet and Parker (2009). It was explored experi-

mentally by Chatanantavet and Parker (2008) and Chatanan-

tavet et al. (2013); evaluated in a field context by Johnson

et al. (2009), Chatanantavet and Parker (2009), Hobley et

al. (2011) and Turowski et al. (2013); adapted to treat al-

luvial intermittency by Lague (2010); and given a stochastic

treatment by Turowski et al. (2007), Turowski (2009) and

Lague (2010), the latter of whom introduced several new el-

ements. Howard (1998) presents an alternative formulation

for incision that relates bedrock wear to the thickness of al-

luvial cover rather than sediment supply, in a form that can

be thought to be a predecessor of the present work.

At the heart of their saltation–abrasion model lies the idea

of a cover factor p corresponding to the areal fraction of the

bedrock bed that is covered by alluvium (Sklar and Diet-

rich, 2004). This bedrock bed is imagined as a flat surface

on which sediment intermittently accumulates and degrades

during bedload transport over it. The fraction of sediment

cover is assumed to be a linear function of bedload transport

relative to capacity. Bedrock wear takes place when bedload

clasts strike the exposed bedrock. In the simplest form of

the saltation–abrasion model, the subsequent rate of bedrock

wear is treated as a linear function of the impact flux and in-

ferred to be proportional to the bedload flux, which leads to

the parabolic shape of the cover-limited abrasion curve.

The saltation–abrasion model is considerably more so-

phisticated and flexible (Sklar and Dietrich, 2004, 2006) than

this sketch explanation can encompass. It does, however,

have three major restrictions. First, it is formulated in terms

of sediment supply rather than local sediment transport. The

model is thus unable to capture the interaction between pro-

cesses that drive evolution of an alluvial bed and those that

drive the evolution of an incising of bedrock–alluvial bed.

Second, for related reasons, it cannot account for bedrock to-

pography significant enough to affect the pattern of sediment

storage and rock exposure. Such a topography is illustrated

in Fig. 1 for the Shimanto River, Japan. Third, it is designed

for quasi-steady conditions, and thus cannot account for the

effects of cyclic variation in sediment supply on channel de-

velopment downstream of the point of sediment supply.

Here we address all three of these issues in a model

that allows both alluvial and incisional processes to inter-

act and coevolve. We do this by relating the cover factor ge-

ometrically to a measure of the vertical scale of elevation

fluctuations of the bedrock topography, here called macro-

roughness, rather than to the ratio of sediment supply rate

to capacity sediment transport rate. Our model encompasses

downstream-advecting alluvial behavior (e.g., waves of al-

luvium), diffusive alluvial behavior and upstream-advecting

incisional behavior (e.g., knickpoint migration). In order to

distinguish between the model of Sklar and Dietrich (2004,

2006) and the present model, we refer to the former as the

CSA (Capacity-based Saltation-Abrasion) model, and the

latter as the MRSAA (Macro-Roughness-based Saltation-

Abrasion-Alluviation) model. We point out here that the first

and third issues indicated above have also been addressed by

Lague (2010), although in a substantially different way than
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a

b

Figure 1. Views of the Shimanto River, a mixed alluvial–bedrock

river in Shikoku, Japan. (a) Upstream view at low stage. (b) Macro-

scopic roughness of the bed and alluvial patches. Channel width is

about 100 m.

presented here. The notation used in this paper is defined in

Table A1.

2 Capacity-based Saltation-Abrasion (CSA)

geomorphic incision law and its implications for

channel evolution: upstream-migrating waves of

incision

2.1 CSA geomorphic incision law

Sklar and Dietrich (2004, 2006) present the following model,

referred to here as the Capacity-based Saltation-Abrasion

(CSA) model, for bedrock incision in mixed bedrock–

alluvial rivers transporting gravel. Defining E as the vertical

rate of erosion into bedrock, qa as the volume gravel transport

rate per unit width (specified in their model solely in terms

of a supply, or feed rate qaf) and qac as the capacity volume

gravel transport per unit width such that qa <qac,

E = βqa

(
1−

qa

qac

)
, (1a)

where β is an abrasion coefficient with dimension L−1. By

introducing a cover factor parameter p, this equation can be

rewritten as

E = βqacp(1−p). (1b)

This cover factor p is defined (Sklar and Dietrich, 2006) as

the areal fraction of bedrock surface covered with alluvium

and is given by

p =


qa

qac
. . . 0≤

qa

qac
≤ 1

1 . . .
qa

qac
> 1,

(2)

where this fraction is calculated by averaging over a win-

dow larger than a characteristic macroscale of bedrock ele-

vation variation. We refer to this formulation for cover factor

p as “capacity based” because Eq. (2) dictates that p is deter-

mined in terms of the ratio of sediment supply to its capacity

value in the CSA model.

In the above formulation, it is assumed that the gravel

transport rate qa over a bedrock surface can be estimated by

simply multiplying the capacity rate qac by the areal cover

fraction p. While this is the simplest first-order assumption,

it should be recognized that the roughness of the bedrock it-

self can change the flow resistance, leading to a relationship

that is more complex than Eq. (1b) (Inoue et al., 2014; John-

son, 2014).

Before introducing the relation of Sklar and Diet-

rich (2006) for abrasion coefficient β, it is of value to pro-

vide an interpretation for this parameter not originally given

by Sklar and Dietrich (2004, 2006), but which plays a use-

ful role in the analysis below. The abrasion coefficient has

a physical interpretation in terms of Sternberg’s law (Stern-

berg, 1875) for downstream diminution of grain size (Parker,

1991, 2008; Chatanantavet et al., 2010). The analysis leading

to this interpretation is given in Appendix A; salient results

are summarized here. Consider a clast of material that is of

identical rock type to the bedrock being abraded. Sternberg’s

law is

D =Due
−αdx, (3)

where D is gravel clast size, Du is the upstream value of D,

x is downstream distance and αd is a diminution coefficient.

If all diminution results from abrasion, αd is related to β by

αd =
β

3
. (4a)

In the case of constant β, and therefore constant αd, the dis-

tance Lhalf for such a clast to halve in size is given by

Lhalf =
ln(2)

αd

. (4b)
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This interpretation of abrasion coefficient β in terms of

diminution coefficient αd allows for comparison of the ex-

perimental results of Sklar and Dietrich (2001) with values

of αd previously obtained from abrasion mills (Parker, 2008:

see Fig. 3-41 therein; Kodama, 1994).

The relations of Sklar and Dietrich (2004, 2006) to com-

pute β and qac can be cast in the following form:

β =
0.08ρgRgY

kσ 2
t

(
τ ∗

τ ∗c
− 1

)−1/2
[

1−
τ ∗

R2
f

]3/2

, (5a)

Rf =
vf
√
RgD

, (5b)

qac = αa

√
RgDD

(
τ ∗− τ ∗c

)na . (5c)

In the above relations, D corresponds to the characteristic

size of the gravel clasts that are effective in abrading the

bedrock; ρg is the material density of the grains; R is their

submerged specific gravity (∼ 1.65 for quartz); g is gravita-

tional acceleration, τ ∗ is the dimensionless Shields number

of the flow; τ ∗c is the threshold Shields number for the onset

of significant bedload transport; αa and na denote, respec-

tively, a relation-specific dimensionless coefficient and an ex-

ponent; vf is the fall (settling) velocity corresponding to grain

size D, Y is the bedrock modulus of elasticity; σt is the rock

tensile strength; and k is a dimensionless coefficient of the

order of 10−6. (In the above two relations and the text, sev-

eral misprints in Sklar and Dietrich (2004, 2006) have been

corrected on the advice of the authors.) Equation (5c) corre-

sponds to the bedload transport relation of Fernandez Luque

and van Beek (1976) when αa= 5.7 and na= 1.5; Sklar and

Dietrich (2004, 2006) used this relation with the assumed

value τ ∗c = 0.03.

The relations above define a 0-D formulation. It must be

augmented with other parameters and relations, including

channel width, relations for hydraulics, quantification of flow

discharge or flow duration curve, etc., to allow application at

the river reach scale.

It is useful to cast Eq. (5a) in the form

β = βref

(
τ∗

τ∗c
− 1

)−1/2
[

1− τ∗

R2
f

]3/2

(
τ∗ref

τ∗c
− 1

)−1/2
[

1−
τ∗ref

R2
f

]3/2
, (5d)

where βref is a reference value of β, either computed from

known values of the parameters Y , k, σt,Rf, etc., or estimated

indirectly.

2.2 Embedding of CSA into a model of bedrock surface

evolution

A relation for the evolution of bedrock surface elevation ηb

is obtained by substituting the CSA geomorphic law for in-

cision of Eq. (1b) into a simplified 1-D mass conservation

equation for bedrock material subjected to piston-style rock

uplift or base level fall (Sklar and Dietrich, 2006):

∂ηb

∂t
= υ − IE. (6a)

Here t denotes time, υ denotes the relative vertical veloc-

ity between the rock underlying the channel (which is as-

sumed to undergo no deformation) and the point at which

base level is maintained, and I denotes a flood intermittency

factor to account for the fact that only relatively rare flow

events are likely to drive incision (Chatanantavet and Parker,

2009). Also, I is assumed to be a prescribed constant; a more

generalized formulation for flow hydrograph is given in Sklar

and Dietrich (2006) and DiBiase and Whipple (2011). In in-

terpreting Eq. (6a), it should be noted that υ denotes a rock

uplift rate (in the sense of England and Molnar, 1990) for

the case of constant base level, or equivalently a rate of base

level fall for rock undergoing neither uplift nor subsidence.

Below we use the term “rock uplift” as shorthand for the rel-

ative vertical velocity between the rock and the point of base

level maintenance. Substituting Eq. (1b) into Eq. (6a) yields

(Sklar and Dietrich, 2006)

∂ηb

∂t
= υ − Iβqacp(1−p). (6b)

2.3 Character of the CSA model: upstream waves of

incision

The MRSAA model (introduced below) has several new fea-

tures as compared to CSA. These are best illustrated by first

characterizing the mathematical nature of CSA in the context

of Eq. (6). Let

Sb =−
∂ηb

∂x
(7)

denote the streamwise bedrock-surface slope. Reducing

Eq. (6b) with Eq. (7) the CSA model of Eq. (1) reveals it-

self as a nonlinear kinematic wave equation with a source

term:

∂ηb

∂t
− cb

∂ηb

∂x
= υ, (8a)

cb =
Iβqacp(1−p)

Sb

. (8b)

Here cb denotes the wave speed associated with bedrock

incision. The form of Eq. (8a) dictates that disturbances

in bedrock elevation always move upstream. We will

see later that these disturbances can take the form of

upstream-migrating knickpoints (e.g., Chatanantavet and

Parker, 2009).

Any solution of Eqs. (8a) and (8b) subject to the cover re-

lation of Eq. (2) requires specification of a flow model. In

mountain streams, backwater effects are likely to be negli-

gible (e.g., Parker, 2004). The normal (steady, uniform) flow

Earth Surf. Dynam., 3, 113–138, 2015 www.earth-surf-dynam.net/3/113/2015/
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assumption allows for simplification. LetQ denote water dis-

charge during (morphodynamically active) flood flow taking

place with intermittency I , and let H denote flood depth and

g denote acceleration due to gravity. Momentum and mass

balance take the forms

τ = ρgHSb, (9a)

Q= UBH, (9b)

where τ is boundary shear stress at flood flow, U is the cor-

responding mean flow speed, B is channel width and ρ is

water density. The dimensionless Shields number τ ∗ and di-

mensionless Chézy resistance coefficient Cz are defined as

τ ∗ =
τ

ρRgD
, (10a)

Cz=
U
√
τ/ρ

. (10b)

As shown in Parker (2004) and Chatanantavet and

Parker (2009), reducing Eqs. (7), (9) and (10) yields the fol-

lowing relations for H and τ ∗:

H =

(
Q2

Cz2gB2Sb

)1/3

, (11a)

τ ∗ =

(
Q2

Cz2gB2

)1/3
S

2/3

b

RD
. (11b)

A comparison of Eqs. (2), (5c) and (11b) indicates that even

for constant values of other parameters, the functional forms

for qac and thus p are such that cb is in general a nonlinear

function of Sb=−∂ηb/∂x.

2.4 Limitations of the CSA model

The CSA model (Sklar and Dietrich, 2004, 2006) was a ma-

jor advance in the analysis of bedrock incision due to abra-

sion because it (a) accounts for the effect of alluvial cover

and tool availability on the incision rate through the term

p(1−p) in Eq. (1b) and (b) provides a physical basis

for incision due to abrasion as gravel clasts collide with

the bedrock surface. The CSA model been used, modified,

adapted and extended by a number of researchers (Crosby et

al., 2007; Lamb et al., 2008; Chatanantavet and Parker, 2009;

Turowski, 2009; Lague, 2010).

