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Abstract. Rock is exposed at the Earth surface when rates of erosion locally exceed rates of soil production. The

thinning of soils and emergence of bedrock has implications spanning geomorphology, ecology and hydrology.

Soil-mantled hillslopes are typically shaped by diffusion-like sediment transport processes that act to smooth

topography through time, generating the familiar smooth, convex hillslope profiles that are common in low relief

landscapes. Other processes, however, can roughen the landscape. Bedrock emergence can produce rough terrain;

in this contribution we exploit the contrast between rough patches of bedrock outcrop and smooth, diffusion-

dominated soil to detect bedrock outcrops. Specifically, we demonstrate that the local variability of surface

normal vectors, measured from 1 m resolution airborne LiDAR data, can be used as a topographic signature to

identify areas within landscapes where rock exposure is present. We then use this roughness metric to investigate

the transition from soil-mantled to bedrock hillslopes as erosion rates increase in two transient landscapes, Bald

Rock Basin, which drains into the Middle Fork Feather River, California, and Harrington Creek, a tributary of

the Salmon River, Idaho. Rather than being abrupt, as predicted by traditional soil production models, in both

cases the transition from fully soil-mantled to bedrock hillslopes is gradual and spatially heterogeneous, with

rapidly eroding hillslopes supporting a patchwork of bedrock and soil that is well documented by changes in

topographic roughness, highlighting the utility of this metric for testing hypotheses concerning the emergence of

bedrock and adding to a growing body of evidence that indicates the persistence of partial soil mantles in steep,

rapidly eroding landscapes.

1 Introduction

The geomorphic transition from hillslopes with a continuous

soil mantle to rugged bedrock is a key phase in the evolu-

tion of eroding landscapes. Many slowly eroding landscapes

feature sediment transport processes that act to diffuse and

dampen short wavelength features of the topography, gener-

ating smooth, soil-mantled hillslopes (Gilbert, 1909; Carson

and Kirkby, 1972). Bedrock becomes exposed at the surface

when the rate of erosion exceeds the maximum rate of soil

production (Carson and Kirkby, 1972; Heimsath et al., 1997,

2012). This transition is gradual, and spatially variable, re-

flecting the fact that both soil production and sediment trans-

port are spatially heterogeneous, and typically operate via

discrete events (Wilkinson et al., 2005; Strudley et al., 2006a,

b; Gabet and Mudd, 2010; Furbish and Roering, 2013). The

emergence of bedrock signifies a fundamental change in the

dynamics of sediment transport, which become increasingly

stochastic as mobile colluvium is stripped away and the hill-

slope sediment flux becomes detachment limited (e.g. Bin-

nie et al., 2007). Furthermore, the establishment of terrestrial

ecosystems is dependent on a hospitable substrate: the mo-

saic of bedrock and soil that constitutes the hillslope surface

imposes a physical template on the development of terrestrial

ecosystems (Phillips and Marion, 2004; Pelletier and Ras-

mussen, 2009; Gabet and Mudd, 2010; Sheffer et al., 2013).

The rate of erosion that is sufficient to completely strip soil

may therefore represent a limiting threshold for ecosystem

development (Graham et al., 2010). In addition, the presence

or absence of bedrock outcrop may reveal important infor-

mation about the availability of nutrients such as phospho-
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rous in soil parent material (Hahm et al., 2014). Equally,

the transition between deep and shallower soils, signalled

by the appearance of bedrock outcrops, is an ecological gra-

dient allowing for niche specialisation, driving biodiversity

and diversity within species, influencing ecosystem function,

species creation and adaptability (Smith et al., 1997). Quan-

tifying the spatial distribution of rock exposure and its rela-

tionship to the ecological and geomorphological characteris-

tics of a landscape thus comprises an important challenge in

understanding critical zone dynamics.

The advent of airborne Light Detection And Ranging (Li-

DAR) as a remote-sensing technology over the last decade or

so has driven a revolution in the fields of both geomorphol-

ogy and ecology by providing high-resolution (< 1 m) obser-

vations of both canopy structure and sub-canopy topography,

therefore enabling observations to be made at length-scales

sufficiently small to analyse the geomorphic characteristics

of hillslopes (Roering et al., 2010; Hurst et al., 2012; DiB-

iase et al., 2012). Higher resolution still (< 1 cm) is possi-

ble using terrestrial LiDAR systems, permitting the analysis

of multi-scale dimensionality from length scales of centime-

tres to several metres, enabling the objective classification

of point clouds into specific features, such as vegetation and

bedrock, with a high degree of accuracy (Brodu and Lague,

2012; Lague et al., 2013). Despite the obvious benefits of

high-resolution terrestrial LiDAR scanning, the greater spa-

tial coverage permitted by airborne surveys maintains its util-

ity for landscape scale applications, requiring the develop-

ment of remote sensing methods with which it is possible

to extract information about the geomorphic characteristics

of hillslopes, such as the extent of rock exposure, from such

comparatively low-resolution data.

DiBiase et al. (2012) used airborne LiDAR data to investi-

gate the impact of increasing erosion rates on hillslope mor-

phology in the San Gabriel Mountains, CA, demonstrating

that slope distributions became increasingly skewed towards

higher gradients, as steep, bedrock slopes became increas-

ingly abundant. They successfully developed the Rock Ex-

posure Index (REI) as a topographic metric to map rock ex-

posure in this landscape, defined as areas in which the local

gradient exceeds a threshold steepness beyond which soil is

no longer retained on the hillslope. DiBiase and Lamb (2013)

exploited this metric to quantify sediment storage by vege-

tation on steep slopes, and thus assess the likely impact of

wild fires on hillslope sediment fluxes. Marshall and Roer-

ing (2014) used a similar slope-based metric to map erosion-

resistant sandstone beds in the Oregon Coast Range.

However, slope-based metrics are not universally applica-

ble. For example, when long-term rates of erosion exceed

the local maximum rate of soil production, bedrock will be

exposed at the surface, irrespective of slope (Carson and

Kirkby, 1972; Heimsath et al., 1997, 2012). Within a given

setting, rates of soil production may be limited by factors

such as climate, vegetation, lithology and soil thickness (e.g.

Pelletier and Rasmussen, 2009; Chorover et al., 2011; Good-

fellow et al., 2014a). It is evident that in many landscapes

rock exposure emerges in places even at low topographic

gradients, and is particularly common in regions with thin

regolith cover, where tor formation is common (Anderson,

2002; Strudley et al., 2006b), on ridgelines (Gabet et al.,

2015), or where bedrock heterogeneities drive small-scale

variation in weathering rates (Goodfellow et al., 2014b).

Another method by which rock exposure might be mapped

from high-resolution topographic models of hillslopes is

through changes in their textural characteristics. On hill-

slopes mantled by a veneer of soil, sediment transport is

driven by the time-integrated effect of a suite of local-scale

diffusive processes, including bioturbation, tree throw, dry

ravel and rain splash (e.g. Gabet, 2003; Gabet et al., 2003;

Yoo et al., 2005; Furbish et al., 2007). The net efficiency of

these processes in transporting material increases with to-

pographic gradient – they are diffusion-like (Furbish et al.,

2009) – such that they act to dampen the amplitude of lo-

cal topography, particularly when viewed at length-scales

greater than those at which the dominant sediment transport

rates operate. The resultant hillslopes therefore typically ex-

hibit smooth, convex surfaces that are ubiquitous to many

soil-mantled landscapes (Gilbert, 1909; Culling, 1963, 1965;

Carson and Kirkby, 1972; McKean et al., 1993). The emer-

gence of bedrock at the surface potentially drives a signif-

icant increase in roughness, because there is a fundamental

change in the dynamics of sediment transport at this loca-

tion within the landscape: sediment transport is detachment

limited (Dietrich et al., 2003) and the local relief structure is

governed by the characteristics of the bedrock (fracture den-

sity and orientation, bedding and foliation, weathering be-

haviour).

In this paper we exploit this idea and develop a new tech-

nique to identify areas of rock exposure from high-resolution

LiDAR data, based on short-wavelength topographic rough-

ness. This method is validated in two granitoid landscapes

by comparing the results to rock exposure mapped indepen-

dently from high-resolution orthophotographs, highlighting

its utility and limitations. Finally, as a case study, we apply

the algorithm in two strongly transient landscapes – the first

in the Feather River region of the northern Sierra Nevada,

California; the second in the Salmon River region SW of the

Bitterroot Mountains, Idaho – in order to illustrate the transi-

tion from diffusive, soil-mantled hillslopes to rough, bedrock

hillslopes as erosion rates increase in both settings.

