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1 Details on material and methods

1.1 Beryllium-10-based modern denudation rates

Beryllium-10 concentrations in modern fluvial sediments scale to the rate of landscape lowering by
weathering and physical erosion and average the time of exposure to cosmic ray interaction in rock
surfaces (von Blanckenburg, 2005; Dunai, 2010). The generally dry conditions in Pamir (Fig. ??)5
suggest weathering to be of less importance in the total erosion budget. In this case, landscape
lowering is dominated by the physical material removal at the landscape’s surface, which means that
denudation rates narrow down to erosion rates (e.g. Dunai, 2010), and it may be convenient to use
both terms interchangeably in the following.

The relation between the 10Be concentration in a target mineral and modern denudation rates10
is based on the fact that the nuclide is produced by cosmic rays at rock surfaces within a rock-
characteristic attenuation depth, while material removal brings constantly new material from shielded
depth to the surface (Lal, 1991; Brown et al., 1995; von Blanckenburg, 2005; Dunai, 2010). Being
highest at the rock surface, the 10Be production decreases approximately exponentially with depth
(Lal, 1991; Dunne et al., 1999; Braucher et al., 2011). The mean attenuation path length z∗ of cosmic15
rays in rocks depends on the attenuation coefficient of the nucleonic component (∼160 g/cm2) and
the rock density (e.g. Gosse and Phillips, 2001; Balco et al., 2008) of the bulk, often polymineral
material. Accordingly, in silicate rocks z∗ is typically ∼60 cm (Lal, 1991; von Blanckenburg, 2005).
The 10Be concentration C is then proportional to the time the mineral grains reside within z∗ until
being removed from the surface. Consequently, C is inversely proportional to the denudation rate ε20
(Lal, 1991; Brown et al., 1995; von Blanckenburg, 2005). This relation can be described by:

ε =

(
P

C
−λ

)
∗ z∗ (1)

where λ is the decay constant of the nuclide and P its production rate. To calculate λ by

λ =
ln(2)

t1/2
(2)

we used the 10Be half-life (t1/2) of (1.387± 0.012) Ma (Korschinek et al., 2010). The parameter25
z∗ may be treated as a constant when determining basin-wide denudation rates that averages over
local variations in rock densities affecting the attenuation path length. The central estimates required
for solving the equation are the 10Be concentration of the sample and the rate of nuclide production
at the corresponding location (details given in sections ??, 1.2 and 1.3). The equation is valid under
steady-state conditions of 10Be production and material removal at the surface. This implies constant30
conditions over a period that is long compared to the averaging time Tave, the time it takes to erode
z∗ and hence, to remove the ‘cosmogenic memory’ of the material (Brown et al., 1995; Bierman and
Steig, 1996; von Blanckenburg, 2005; Dunai, 2010).

Assuming uniform erodibility, mineral composition and grain size release of the eroding rock sur-
face, denudation rates represent averages for all upstream surfaces at the basin scale (Bierman and35
Steig, 1996; von Blanckenburg, 2005; Carretier et al., 2009). Well-mixed sediment representative
of all process domains within the basin require sample basins large enough to minimize the influ-
ence of single and only local processes (e.g. von Blanckenburg, 2005; Niemi et al., 2005; Yanites
et al., 2009). Although large basins imply longer grain travel times, nuclide concentrations revealed
negligible increases compared to the concentration already acquired at their initial position in non-40
aggrading basins (Carretier et al., 2009).

1



1.2 Sample preparation and 10Be measurements

The polymineral sediment samples required quartz enrichment before starting chemical cleaning and
10Be extraction. To narrow the grain size fraction, we first sieved the samples to 250 - 500µm and
500 - 1000µm, and focussed on the 250 - 500µm fraction. For two samples (TA28C and TA30P)45
only the coarser fraction yielded sufficient material. After magnetic separation and ultrasonic bath,
we cleaned the quartz with a 1:1 solution of HCl (32%) and H2SiF6 (34%) (Brown et al., 1991).
Inspection of the sample’s mineral composition under the binocular revealed relatively high propor-
tions of feldspars (up to 50%) for most of our samples, even after repeating the partial dissolution
for six cycles. Feldspars cause bias in quartz results due to differing rates of 10Be production. Addi-50
tionally, the lower chemical resistance compared to quartz as well as high aluminum contents affect
chemical procedures. This motivated us to introduce a standard feldspar flotation (Herber, 1969) to
further enrich the quartz fraction. The feldspar flotation was carried out in a solution of 0.2% HF and
pH of 2.4 - 2.7 to activate feldspar adherence to bubbles using the foam agent dodecylamine.

Atmospheric 10Be was removed by dissolving 30% of the extracted quartz fraction with 48% HF55
during three cycles. The BeO separation followed the procedures by Merchel and Herpers (1999).
After the addition of about 300µg of a 9Be carrier (Phena DD, (3.025± 0.009)× 10−3 9Be/g,
Merchel et al., 2008), samples were totally dissolved using 48% HF. The Be extraction from the
dissolved quartz included repeated hydroxide precipitation by NH3aq , anion and cation exchanges.
For high Ti-containing samples, Ti was diminished by precipitation of Ti(OH)4 before ignition of60
Be(OH)2 to BeO. Then, target preparation involved adding Nb (six times of the dry oxide weight).
AMS measurements were conducted at DREAMS (DREsden AMS, Helmholtz-Zentrum Dresden-
Rossendorf, 6 MV, Cu cathode) using the in-house standard SMD-Be-12 (Akhmadaliev et al., 2013)
normalized against the NIST SRM 4325 standard (10Be/9Be ratio of (2.79± 0.03)× 10−11, Nishi-
izumi et al., 2007). A round-robin exercise of AMS facilities confirmed robust standard calibration65
and measurement configuration (Merchel et al., 2012). Processing blanks were treated and measured
parallel to the sediment samples. The blank isotope ratios in the order of 0.3 - 1.7% (10Be/9Be ratio
of 2.0× 10−15 and 2.1× 10−15) were subtracted from the measured ratios of all samples.