The model does, however, have a significant limitation

in that it specifically does not include either alluvial mor-

phodynamics or the morphodynamics of transitions between

bedrock and alluvial zones. Here we study this limitation,

and how to overcome it, in terms of the highly simplified

configuration of a reach (HSR, highly simplified reach) with

constant width; fixed, non-erodible banks; constant water

discharge; and sediment input only from the upstream end.

For simplicity, we also neglect abrasion of the gravel itself,

so that grain size D is a specified constant. (This condi-

tion, while introduced arbitrarily here, can be physically in-

terpreted in terms of clasts that are much more resistant to

abrasion than the bedrock.) The means to relax these con-

straints is available (e.g., Chatanantavet et al., 2010; DiBiase

and Whipple, 2011), and indeed many of them have been

implemented in the SSTRIM model of Lague (2010). Such

a relaxation, however, obscures the first-order physics under-

lying the rich patterns of interaction between completely and

partially alluviated conditions illustrated herein.

In the CSA model, the bedload transport rate qa is speci-

fied as a “supply”. That is, the bedload transport rate is con-

strained so that it cannot change in the downstream direc-

tion, and is always equal to the bedload feed rate (supply)

qaf at the upstream end. When the feed rate qaf increases, qa

must increase simultaneously everywhere. That is, a change

in bedload supply is felt instantaneously throughout the en-

tire reach, regardless of its length.

We illustrate this behavior in Fig. 2. The reach has

length L. The gravel feed rate at x= 0 follows a cyclic

“sedimentograph” (in analogy to a hydrograph) with period

T = Th+ Tl, in which the sediment feed rate has a constant

high feed rate qafh for time Th, and a subsequent constant low

feed rate qafl for time Tl. According to the CSA model, at

x=L corresponding to the downstream end of the reach, the

temporal variation in bedload transport rate must precisely

reflect the feed rate. That is, the model was not designed to

route sediment in the downstream direction.

In a more realistic model, the effect of a change in bedload

feed rate qaf would gradually diffuse and propagate down-

stream, so that the bedload transport rate at the downstream

end of the reach would show more gradual temporal vari-

ation. This effect is illustrated in Fig. 2. This same diffu-

sion and propagation can be expected in the cover fraction p,

which in general should vary in both x and t . The change in

cover fraction in turn should affect the incision rate as quanti-

fied in Eq. (1a). To capture this effect, however, Eq. (1b) must

be coupled with an alluvial formulation that routes sediment

downstream over the bedrock.

A second limitation concerns alluviation of the bedrock

surface. Consider a wave of sediment moving over this sur-

face, as shown in Fig. 3. We characterize the vertical scale of

the geometric roughness of the bedrock surface (as seen in

Fig. 1) in terms of a vertical macro-roughness Lmr. For sim-

plicity, we assume that the bottom of the bedrock relief has a

specific elevation ηb, an assumption that will be relaxed later

in favor of a probabilistic formulation. The alluvial thickness

above this basal elevation ηa represents an average value of

local bed elevation over an appropriately defined window. It

can be seen in Fig. 3 that the surface undergoes both partial

(ηa<Lmr) and then complete (ηa≥Lmr) alluviation, only to

be excavated later as the wave passes through.

Bed elevation η is given as

η = ηb+ ηa. (12)

Figure 3 shows that, in the case of complete alluviation, the

elevation of the bed η can be arbitrarily higher than the el-

evation ηb of the bedrock, the difference between the two

www.earth-surf-dynam.net/3/113/2015/ Earth Surf. Dynam., 3, 113–138, 2015
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0 0

feed sedimentograph

qafl

qafh

upstream downstream 

qa

t t

qa

unmodified feed

advected and 
diffused

Th TlTh+ Th TlTh+

0 Lx

exit sedimentograph

Figure 2. Schematic diagram illustrating downstream modification of a sedimentograph. At the upstream feed point (x =0, left panel), the

bedload transport rate qa takes the high feed value qafh for time Th and the low feed value qafl time Tl, for a total cycle time of T = Th+ Tl.

At the downstream end (x=L, right panel), the discontinuous brown line represents the unaltered sedimentograph at the downstream end of

the reach, assumed to have propagated instantaneously from the supply point, while the smoother red line represents the sedimentograph as

modified by advective–diffusive effects.

b



a

Lmr

Figure 3. Schematic diagram illustrating the propagation of a wave

of sediment over bedrock (orange line shifting to dashed orange

line over time). Here ηb denotes the elevation of the bottom of

the bedrock relief (black line), Lmr denotes the bedrock macro-

roughness thickness (dashed black line), ηa denotes the thickness

of the alluvial cover (which may be less than or greater than Lmr)

and η= ηb+ ηa denotes the elevation of the top of the alluvium.

corresponding to the thickness ηa. The CSA model does not

describe the variation in bed elevation η when the bed un-

dergoes transitions between partial and complete alluviation;

it simply infers that incision is shut down by the complete

alluvial cover.

The goal of this paper is the development and implemen-

tation of a model that overcomes these limitations by (a) cap-

turing the spatiotemporal coevolution of the sediment trans-

port rate, alluvial cover thickness and bedrock incision rate,

and (b) explicitly enabling spatiotemporally evolving transi-

tions between bedrock–alluvial morphodynamics and purely

alluvial morphodynamics. The form of the model presented

here is simplified in terms of the HSR outlined above, includ-

ing a constant-width channel and a single sediment source

upstream.

3 Macro-Roughness-based

Saltation-Abrasion-Alluviation (MRSAA)

formulation and its implications for channel

evolution

3.1 Formulation for alluvial sediment conservation and

cover factor

The geomorphic incision law of the MRSAA model is iden-

tical to that of CSA, i.e., Eq. (1b). The essential differences

are contained in (a) a formulation for the cover factor p that

differs from Eq. (2) and (b) the inclusion of alluvial morpho-

dynamics in a way that tracks the spatiotemporal evolution of

the bedload transport rate, and allows for smooth spatiotem-

poral transitions between the bedrock–alluvial state and the

purely alluvial state.

The specific case we consider here is one for which (a) the

bedrock surface is rough in a hydraulic sense (as opposed to a

hydraulically smooth or transitional surface; see Schlichting,

1979), and (b) the characteristic vertical scale of bedrock el-

evation fluctuation about a mean value based on an appropri-

ately defined window, here denoted as the macro-roughness

Lmr of the bedrock, is large compared to the characteristic

size of the clasts constituting the alluvium. We use the term

“macro-roughness” so as to clearly distinguish it from hy-

draulic roughness, which is specifically defined in terms the

logarithmic velocity profile. Inoue et al. (2014) introduced

the terms “clast-rough” and “clast-smooth”, the former refer-

ring to a bedrock surface roughness that is large compared to

the characteristic size of the alluvium, and the latter referring

to a bedrock surface macro-roughness that is small compared

to the size of the alluvium. Here we specifically consider the

clast-rough case.

We formulate the problem by considering a conservation

equation for the alluvium, in standard Exner form, appro-

priately adapted to include below-capacity transport over a

non-erodible surface. The first model of this kind is due
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Figure 4. Illustration of the statistical structure or local hypsometry

of the bedrock surface topography (dark-grey line). Here z′ denotes

an elevation above some arbitrary datum (dark-red line) deep in the

bedrock and p̃(z′) is the probability (green line, marker) that a point

at elevation z′ is in water or alluvium rather than bedrock, i.e., above

the local bedrock surface. The effective “bottom” of the bedrock re-

lief is located at elevation z′
0
= ηb, where p̃ takes an appropriately

selected low value p̃1 (e.g., 0.05); the effective “top” of the bedrock

relief is located at elevation z′
1
, where p̃ takes an appropriately se-

lected high value p̃1 (e.g., 0.95); and the macro-roughness Lmr is

given as z′
1
− z′

0
. The coordinate z= z′− z′

0
is referenced to the ef-

fective “bottom” of the bedrock relief.

to Struiksma (1999), and further progress has been made

by Parker et al. (2009, 2013), Izumi and Yokokawa (2011),

Izumi et al. (2012), Tanaka and Izumi (2013) and Zhang et

al. (2013). These models are expressed in continuous form;

Lague (2010) presents a discrete version based on a series

of reaches of finite length that allows for generalization to a

continuous form.

None of the above models is specifically designed to han-

dle the clast-rough case, in particular that shown in Fig. 1,

where the elevation of the bedrock roughness has a random

element. Here we handle the clast-rough case by first charac-

terizing the statistical nature of the bedrock surface alone. As

noted in Fig. 4, z′ denotes elevation above an arbitrary datum

deep in the bedrock, and p̃(z′) denotes the probability that a

point located at elevation z′ is located in alluvium or water

rather than bedrock. Conversely, 1− p̃ denotes the probabil-

ity that a point at elevation z′ is in bedrock (rather than water

or alluvium above). As seen on the right-hand side of the

figure, p̃(z′)→ 0 as z′→−∞ (pure bedrock) and p̃(z′)→ 1

as z′→+∞. This statistical structure function (a hypsomet-

ric curve for local bedrock topography) which we use here

to characterize bedrock elevation fluctuations is analogous to

that used in Parker et al. (2000) for alluvial beds. It should

be noted that “−∞” is shorthand for “far below the bedrock

surface” and “+∞” is shorthand for “far above the bedrock

surface”. It should also be emphasized that the tilde in the

parameter p̃ indicates it is not a cover factor, but rather a sta-

tistical parameter referring to the bedrock relief itself.

In such a statistical formulation, bedrock relief has neither

a precise “bottom” nor a precise “top”. Rather, the “bottom”

and “top” of the bedrock topography, as well as the macro-

roughness Lmr, are here defined in a statistical sense. This

a

b
z'

z
z Lmr

Figure 5. Schematic diagram for derivation of the Exner equation

of sediment continuity over a bedrock surface (dark-grey line). As

in Figs. (3) and (4), z is the elevation above the effective “bottom” of

the bedrock relief, Lmr is macro-roughness height, ηb is elevation

at base of the bedrock and ηa is the thickness of alluvium (yellow

fill). The diagram shows alluvium–water interfaces (blue line) that

are at spatially constant elevations. This is for illustrative purposes

only; the interfaces should instead be those that result from averag-

ing over an appropriate spatial window, i.e., alluvial fill levels are

expected to vary from one pocket in the bedrock relief to another.

can be done using moments or exceedance probabilities; here

we use the latter.

Let p̃0 denote some low reference value of p̃

(e.g., p̃0= 0.05, or deep into the bedrock relief) and

p̃1 denote a corresponding high reference value of p̃

(e.g., p̃1= 1− p̃0= 0.95, or near the upper portion of the

bedrock relief), and z′0 and z′1 denote the corresponding bed

elevations. An effective “base” of the bedrock relief can be

set at z′0, a macro-roughness height Lmr defined as

Lmr = z
′

1− z
′

0 (13)

and an effective “top” of the bedrock specified as z′0+Lmr.

The clast-rough condition considered here satisfies the con-

straint that Lmr/D� 1.

The problem can now be rephrased in terms of a vertical

coordinate z with its origin located at the effective bottom of

the bedrock topography:

z= z′− z′0. (14)

As noted in Fig. 4, the statistical variable p̃(z) with shifted

coordinate z now has the following properties:

p̃(z= 0)= p̃0, p̃ (z= Lmr)= p̃1. (15)

Here we define the thickness of the alluvial cover ηa as the

elevation difference between the locally averaged top of the

alluvium and the elevation z= 0. The cover fraction p asso-

ciated with any alluvial thickness ηa relative to the macro-

roughness height Lmr is then given as

p(ηa/Lmr)= p̃ (z= ηa) . (16)

3.2 Exner equation of alluvial sediment conservation

over a bedrock surface

The alluvial sediment is taken to have constant porosity λ.

As illustrated in Fig. 5, the volume of alluvial sediment per
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unit area between elevations z and z+1z is (1− λ) p̃(z)1z,

and the corresponding volume bedload transport rate per unit

width qa is estimated as pqac, where again, according to

Eq. (16), p= p̃(ηa).

For the case of sediment of constant density, the Exner

equation for mass balance of alluvial sediment can be ex-

pressed as

(1− λ)
∂

∂t

ηa∫
0

p̃dz=−I
∂pqac

∂x
, (17)

where the factor I accounts for the fact that morphodynam-

ics are active only during floods. Reducing Eq. (17) using

Leibniz’s rule,

(1− λ)p
∂ηa

∂t
=−I

∂pqac

∂x
. (18)

The above formulation for the conservation of alluvial sedi-

ment over a bedrock surface differs in one essential way from

the earlier forms due to Struiksma (1999), Parker et al. (2009,

2013), Izumi and Yokokawa (2011), Izumi et al. (2012),

Tanaka and Izumi (2013) and Zhang et al. (2013). Specifi-

cally, in Eq. (18), the cover fraction p is present on the left-

hand side of the equation as well as the right-hand side. It is

shown below that this feature dictates a strong nonlinearity

in the speed of propagation of alluvial waves over a bedrock

surface, such that wave speed increases with decreasing wave

amplitude. This feature is specifically captured by means of

Leibniz’s rule, as implemented between Eqs. (17) and (18).