2 Methods – quantifying surface roughness

Sediment fluxes on soil-mantled hillslopes have been shown

to be well approximated by a linear relationship with the to-

pographic slope (Carson and Kirkby, 1972), becoming non-

linear as erosion rates increase and steepen hillslopes towards

a limiting slope beyond which mobile colluvium is unsta-

ble (Roering et al., 1999). The resultant topography is diffu-

sive: hillslope processes act to dampen the amplitude of local
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micro-topography generating characteristically smooth hills-

lope topography. Our method starts from the hypothesis that

the emergence of bedrock through the soil mantle should be

detectable as an increase in the local roughness of the topo-

graphic surface, due to a geomorphic process transition away

from diffusion-like hillslope processes.

Specifically we analyse surface roughness using the vari-

ability of the orientation of local slope normal vectors, us-

ing the eigenvalues of an orientation tensor, derived from

the vectors normal to the topographic surface. A similar ap-

proach has been used in a range of geological applications,

notably in earthquake seismology (Fara and Scheidegger,

1963), analysing trends in geological structural data (Wood-

cock, 1977) and more recently as a method to objectively lo-

cate landslides from high-resolution topographic data (McK-

ean and Roering, 2004). We note here that other metrics de-

scribing surface roughness, such as the standard deviation of

slope, have been used in other geomorphic contexts, such as

LiDAR-based mapping of volcanic deposits (Whelley et al.,

2014) and channel bed morphology (Cavalli et al., 2008).

Initially a second order polynomial surface is fitted to a

moving data window of 3× 3 pixels (Evans, 1980). This

method of surface approximation to calculate topographic

metrics has been widely utilised in the calculation of sur-

face derivatives, predominately slope and curvature, for the

extraction of geomorphic features such as hilltops (Hurst

et al., 2012), channel networks (Pirotti and Tarolli, 2010;

Sofia et al., 2011), landslides (Tarolli et al., 2010; Lin et

al., 2013), and anthropogenic features on floodplains (Sofia

et al., 2014). Using a larger length-scale would dampen the

roughness signal, but may be necessary if the topographic

data are noisy (Sofia et al., 2011). The surface can be de-

scribed by:

z= ax2
+ by2

+ cxy+ dx+ ey+ f, (1)

where z is the surface elevation, x and y are horizontal co-

ordinates, and a, b, c, d, e, and f are empirical fitting co-

efficients. A similar approach was employed by Hurst et

al. (2012) to calculate hilltop curvature, who found no sig-

nificant difference between the results obtained using six or

nine term polynomials in their surface fitting algorithm. Con-

sequently we use a six term polynomial as it maximises com-

putational efficiency. The normal to a surface is given by:

n=∇(f (x,y)− z). (2)

For Eq. (1), using spherical coordinates (r , θ , ϕ) at the origin,

the unit normal vector becomes:

n=
(

1, tan−1
(√
d2− e2

)
, tan−1

( e
d

))
. (3)

For N surface normal vectors, the orientation matrix, T, can

be constructed using the directional cosines li , mi and ni , as

shown below:

T=

 ∑N
i l

2
i

∑N
i limi

∑N
i lini∑N

i mi li
∑N
i m

2
i

∑N
i mini∑N

i ni li
∑N
i nimi

∑N
i n

2
i

 . (4)

The orientation matrix can be solved to find the three eigen-

vectors v1, v2, v3 and their corresponding eigenvalues, λ1,

λ2, λ3, which describe the degree of clustering of the normal

vectors about the principal axes of the distribution (Watson,

1966). Following Woodcock (1977), we normalise the eigen-

values by the number of observations (N ):

S1 =
λ1

N
, S2 =

λ2

N
, S3 =

λ3

N
. (5)

S1 ( 1
3
≤ S1 ≤ 1) describes the clustering around the ma-

jor axis, S2 (0≤ S2 ≤
1
2
) the intermediate axis, and

S3 (0≤ S3 ≤
1
3

) the minor axis. These normalised eigenval-

ues can be used to describe the morphology of a given surface

(Woodcock, 1977): for a smooth surface, the local surface

normal vectors will have similar orientations, thus they will

cluster tightly around the major axis, v1, and S1 will be large,

whereas the degree of clustering around the minor axis, v3,

will thus be very small (low S3). Conversely, for a rough sur-

face, the normal vectors will be more randomly orientated;

there will be a weaker degree of clustering around v1 (low

S1), whilst the clustering around v3 will be relatively high

(therefore high S3).

A moving data kernel is passed over the data set to analyse

the variability of the surface normal vectors within the lo-

cal (circular) neighbourhood. The radius of this kernel deter-

mines the length-scale over which the roughness of the sur-

face is quantified. Identifying the correct length-scale in this

case is critical – too large, and long wavelength variations in

the topography (i.e. ridge-valley topography) will dominate,

obscuring any signal from rock exposure; too small, and then

the measured roughness will pick out locally smooth surfaces

within an exposure of bedrock. We discuss determining the

optimal length-scale in the Validation section (for results, see

Sect. 3.4).

3 Validation of the surface roughness algorithm

3.1 Validation sites

In order to test the surface roughness metric described above

as a measure of rock exposure, we selected two valida-

tion sites in western USA (Fig. 1) based on the availabil-

ity of co-located LiDAR and high-resolution (< 30 cm) or-

thophotographs. A further requirement for validation sites

was that the degree of vegetation cover was minimal, to

permit the objective classification of rock outcrop in the

imagery (Sect. 3.2). All LiDAR data sets and orthopho-

tographs used in the study are freely available from either

the National Science Foundation’s OpenTopography service
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Table 1. Summary of data sets used during in this study.

Airborne LiDAR

Region Acquisition date Areal extent used (km2) Point Density (ptsm−2) Data set acknowledgement

Rayleigh Peak, CO May 2010 23 10.1 1

Poway Creek, CA Jan 2005 1.4 1.4 2

Bald Rock Basin, CA Sep 2008 4.0 9.8 1

Harrington Creek, ID Aug 2011 49.0 4.6 1

Orthophotographs

Region Acquisition date Resolution/m Sensor type Data set acknowledgement

Rayleigh Peak, CO Mar 2010 0.30 Colour Near-Infrared 3

Poway Creek, CA May 2012 0.15 Colour Near-Infrared 3

1: National Center for Airborne Laser Mapping (NCALM – http://www.ncalm.org); 2: USGS Center for LiDAR Information Coordination and Knowledge (CLICK –

http://lidar.cr.usgs.gov/; via OpenTopography); 3: USGS (via EarthExplorer http://earthexplorer.usgs.gov/).

Figure 1. Field sites used in this study; (a) headwaters of the Spring

Creek catchment, ∼ 2.7 km SW of Rayleigh Peak, in the Colorado

Front Ranges; (b) Poway Creek, California; (c) Bald Rock Basin,

draining into the Middle Fork Feather River, Californian Sierra

Nevada; (d) Harrington Creek, which drains into the Salmon River,

Idaho. Sites (a) and (b) were used to validate our algorithm; sites

(c) and (d) were subsequently analysed to investigate the transition

from soil-mantled to bedrock hillslopes in transient landscapes.

(www.opentopography.org) or from the United States Geo-

logical Survey (USGS; earthexplorer.usgs.gov/). Technical

details for the data sets have been collated in Table 1.

3.1.1 Rayleigh Peak, Colorado

The first validation site is located in the headwaters of the

Spring Creek catchment, in the central Colorado Frontal

Range, which drains into the South Platte River ∼ 40 km

SSW of Denver (Fig. 1a). The climate is semi-arid with

frequent intense summer storms. Mean Annual Precipita-

tion (MAP) is 440 mm, and average monthly temperatures

varies from a maximum (minimum) of 27.7 (10.8) ◦C in sum-

mer to 6.0 (−9.0) ◦C in winter (http://www.prismclimate.

org). Vegetation comprises grassland and sparse coniferous

forest, of which Ponderosa Pine and Douglas Fir are the prin-

cipal components, the distribution of which is dominated by

the impact of the 1996 Buffalo Creek wildfire, in which 79 %

of the Spring Creek catchment suffered severe burn damage

(Moody and Martin, 2001), so that forest canopy now covers

only a small proportion of the landscape. The bedrock ge-

ology comprises Pikes Peak Granite (Ruleman et al., 2011),

which forms large, blocky outcrops. The degree of rock out-

crop at the site varying from almost full exposure on hill-

slopes around Rayleigh Peak, which dominates the topogra-

phy, to fully soil-mantled hillslopes that are now predomi-

nately covered by grassland.