1.3 Production rates and shielding factor

The production of 10Be in quartz is primarily dependent on the cosmogenic particle flux from nu-70
cleons and muons (Lal, 1991; Granger and Muzikar, 2001) as a function of the geomagnetic field,
altitude and shielding (Lal, 1991; Brown et al., 1995; Bierman and Steig, 1996; Stone, 2000; Gosse
and Phillips, 2001). Accounting for the location-specific modulation, reference sea level and high
latitude (SLHL) production rates need to be scaled to the conditions at the site of sampling.

In the case of fluvial sediment samples, the cosmogenic nuclide inventory was acquired in source75
areas of the sediment upstream of the sampled site (e.g. Brown et al., 1995; Bierman and Steig,
1996; Granger et al., 1996; von Blanckenburg, 2005). Consequently, the calculation of representa-
tive production rates requires attention to the hypsometry of the whole basin (von Blanckenburg,
2005; Norton and Vanacker, 2009; Dunai, 2010). Representative values for the production rate and
shielding were calculated raster-cell resolved for the upstream area of each sampling site based on a80
ASTER GDEM of 10 m resolution (see also main text).

For each sampled basin, we then calculated 10Be production rates from neutrons, and fast and
stopped muons by raster cell-resolved scaling of a SLHL reference according to (Stone, 2000).
We used the SLHL production rate of 4.5 at/g quartz/yr (cf. Balco et al. 2008 along with the half-
life of 10Be of (1.387± 0.012)× 106 years, Korschinek et al. 2010) and the attenuation parameters85
according to Braucher et al. (2003) and Siame et al. (2004).

Topographic shielding plays an important role in high relief terrain (Dunne et al., 1999) as steep
slopes reduce the exposure to the cosmic particle flux (e.g. Gosse and Phillips, 2001; Codilean, 2006;
Norton and Vanacker, 2009). Shielding from other sources is considered negligible as glaciated areas
are excluded from production rate calculation and vegetation is scarce due to the dry climate and high90
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basin altitudes. The shielding factor was estimated for each GDEM raster cell based on the horizon
line within a 10 km distance according to the method of Codilean (2006). Norton and Vanacker
(2009) found only low underestimation of shielding when using a DEM of 30 m resolution in steep
terrain.

2 Details on results95

2.1 Details on denudation rate parameters

Denudation rates corrected for the basins proportion of snow and ice cover display an exponential
relation with AMS-based 10Be concentrations (Fig. S2, B) as an expression of the attenuation of
cosmic rays in rock surfaces.

The correction of production rates according to the basin’s topographic shielding factors en-100
hance differences between basins. Low altitude areas commonly relate to marginal Pamir basins
that are more shielded by steep slopes than plateau-related basins with a high proportion of altitudes
above 3600 m a.s.l. and large areas of slopes <5%. Consequently, elevated central and eastern basin
portions deliver sediments of high 10Be concentrations (e.g., TA08N) to the river channels due to
high production and low shielding. Lowest production rates occur within north-western basins (e.g.105
TA02A) due to both, high topographic shielding and high snow and ice cover. The rates of nuclide
production (Tab. ??) are similar, with only ∼9% variability for plateau-related basins (TA08N and
TA30P) and those of the southern Panj basins (TA23P, TA24O, TA25C and TA28C). The shielding
corrected production rates in tributary basins indicate a slight decrease (Fig. S2 in supplementary
material, C) corresponding to northward lower altitudes and steepened topography.110
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3 Supplementary figures

3.1 Figure S1: Spatial variations of 10Be production rates and topographic shielding
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Figure S1. Spatial variations of 10Be production rates and topographic shielding according to the
hypsometryof the Pamir, and individual frequency distributions of production and shielding within
sampled basins (cf.Figs. 1 and 2). As an example of the spatially variable production, rates are given for the
neutron induced 10Bebuilt-up (CN: cosmogenic nuclide, color code for CN sample locations in map refers
to individual basins in the legend of frequency distribution plots: reddish: southern Pamir margin, greenish:
western Pamir margin,blueish: plateau-related basins, cf. Fig. 1; notation of basins refers to bold fonts used for
sample names in Fig. 1and Tab. 1).



3.2 Figure S2: Parameters of denudation rate calculations
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Figure S2. Relationship between basin-wide denudation rates and respective parameters used for
calculationsand corrections. A: Denudation rates with and without correction for areas covered by
permanent snow andice. B: Exponential relation between denudation and 10Be concentrations from AMS
measurements. C: Lowvariability of production rates corrected for topographic shielding (color code refers
to individual basins in the legend, reddish: southern Pamir margin, greenish: western Pamir margin, blueish:
plateau-related basins, cf.Fig. 1; notation of basins refers to bold fonts used for sample names in Fig. 1 and
Tab. 1, shaded areas providea quick demarcation of margin or plateau-related samples, the sample TA01C
between the two units illustrates the integration of both, marginal and plateau-related portions).
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