The combination of Eqs. (6b) and (18) delineates a formu-

lation encompassing both mixed bedrock–alluvial rivers and

alluvial rivers.

3.3 Closure model for cover relation

In the present formulation, the cover fraction p is free to vary

in both x and t , i.e., p=p(x, t). In order to complete the

problem, however, it is necessary to specify a closure model

for p. We characterize the local variation in bedrock eleva-

tion in terms of the macro-roughness, i.e., the vertical length

scale Lmr of Fig. 4. Here we seek a formulation that aver-

ages over a window capturing a statistically relevant sample

of this local variation. In general, we assume a cover relation

that characterizes to what extent the alluvial cover “drowns”

the bedrock roughness elements. More specifically, we as-

sume the form

p = f (χ), (19a)

χ =
ηa

Lmr

≥ 0, (19b)

f (χ = 0)= p̃0, (19c)

f (χ = 1)= p̃1. (19d)

The precise details of the relation can be expected to vary

from case to case, but the overall characteristics that we hy-

pothesize are illustrated in Fig. 6a–c. It is seen therein that p

takes the residual value p= p̃0 (e.g., 0.05) at χ = 0, increases

monotonically to p= p̃1 (e.g., 0.95) at χ = 1, and then takes

the asymptotic value p→ 1 as χ becomes sufficiently large.

The first of these conditions corresponds to a bedrock sur-

face that is bare of alluvium except in deep pockets of the

macro-roughness elements, the second to a bedrock surface

that is nearly completely alluviated but with some parts of

the macro-roughness elements exposed, and the third to a

bedrock surface that is deeply alluviated.

Note that the cover relation of Fig. 6 and Eq. (19) is

based on the macro-roughness height scale Lmr rather than

the transport capacity qac of Eq. (2). This is the motivation

for referring to the new model presented here as the Macro-

Roughness-based Saltation-Abrasion-Alluviation (MRSAA)

model.

In applying the MRSAA model to general cases, it is use-

ful to delineate the simplest functional form for the closure

relation for cover fraction that satisfies the constraints of

Eq. (19) and Fig. 6. This relation is the piecewise-linear form

p = f (χ)=

p̃0+ (p̃1− p̃0)χ . . . 0≤ χ ≤
1−p̃0

p̃1−p̃0

1 . . . χ >
1−p̃0

p̃1−p̃0

(20a)

or rephrasing to emphasize the dependence of p on the thick-

ness of alluvial cover ηa,

p = f (ηa/Lmr)=


p̃0+ (p̃1− p̃0)

ηa

Lmr
. . . 0≤

ηa

Lmr
≤

1−p̃0

p̃1−p̃0

1 . . .
ηa

Lmr
>

1−p̃0

p̃1−p̃0

. (20b)

The above relation is illustrated in Fig. 7a with the sample

evaluations

p̃0 = 0.05, p̃1 = 0.95. (21)

Equations (20) and (21) are used in implementations of the

MRSAA below. One way to develop forms of Eq. (19) that

can show a wider variety of behavior than Eq. (20) would be

through the performance of experiments similar to those of

Chatanantavet and Parker (2008), but with a specific focus

on various forms of macro-roughness that mimic those in the

field.

The form for the derivative of Eq. (20) with respect to χ ,

which is given below, will prove useful in succeeding analy-

sis.

df

dχ
=

p̃1− p̃0 . . . 0≤ χ ≤
1−p̃0

p̃1−p̃0

0 . . . χ >
1−p̃0

p̃1−p̃0

(22)

Our model is specifically meant to apply to the case for which

the characteristic size of the roughness elements is large

compared to the size of clasts transported as bedload. With

this in mind, it should be noted that in Fig. 6, no bed elevation

variations are shown over parts of the bed that are covered

with alluvium. This is done only for simplicity, and reflects
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Figure 6. Illustration of the MRSAA model relation between areal

fraction of alluvial cover of bedrock p(χ) (green curves) and

χ = ηa/Lmr, where ηa is the thickness of alluvium (yellow fill) and

Lmr is the macro-roughness height, for (a) low cover, (b) interme-

diate cover (c) complete alluviation above the top of the bedrock.

The diagrams show alluvium–water interfaces at spatially constant

elevations (blue lines). This is for illustrative purposes only: the in-

terfaces should instead be those that result from averaging over an

appropriate spatial window.

the condition that in the clast-rough case considered here,

grain size is small compared to macro-roughness height. Fig-

ure 6 also contains another simplification, in that all pockets

are assumed to be filled to the same level by alluvium. While

this condition is not likely to be true at the local scale, it is

a reasonable first approximation when averaging over an ap-

propriately defined window.

The formulation presented here has an obvious limitation.

Since it is a 1-D expression of sediment conservation over a

bedrock surface, it cannot capture 2-D variation, which will

result in a more complex pattern than that shown in Fig. 6,

and in particular will provide more connectivity between ad-

jacent pockets. This two-dimensionality is known to have an

effect on the pattern of incision, as illustrated by Johnson and

Whipple (2007). The extension of the formulation to the 2-D

case represents a future goal; some relevant comments can

be found in the “Discussion” section (Sect. 8).

Sections 3.4 and 3.5, immediately below focus, on the

mathematical interpretation of the MRSAA problem in terms

of diffusion and wave characteristics. The reader whose

primary interest is in applications may jump directly to

Sect. 3.6, with the two exceptions of Eqs. (27) and (28)

in Sect. 3.5. Equation (27) is a version of Eq. (6b) in

which incisional morphodynamics are recast into a kine-

matic wave equation, revealing upstream-migrating waves

of incision with wave speed cb. Equation (28) is a version

of Eq. (18) in which alluvial morphodynamics are recast in

terms of an advection–diffusion equation, with downstream-

migrating waves of alluviation with speed ca, and alluvial

diffusion with kinematic coefficient of diffusion κa.

3.4 Character of the alluvial part of the MRSAA

problem: alluvial diffusion and

downstream-migrating waves of alluviation

Equation (18) may be reduced to reveal the presence of an

alluvial wave speed as follows. The derivative on the right-

hand side of the equation is expanded using the chain rule,

the derivative ∂p/∂x is reduced in accordance with the gen-

eral closure form of Eq. (19), and both sides of Eq. (18) are

then divided by p to yield

∂ηa

∂t
+ ca

∂ηa

∂x
=−

1

(1− λ)
I
∂qac

∂x
, (23a)

where

ca =
I

(1− λ)

qac

Lmrp

df

dχ
. (23b)

The left-hand side of Eq. (23a) thus takes a kinematic wave

form, such that ca is the wave speed of downstream-directed

alluviation.

It is important to realize that alluvial wave speed ca is a

nonlinear function of alluvial thickness ηa. Using the exam-

ple functions of Eqs. (20) and (22), the speed cai of an alluvial

wave of infinitesimal height ηa= 0 is given from Eq. (23b) as

cai =
I

(1− λ)

qac

Lmr

(p̃1− p̃0)

p̃0

. (24a)

The ratio ca/cai of the wave speed ca at height ηa to the cor-

responding value for an infinitesimal wave is then found to

be
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Figure 7. (a) Simplest modified form the MRSAA cover function (green curve) satisfying the conditions p(0)= r , p(1)= 1− r and

p(∞)= 1, where in this case r = 0.05. The parameter on the vertical axis p(χ) denotes the cover fraction, and the parameter on the horizon-

tal axis is χ = ηa/Lmr, where ηa is the thickness of alluvium and Lmr is the macro-roughness height. (b) Plot of the ratio of alluvial wave

speed ca(χ) at a finite value of χ = ηa/Lmr to the corresponding speed cai for an alluvial wave of infinitesimal height versus χ . The plot

shows that alluvial wave speed declines with increasing alluvial thickness, and that it vanishes under complete alluviation.

ca

cai

=
(p̃1− p̃0)

p̃0

1

p

df

dχ
. (24b)

In Fig. 7b, the ratio ca/cai is plotted against χ = ηa/Lmr

in accordance with the specifications of Eqs. (20), (21),

and (22). It is seen therein that alluvial wave speed takes

its maximum value for the limit ηa→ 0, and decreases to

a vanishing value as the bed becomes completely alluviated

(ηa/Lmr= 1.056). That is, waves of alluvium run fastest over

a nearly bare bed, and wave-like behavior ceases to exist un-

der conditions of complete alluviation. This latter result is in

accordance with Lisle et al. (2001) and Cui et al. (2003a, b).

It is of interest to inquire as to how the model would be-

have if the clast-rough condition, i.e., Lmr/D� 1, were not

satisfied here. The limiting case of clast-smooth conditions

would correspond to a probability distribution p̃(z′) in Fig. 4

that obeys a step function; p̃(z′) would be vanishing up to a

smooth, horizontal bedrock surface, and would take the value

unity above it. Consequently, the cover fraction p would con-

verge precisely to zero as ηa→ 0, thus resulting, according

to Eq. (23b), in an infinite speed of propagation of an allu-

vial wave of infinitesimal height. This is not entirely unreal-

istic: the physical realization would consist of clasts rolling

rapidly over a smooth bed with no alluviation (Inoue et al.,

2014). The presence of such a singularity, would, however,

preclude the modeling of the migration of a pulse of allu-

vium of finite extent over the otherwise bare bed schematized

in Fig. 3. In the present clast-rough formulation, the presence

of deep pockets within the bedrock relief where alluvium can

be stored without transport ensures that the wave speed of al-

luvium never displays a singularity.

The form of Eq. (23a) can be further clarified by rewriting

it as

∂ηa

∂t
+ ca

∂ηa

∂x
−
∂

∂x

(
κa

∂ηa

∂x

)
=
∂

∂x

(
κa

∂ηb

∂x

)
, (25)

where

κa =
Iqac

(1− λ)S
, (26a)

S =−
∂η

∂x
=−

∂ηb

∂x
−
∂ηa

∂x
. (26b)

In the above relation, κa has the physical meaning of a

kinematic diffusivity. In general, qac, qac/S and thus κa are

nonlinear functions of S. The alluvial problem thus takes

the form of a nonlinear advective–diffusive problem with a

source term arising from a bedrock term.

3.5 Full MRSAA formulation: alluvial diffusion,

upstream-migration waves of incision,

downstream-migrating waves of alluviation

The full MRSAA model consists of the kinematic wave

equation with a source term Eq. (8a) for the bedrock part,

Eqs. (23b), (25) and (26) for the alluvial part, and the linkage

between the two embodied in the cover relation of Eq. (19).

Restating these equations for emphasis, Eq. (6a) can be re-

cast as

∂ηb

∂t
− cb

∂ηb

∂x
= υ, (27a)

cb = Iβqacp(1−p)

(
−
∂ηb

∂x

)−1

, (27b)

where cb denotes the speed of upstream-migrating inci-

sional waves. Equation (18) can be cast in conjunction with

Eqs. (19) and (20) as
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∂ηa

∂t
+ ca

∂ηa

∂x
−
∂

∂x

(
κa

∂ηa

∂x

)
=
∂

∂x

(
κa

∂ηb

∂x

)
, (28a)

ca =
I

(1− λ)

qac

Lmrp

df

dχ
, (28b)

df

dχ
=

dp

d(ηa/Lmr)
, (28c)

κa = I (1− λ)qac

[
−
∂

∂x
(ηa+ ηb)

]−1

(28d)

and

p = f (χ)=

p̃0+ (p̃1− p̃0)χ . . . 0≤ χ ≤
1−p̃0

p̃1−p̃0

1 . . . χ >
1−p̃0

p̃1−p̃0
,

(29)

where ca denotes the speed of downstream-migrating alluvial

waves, and κa is the kinematic diffusivity of alluvium. In this

way, upstream-migrating incisional waves are combined with

downstream-migrating alluvial waves and alluvial diffusion.

In MRSAA, then, the spatiotemporal variation in the cover

fraction p(x, t) is specifically tied to the corresponding vari-

ation in ηa through Eq. (19), e.g., the specific example of

Eq. (29) above. This variation then affects incision through

Eq. (27). Consider the simplified case of a wave of alluvium

of finite extent illustrated in Fig. 3. There is no incision up-

stream of the wave because p= 0 and there is no sediment in

motion over the bed. At the peak of the wave, ηa>Lmr, so

p= 1; the bed is entirely covered with sediment, and again

there is no incision. Incision can only occur on the rising and

falling parts of the wave, where bedrock is partially exposed

and sediment is in motion over it, i.e., 0<p< 1. It can thus

be expected that the spatiotemporal variation in cover thick-

ness ηa will affect the evolution of the long profile of an in-

cising river that undergoes transitions between alluvial and

mixed bedrock–alluvial states.