3.1.2 Poway Creek, California

The second study site is located in the Poway Creek catch-

ment, located just east of the city of Poway, north of San

Diego (Fig. 1b). MAP is 825 mm and temperatures typi-

cally range from 29.1 (14.1) ◦C in summer to 11.5 (−0.2) ◦C

in winter (http://www.prismclimate.org). The bedrock geol-

ogy is principally composed of granodiorite with dacitic-

andesitic extrusive rocks underlying the eastern margin

(Todd et al., 2004). There is a gradient in rock exposure

from predominately soil-mantled, grassy hillslopes that are

frequently gullied, to abundant rock outcrop in the steep,

rugged headwaters. Due to classification errors in the orig-

inal data set, the LiDAR point cloud was reclassified using

the multi-scale curvature algorithm incorporated within the

MCC-LiDAR tool (Evans and Hudak, 2007).
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Figure 2. Validation procedure illustrated for the Rayleigh Peak

site: (a) high-resolution colour near-infrared orthophotograph;

(b) results from the SVM classification procedure – rock= blue,

soil mantled/vegetation= green; (c) classified image following the

subsequent majority filter; (d) map of S3, which we use as a mea-

sure of surface roughness, measured using a neighbourhood win-

dow radius of 3 m. Orange pixels mark areas identified as being

channelised.

3.2 Objective identification of rock exposure from

high-resolution orthophotographs

The high-resolution orthophotographs were classified using

the supervised classification toolbox available within the

ENVI 4.8 processing environment. Specifically we utilised

the Support Vector Machine classification method (Wu et

al., 2004), trained using a series of manually selected sam-

ple Regions Of Interest (ROIs) for each class. The classes

used to analyse each orthophotograph comprised the fol-

lowing: “Rock”, “Vegetation”, “Bare Earth” and “Shadow”.

With the exception of the “Shadow” class, which was not

as spatially extensive, each ROI had a minimum of 10 000

pixels. The SVM classification was implemented to analyse

the imagery at two pyramid levels, with a Pyramid Reclassi-

fication Threshold (i.e. the probability threshold required to

reclassify a pixel, if given a different class at a finer resolu-

tion) of 0.90. As the avoidance of false positives within our

validation data set was of paramount importance, pixels were

left unclassified if the confidence level for the final class fell

below 95 %. Subsequently a 7× 7 pixel majority filter was

employed to reduce the noise in the classified image Fig. 2.

As our focus is on comparing soil-mantled and rocky hill-

slopes, we combine the vegetation and bare earth classes, and

treat areas that are in shadow as unclassified.

The quality of the classification scheme for each image

was judged based both with a visual inspection of the clas-

sification results to ensure that there were no systematic er-

rors located away from the training ROIs, and using the error

matrices for each classification, providing a quantitative as-

sessment of the scheme’s ability to correctly reproduce the

classification of the initial ROIs. At the 95 % confidence in-

terval, the SVM scheme discarded 9.4 % of the ROI pixels as

unclassified in the Rayleigh Peak data set and 12.0 % in the

Poway Creek data set. At the Rayleigh Peak site, the classi-

fication scheme was able to replicate the rock ROIs with a

commission error (ratio of non-rock pixels classified as rock

to the total number of pixels in the rock ROI) of 0.23 % and

an omission error (ratio of rock pixels incorrectly classified

to the total number of pixels in the rock ROI) of 0.01 %.

At the Poway Creek site, the ROIs were replicated with a

commission error of 0.01 % and an omission error of 0.13 %.

Across the region as a whole, both of our validation sites,

the classification scheme struggled in areas where there are

large changes in the saturation of the imagery (Figs. 3 and 4),

due to aspect-driven differences in illumination: as a result

some areas have an increased proportion of unclassified pix-

els. This problem is endemic to image classification in high

relief terrain, and is very hard to correct even with good topo-

graphic data and bi-directional reflectance function (BDRF-

driven) models, as there is often no information captured in

the brightest and darkest parts of the image (e.g. Teillet et

al., 1982; Colby, 1991; Hale and Rock, 2003). Again, this

highlights the potential advantages of landscape classifica-

tion techniques based on the morphological characteristics

of the topographic surface. In addition, it is evident that there

are still some areas where the image classification provides

an incorrect classification. Nevertheless, the classification is

sufficiently successful to provide two large test data sets with

which to validate our roughness metric. Errors in the valida-

tion data sets will, if anything, lead to an underestimate of

the accuracy of our topographically derived metric; it is hard

to imagine how errors in the classification could inflate the

accuracy of the topographic roughness metric, as the data

sets are entirely independent and any errors unlikely to be

co-located.

3.3 Validation procedure

We used the rock exposure maps from the classifications de-

scribed above to perform the validation of the roughness al-

gorithm in each of the four test landscapes. Since channels

are often topographically rough, we first restricted our anal-

ysis to the hillslope domain. Several methods have been pro-

posed to identify channel pixels in high-resolution topogra-

phy (e.g. Lashermes et al., 2007; Passalacqua et al., 2010;

Pelletier, 2013); in each landscape we have used the method

of Lashermes et al. (2007), in which the topography is fil-

tered using a Gaussian filter, and then a curvature threshold

to define the extent of the channel network is obtained sta-

tistically by looking for the departure from the expectations

of a Gaussian distribution. This approach produces visibly

satisfactory results across the range of landscapes used here.
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Figure 3. Validation maps for the Rayleigh Peak site: (a) high resolution, colour-near infrared orthophotograph; (b) results from combined

classification procedure: rock= blue, soil mantled/vegetation= green; (c) map of S3, which we use as a measure of surface roughness,

measured using a neighbourhood window radius of 3 m. To maximise the clarity of the maps, channelised portions of the landscape have not

been masked.

Figure 4. Validation maps for the Poway Creek site: (a) high

resolution, colour-near infrared orthophotograph; (b) results

from combined classification procedure: rock= blue, soil man-

tled/vegetation= green; (c) map of S3, which we use as a measure

of surface roughness, measured using a neighbourhood window ra-

dius of 3 m. To maximise the clarity of the maps, channelised por-

tions of the landscape have not been masked.

After isolating the hillslopes, we searched through the

parameter space for the S3 eigenvalue, performing a pixel-

pixel comparison with the orthophotograph classifications

to ascertain whether the algorithm produced a true posi-

tive (TP), false positive (FP), true negative (TN) or false

negative (FN) for a given roughness threshold. In order

to objectively assess the performance of the algorithm and

determine an optimum threshold value to delineate ar-

eas with rock exposure, we calculated five test statistics:

(i) true positive rate (=TP/(TP+FN)); (ii) false positive rate

(=FP/(TN+FP)); (iii) commission error (=FP/(TP+FN));

(iv) omission errors (=FN/(TP+FN)); and (v) the overall

accuracy (= (TP+TN)/Total); to objectively assess the per-

formance of the algorithm and determine an optimum thresh-

old value to delineate areas with rock exposure. In order

to avoid bias in the aforementioned statistics towards either

class, the larger of the two classes was randomly subsam-

pled to the same number of test pixels as the smaller of the

two before proceeding with the calculations. We repeated this

procedure for three neighbourhood radii (3, 5 and 7 m) in

each of the two field sites to assess the influence of neigh-

bourhood size on the measured surface roughness. An im-

portant consideration when interpreting the validation results

is that the surface roughness represents a spatially aggregated

metric, representing a blend of the topographic characteris-

tics within the circumference of the neighbourhood window.

Consequently, it is unlikely that this metric will discrimi-

nate between small areas of patchy soil interspersed between

rugged rock outcrops at length scales smaller than the neigh-

bourhood window. This effect becomes increasingly signifi-

cant as the window size increases and is an inevitable out-

come from neighbourhood statistical approaches. As a re-

sult, we eliminate from our validation data set areas that are

not classed as rock exposure that lie within 7 m (the largest

neighbourhood radius used) of mapped rock exposure. For

comparison, we also report the same statistics for the full data

set.
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Figure 5. Validation statistics for Rayleigh Peak site as a function of the roughness threshold used to delimit rock exposure for three different

neighbourhood window radii: (a) true positive and false positive rates; (b) commission and omission errors; (c) overall accuracy. These tests

were conducted twice – the red and blue lines illustrate the results from tests in which the pixels classified as soil-mantled pixels were filtered

to avoid localities proximal to rock exposure (see text), therefore is more representative of the roughness signature of a pure soil-mantled

hillslope; the grey lines illustrate the same tests, but without this prior filtering step.