3.6 Amendment of the flow component of the MRSAA

model

The flow model, and in particular Eqs. (9a) and (11), must be

modified to include the alluvial formulation, so that bedrock

slope Sb is replaced with slope S of the top of the bed, where

S =−
∂η

∂x
= Sb+ Sa, (30a)

Sb =−
∂ηb

∂x
, (30b)

Sa =−
∂ηa

∂x
. (30c)

Thus Eqs. (9a) and (11a, 11b) are amended to

τ = ρgHS (31)

and

H =

(
Q2

Cz2gB2S

)1/3

, (32a)

τ ∗ =

(
Q2

Cz2gB2

)1/3
S2/3

RD
. (32b)

The purely alluvial case, i.e., p= 1, df/dχ = 0 and

ηb= const<ηa in Eq. (28), results in the purely diffusional

relation

∂ηa

∂t
=
∂

∂x

(
κa

∂ηa

∂x

)
, (33)

in which the diffusivity κa is a function of Sa=−∂ηa/∂x.

3.7 How the governing equations connect to each other

In the numerical analysis below, the actual equations used

to solve for morphodynamic evolution are not those of

Sects. 3.4 and 3.5, but rather the primitive forms presented

earlier. The unknowns to be solved are ηb, ηa, η, p, qac, τ ∗,

S, Sb and Sa. These nine parameters are connected to each

other via nine equations, i.e., Eqs. (5c), (6b), (12), (18), (20),

(30a, b, c) and (32b).

3.8 Equivalence of the MRSAA and CSA models at

steady state

In the restricted case of the highly simplified reach (HSR)

configuration constrained by (a) temporally constant, below-

capacity sediment feed (supply) rate qaf, (b) bedload trans-

port rate qa everywhere equal to the feed rate qaf, and (c) a

steady-state balance between incision and rock uplift, ηa, p

and Sb become constant and Sa vanishes, so that Eq. (28) is

satisfied exactly. Equation (18) integrates to give

p =
qaf

qac

, (34)

so that ηa can then be back-calculated from Eq. (20). In this

case, then, the MRSAA model reduces to Eqs. (27) and (34),

i.e., the CSA model.

4 The below-capacity steady-state case common to

the CSA and MRSAA models

The steady-state form of Eq. (6) under below-capacity con-

ditions (p< 1) can be expressed with the aid of Eq. (2) in the

form

www.earth-surf-dynam.net/3/113/2015/ Earth Surf. Dynam., 3, 113–138, 2015



124 L. Zhang et al.: Macro-roughness model of bedrock–alluvial river morphodynamics

pss = 1−ϕ, (35a)

ϕ =
υ

Iβssqaf

, (35b)

qacss =
qaf

pss

, (35c)

where pss, βss and qacss denote steady-state values of p, β

and qac, respectively. Equations (35a)–(35c) describe a bal-

ance between the incision rate and relative vertical rock ve-

locity (e.g., constant rock uplift rate at constant base level

or constant rock elevation with constant rate of base level

fall). CSA and MRSAA yield the same solution for this case,

which must be characterized before showing how the models

differ.

Equation (35a) has an interesting character. When the

value of the dimensionless number ϕ exceeds unity, p

falls below zero and no steady-state solution exists. Equa-

tion (35b) reveals that ϕ can be interpreted as a dimension-

less rock uplift rate. Thus when the rock uplift rate is suffi-

ciently large for ϕ to exceed unity, incision cannot keep pace

with rock uplift. The model thus implicitly predicts the for-

mation of a hanging valley. This issue was earlier discussed

in Crosby et al. (2007).

In solving for this steady state, and in subsequent calcu-

lations, we use the bedload transport relation of Wong and

Parker (2006a), a development and correction of the semi-

empirical relation of Meyer-Peter and Müller (1948), rather

than the similar formulation of Fernandez Luque and van

Beek (1976); in the case of the former, αa= 4, na= 1.5 and

τ ∗c = 0.0495. We consider two cases: one for which βss=β

is a specified constant, and one for which only a reference

value βref is specified, and βss is computed from Eq. (5d).

In the case of a specified constant abrasion coefficient β,

specification of υ, I and qaf allow computation of ϕ, pss

and qacss from Eqs. (35a)–(35c). Further specification of R

(here chosen to be 1.65, the standard value for quartz) and

D allows the steady-state Shields number τ ∗ss to be computed

from Eq. (5c). Steady-state bedrock slope Sbss can then be

computed from Eq. (11b) upon specification of flood dis-

chargeQ, Chézy resistance coefficient Cz and channel width

B. In the case of βss calculated according to Eq. (5d) us-

ing a specified reference value βref, the problem can again

be solved with Eqs. (35), (5c) and (11b), but the solution is

implicit.

We performed calculations for conditions loosely based

on (a) field estimates for a reach of the bedrock Shimanto

River near Tokawa, Japan (Fig. 1), for which bed slope S is

about 0.002 and channel width is about 100 m and (b) es-

timates using relations in Parker et al. (2007) for allu-

vial gravel-bed rivers with similar slopes, and reasonable

choices for otherwise poorly constrained parameters. The

input parameters, Cz= 10, Q= 300 m3 s−1, B = 100 m, are

loosely justified in terms of bankfull characteristics of allu-

vial gravel-bed rivers of the same slope (Parker et al., 2007;
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Figure 8. (a) Chézy resistance coefficient Cz plotted against bed

slope S for alluvial rivers. Also included are estimated values for

the Shimanto River, Japan. (b) Bankfull width Bbf versus bankfull

discharge Qbf for alluvial rivers. Also included are estimates for

bank-to-bank width and characteristic flood discharge in the Shi-

manto River, Japan. The ranges for characteristic bed material size

of the alluvial rivers are denoted in the legends.

Wilkerson and Parker, 2011) as shown in Fig. 8a and b.

The value D= 20 mm represents a reasonable characteris-

tic size of the substrate (and thus the bedload) for gravel-bed

rivers; a typical size for surface pavement is 2 to 3 times this

(e.g., Parker et al., 1982). Flood intermittency I is estimated

at 0.05, i.e., 18 days per year, and thus a reasonable estimate

for a river subject to frequent heavy storm rainfall. Alluvial

porosity is λ= 0.35.

Two sediment feed rates were considered. The high feed

rate was set at 3.5× 105 t yr−1, which corresponds to the

following steady-state parameters at capacity conditions:

Shields number τ ∗= 0.12, depth H = 1.5 m, steady-state al-

luvial bed slope Sass= 0.0026 and Froude number Fr = 0.51,

where

Fr =
Q

BH
√
gH

. (36)

The low feed rate was set at 3.5× 104 t yr−1, corresponding

to the following parameters at capacity conditions: Shields
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number τ ∗= 0.064, depth H = 2.1 m, steady-state alluvial

bed slope Sass= 0.0010 and Froude number Fr = 0.32.

The value βss= 0.05 km−1 was used for the case of a con-

stant steady-state abrasion coefficient. This corresponds to a

value of αd of 0.017 km−1, which falls in the middle of the

range measured by Kodama (1994) for chert, quartz and an-

desite (see Fig. 3-41 of Parker, 2008). For the case of a vari-

able abrasion coefficient, Eq. (1a) was used with βref set to

0.05 km−1 and τ ∗ref set to 0.12, i.e., the value for the high feed

rate. This value of τ ∗ref is about 2.5 times the threshold value

of Wong and Parker (2006a).

For the high feed, predicted relations for a steady-state

abrasion coefficient βss versus rock uplift rate υ are shown in

Fig. 9a; the corresponding predictions for Sbss versus υ are

shown in Fig. 9b; the corresponding predictions for pss and

ϕ are shown in Fig. 9c. Both the cases of constant and vari-

able βss are shown. There are five notable aspects of these

figures: (a) in Fig. 9a, the predictions for variable βss are

very similar to the case of constant, specified βss, and indeed

are nearly identical for υ ≤ 3.3 mm yr−1 (corresponding to

ϕ≤ 0.05 in Fig. 9c). (b) In Fig. 9b and c, the predictions for

Sbss, pss and ϕ for variable βss are again nearly identical to

those for constant βss, and again essentially independent of υ

for υ ≤ 3.3 mm yr−1. (c) In Fig. 9c, pss is only slightly below

unity (i.e., pss≥ 0.95), and ϕ≤ 0.05 for υ ≤ 3.3 mm yr−1).

(d) For υ > 3.3 mm yr−1, the predictions for Sbss and pss be-

come dependent on υ, such that Sbss increases, and pss de-

creases, with increasing υ. The values for constant βss di-

verge from those for variable βss, but are nevertheless close to

each other up to some limiting value. (e) This limiting value

corresponds to ϕ= 1 and thus pss= 0 from Eq. (35a); larger

values of ϕ lead to hanging valley formation. Here ϕ= 1 for

the very high values υ = 65 mm yr−1 for constant βss and

υ = 30 mm for variable βss.

These results require interpretation. It can be seen from

Eqs. (35a–35c) that when υ/(I βss qaf)=ϕ� 1, p becomes

nearly equal to unity (very little exposed bedrock), in which

case qaf is constrained to be only slightly smaller than qac.

From Eqs. (5c) and (11), then, Sbss is only slightly above

the steady-state alluvial bed slope Sass. Note that the steady-

state bedrock slope decouples from rock uplift rate under

these conditions: the predictions for υ = 0.2 mm yr−1 are

nearly identical to this for υ = 3.3 mm yr−1. This behavior is

a specific consequence of the condition ϕ� 1 correspond-

ing to a low ratio of uplift rate to reference incision rate

Eref= I βss qaf. They imply a wide range of conditions for

which (a) very little bedrock is exposed, and (b) bedrock

slope is independent of uplift rate.

The results for the low feed rate are very similar. The

values for variable steady-state abrasion coefficient βss dif-

fer from the constant value βss in Fig. 10a, but this is be-

cause the constant value βss= 0.05 was set based on the

high feed rate. The results in Fig. 10b and c are qualita-

tively the same for Fig. 9b and c; the uplift rate below which

ϕ < 0.05 is υ < 0.33 mm yr−1 for the case of constant βss,
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Figure 9. Variation at steady state (black curves) of (a) abrasion

coefficient βss, (b) bedrock slope Sbss and (c) cover fraction pss

and parameter ϕ on rock uplift or base lowering rate υ, for a high

bedload feed rate of 3.5× 105 t yr−1. The cases of constant, spec-

ified βss and Sbss varying according to Eq. (34) are shown as blue

curves. The vertical dashed lines denote the incipient conditions for

the formation of a hanging valley. The predictions are the same for

the CSA and MRSAA models.
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Figure 10. Variation at steady state (black curves) of (a) abrasion

coefficient βss, (b) bedrock slope Sbss and (c) cover fraction pss

and parameter ϕ with rock uplift or base lowering rate υ, for a low

bedload feed rate of 3.5× 104 t yr−1. The cases of constant, spec-

ified βss and Sbss varying according to Eq. (34) are shown as blue

curves. The vertical dashed lines denote the incipient conditions for

the formation of a hanging valley. The predictions are the same for

the CSA and MRSAA models.

and υ < 0.73 mm yr−1 for the case of variable βss. The crit-

ical value of υ beyond which a hanging valley forms is

υ ≥ 6.8 mm yr−1 for constant βss and υ ≥ 7.1 mm yr−1 for

variable βss.

The lack of dependence of steady-state bedrock slope Sbss

on rock uplift rate υ below a threshold value for the steady-

state solutions of the CSA model (and thus the MRSAA

model as well) is in stark contrast to earlier work for which

the incision rate E is assumed to have the following depen-

dence on slope Sb and drainage area A (“slope–area” formu-

lation, Howard and Kerby, 1983):

E =KSnbA
m, (37)

where A denotes drainage area, n and m are specified expo-

nents, and K is a constant assumed to decrease with increas-

ing rock hardness.

In order to compare the steady-state predictions of the

slope–area relation in Eq. (37) for constant υ with CSA,

drainage area A must be taken to be a constant value Ao so

as to correspond to the HSR configuration used here. The

steady-state slope Sbss corresponding to a balance between

incision and rock uplift is found from Eq. (37) to be

Sbss =
υ1/n

K1/nA
m/n
o

. (38)

The issue as to the values of m and n has been considered

by many researchers, including Whipple and Tucker (2002)

and Lague (2014).

In their Table 1, Whipple and Tucker (2002) quote a range

of values of n, but their most quoted value is n= 2. We com-

pare the results for CSA for Sbss with the predictions from

Eq. (38) with n= 2 by normalizing against a reference value

Sbref that corresponds to a reference rock uplift rate υref of

0.2 mm yr−1. Equation (38) yields

Sbss

Sbref

=

(
υ

υref

)1/2

. (39)

In Fig. 11, Eq. (39) is compared against the CSA predictions

of Figs. 9b and 10b (high and low feed rate, respectively)

for both constant and variable βss. In order to keep the plot

within a realistic range, only values of υ between 0.2 and

10 mm yr−1 (the upper limit corresponding to Dadson et al.,

2003) have been used in the CSA results. The remarkable in-

sensitivity of the CSA predictions for steady-state slope Sbss

on rock uplift rate is readily apparent from the figure.

One more difference between the CSA and slope–area for-

mulations is worth noting. If the slope–area relation is in-

stalled into Eq. (6) in place of CSA, it is readily shown that

bedrock slope gradually relaxes to zero in the absence of rock

uplift. CSA does not obey the same behavior under the con-

straint of constant sediment feed rate: Figs. 9b and 10b in-

dicate that bedrock slope converges to a constant, nonzero

value as rock uplift declines to zero. This is not necessarily a

shortcoming of CSA; the sediment feed rate can be expected

to decline as relief declines.
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Figure 11. Normalized steady-state bedrock slope Sbss/Sbref ver-

sus normalized rock uplift rate υ as predicted by the CSA model for

a low feed rate (orange-brown curves) and a high feed rate (black

curve and dashed red curve), and for constant and variable abra-

sion coefficient. The results are the same for the MRSAA model.

Also shown is the prediction of a model for which the incision rate

is specified in terms of bedrock slope and upstream drainage area

(green curve). Note that the predictions for steady-state bedrock

slope of the CSA model are insensitive to the rock uplift rate over a

wide range.

5 Boundary conditions and parameters for

numerical solutions of the MRSAA model

Having conducted a fairly thorough analysis of the steady

state common to the CSA and MRSAA models, it is now ap-

propriate to move on to examples of behavior that can be cap-

tured by the MRSAA model, but are not captured by models

that assume a relation for cover based on the ratio of sediment

supply to capacity transport rate, i.e., Eq. (2). Before doing

so, however, it is necessary to delineate the boundary condi-

tions and other assumptions used in the MRSAA model.

Let L denote the length of the reach. Equation (27a) indi-

cates the formulation for bedrock incision is first order in x

and so requires only one boundary condition. The example

considered here is that of a downstream bedrock elevation,

i.e., base level, set to zero:

ηb|x=L = 0. (40)

According to Eq. (18), or alternatively Eq. (28a), the allu-

vial formulation is second order in x and thus requires two

boundary conditions. The following boundary condition ap-

plies at the upstream end of the reach, where qaf(t) denotes a

feed rate that may vary in time,

qa|x=0 = qaf(t). (41)

At the downstream end, a free boundary condition is applied

for ηa/Lmr< 1, and a fixed boundary condition is applied for

ηa/Lmr≥ 1 as follows:[
(1− λ)p

∂ηa

∂t
+ I

∂pqac

∂x

]
x=L

= 0 . . . if

[
ηa

Lmr

]
x=L

< 1, (42a)

ηa|x=L = Lmr . . . if

[
ηa

Lmr

]
x=L

≥ 1. (42b)

Here, Eq. (42a) specifies a free boundary in the case of partial

alluviation, thus allowing below-capacity sediment waves to

exit the reach. Equation (42b), on the other hand, fixes the

maximum downstream elevation at η= ηa=Lmr.

In order to illustrate the essential features of the new for-

mulation of the MRSAA model for the morphodynamics of

mixed bedrock–alluvial rivers, it is useful to consider the

most simplified case that illustrates its expanded capabilities

compared to the CSA model. Here we implement the HSR

simplification. In addition, based on the results of the pre-

vious section, we approximate βss as a prescribed constant.

Finally, we assume that the clasts of the abrading bedload

are sufficiently hard compared to the bedrock so that grain

size D can be approximated as a constant. These constraints

are easily relaxed.

In the numerical solution of the differential Eqs. (6b)

and (18), spatial derivatives have been computed using an

upwinding scheme for short timescales (so as to capture

downstream-migrating alluvial waves) and a downwinding

scheme for long timescales (so as to capture upstream-

migrating incisional waves). Time derivatives have been

computed using the Euler step method.

6 Sediment waves over a fixed bed: stripping and

emplacement of alluvial layer and

advection–diffusion of a sediment pulse

Three numerical solutions of the MRSAA model are stud-

ied here: (a) stripping of an alluvial cover to bare bed,

(b) emplacement of an alluvial cover over a bare bed and

(c) advection–diffusion of an alluvial pulse over a bare bed.

Reach length L is 20 km. As the time for alluvial response is

short compared to incisional response, βss and υ are set equal

to zero for these calculations. In addition, flood intermittency

I is set to unity so as to illustrate the migration from the feed

point to the end of the reach under the condition of contin-

uous flow. The macro-roughness Lmr is set to 1 m based on

observation of the Shimanto River near Tokawa, Japan. The

values for Cz, Q, B, D and λ are the same as in Sect. 5,

i.e., Cz= 10, Q= 300 m3 s−1, B = 100 m, D= 20 mm and

λ= 0.35. Bedrock slope Sb, which is constant due to the ab-

sence of abrasion, is set to 0.004. The above numbers com-

bined with Eqs (5c) (using the constants of the formulation

of Wong and Parker, 2006a), (32a) and (32b) yield the fol-

lowing values: depthH = 1.32 m, Froude number Fr = 0.63,

Shields number τ ∗= 0.016 and capacity bedload transport

rate qac= 0.0017 m2 s−1.
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None of these three cases can be treated using models that

assume a relation for cover based on the ratio of sediment

supply to capacity transport rate, i.e., Eq. (2). They thus il-

lustrate capabilities unique to MRSAA.

6.1 Alluvial stripping

The case of stripping of an initial alluvial layer to bare

bedrock is considered here. In this simulation, the bedload

feed rate qaf= 0 and the initial thickness of alluvial cover

ηa is set to 0.8 m, i.e., 80 % of the macro-roughness length

Lmr. To drive stripping of the alluvial layer, the feed rate is

set equal to zero. Figure 12a shows how the alluvial cover is

progressively stripped off from upstream to downstream as

a wave of alluvial rarification migrates downstream. The al-

luvial layer is completely removed (except for residual sed-

iment in deep pockets, as specified by Eq. 21) after a little

more than 0.12 years.

Of interest in Fig. 12a is the fact that the wave of strip-

ping maintains constant form in spite of the diffusive term in

Eq. (28a) which should cause the wave to spread. The rea-

son the wave does not spread is the nonlinearity of the wave

speed ca in Eq. (28b): since p enters into the denominator

on the right-hand side of the equation, wave speed is seen to

increase as p decreases, and thus ηa decreases. As a result,

the lower portion of the wave tends to migrate faster than the

higher portion, sharpening the wave and opposing diffusion.

6.2 Emplacement of an alluvial layer over an initially

bare bed

In this simulation, the initial thickness of alluvium ηa is set

to zero and the sediment feed rate is set to 0.0013 m2 s−1,

i.e., 80 % of the capacity value. The result of the calculation

is shown in Fig. 12b. Here nonlinear advection and diffusion

act in concert to cause the wave of alluviation to spread. The

steady-state thickness of alluvium is 0.83 m; by 0.1 years it

has been emplaced only down to about 5 km from the source.

This steady-state condition, and only this condition, corre-

sponds to a convergence of results from MRSAA and CSA.

6.3 Propagation of a pulse of alluvium over an initially

bare bed

In this example the initial bed is bare of sediment. The sed-

iment feed rate is set equal to 0.0012 m2 s−1, i.e., 70 % of

the capacity value for 0.05 years from the start of the run,

and then dropped to zero for the rest of the run. Figure 12c

shows the propagation of a damped alluvial pulse through the

reach, with complete evacuation of the pulse in a little more

than 0.15 years. Nonlinear advection acts against diffusion to

suppress the spreading of the upstream side of the pulse, but

advection acts together with diffusion to drive spreading of

the downstream side of the pulse.
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Figure 12. MRSAA model solutions for (a) stripping of an allu-

vial layer to bare bedrock, (b) emplacement of an alluvial cover

over initially bare bedrock and (c) evolution of a pulse of sediment

over bare bedrock. Numerical simulations of the evolution of allu-

vial thickness ηa(x, t) over streamwise distance x are shown for a

series of time steps t as indicated in the legends.

7 Comparison of evolution to uplift-driven steady

state for the CSA and MRSAA models

Here we consider three cases of channel profile evolution to

steady state that include both rock uplift and incision. In the

first case, the initial bedrock slope is set to a value below

the steady-state value, and the sediment feed rate is set to

a value that is well above the steady-state value for the ini-

tial bedrock slope, causing early-stage massive alluviation.

The configuration for the second case is a simplified version

of a graben with a horst upstream and a horst downstream.

The configuration for the third case is such that there is an

alluviated river mouth downstream and a bedrock–alluvial

transition upstream. In all cases, MRSAA predicts evolution

that cannot be predicted by models that assume a relation for

cover based on the ratio of sediment supply to capacity trans-

port rate, i.e., Eq. (2).
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7.1 Evolution of bedrock profile with early-stage

massive alluviation

Here we set Q, B, Cz, D and λ to the same values as

Sect. 6. The reach length L is 20 km, the flood intermittency

I is set to 0.05, macro-roughness Lmr is set to 1 m, initial

alluvial thickness ηa|t=0= 0.5 m, downstream bed elevation

ηb|x=L= 0 and the abrasion coefficient βss is 0.05 km−1.

The initial bed slope is 0.004. The feed rate is set to twice the

capacity rate for this slope, i.e., qaf= 0.0033 m2 s−1. The up-

lift rate is set to the very large value of 5 mm yr−1. It should

be noted, however, that as shown in Fig. 10b, the steady-state

bedrock slope for this feed rate is independent of the uplift

rate for υ ≤ 5 m yr−1. This is because the steady-state value

of ϕ is 0.019, i.e., ϕ� 1.

The results for the CSA model are shown in Fig. 13a. The

bed slope evolves from the initial value of 0.004 to a final

steady-state value of 0.0068. Evolution is achieved solely by

means of an upstream-migrating knickpoint. Only the first

4000 years of evolution are shown in the figure.

Figure 13b shows the results of the first 400 years of the

calculation with MRSAA. By 100 years, the bed is com-

pletely alluviated, and by 400 years, the thickness of the al-

luvial layer at the upstream end of the reach is 52 m. This

massive alluviation is, unsurprisingly, not predicted by CSA,

which was designed to treat incision only. Figure 13c shows

the results of the first 4000 years of evolution. The upstream-

migrating knickpoint takes the same form as CSA, but it is

nearly completely hidden by the alluvial layer. The knick-

point gradually migrates upstream, driving the completely

alluviated layer out of the domain, but this process is not

complete by 4000 years. A comparison of Fig. 13a and c

show that a knickpoint that is exposed in CSA is hidden in

MRSAA. Models that assume a relation for cover based on

the ratio of sediment supply to capacity transport rate cannot

predict the presence of a hidden knickpoint.

7.2 Evolution of horst–graben configuration

In this example, Cz, Q, B, D, λ, I , βss, Lmr, L, ηa|t=0 and

ηb|x=L are set to the values used in Sect. 7.1. The sediment

feed rate qaf= 0.00083 m2 s−1, and the initial bedrock slope

Sb is set to the steady-state value for a rock uplift rate of

1 mm yr−1, i.e., 0.0027. The model is then run for a rock

uplift rate of 1 mm yr−1 for the domains 0≤ x ≤ 8 km and

12 km≤ x ≤ 20 km and a rock subsidence rate of 1 mm yr−1

for the domain 8 km<x < 12 km. This configuration corre-

sponds to a simplified 1-D configuration of a graben bounded

by two horsts, one upstream and one downstream.