3.4 Validation results

In both landscapes, the close correspondence between the to-

pographically derived roughness maps against the rock ex-

posure mapped from the high resolution orthophotographs

attests to a qualitatively good agreement between the two

(Figs. 3 and 4). Hillslopes that are covered by a continuous

mantle of soil map consistently as areas that are topographi-

cally smooth, having locally consistent normal vector orien-

tations; in contrast the emergence of bedrock drives a signif-

icant increase in the roughness of the affected hillslopes that

is clearly picked up by our algorithm.

In the Rayleigh Peak example, both areas with widespread

rock outcrop and more isolated exposures are picked out

(Fig. 3). The primary area of discordance lies in the SW cor-

ner of the image. Here the roughness algorithm predicts a

much greater extent of rock exposure than the classified im-

age. Inspection of the orthophotograph in this area reveals

significant vegetation cover, obscuring areas where there is

clearly bedrock, thus severely hampering the optical classi-

fication in this location. Areas of enhanced roughness run-

ning laterally along the trunk channel, which flows from

west to east here, provide another potential false positive in

the roughness map; this highly localised roughness signature

marks the banks of the incised channel. The validation statis-

tics similarly show a distinct difference between soil-mantled

hillslopes and areas with rock exposure (Fig. 5; Table 2). The

FPR rapidly decreases as the value of S3 used to discriminate

between the two characteristics increases, with a maximum

accuracy (taking into account both false positives and false

negatives) of > 80 % for ∼ 0.003 ≤ S3, threshold ≤ ∼ 0.005.

The TPR also decreases across this interval, which is likely

to be driven by areas of rock exposure where the rock sur-

faces have a low fracture density, therefore appear smooth,

and the fact that our test data set is not perfect (see discussion

in Sect. 3.2). We stress here that the imperfections in the vali-

dation data set derived from the orthophotographs will lead to

a conservative estimate of the true accuracy of the roughness

algorithm. Critically from the perspective of mapping out ar-

eas of rock exposure, the rate at which the TPR decreases

with increasing values of S3, threshold is much lower than that

of the FPR. Increasing the size of the neighbourhood window

over which the surface roughness is characterised acts to in-

crease the number of true positives for a given threshold, but

there is a trade-off, as this improvement is accompanied by

an increase in the number of false positives (Figs. 5 and 7; Ta-

ble 2). This is probably due to the “leakage” of the roughness

signal from areas where there is rock exposure into the ex-

panded neighbourhoods of proximal soil pixels (Fig. 7), and

also due to the fact that the longer wavelength topographic

structure imposed by the ridge-valley architecture starts to

influence the variability in the distribution of surface normal

vectors; the latter case is particularly prevalent in areas that

are located close to gullies and channels.

The pattern that emerges from the Poway Creek site is very

similar; again, the maps of rock exposure do a qualitatively

good job at locating hillslopes with rock outcrops, although

the visual comparison is hindered by the spatially variable

success of the classification scheme (Fig. 4). Again, the net-

work of channels and gullies provides additional sources of

roughness in the landscape. The performance in the quantita-

tive tests exhibits very similar patterns to those obtained for

the Rayleigh Peak site (Fig. 6; Table 2).

3.5 Implications for use of topographic roughness in

other settings

The fact that the roughness signatures of both valida-

tion landscapes display strikingly similar characteristics

(Figs. 5 and 6), suggests that surface roughness is a promis-

ing tool for mapping the extent of bedrock outcrop on hill-

slopes. As with existing methods (e.g. REI; DiBiase et al.,

2012), an important caveat is that full calibration is depen-

dent on the a posteriori knowledge of threshold values, ob-

tained, for example, through comparison against rock expo-

sure mapped from high-resolution photographs (DiBiase et
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Figure 6. Validation statistics for Poway Creek site as a function of the roughness threshold used to delimit rock exposure for three different

neighbourhood window radii: (a) true positive and false positive rates; (b) commission and omission errors; (c) overall accuracy. These

tests were conducted twice – the red and blue lines illustrate the results from tests in which the soil-mantled samples were filtered to avoid

localities proximal to rock exposure, therefore is more representative of the roughness signature of a pure soil-mantled hillslope; the grey

lines illustrate the same tests, but without this prior filtering step.

Table 2. Summary of validation results for three different threshold values of the eigenvalue S3. These represent a subsample from the

data displayed in Figs. 5 and 6. TPR=True Positive Rate; FPR=False Positive Rate; CE=Commission Error; OE=Omission Error;

OA=Overall Accuracy (for definitions see text). As the surface roughness metric is spatially aggregated, this pixel-wise comparison was

conducted avoiding soil-mantled pixels that were located proximal to areas of rock exposure (see text). Including these results in an increase

in the false positive rate and commission errors, and corresponding drop in overall accuracy (see also Figs. 4 and 6); however these errors are

collocated with areas of rock exposure, and arise as a consequence of this proximity.

TPR FPR CE OE OA

Neighbourhood 3 m 5 m 7 m 3 m 5 m 7 m 3 m 5 m 7 m 3 m 5 m 7 m 3 m 5 m 7 m

Window Radius

S3,threshold Rayleigh Peak

0.005 0.68 0.76 0.80 0.05 0.11 0.16 0.05 0.11 0.16 0.32 0.24 0.20 0.81 0.83 0.82

0.010 0.50 0.59 0.64 0.01 0.03 0.04 0.01 0.03 0.04 0.50 0.41 0.36 0.74 0.78 0.80

0.015 0.37 0.46 0.50 < 0.01 0.01 0.01 < 0.01 0.01 0.01 0.63 0.54 0.49 0.68 0.73 0.75

S3,threshold Poway Creek

0.005 0.69 0.83 0.88 0.09 0.15 0.23 0.09 0.15 0.23 0.31 0.17 0.12 0.80 0.84 0.83

0.010 0.43 0.60 0.68 0.03 0.05 0.07 0.03 0.05 0.07 0.57 0.40 0.32 0.70 0.78 0.81

0.015 0.28 0.42 0.50 0.01 0.02 0.03 0.01 0.02 0.03 0.72 0.58 0.50 0.63 0.70 0.73

al., 2012; this study). This is non-trivial in areas with signif-

icant vegetation cover due to the difficulty in resolving the

ground surface; indeed, in areas with significant tree cover a

significant portion of exposed rock is always hidden. Greater

uncertainty will arise in areas where prior calibration against

orthophotographs is not possible. A further element of cau-

tion is required, as our validation sites are limited to low-

moderate relief, granitoid settings, but nevertheless, we ex-

pect that the methodology can be used judiciously in other

landscapes. We provide an illustration of the method in a

landscape underlain by layered sedimentary rocks in the Sup-

plement. A number of important considerations are neces-

sary in doing so, given that in many scenarios it will not be

possible to use aerial imagery to independently judge the per-

formance of the algorithm.

Firstly, it is evident from Figs. 3–6 that a minor portion

of landscapes mapped as rock exposure is topographically

smooth. Variations in bedrock morphology present a chal-

lenge for the textural classification of topography. Errors may

be introduced in areas where a significant proportion of the

bedrock has been polished, or where the bedrock is massive

and exhibits sparse jointing. The latter case is illustrated by

smooth, massive granitoid domes, where the distribution of

fractures is dominated by surface parallel exfoliation joints

(Migon, 2006). In such cases the textural characteristics of

bedrock hillslopes may be indistinguishable from those with

a continuous soil mantle. In the case of layered rocks, slopes

parallel to the structural fabric may be smooth, whereas

slopes that cross-cut the layering will appear rougher. This

may drive variable accuracy in the results of textural clas-

sification metrics. However, large areas of smooth bedrock

should be readily visible in satellite/aerial imagery because

such conditions are unlikely to support significant vegetation

cover (Graham et al., 2010; Hahm et al., 2014). Furthermore,

where smooth surfaces form steep structures, a slope-based

metric such as the REI (DiBiase et al., 2012) can easily be
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Figure 7. Illustration of the impact of the effect of changing neigh-

bourhood window radius on the roughness signal that is measured:

(a) results from combined classification procedure – rock= blue,

soil mantled/vegetation= green; (b–d) maps of S3 using a neigh-

bourhood window radius of (a) 3 m; (b) 5 m; and (c) 7 m. Orange

pixels mark areas identified as being channelised. Note the increase

in the leakage of the roughness signal into proximal areas as the

neighbourhood radius is increased.

employed alongside surface roughness to catch these false

negatives. Combinations of topographic metrics in this way

may potentially permit more robust feature extraction from

high-resolution data.