This case cannot be implemented in models that assume

a relation for cover based on the ratio of sediment supply

to capacity transport rate, i.e., Eq. (2). This is because such

models are not designed to handle the case of alluvial fill

of accommodation space created by subsidence. The results

for MRSAA are shown in Fig. 14. By 15 kyr, the uplifting

0

20

40

60

80

100

120

140

knickpoint

xk(t)

 b
[m

]
B

ed
ro

ck
 e

le
va

tio
n

upstream-migrating

0 yr
800 yr

1600 yr
2400 yr
3200 yr
4000 yr

b

bedrock

a

E
le

va
tio

n
b
, 




[m
]

0

20

40

60

80

100

120

140

0 yr
400 yr

bbedrock

aggadation over bedrock

0 yr
100 yr
200 yr
300 yr
400 yr

top bed 

b

E
le

va
tio

n
b
, 




[m
]

0

20

40

60

80

100

120

140

0 50 100 150 200
Downstream distance  x  [km]

c

long term

top bed 

0 yr
800 yr

1600 yr
2400 yr
3200 yr
4000 yr

b

bedrock

alluvium

knickpoint
upstream-migrating

hidden

xk(t)

xk(t)

Figure 13. Progression to steady state after an impulsive increase in

sediment supply: (a) CSA model; (b) MRSAA model, early stage;

and (c) MRSAA model, late stage. Note the knickpoints xk(t) in

bedrock in (a) and (b) and hidden in a migrating alluvial–bedrock

transition in (c). Here η denotes elevation of the top bed surface,

ηb denotes elevation of the base of bedrock relief, and x denotes

streamwise distance. The retreating alluvial wedge is shaded in (c)

for emphasis.

domains evolve to a steady state in terms of both bedrock el-

evation and alluvial cover. The bedrock elevation of the sub-

siding domain never reaches steady state because it is com-

pletely alluviated. The profile at the top of the alluvium in

this domain has indeed reached steady state by 15 000 years,

with a bed slope that deviates only modestly from the steady-

state bedrock slope driven by a uniform υ = 1 mm yr−1.
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Figure 14. Evolution predicted by the MRSAA model for localized

subsidence at a narrow graben superimposed on broader uplift. Note

the bedrock–alluvial and alluvial–bedrock transitions at the margins

of the graben. By 15 kyr, the bed top has reached steady state, even

though the bedrock surface in the graben continues to subside. The

regional rock uplift rate and graben subsidence rate are assumed

constant for simplicity. Here η denotes elevation at the bed top, ηb

denotes elevation of the bottom of bedrock relief, and x denotes

streamwise distance.

7.3 Evolution of river profile with alluviated zone at river

mouth

In this example Cz, Q, B, D, λ, βss, Lmr, L and ηa|t=0

are again set to the values chosen in Sect. 7.1. The bedload

feed rate is 0.00083 m2 s−1; the steady-state bedrock slope

Sb associated with this feed rate is 0.0026 for υ < 5 mm yr−1

(Fig. 10b). The initial bedrock slope is set, however, to the

higher value of 0.004. The rock uplift rate υ for this case is

set to zero, for which the steady-state slope is again 0.0026.

The result of CSA for this case, with base level ηb|x=L

pinned at zero elevation, is shown in Fig. 15. As in the case

of Sect. 7.1, the bedrock slope evolves from the initial value

of 0.004 to the steady-state value 0.0026 by means of an

upstream-migrating knickpoint. Only 4000 years of evolu-

tion are shown in the figure, by which time the knickpoint is

4.8 km from the feed point.

MRSAA is implemented with somewhat different initial

and downstream boundary conditions in order to model the

case of a bed that remains alluviated at the downstream end.

This condition thus corresponds to an alluviated river mouth.

The initial bedrock slope is again 0.004, and the downstream

bedrock elevation ηb|x=L is again 0 m. The downstream al-

luvial elevation ηa|x=L, however, is held at 10 m, so that the

downstream end is completely alluviated. The initial slope S

for the top of the bed is 0.0021, a value chosen so that the

bed elevation equals the bedrock elevation at the upstream

end. Results of the MRSAA simulation are shown in Fig. 16.
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Figure 15. CSA model evolution of an initial bedrock profile to-

wards a steady-state profile. Compare with the MRSAA model

behavior in Fig. 16. Here ηb denotes elevation of the bottom of

bedrock relief, and x denotes streamwise distance.

Figure 16a–c show the early-stage evolution, i.e., at t = 0,

10 and 100 years. Over this period, a bedrock–alluvial

transition (from mixed bedrock–alluvial to purely alluvial)

migrates downstream from the feed point to x= 13.6 km,

i.e., 6.4 km upstream of the terminus. Bedrock incision is

negligible over this period.

Figure 16d–f show the bedrock and top bed profiles

for 1000, 2000 and 4000 years. Over this period, the

bedrock–alluvial transition migrates upstream. As it does so,

the bedrock slope downstream of x= 13.6 km remains allu-

viated and does not change. The bedrock slope between the

transition and x= 13.6 km evolves to the steady-state value

of the case in Sect. 7.2, and the top bed slope downstream

of the transition evolves to the same slope as the steady-

state bedrock slope (because with υ = 0, ϕ vanishes). The

figures show that the upstream-migrating bedrock knickpoint

is located at the bedrock–alluvial transition. By 4000 years,

the transition has migrated out of the domain and the bed

is completely alluviated. The thickness of the alluvial cover

upstream of x= 13.6 km is, however, only 1.05 m, i.e., only

slightly larger than the macro-roughness height of 1 m. This

means that although the reach is everywhere alluvial at

4000 years, the bedrock is only barely covered.

8 Discussion

The MRSAA model is a direct descendant of the model

of Sklar and Dietrich (2004) in terms of the formulation

for bedrock incision, and the model of Struiksma (1999) in

terms of the formulation of the conservation alluvium over

a partly covered bedrock surface. In terms of its capabili-

ties, however, it shares much in common with the previous

work of Lague (2010), and in particular with his SSTRIM

model. These include (a) the melding of incision and allu-
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Figure 16. MRSAA model evolution of bed top and bedrock profiles with an imposed alluvial river mouth at the downstream end and an

upstream-migrating bedrock–alluvial transition. The results are for (a) t = 0 years, (b) t = 10 years, (c) t = 100 years, (d) t = 1000 years,

(e) t = 2000 years and (f) t = 4000 years (steady state). Here (a), (b) and (c) show the early response, and (d), (e) and (f) show the late

response. In these plots, η denotes elevation of the bed surface, ηb denotes elevation of the bottom of bedrock relief, and x denotes streamwise

distance. Compare with the CSA model solution in Fig. 15.

viation into a single model, (b) the inclusion of a cover re-

lation that is based on geometric bed structure, and (c) the

ability to track simultaneously the spatiotemporal variation

in both incision rate and alluvial cover. Priority should ac-

crue to Lague (2010) in regard to these features. The present

model has the following advantages: (a) the Exner equation

of sediment conservation is specifically based on a formu-

lation of the statistics of partial and complete cover over a

rough bedrock surface; (b) the formulation yields a specific

relation for alluvial wave velocity as a function of cover,

ranging to a maximum value for minimum cover to 0 for

complete alluviation; and (c) it allows for explicit description

of the nonlinear advective–diffusive physics of the problem

in terms of an alluvial diffusivity and two wave celerities, one

directed upstream and associated with bedrock incision, and

one directed downstream and associated with alluviation.

The form of the MRSAA model presented here has been

simplified as much as possible, i.e., to treat a HSR (highly

simplified reach) with constant grain size D. This has been

done to allow for a precise and complete characterization

of the behavior of the governing equations. It can relatively

easily be extended to: (a) abrasion of the clasts that abrade

the bed, so abrasional downstream fining is captured (Parker,

1991); (b) size mixtures of sediment (Wilcock and Crowe,

2003); (c) multiple sediment sources (Lague, 2010; Yan-

ites et al., 2010); (d) channels with width variation down-

stream (Lague, 2010); (e) discharge varying according to a

flow duration curve (Sklar and Dietrich, 2006; Lague, 2010),

www.earth-surf-dynam.net/3/113/2015/ Earth Surf. Dynam., 3, 113–138, 2015



132 L. Zhang et al.: Macro-roughness model of bedrock–alluvial river morphodynamics

or fully unsteady flow (An et al., 2014); and (f) cyclically

varying hydrographs (Wong and Parker, 2006b) or “sedimen-

tographs”, the latter corresponding to events for which the

sediment supply rate first increases, and then decreases cycli-

cally (Zhang et al., 2013). In addition, the model can and

should be extended to include the stochasticity emphasized

by Lague (2010). Sections 6 and 7 illustrate features captured

by MRSAA but not by models that assume a cover relation

based on the ratio of sediment supply to capacity transport

rate, i.e., Eq. (2).

The MRSAA model presented here is applied to several 1-

D cases with spatiotemporal variation. The model can easily

be generalized to 2-D simply by expressing Eq. (18) in 2-D

form. In any such implementation, however, the effect of 2-D

connectivity between deep holes should be considered in the

relation to the cover factor.

The MRSAA model in the form presented here has

a weakness in that the flow resistance coefficient Cz is

a prescribed constant. The recent models of bedrock in-

cision of Inoue et al. (2014) and Johnson (2014) pro-

vide a much more detailed description of flow resistance.

In addition to characterizing macro-roughness, their mod-

els use two micro-roughnesses, one characterizing the hy-

draulic roughness of the alluvium and the other character-

izing the hydraulic roughness of the bedrock surface. Their

models can thus discriminate between (a) “clast-smooth”

beds, for which bedrock roughness is lower than clast rough-

ness and (b) “clast-rough” beds, for which bedrock rough-

ness is greater than clast roughness. This characterization al-

lows for two innovative features: (a) both bed resistance and

fractional cover become dependent on the ratio of bedrock

micro-roughness to alluvial micro-roughness and (b) incision

can result from throughput sediment passing over a purely

bedrock surface with no alluvial deposit. The models of In-

oue et al. (2014) and Johnson (2014) use modified forms of

the capacity-based form for cover of Eq. (2) in order to cap-

ture these phenomena. Their models are thus unable to cap-

ture the coevolution of bedrock–alluvial and purely alluvial

processes of MRSAA. Amalgamation of their models and the

one presented here, however, appears to be feasible and is an

attractive future goal.

Because MRSAA tracks the spatiotemporal variation in

both bedload transport and alluvial thickness, it is applicable

to the study of the incisional response of a river subject to

temporally varying sediment supply. It thus has the potential

to capture the response of an alluvial–bedrock river to mas-

sive impulsive sediment inputs associated with landslides or

debris flows. A preliminary example of such an extension is

given in Zhang et al. (2013). When extended to multiple sedi-

ment sources, it can encompass both the short- and long-term

responses of a bedrock–alluvial river to intermittent massive

sediment supply due to landslides and debris flows. As such,

it has the potential to be integrated into a framework for

managing sediment disturbance in mountain rivers systems

such as those affected by the 2008 Wenchuan earthquake

in Sichuan, China. Over 200 landslide dams formed during

that event (Xu et al., 2009; Fu et al., 2011). A similar poten-

tial application is the case of drastic sediment supply to, and

evacuation from, rivers in Taiwan due to typhoon-induced or

earthquake-induced landsliding (e.g., Yanites et al., 2010).

9 Conclusions

We present a 1-D model of alluvial transport and bedrock

erosion in a river channel whose bed may be purely alluvial,

or mixed bedrock–alluvial, or may transition freely between

the two morphologies. Our model, which we call the Macro-

Roughness-based Saltation-Abrasion-Alluviation (MRSAA)

model, specifically tracks not only large-scale bedrock mor-

phodynamics but also the morphodynamics of the alluvium

over it. The key results are as follows:

1. The transport of alluvium over a bedrock surface cannot

in general be described simply by a supply rate that in-

stantaneously affects the entire river reach downstream

as it is varied in time. Here we track the alluvium in

terms of a spatiotemporally varying alluvial thickness.

2. The area fraction of cover p enters into both inci-

sional and alluvial evolution. The alluvial part allows

for the downstream propagation and diffusion of sed-

iment waves, so that at any given time the alluvial bed

can be above or below the top of the bedrock. The model

thus allows for spatiotemporal transitions between com-

plete cover, under which no incision occurs; partial

cover, for which incision may occur; and no cover, for

which no incision occurs.

3. The MRSAA model captures three processes: down-

stream alluvial advection at a fast timescale, alluvial

diffusion, and upstream incisional advection at a slow

timescale. Only the third of these processes is captured

by models that assume a relation for cover based on the

ratio of sediment supply to capacity transport rate rather

than a measure of the thickness of alluvial cover itself.

The CSA model can be thought of as a 0-D model that

applies locally. The MRSAA model lends itself more

directly to application to long 1-D reaches because it

embeds the elements necessary to route sediment down

the reach.

4. The MRSAA model reduces to the CSA model under

the conditions of steady-state incision in balance with

rock uplift and below-capacity cover. The steady-state

bedrock slope predicted by both models is insensitive

to the rock uplift rate over a wide range of conditions.

This insensitivity is in marked contrast to the commonly

used incision model in which the incision rate is a power

function of bedrock slope and drainage area upstream.

The two models can differ substantially under transient
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conditions, particularly under those that include migrat-

ing transitions between the bedrock–alluvial and purely

alluvial state.

5. In the MRSAA model, inclusion of alluvial advec-

tion and diffusion lead to the following phenomena:

(a) a wave-like stripping of antecedent alluvium over

a bedrock surface in response to cessation of sediment

supply, (b) advection–diffusional emplacement of a sed-

iment cover over initially bare bedrock and (c) the prop-

agation and deformation of a sediment pulse over a

bedrock surface.