Secondly, bedrock exposure is not unique in adding rough-

ness elements to landscapes, as surface roughness may po-

tentially be generated by other processes. At length scales

of 11–50 m, topographic roughness may be dominated by

the signature of deep seated landslides, if present (Booth et

al., 2009), while other features associated with landslides

may generate roughness at shorter wavelengths (McKean

and Roering, 2004; Tarolli et al., 2010). Roughness at small

length scales (typically < 7.5 m) can also be generated via

tree throw where this process is prevalent (Roering et al.,

2010; Marshall and Roering, 2014). Moreover a degree of

familiarity with target landscapes is likely essential in order

to critically evaluate the results, although this criteria is not

unique to this method. Furthermore, in more complex land-

scapes with multiple roughness generation mechanisms, the

spatial distribution of roughness generated by different pro-

cesses may still allow useful quantitative information to be

extracted (for example, instances of tree throw are likely to

be quasi-random, or at least spatially discrete events, whereas

exposure of bedrock in hillslopes is likely to generate con-

nected “clusters” of roughness), although we do not extend

our analysis in this manner here.

The size of the polynomial surface-fitting window should

ideally be comparable to the feature being extracted. In land-

scapes where other roughening elements are present, or when

the LiDAR data are noisy, a larger window can be employed,

or the topography can be smoothed, with the limitation that

as the degree of smoothing increases, the textural informa-

tion that distinguished bedrock hillslopes from soil-mantled

hillslopes is progressively lost (Albani et al., 2004; Sofia et

al., 2013). Finally, the neighbourhood size used to quantify

surface roughness will dictate the resolution at which you can

discriminate between soil and rock outcrop (Fig. 7).

For many applications, whether making an assessment of

shallow landslide hazard, or testing hypotheses concerning

the transition from soil-mantled bedrock topography, avoid-

ing false negatives is of paramount importance. For neigh-

bourhood radii of 3–5 m, a threshold value of S3= 0.01 limits

the occurrence of false positives to < 5 % (Fig. 5), decreasing

to < 2 % for S3 = 0.015. Omission errors decrease substan-

tially by increasing the radius of the neighbourhood window,

but there is a trade-off against an increasing frequency of

commission errors (Figs. 5 and 6).

In Fig. 8, we illustrate an alternative approach to mapping

rock exposure using the surface roughness metric introduced

above. Specifically we assess the fraction of pixels within

a local neighbourhood that have a value of S3 greater than

a specified threshold value. Employing a sufficiently high

threshold, we can thus express the expected rock exposure

within that neighbourhood. This provides a conservative es-

timate of the degree of rock outcrop for a given portion of

hillslope. In all cases, there is a positive correlation between

the rock exposure mapped from the orthophotographs and

the roughness of the topographic surface (Fig. 8). However,

when the S3 threshold is set too low, the frequency of false

positives leads to an overestimation of the rock exposure in

a given portion of the landscape, as expected from our pre-

vious analysis (Figs. 4–7). In the Rayleigh Peak site, there

is a good agreement between the degree of rock exposure

mapped by the two methods using an S3 threshold of 0.010, if

roughness is quantified with a neighbourhood radius of 3 m,

and 0.015 if quantified with a neighbourhood radius of 5 m.

Again this conforms to the expectations arising from the val-

idation tests (Fig. 5). In Poway Creek, there appears to be a

systematic over-estimation of the rock exposure. The Poway

Creek catchment presents a more challenging landscape to

classify for three reasons: (i) gullies are common, and many

of the channels show evidence of recent incision; the chan-

nel banks in these incised localities generate false positives

due to the sharp break in slope. There may be bedrock ex-

posed in the terrace walls, but if present may be obscured by

overhanging vegetation. (ii) Changing insolation conditions

across the image made classification using the optical data

more difficult (Fig. 5). (iii) The original LiDAR point cloud

was relatively sparse (Table 1), as a consequence of which

discrimination of ground returns from those hitting low ly-

ing shrubs is more difficult. As a general point we emphasise
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Figure 8. A comparison of the rock exposure classified from the orthophotographs against the expected fraction of rock exposure predicted

using different thresholds of the surface roughness metric, S3, for a series of the validation sites near Rayleigh Peak, Colorado, and Poway

Creek, California. Each data point represents the rock exposure mapped within a 401 m× 401 m square region within a regularly spaced

grid. (a–c) S3 mapped using a neighbourhood radius of 3 m; (d–f) S3 mapped using a neighbourhood radius of 5 m. The hollow symbol

outlined in blue is from the SE corner of the Rayleigh Peak site, where the rock exposure mapped from the orthophotographs significantly

under-predicts the true degree of rock exposure due to a combination vegetation cover and variable insolation conditions.

that although the high-resolution orthophotographs provide

the best means of objectively testing our algorithm, the re-

sulting validation data sets are not perfect, and classification

errors will result in under-estimation of the success of the

roughness metric.

4 Application of the roughness algorithm to

transient landscapes – investigating the

soil-bedrock transition in Bald Rock Basin,

California, and Harrington Creek, Idaho

4.1 Study sites

We investigate the variations in hillslope characteristics ex-

hibited in two landscapes – Bald Rock Basin, in the Cali-

fornian Sierra Nevada, and the Harrington Creek catchment,

a tributary of the Salmon River, Idaho – which both exhibit

strongly transient states of landscape evolution, under differ-

ent climate regimes.

4.1.1 Bald Rock Basin, California

The Bald Rock Basin catchment drains into Middle Fork

Feather River, in the north-western Sierra Nevada Moun-

tains, California (Fig. 1c). The regional climate in this local-

ity is strongly seasonal, with maximum (minimum) tempera-

tures range from 30 (12) ◦C in the summer to 9 (−1) ◦C in the

winter, and mean annual precipitation typically ∼ 1750 mm,

a substantial majority of which falls between October and

April, whereas the summer months are dry (http://www.

prismclimate.org). Geologically, the catchment is underlain

by the Bald Rock Pluton, a trondhjemite-tonalite intrusion

of mid-late Mesozoic age (Saucedo and Wagner, 1992). The

landscape is close to fully vegetated by mixed conifer for-

est that is typical of the mid-elevation Sierra Nevada (Bar-

bour and Billings, 2000). The notable exception to this is

Bald Rock Dome, which rises precipitously from the Feather

River Canyon to form a broad, smooth, bare bedrock dome to

the north of Bald Rock Basin. Although outside of the study

catchment, it hints at the possibility of significant compo-

sitional or structural heterogeneity within the pluton that is

imposing a localised bottom-up restriction on forest growth

in some parts of the landscape (Hahm et al., 2014).

Landscape transience in the Feather River region is driven

by a wave of fluvial incision that is presently propagating up

the channel network (Hurst et al., 2012). The resultant range

of erosion rates spans an order of magnitude, placing funda-

mental controls on the nature of the hillslopes (Hurst et al.,

2012, 2013a), soils (Yoo et al., 2011; Attal et al., 2014; Gabet

et al., 2015) and biosphere (Milodowski et al., 2015). Rates

of erosion in the inner canyon, driven by fluvial incision

along the main-stem Feather River, reach ∼ 250 mm kyr−1

(Riebe et al., 2000; Hurst et al., 2012). Bald Rock Basin has

not fully adjusted to this elevated rate of fluvial incision, with

a prominent topographic knickpoint marking the transition to

lower relief topography that is eroding much more slowly at

30–40 mm kyr−1 (Riebe et al., 2000; Hurst et al., 2012).

Moving across this gradient in erosion rates, hillslope form

changes from being low-gradient and convex to steep and
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planar in the rejuvenated parts of the landscape below the

knickpoint (Hurst et al., 2012), consistent with the expecta-

tions of models of non-linear, diffusion-like sediment trans-

port (Roering et al., 1999). Within Bald Rock Basin itself,

Yoo et al. (2011) investigated changes in substrate charac-

teristics between a series of transects across this transition,

indicating that the increase in erosion rate drives a reduc-

tion in the residence time of material within the weathering

zone, highlighted by a decrease in the extent of weathering

of both the soil and saprolite. Consistent with these obser-

vations, a more detailed inventory of soil grain size distribu-

tions from soil pits throughout Bald Rock Basin indicate a

marked increase in the coarser grain fraction in more rapidly

eroding parts of the basin (Attal et al., 2014). We use the sur-

face roughness algorithm introduced above to expand on this

earlier work and further characterise changes in the bedrock

exposure across the geomorphic transition.