6. In the case of transient imbalance between rock up-

lift and incision with a massive increase in sediment

feed, MRSAA captures an upstream-migrating tran-

sition between a purely alluvial reach upstream and

a bedrock–alluvial reach downstream (here abbrevi-

ated as a alluvial–bedrock transition). The bedrock pro-

file shows an upstream-migrating knickpoint, but this

knickpoint is hidden under alluvium. Models that as-

sume a relation for cover based on the ratio of sediment

supply to capacity transport rate, i.e., Eq. (2), capture

only the knickpoint, which is completely exposed, and

thus miss the thick alluvial cover predicted by MRSAA.

7. MRSAA captures the mixed incisional–alluvial evolu-

tion for the case of a simplified 1-D subsiding graben

bounded by two uplifting horsts. It captures alluvial fill-

ing of the graben, and thus converges to a steady-state

top-bed profile with a bedrock–alluvial transition at the

upstream end of the graben and an alluvial–bedrock

transition at the downstream end.

8. In the case studied here of an uplifting bedrock profile

with an alluviated bed at the downstream end modeling

a river mouth, MRSAA predicts an upstream-migrating

bedrock–alluvial transition at which the bedrock under-

goes a sharp transition from a higher to a lower slope.

MRSAA further predicts a bedrock long profile under

the alluvium that has the same slope as the top bed. It

also predicts that the cover is thin, so that the purely al-

luvial reach is only barely so. The steady state for this

case is purely alluvial.

9. The new MRSAA model provides an entry point for

the study of how bedrock–alluvial rivers respond to

occasional large, impulsive supplies of sediment from

landslides and debris flows. It thus can provide a tool

for forecasting river-sedimentation disasters associated

with such events. An example application would be

treatment of the aftereffects of the 2008 Wenchuan

earthquake, which triggered massive alluviation and the

formation of over 200 landslide dams.
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Appendix A: Interpretation of the abrasion

coefficient β

Consider a clast or grain of sizeD and volume Vg∼D
3 caus-

ing abrasion over an exposed bedrock surface. The bedload

transport rate qa is given as

qa = EgLg, (A1)

where Eg denotes the volume rate per unit time per unit area

at which clasts are ejected from the bed into saltation, and Lg

denotes the saltation length. Each clast ejected into saltation

collides with the bed a distance Lg later; therefore, the num-

ber of clasts that collide with the bedrock (rather than with

other bed particles) per unit time per unit area is found using

Eq. (A1),

(1−p)
Eg

Vg

= (1−p)
qa

VgLg

. (A2)

The volume lost from the striking clast per strike is defined

as β∗g Vg, and the volume lost from the stricken bedrock per

strike is similarly defined as β∗Vg. The parameters β∗g and β∗

could be expected to be approximately equal if the striking

grain is the same rock type as the bedrock.

The rate at which a grain strikes the bed per unit distance

moved is 1/Lg; hence the rate at which grain volume de-

creases downstream is given by

dVg

dx
=−βgVg, (A3a)

βg =
β∗g

Lg

. (A3b)

Using Vg∼D
3, Eq. (A3) reduces to

dD

dx
=−αdD, (A4a)

αd =
1

3
βg. (A4b)

Equation (A4a) is the differential form of Sternberg’s law; αd

is a diminution coefficient with units L−1. The exponential

form of Eq. (3) corresponds to the case of spatially constant

αd.

The incision rate of the bedrock E is the number of grains

that collide with bedrock per unit area per unit time (Eq.A2)

multiplied by the volume lost per strike β∗Vg, which gives

the relation

E = (1−p)
qa

VgLg

β∗Vg = βqa(1−p)= βqacp(1−p), (A5)

β =
β∗

Lg

. (A6)

The above relation is identical to Eq. (1b).
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Table A1. Notation.

A upstream drainage area [L2
]

B channel width [L]

CSA acronym for Capacity-based Saltation-Abrasion model

Cz dimensionless Chézy resistance coefficient [−]

ca speed of propagation of an alluvial disturbance (positive downstream) [L T−1
]

cai speed of propagation of an alluvial disturbance of infinitesimal height [L T−1
]

cb speed of propagation of an incisional disturbance (positive downstream) [L T−1
]

D, Du characteristic grain size of clasts effective in abrading the bed; upstream value of D [L]

E bedrock incision rate [L T−1
]

Fr Froude number=Q/(BH
√
gH ) [−]

f function of χ describing cover fraction [−]

g gravitational acceleration [L T−2
]

H flow depth [L T−1
]

HSR acronym for highly simplified reach

I flood intermittency, i.e., fraction of time the river is in flood [−]

k coefficient in Eq. (5a) [−]

L reach length [L]

Lg grain saltation length [L]

Lhalf distance a clast travels to lose half its size (diameter) by abrasion [L]

Lmr height of macro-roughness height [L]

MRSAA acronym for Macro-Roughness-based Saltation-Abrasion-Alluviation model

K , m, n; Ao symbols used in slope–area relation; reference drainage area [−]

na exponent in bedload transport relation [−]

p areal fraction of bed that is covered by alluvium [−]

pss steady-state value of p [−]

p0 lower reference cover fraction (0.05 herein) [−]

p1 upper reference cover fraction (0.95 herein) [−]

Q flood discharge [L3 T−1
]

qa, qac, qacss volume bedload transport rate per unit width; capacity value of qa; steady-state value of qac [L
2 T−1

]

qaf feed, or supply value of qa [L
2 T−1

]

qak value of qa at knickpoint [L2 T−1
]

R submerged specific gravity of sediment clasts [−]

Rf = vf/(R gD)
1/2
[−]

S, Sb, Sa bed slope; slope of bedrock; slope of alluvial thickness, −∂ηa/∂x [−]

Sbi, Sbss, Sbref initial bedrock slope; steady-state bedrock slope; reference bedrock slope [−]

Sbu, Sbl bedrock slope upstream of a knickpoint; bedrock slope downstream of a knickpoint [−]

Sass steady-state alluvial bed slope at capacity [−]

T , Th, Tl period of cycled hydrograph; duration of high flow; duration of low flow [T]

t time [T]

U flow velocity during floods [L T−1
]

u∗ shear velocity= (τ/ρ)1/2 [L T−1
]

vf fall velocity of a bedload grain [L T−1
]

Vg single bedload grain volume [L3
]

x streamwise distance [L]

x̂ x/L [−]

xk distance to knickpoint [L]

Y bedrock modulus of elasticity [M L−1 T2
]

z, z′ vertical coordinates (relative to bedrock base and arbitrary vertical datum, respectively) [L]

z′
0

bed elevation such that cover fraction p=p0 [L]

z′
1

bed elevation such that cover fraction p=p1 [L]

αa coefficient in bedload transport relation [−]

αd diminution coefficient for an abrading clast [L−1
]

β, βref, βss coefficient of wear (abrasion); reference value of β; steady-state value of β [L−1
]

χ = ηa/Lmr [−]

η, ηa, ηb bed elevation; thickness of alluvial layer; bedrock elevation [L]
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Table A1. Continued.

κa alluvial diffusivity defined in Eq. (26a) [L2 T−1
]

ϕ = υ/(Iβss qaf) [−]

λ porosity of alluvial deposit [−]

ρ density of water [M L−3
]

ρg density of a bedload grain [M L−3
]

σt rock tensile strength [M L−1 T−2
]

τ∗, τ∗c Shields number = u2
∗/(R gD); critical value of τ∗ at threshold of motion [−]

τ bed shear stress [M L−1 T−2
]

υ, υref relative vertical speed between the (nondeforming) rock underlying the channel and the point at which base

level is maintained, e.g., rock uplift rate or base level fall rate; reference uplift rate [L T−1
]

Earth Surf. Dynam., 3, 113–138, 2015 www.earth-surf-dynam.net/3/113/2015/



L. Zhang et al.: Macro-roughness model of bedrock–alluvial river morphodynamics 137

Acknowledgements. The participation of L. Zhang and X. Fu

in this work was made possible by the National Natural Science

Foundation of China (grant nos. 51379100 and 51039003). The

participation of G. Parker was made possible in part by a grant from

the US National Science Foundation (grant no. EAR-1124482) The

participation of C. P. Stark was made possible in part by grants from

the US National Science Foundation (grant nos. EAR-1148176,

EAR-1124114 and CMMI-1331499). The participation of T. Inoue

was made possible by support from the Hokkaido Regional

Development Bureau.

Edited by: T. Coulthard

References

An, C. G., Fu, X. D., and Parker, G.: River morphological evolution

in earthquake-hit region: effects of floods and pulsed sediment

supply, in: River Flow 2014 Conference, 3–5 September 2014,

Lausanne, Switzerland, p. 7, 2014.

Chatanantavet, P. and Parker, G.: Experimental study of

bedrock channel alluviation under varied sediment supply

and hydraulic conditions, Water Resour. Res., W12446,

doi:10.1029/2007WR006581, 2008.

Chatanantavet, P. and Parker, G.: Physically based modeling of

bedrock incision by abrasion, plucking, and macroabrasion, J.

Geophys. Res., 114, F04018, doi:10.1029/2008JF001044, 2009.

Chatanantavet, P., Lajeunesse, E., Parker, G., Malverti, L., and Meu-

nier, P.: Physically-based model of downstream fining in bedrock

streams with lateral input, Water Resour. Res., 46, W02518,

doi:10.1029/2008WR007208, 2010.

Chatanantavet, P., Whipple, K. X., Adams, M. A., and

Lamb, M. P.: Experimental study on coarse grain saltation

dynamics in bedrock channels, J. Geophys. Res., 118, 1–16,

doi:10.1002/jgrf.20053, 2013.

Crosby, B. T., Whipple, K. X., Gasparini, N. M., and Wobus, C. W.:

Formation of fluvial hanging valleys: theory and simulation,

J. Geophys. Res., 112, F03S10, doi:10.1029/2006JF000566,

2007.

Cui, Y., Parker, G., Lisle, T., Gott, J., Hansler, M., Pizzuto, J. E.,

Allmendinger, N. E., and Reed, J. M.: Sediment pulses in moun-

tain rivers, Part 1. Experiments, Water Resour, Res., 39, 1239,

doi:10.1029/2002WR001803, 2003a.

Cui, Y., Parker, G., Pizzuto, J. E., and Lisle, T. E.: Sediment

pulses in mountain rivers, Part 2. Comparison between experi-

ments and numerical predictions, Water Resour. Res., 39, 1240,

doi:10.1029/2002WR001805, 2003b.

Dadson, S. J., Hovius, N., Chen, H., Dade, W. B. Hsieh, M. L., Wil-

lett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P.,

Lague, D., and Lin, J. C.: Links between erosion, runoff variabil-

ity and seismicity in the Taiwan orogeny, Nature, 426, 648–651,

2003.

DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresh-

olds and runoff variability on the relationships among topogra-

phy, climate, and erosion rate, J. Geophys. Res., 116, F04036,

doi:10.1029/2011JF002095, 2011.

England, P. and Molnar, P.: Surface uplift, uplift of rocks and ex-

humation rate of rocks, Geology, 18, 1173–1177, 1990.

Fernandez Luque, R. and van Beek, R.: Erosion and transport of

bedload sediment, J. Hydraul. Res., 14, 127–144, 1976.

Fu, X. D., Liu, F., Wang, G. Q., Xu, W. J., and Zhang, J. X.: Neces-

sity of integrated methodology for hazard mitigation of quake

lakes: case study of the Wenchuan Earthquake, China, Front.

Arch. Civ. Eng. China, 5, 1–10, 2011.

Gilbert, G. K.: Report on the geology of the Henry Mountains: ge-

ographical and geological survey of the Rocky Mountain region,

Government Printing Office, Washington, D.C., 106 pp., 1877.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and Cowie, P. A.:

Field calibration of sediment flux dependent river incision, J.

Geophys. Res., 116, F04017, doi:10.1029/2010JF001935, 2011.

Howard, A. D.: Simulation of stream capture, Geol. Soc. Am. Bull.,

82, 1355–1376, 1971.

Howard, A. D.: Long profile development of bedrock channels: in-

teraction of weathering, mass wasting, bed erosion, and sediment

transport, Am. Geophys. Un. Monogr., 107, 297–319, 1998.

Howard, A. D. and Kerby, G.: Channel changes in badlands, Bull.

Geol. Soc. Am., 94, 739–752, 1983.

Howard, A. D., Seidl, M. A., and Dietrich, W. E.: Modeling fluvial

erosion on regional to continental scales, J. Geophys. Res., 99,

13971–13986, 1994.

Inoue, T., Izumi, N., Shimizu, Y., and Parker, G.: Interaction be-

tween alluvial cover, bed roughness and incision rate in purely

bedrock and alluvial-bedrock channel, in press, J. Geophys. Res.,

119, 2123–2146, doi:10.1002/2014JF003133, 2014.

Izumi, N. and Yokokawa, M.: Cyclic steps formed in bedrock rivers,

Proceedings of River, Coastal and Estuarine Morphodynamics,

RCEM 2011, Tsinghua University Press, Beijing, 2084–2090,

2011.