4.1.2 Harrington Creek, Idaho

The Harrington Creek catchment drains into Main Salmon

River, around 40 km SSW of the Bitterroot Mountains, Idaho

(Fig. 1d). The regional climate is continental, with maxi-

mum (minimum) temperatures ranging from 26.2 (6.2) ◦C in

the summer to 0.0 (−10.8) ◦C in the winter, whereas pre-

cipitation is more evenly distributed throughout the year,

with mean annual precipitation typically ∼ 630 mm (http:

//www.prismclimate.org). Vegetation in the catchment com-

prises coniferous forest with variable canopy cover (Barbour

and Billings, 2000). The catchment is underlain by plutonic

rocks related to the Idaho Batholith, with small inclusions

of Eocene dykes of rhyolitic-dacitic composition (Lewis and

Stanford, 2002). Analysis of fission tracks in apatite and zir-

con grains from the Idaho Batholith suggest that exhuma-

tion rates have varied from 0.03–0.1 mm yr−1 between 50–

10 Ma to 0.32±0.10 mm yr−1 from 10 Ma-present, associ-

ated with canyon-forming fluvial incision along the Salmon

River (Sweetkind and Blackwell, 1989; Ferrier et al., 2012).

Point measurements of regolith production rates, based on

cosmogenic 10Be concentrations, suggest erosion rates inte-

grated over 103–104 years of up to 0.12 mm yr−1 (Ferrier et

al., 2012). Associated with this fluvial incision are a series

of knickpoints that are propagating up the tributaries of the

Salmon River, including Harrington Creek, which mark the

transition from a slowly eroding, relict landscape to steep,

rapidly eroding, rejuvenated topography that is actively ad-

justing to the elevated incision rates below the fluvial knick-

point (Wood, 2013). The Harrington Creek region has been

subject to significantly less research relative to Bald Rock

Basin; we use the same methods for this site to investigate

changes in the geomorphic characteristics of the hillslopes

across this transition.

4.2 Topographic analysis

Changing bedrock exposure across the knickzones was

mapped utilising the surface roughness method as described

in Sect. 2, using a circular neighbourhood with a radius of

3 m, which was shown to perform well, with limited false

positives, in our previous validation (Sect. 3). Topographic

gradient was also measured using the slope of the best fit-

ting six term polynomial surface, defined by a least squares

regression to a circular neighbourhood with 7 m radius (e.g.

Hurst et al., 2012). In order to map changes in hillslope char-

acteristics along the length of the trunk channel, we use lon-

gitudinal swath profiles, following a similar approach to the

implementation of the generalised swath profile algorithm

described by Hergarten et al. (2014), to map each point on

the hillslope to the nearest location in the channel network.

This method allows frequently used swath profile analysis to

be undertaken using curvilinear features, such as river chan-

nels, as the baseline rather than requiring linear features. The

trunk channels themselves were defined using the DrEICH

algorithm (Clubb et al., 2014), which searches for the up-

stream limit of the topographic signature of fluvial incision

to define the fluvial network within the channelised domain.

To first order, the longitudinal swath profiles should link hill-

slopes to the section of channel that sets their lower boundary

condition, enabling us to link geomorphic changes in fluvial

incision.

4.3 Results

In both Bald Rock Basin (Figs. 9 and 10) and Harrington

Creek (Figs. 11 and 12), there are clearly distinct, contrasting

topographic domains separated by major knickpoints. Mov-

ing across this transition, hillslope morphology changes from

low gradient, convex hillslopes (modal gradients above prin-

cipal knickpoints are ∼ 0.5 and ∼ 0.4 within the headwaters

of Bald Rock Basin and Harrington Creek respectively), to

steep, planar hillslopes downstream of the knickpoints: re-

spective modal gradients are ∼ 0.9 and ∼ 0.8. However, in

addition to the changes in the hillslope profile across this

transition there are concomitant textural changes to the hill-

slopes pertaining to the widespread emergence of bedrock. In

both landscapes, the low gradient headwaters are also char-

acterised by smooth topography indicative of a continuous

soil mantle: within Bald Rock Basin, 1.5 % of hillslope pix-

els have S3 > 0.010; < 1 % have S3 > 0.015; within Harrington

Creek, 3 % have S3 > 0.010; 1.5 % have S3 > 0.015. In con-

trast, in the rejuvenated parts of the landscape, the increased

dominance of bedrock is indicated by elevated topographic

roughness: in the lower reaches of Bald Rock Basin 15 % of

hillslope pixels have S3 > 0.010; 7 % have S3 > 0.015, while

in the equivalent parts of the Harrington Creek drainage,

29 % have S3 > 0.010; 19 % have S3 > 0.015. Critically, the

emergence of bedrock is not uniform across the steeper parts

of the landscape. Rather, the steep hillslopes present a rugged

patchwork of bedrock outcrops and discontinuous soil cover.
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Figure 9. Maps displaying (a) topographic slope, and (b) S3 for

Bald Rock Basin, Californian Sierra Nevada. The Middle Fork

Feather River is located in the NE corner of each map, flowing from

NW to SE.

Likewise, across the upper part of Bald Rock Basin, there are

a number of isolated patches of elevated roughness that can

be picked out from the prevailing smooth terrain (Fig. 9).

Field Inspection of these selected “rough spots” indicated

that they corresponded to isolated rock outcrops, whereas

instances of tree throw mounds, which could also generate

roughness at short wavelengths, were comparatively rare.

4.4 Discussion

In both Bald Rock Basin and Harrington Creek, topographic

knickpoints mark the domain transitions between a slowly

eroding “relict” landscape, and rejuvenated topography re-

sponding to elevated rates of fluvial incision (Hurst et al.,

2012, 2013a; Wood, 2013). Both landscapes exhibit simi-

lar hillslope responses to this geomorphic forcing. In this

contribution we have deployed our new roughness algo-

rithm to quantify the dynamics of the soil to bedrock tran-

sition. Specifically, in both landscapes the transition from

soil-mantled to bedrock hillslopes is gradual and patchy. Fur-

thermore, the steep hillslopes do not appear to be completely

stripped of soil; the persistence of topographically smooth

areas that manage to sustain a forest canopy (Milodowski et

al., 2015) indicates that patchy soil cover persists at high ero-
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Figure 10. Changes in topographic characteristics along a longitu-

dinal swath centred on the trunk channel draining Bald Rock Basin:

(a) surface roughness, S3; (b) topographic gradient; (c) the lon-

gitudinal channel profile. The principal knickpoint has been high-

lighted, with the inset histograms summarising the distributions of

the topographic metrics above and below. Upstream of the major

knickpoint, smaller deviations from the typical graded profile indi-

cate a series of smaller knickpoints. The swath has a half width of

250 m, and has been binned into 50 m intervals. In plates (a) and (b),

the median has been plotted with the shaded intervals bounded by

the 25–75th quantiles and 2.5–97.5th quantiles. S3 was calculated

using a 3 m radius neighbourhood window.

sion rates. In the Feather River Region, aboveground biomass

hosted by the hillslopes has been shown to decrease with in-

creasing erosion rates (Milodowski et al., 2015), but biogenic

soil production is still able to keep pace with elevated rates of

erosion to maintain a partial soil mantle. This is in agreement

with observations from soil depth transects within the basin

that show little difference in soil depths measured above the

knickpoint, ranging from 40–80 cm, to those measured be-

low the knickpoint, which ranged from 30–60 cm (Yoo et al.,

2011).

The nature if the soil-bedrock transition observed at these

two sites aligns closely with the observations from the San

Gabriel Mountains in California (DiBiase et al., 2012). A

gradual, patchy transition is significant because it is at odds

with the expectations from widely used models of soil pro-

duction, in which the rate of production decays exponen-

tially with depth from a maximum production rate for a

bare bedrock surface (e.g. Heimsath et al., 1997), which

in this framework represents a threshold erosion rate defin-

ing a sharp transition from soil-mantled to bedrock topog-
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Figure 11. Maps displaying (a) topographic slope, and (b) S3, for a

sub-catchment of Harrington Creek, Idaho. S3 was calculated using

a 3 m radius neighbourhood window.

raphy. The patchy transition observed may be driven in part

by structural or compositional controls on the rate at which

bedrock breaks down to form mobile regolith, but can also

be rationalised by models of soil production that consider

the processes driving soil production and sediment transport

as occurring in discrete events (Strudley et al., 2006a, b; Ga-

bet and Mudd, 2010). Understanding whether these patches

are stationary in time or dynamic is important in understand-

ing the longer term evolution of steep landscapes and how

this evolution is shaped by the coupling of geomorphic and

ecological processes. Finally, while clearly important from

a hillslope perspective, there are broader implications for

landscape evolution: the dynamics of sediment transport in

bedrock landscapes are very different to those in soil-mantled

landscapes (e.g. Binnie et al., 2007; Dietrich et al., 2003),

impacting on the calibre (Attal et al., 2015; Whittaker et al.,

2010) and temporal variability (Hovius et al., 2000) of sedi-

ment supplied to the channel network; therefore the nature of

the soil-bedrock transition impacts on the nature of hillslope-

channel coupling, modulating the fluvial response to changes

in base level.