Izumi, N., Yokokawa, M., and Parker, G.: Cyclic step morphology

formed on bedrock, J. JSCE Div. B, 68, I_955–I_960, 2012.

Johnson, J. P. L.: A surface roughness model for predicting alluvial

cover and bedload transport rate in bedrock channels, J. Geophys.

Res., 119, 2147–2173, doi:10.1002/2013JF003000, 2014.

Johnson, J. P. L. and Whipple, K. X.: Feedbacks between erosion

and sediment transport in experimental bedrock channels, Earth

Surf. Proc. Land., 32, 1048–1062, doi:10.1002/esp.1471, 2007.

Johnson, J. P. L., Whipple, K. X., Sklar, L. S., and Hanks, T. C.:

Transport slopes, sediment cover, and bedrock channel incision

in the Henry Mountains, Utah, J. Geophys. Res., 114, F02014,

doi:10.1029/2007JF000862, 2009.

Kodama, Y.: Experimental study of abrasion and its role in produc-

ing downstream fining in gravel-bed rivers, J. Sed. Res. A, 64,

76–85, 1994.

Lague, D.: Reduction of long-term bedrock incision efficiency by

short-term alluvial cover intermittency, J. Geophys. Res., 115,

F02011, doi:10.1029/2008JF001210, 2010.

Lague, D.: The stream power river incision model: evidence,

theory and beyond, Earth Surf. Proc. Land., 39, 38-61,

doi:10.1002/esp.3462, 2014.

Lamb, M. P., Dietrich, W. E., and Sklar, L. S.: A model

for fluvial bedrock incision by impacting suspended

and bedload sediment, J. Geophys. Res., 113, F03025,

doi:10.1029/2007JF000915, 2008.

Lisle, T. E., Cui, Y., Parker, G., Pizzuto, J. E., and Dodd, A. M.:

The dominance of dispersion in the evolution of bed material

waves in gravel-bed rivers, Earth Surf. Proc. Land., 26, 1409–

1420, doi:10.1002/esp.300, 2001.

Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, in:

Proceeding of the 2nd IAHR Meeting, International Association

www.earth-surf-dynam.net/3/113/2015/ Earth Surf. Dynam., 3, 113–138, 2015

http://dx.doi.org/10.1029/2007WR006581
http://dx.doi.org/10.1029/2008JF001044
http://dx.doi.org/10.1029/2008WR007208
http://dx.doi.org/10.1002/jgrf.20053
http://dx.doi.org/10.1029/2006JF000566
http://dx.doi.org/10.1029/2002WR001803
http://dx.doi.org/10.1029/2002WR001805
http://dx.doi.org/10.1029/2011JF002095
http://dx.doi.org/10.1029/2010JF001935
http://dx.doi.org/10.1002/2014JF003133
http://dx.doi.org/10.1002/2013JF003000
http://dx.doi.org/10.1002/esp.1471
http://dx.doi.org/10.1029/2007JF000862
http://dx.doi.org/10.1029/2008JF001210
http://dx.doi.org/10.1002/esp.3462
http://dx.doi.org/10.1029/2007JF000915
http://dx.doi.org/10.1002/esp.300


138 L. Zhang et al.: Macro-roughness model of bedrock–alluvial river morphodynamics

for Hydraulic Research, 7–9 June 1948, Stockholm, Sweden, 39–

64, 1948.

Parker, G.: Selective sorting and abrasion of river gravel: theory, J.

Hydraul. Eng., 117, 131–149, 1991.

Parker, G.: 1-D Sediment Transport Morphodynamics with Ap-

plications to Rivers and Turbidity Currents, available at: http:

//vtchl.uiuc.edu/people/parkerg/ (last access: 18 January 2015),

2004.

Parker, G.: Transport of Gravel and Sediment Mixtures, Sedimenta-

tion Engineering: Processes, Measurements, Modeling and Prac-

tice, ASCE Manual of Practice 110, ch. 3, edited by: Gar-

cia, M. H., American Society of Civil Engineers, Reston, USA,

165–252, 2008.

Parker, G., Klingeman, P., and McLean, D.: Bedload and size dis-

tribution in natural paved gravel bed streams, J. Hydraul. Eng.,

108, 544–571, 1982.

Parker, G., Paola, C., and Leclair, S.: Probabilistic form of Exner

equation of sediment continuity for mixtures with no active

layer, J. Hydraul. Eng., 126, 818–826, 2000.

Parker, G., Wilcock, P., Paola, C., Dietrich, W. E., and Pitlick, J.:

Quasi-universal relations for bankfull hydraulic geometry of

single-thread gravel-bed rivers, J. Geophys. Res., 112, F04005,

doi:10.1029/2006JF000549, 2007.

Parker, G., Nittrouer, J. A., Mohrig, D., Allison, M. A., Diet-

rich, W. E., and Voller, V. R.: Modeling the morphodynamics of

the lower Mississippi River as a quasi-bedrock river, Eos Trans.

AGU 90, Fall Meet., John Wiley and Sons, Hoboken, NJ, USA,

Suppl., Abstract EP32A-01, 2009.

Parker, G., Viparelli, E., Stark, C. P., Zhang, L., Fu, X., Inoue, T.,

Izumi, N., and Shimizu, Y.: Interaction between waves of alluvi-

ation and incision in mixed bedrock-alluvial rivers, in: Advances

in River Sediment Research, published by CRC Press/Balkema,

Proc. of the 12th Inter. Symp. on River Sedimentation, Kyoto,

p. 8, 2013.

Schlichting, H.: Boundary layer theory, 7th Edn. 1979, McGraw-

Hill, New York, 1979.

Sklar, L. S. and Dietrich, W. E.: River longitudinal profiles and

bedrock incision models: stream power and the influence of sed-

iment supply, in: Rivers over Rock: Fluvial Processes in Bedrock

Channels, edited by: Tinkler, K. and Wohl, E. E., Am. Geophys.

Un. Geophys. Monogr., 107, 237–260, 1998.

Sklar, L. S. and Dietrich, W. E:. Sediment and rock strength controls

on river incision into bedrock, Geology, 29, 1087–1090, 2001.

Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river inci-

sion into bedrock by saltating bed load, Water. Resour. Res., 40,

W06301, doi:10.1029/2003WR002496, 2004.

Sklar. L. S. and Dietrich, W. E.: The role of sediment in controlling

steady-state bedrock channel slope: implications of the saltation–

abrasion incision model, Geomorphology, 82, 58–83, 2006.

Smith, T. R. and Bretherton, F. P.: Stability and the conservation of

mass in drainage basin evolution, Water Resour. Res., 8, 1506–

1529, 1972.

Stark, C. P., Foufoula-Georgiou, E., and Ganti, V.: A nonlocal the-

ory of sediment buffering and bedrock channel evolution, J. Geo-

phys. Res., 114, F01029, doi:10.1029/2008JF000981, 2009.

Sternberg, H.: Untersuchungen über Längen- und Querprofil

geschiebeführender Flüsse, Z. Bauwesen, 25, 483–506, 1875.

Struiksma, N.: Mathematical modelling of bedload transport over

non-erodible layers, in: Vol. 1, Proceeding of IAHR Conference

on River, Coastal and Estuary Morphodynamics, Genova, Italy,

89–98, 1999.

Tanaka, G. and Izumi, N., The bedload transport rate and hydraulic

resistance in bedrock channels partly covered with gravel, J.

JSCE Div. B, 69, I_1033–I_1038, 2013.

Turowski, J. M.: Stochastic modeling of the cover effect

and bedrock erosion, Water Resour. Res., 45, W03422,

doi:10.1029/2008WR007262, 2009.

Turowski, J. M.: Semi-alluvial channels and sediment-flux-driven

bedrock erosion, in: Gravel Bed Rivers: Processes, Tools, Envi-

ronments, 1st Edn., ch. 29, edited by: Church, M., Biron, P. M.,

and Roy, A., John Wiley & Sons, Chichester, UK, 401–416,

2012.

Turowski, J. M., Lague, D., and Hovius, N.: Cover effect in bedrock

abrasion: a new derivation and its implications for the mod-

eling of channel morphology, J. Geophys. Res., 112, F04006,

doi:10.1029/2006JF000697, 2007.

Turowski, J. M., Badoux, A., Leuzinger, J., and Hegglin, R.: Large

floods, alluvial overprint, and bedrock erosion, Earth Surf. Proc.

Land., 38, 947–958, doi:10.1002/esp.3341, 2013.

Whipple, K. X.: Bedrock rivers and the geomorphology of active

orogens, Ann. Rev. Earth Pl. Sci., 32, 151–185, 2004.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power

river incision model: implications for height limits of mountain

ranges, landscape response timescales, and research needs, J.

Geophys. Res., 104, 17661–17674, 1999.

Whipple, K. X. and Tucker, G. E.: Implications of sediment-flux-

dependent river incision models for landscape evolution, J. Geo-

phys. Res., 107, 2039, doi:10.1029/2000JB000044, 2002.

Wilcock, P. R. and Crowe, J. C.: Surface-based transport model for

mixed-size sediment, J. Hydraul. Eng., 129, 120–128, 2003.

Wilkerson, G. V. and Parker, G.: Physical basis for quasi-universal

relations describing bankfull hydraulic geometry of sand-bed

rivers, J. Hydraul. Eng., 137, 739–753, 2011.

Wong, M. and Parker, G.: Reanalysis and correction of bed-load

relation of Meyer-Peter and Müller using their own database, J.

Hydraul. Eng., 132, 1159–1168, 2006a.

Wong, M. and Parker, G.: One-dimensional modeling of bed evolu-

tion in a gravel bed river subject to a cycled flood hydrograph, J.

Geophys Res., 111, F3018, doi:10.1029/2006JF000478, 2006b.

Xu, Q., Fan, X. M., Huang, R. Q., and Van Westen, C.: Landslide

dams triggered by the Wenchuan Earthquake, Sichuan Province,

south west China, Bull. Eng. Geol. Environ., 68, 373–386, 2009.

Yanites, B. J., Tucker, G. E., Mueller, K. J., and Chen, Y. G.: How

rivers react to large earthquakes: Evidence from central Taiwan,

Geology, 38, 639–642, doi:10.1130/G30883.1, 2010.

Zhang, L., Fu, X. D., Stark, C. P., Fernandez, R., and Parker, G.:

Modeling of incision of bedrock rivers subject to temporally

varying sediment supply, Proceedings of the 2013 IAHR World

Congress, Chengdu, Tsinghua University Press, China, p. 11,

2013.

Earth Surf. Dynam., 3, 113–138, 2015 www.earth-surf-dynam.net/3/113/2015/

http://vtchl.uiuc.edu/people/parkerg/
http://vtchl.uiuc.edu/people/parkerg/
http://dx.doi.org/10.1029/2006JF000549
http://dx.doi.org/10.1029/2003WR002496
http://dx.doi.org/10.1029/2008JF000981
http://dx.doi.org/10.1029/2008WR007262
http://dx.doi.org/10.1029/2006JF000697
http://dx.doi.org/10.1002/esp.3341
http://dx.doi.org/10.1029/2000JB000044
http://dx.doi.org/10.1029/2006JF000478
http://dx.doi.org/10.1130/G30883.1

	Abstract
	Introduction
	Capacity-based Saltation-Abrasion (CSA) geomorphic incision law and its implications for channel evolution: upstream-migrating waves of incision
	CSA geomorphic incision law
	Embedding of CSA into a model of bedrock surface evolution
	Character of the CSA model: upstream waves of incision
	Limitations of the CSA model

	Macro-Roughness-based Saltation-Abrasion-Alluviation (MRSAA) formulation and its implications for channel evolution
	Formulation for alluvial sediment conservation and cover factor
	Exner equation of alluvial sediment conservation over a bedrock surface
	Closure model for cover relation
	Character of the alluvial part of the MRSAA problem: alluvial diffusion and downstream-migrating waves of alluviation
	Full MRSAA formulation: alluvial diffusion, upstream-migration waves of incision, downstream-migrating waves of alluviation
	Amendment of the flow component of the MRSAA model
	How the governing equations connect to each other
	Equivalence of the MRSAA and CSA models at steady state

	The below-capacity steady-state case common to the CSA and MRSAA models
	Boundary conditions and parameters for numerical solutions of the MRSAA model
	Sediment waves over a fixed bed: stripping and emplacement of alluvial layer and advection--diffusion of a sediment pulse
	Alluvial stripping
	Emplacement of an alluvial layer over an initially bare bed
	Propagation of a pulse of alluvium over an initially bare bed

	Comparison of evolution to uplift-driven steady state for the CSA and MRSAA models
	Evolution of bedrock profile with early-stage massive alluviation
	Evolution of horst--graben configuration
	Evolution of river profile with alluviated zone at river mouth

	Discussion
	Conclusions
	Appendix A: Interpretation of the abrasion coefficient 
	Acknowledgements
	References