5 Overall discussion and conclusions

The structure of topographic relief is controlled by differ-

ent processes operating at different spatial scales (Perron et

al., 2008): at wavelengths greater than ∼ 100 m, topography

is dominated by the spacing of ridges and valleys (Perron

et al., 2008, 2009); at the sub-hillslope length-scale, other

processes generate detectable topographic signatures (e.g.

McKean and Roering, 2004; Roering et al., 2010). Booth et

al. (2009) exploited spectral analysis to show that areas af-

fected by deep-seated landslides exhibit significantly greater

power at intermediate wavelengths (∼ 11–50 m), enabling
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Figure 12. Changes in topographic characteristics along a longi-

tudinal swath centred on the trunk channel draining the principal

tributary to Harrington Creek: (a) surface roughness, S3; (b) topo-

graphic gradient; (c) the longitudinal channel profile. The princi-

pal knickpoint has been highlighted, with the inset histograms sum-

marising the distributions of the topographic metrics above and be-

low. Upstream of the major knickpoint, smaller deviations from the

typical graded profile indicate a series of smaller knickpoints. The

swath has a half width of 350 m, and has been binned into 50 m

intervals. In plates (a) and (b), the median has been plotted along

with the shaded intervals bounded by the 25–75th quantiles and 2.5–

97.5th quantiles.

the objective classification of regions in which deep-seated

landslides were prevalent. At shorter length-scales, Roering

et al. (2010) suggested that roughness generated at small

length-scales (< 7.5 m) in the Oregon Coast Ranges could

be attributed to the presence of tree throw mounds; similar

analysis of topographic profiles extracted from contrasting

catchments in the same setting found a lack of spectral power

at these short wavelengths for resistant bedrock hillslopes in

comparison to soil-mantled hillslopes, attributed to a dimin-

ished biotic contribution to weathering (Marshall and Roer-

ing, 2014).

We propose that short wavelength surface roughness,

quantified using the same roughness algorithms introduced

by McKean and Roering (2004) can be used to make in-

ferences about hillslope characteristics specifically pertain-

ing to the exposure of bedrock. Comparison against rock ex-

posure measured independently and objectively from high-

resolution orthophotographs from multiple landscapes sug-

gests that the emergence of bedrock in hillslopes produces

a detectable topographic signature that distinguishes it from

www.earth-surf-dynam.net/3/483/2015/ Earth Surf. Dynam., 3, 483–499, 2015



496 D. T. Milodowski et al.: The emergence of bedrock in eroding landscapes

hillslopes that have a continuous soil mantle. We applied

this technique to forested landscapes in California and Idaho,

highlighting the ability of LiDAR surveys to resolve high-

resolution features of the topography through canopy. For ob-

vious reasons validation is simpler in un-vegetated terrain but

prior to the introduction of below-canopy UAVs for data col-

lection, we suggest our method is adequate for use in vege-

tated terrain. Users should validate using field observations to

avoid false positives from, for example, tree throw mounds.

Thus we propose surface roughness as a new method for

mapping rock exposure from LiDAR data that complements

previously published metrics (DiBiase et al., 2012), and is

likely to be of particular benefit in landscapes in which rock

outcrops are present at topographic gradients lower than the

angle of repose.

We caveat this finding with the statement that rock ex-

posure is not the only mechanism of generating topo-

graphic roughness at short length-scales; for example, gul-

lying and slumping provide two mechanisms by which the

smooth parabolic morphology associated with ideal, diffu-

sive soil-mantled hillslopes may be modified (Tarolli and

Dalla Fontana, 2009); likewise small-scale features associ-

ated with deep-seated landslides, such as folds and scarps,

generate a roughness signal at similar length-scales to rock

outcrop (McKean and Roering, 2004; Tarolli et al., 2010).

In addition, while many soil-mantled sediment transport pro-

cesses act to diffuse topography, they typically do so through

discrete events (e.g. tree throw) (Furbish et al., 2009; Gabet

and Mudd, 2010), and while the fingerprint that these indi-

vidual events leave on the landscape is transient, they pro-

vide a potentially important roughness signature at the rel-

evant length-scale for that mode of disturbance (Roering et

al., 2010). An additional factor to consider is that bedrock

morphology is itself variable, and therefore certain mech-

anisms of generating rock exposure may not generate sig-

nificant roughness; this would be exemplified by, for exam-

ple, low gradient, glacially polished surfaces, or by massive

granitoid bedrock with very low fracture density in which

jointing is restricted to approximately surface parallel exfo-

liation planes. Consequently, interpretation of surface rough-

ness metrics should critically take into account the presence

of other geomorphic processes that are potentially operating

within the landscape and the characteristics of the bedrock

itself. Indeed, this principal applies to the interpretation of

any topographic metric obtained from remotely sensed data;

in complex geomorphic settings, isolation of specific hills-

lope characteristics from a single textural attributes may be

impossible at the data resolution presently available from air-

borne surveys; ultimately a combination of metrics, covering

a broader range of morphological characteristics may well be

necessary.

The characterisation of hillslopes is of importance across a

diverse range of surface processes research, providing a bet-

ter understanding of controls on hydrological flow routing,

sediment production and transport processes and ecosystem

development. The utility of topographic data to aid this en-

deavour is strongly dependent on the resolution of these data

sets. In the case of hillslope characteristics, such as rock ex-

posure, roughness is expressed at the metre scale; using 1 m

resolution digital elevation models, it is possible to examine

variations in hillslope form at sufficient levels of detail that

it is possible to distinguish between soil and bedrock hill-

slopes; this information is rapidly lost as the data resolution

is coarsened (DiBiase et al., 2012). However these shorter

length scales are particularly susceptible to noise in the data

set (Albani et al., 2004; Sofia et al., 2013). This highlights the

requirement for high quality, high resolution, which permit

accurate classification of vegetation and ground returns prior

to surface creation. LiDAR surveys with higher shot spacing

are therefore likely to provide a disproportionately greater

level of detail on hillslope characteristics (Brodu and Lague,

2012), and this should be taken into account when planning

airborne surveys. In particular, the continued development of

unmanned aerial vehicles (UAVs) as a platform for airborne

LiDAR collection will increasingly make higher resolution

surveys accessible to the research community (e.g. Lin et al.,

2011).

Finally, from our analysis of the geomorphic changes as-

sociated with changing rates of erosion in two different land-

scapes reveals a number of significant conclusions regard-

ing the nature of the soil-bedrock transition. In both cases,

the transition from soil-mantled hillslopes to bedrock domi-

nated hillslopes is clearly gradual, with areas of patchy soil

coverage persistent on steep, rapidly eroding hillslopes. A

“patchy” transition from soil-mantled to bedrock hillslopes

challenges prevailing modelling approaches towards soil pro-

duction, but is in agreement with conclusions from previous

studies of soil production in rapidly eroding landscapes –

the European Alps (Norton et al., 2008), San Gabriel Moun-

tains, California (Heimsath et al., 2012) and Southern Alps,

New Zealand (Larsen et al., 2014) – each of which ob-

serve the coexistence of soil and bedrock on rapidly erod-

ing hillslopes. This has been attributed in part to efficient

biogenic soil production (Larsen et al., 2014), which facil-

itates the rapid generation and stabilisation of soil between

landslide events, and lithological susceptibility to weathering

processes (Norton et al., 2008). The hypothesis of a biogeni-

cally mediated soil-bedrock transition is supported by the

observation in these landscapes that patchy vegetation cover

persists on the steeper hillslopes where trees have maintained

a foothold, and is in agreement with expectations from nu-

merical modelling of soil production by discrete events (Ga-

bet and Mudd, 2010). Capturing the salient aspects of these

models within larger-scale landscape evolution models rep-

resents a key challenge in simulating the evolution of mixed-

bedrock landscapes that are typical of many upland settings.
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Software availability

We have made our bedrock detection software available

through the community sediment dynamics modelling sys-

tem (CSDMS) website; source code may be downloaded at

http://csdms.colorado.edu/wiki/Model:SurfaceRoughness.

The Supplement related to this article is available online

at doi:10.5194/esurf-3-483-2015-supplement.

Author contributions. D. T. Milodowski and S. M. Mudd the al-

gorithms and wrote the code. D. T. Milodowski, S. M. Mudd and

E. T. A. Mitchard performed the analysis and wrote the paper.

Acknowledgements. This research was funded by a NERC

studentship (NERC DTG NE/152830X/1 and NE/J500021/1;

DTM), in addition to the Harkness Award from the University

of Cambridge (DTM). ETAM is funded by a NERC Fellowship

(NE/I021217/1). SMM is supported by U.S. Army Research Office

contract number W911NF-13-1-0478. The authors would like to

thank Emmanuel Gabet, Dimitri Lague, Stuart Grieve, and Fiona

Clubb for valuable discussions that facilitated the development of

this research.

Edited by: J. Willenbring

References

Albani, M., Klinkenberg, B., Andison, D. W., and Kimmins, J. P.:

The choice of window size in approximating topographic sur-

faces from Digital Elevation Models, Int. J. Geogr. Inf. Sci., 18,

577–593, doi:10.1080/13658810410001701987, 2004.

Anderson, R. S.: Modeling the tor-dotted crests, bedrock

edges, and parabolic profiles of high alpine surfaces of the

Wind River Range, Wyoming, Geomorphology, 46, 35–58,

doi:10.1016/S0169-555X(02)00053-3, 2002.

Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and

Naylor, M.: Impact of change in erosion rate and landscape steep-

ness on hillslope and fluvial sediments grain size in the Feather

River basin (Sierra Nevada, California), Earth Surf. Dynam., 3,

201–222, doi:10.5194/esurf-3-201-2015, 2015.

Barbour, M. G. and Billings, W. D.: North American Terrestrial

Vegetation, edited by: Barbour, M. G. and Billings, W. D., Cam-

bridge University Press, Cambridge, UK, New York, NY, USA,

2000.

Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fi-

field, L. K.: Tectonic uplift, threshold hillslopes, and denuda-

tion rates in a developing mountain range, Geology, 35, 743–746,

doi:10.1130/G23641A.1, 2007.

Booth, A. M., Roering, J. J., and Perron, J. T.: Auto-

mated landslide mapping using spectral analysis and high-

resolution topographic data: Puget Sound lowlands, Washing-

ton, and Portland Hills, Oregon, Geomorphology, 109, 132–147,

doi:10.1016/j.geomorph.2009.02.027, 2009.

Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of

complex natural scenes using a multi-scale dimensionality cri-

terion: Applications in geomorphology, ISPRS J. Photogramm.,

68, 121–134, doi:10.1016/j.isprsjprs.2012.01.006, 2012.

Carson, M. A. and Kirkby, M. J.: Hillslope form and process, Cam-

bridge University Press, Cambridge, UK, 1972.

Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G.:

The effectiveness of airborne LiDAR data in the recog-

nition of channel-bed morphology, CATENA, 73, 249–260,

doi:10.1016/j.catena.2007.11.001, 2008.

Chorover, J., Troch, P. A., Rasmussen, C., Brooks, P. D., Pelletier,

J. D., Breshars, D. D., Huxman, T. E., Kurc, S. A., Lohse, K.

A., McIntosh, J. C., Meixner, T., Schaap, M. G., Litvak, M. E.,

Perdrial, J., Harpold, A., and Durcik, M.: How Water, Carbon,

and Energy Drive Critical Zone Evolution: The Jemez–Santa

Catalina Critical Zone Observatory, Vadose Zone J., 10, 884–

899, doi:10.2136/vzj2010.0132, 2011.

Clubb, F. J., Mudd, S. M., Milodowski, D. T., Hurst, M. D., and

Slater, L. J.: Objective extraction of channel heads from high-

resolution topographic data, Water Resour. Res., 50, 4283–4304,

doi:10.1002/2013WR015167, 2014.

Colby, J.: Topographic Normalization in Rugged Terrain, Pho-

togramm. Eng. Rem., 57, 531–537, 1991.

Culling, W.: Soil Creep and the Development of Hillside Slopes, J.

Geol., 71, 127–161, 1963.

Culling, W. E. H.: Theory of Erosion on Soil-Covered Slopes, J.

Geol., 73, 230–254, 1965.

DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope

response to tectonic forcing in threshold landscapes, Earth Surf.

Proc. Land., 37, 855–865, doi:10.1002/esp.3205, 2012.

DiBiase, R. A. and Lamb, M. P.: Vegetation and wildfire controls

on sediment yield in bedrock landscapes, Geophys. Res. Lett.,

40, 1093–1097, doi:10.1002/grl.50277, 2013.

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath,

A. M., and Roering, J. J.: Geomorphic transport laws for pre-

dicting landscape form and dynamics, Geophys. Monogr.-Am.

Geophys. UNION, 135, 103–132, 2003.

Evans, I. S.: An integrated system of terrain analysis and slope map-

ping, Z. Geomorphol, 36, 274–295, 1980.

Evans, J. S. and Hudak, A. T.: A Multiscale Curvature Al-

gorithm for Classifying Discrete Return LiDAR in Forested

Environments, IEEE T. Geosci. Remote, 45, 1029–1038,

doi:10.1109/TGRS.2006.890412, 2007.

Fara, H. D. and Scheidegger, A. E.: An eigenvalue method for the

statistical evaluation of fault plane solutions of earthquakes, B.

Seismol. Soc. Am., 53, 811–816, 1963.

Ferrier, K. L., Kirchner, J. W., and Finkel, R. C.: Weak influ-

ences of climate and mineral supply rates on chemical ero-

sion rates: measurements along two altitudinal transects in

the Idaho Batholith, J. Geophys. Res.-Earth, 117, F02026,

doi:10.1029/2011JF002231, 2012.

Furbish, D. J., Hamner, K. K., Schmeeckle, M., Borosund, M. N.,

and Mudd, S. M.: Rain splash of dry sand revealed by high-speed

imaging and sticky paper splash targets, J. Geophys. Res.-Earth,

112, F01001, doi:10.1029/2006JF000498, 2007.

Furbish, D. J., Haff, P. K., Dietrich, W. E., and Heimsath, A.

M.: Statistical description of slope-dependent soil transport and

the diffusion-like coefficient, J. Geophys. Res., 114, F00A05,

doi:10.1029/2009JF001267, 2009.

www.earth-surf-dynam.net/3/483/2015/ Earth Surf. Dynam., 3, 483–499, 2015

http://csdms.colorado.edu/wiki/Model:SurfaceRoughness
http://dx.doi.org/10.5194/esurf-3-483-2015-supplement
http://dx.doi.org/10.1080/13658810410001701987
http://dx.doi.org/10.1016/S0169-555X(02)00053-3
http://dx.doi.org/10.5194/esurf-3-201-2015
http://dx.doi.org/10.1130/G23641A.1
http://dx.doi.org/10.1016/j.geomorph.2009.02.027
http://dx.doi.org/10.1016/j.isprsjprs.2012.01.006
http://dx.doi.org/10.1016/j.catena.2007.11.001
http://dx.doi.org/10.2136/vzj2010.0132
http://dx.doi.org/10.1002/2013WR015167
http://dx.doi.org/10.1002/esp.3205
http://dx.doi.org/10.1002/grl.50277
http://dx.doi.org/10.1109/TGRS.2006.890412
http://dx.doi.org/10.1029/2011JF002231
http://dx.doi.org/10.1029/2006JF000498
http://dx.doi.org/10.1029/2009JF001267


498 D. T. Milodowski et al.: The emergence of bedrock in eroding landscapes

Furbish, D. J. and Roering, J. J.: Sediment disentrainment and the

concept of local vs. nonlocal transport on hillslopes, J. Geophys.

Res.-Earth, 118, 937–952, doi:10.1002/jgrf.20071, 2013.

Gabet, E. J.: Sediment transport by dry ravel, J. Geophys. Res.-Sol.

Ea., 108, 2049, doi:10.1029/2001JB001686, 2003.

Gabet, E. J., Reichman, O. J., and Seabloom, E. W.: The effects

of bioturbation on soil processes and sediment transport, Annu.

Rev. Earth Pl. Sc., 31, 249–273, 2003.

Gabet, E. J. and Mudd, S. M.: Bedrock erosion by root frac-

ture and tree throw: A coupled biogeomorphic model to

explore the humped soil production function and the per-

sistence of hillslope soils, J. Geophys. Res., 115, F04005,

doi:10.1029/2009JF001526, 2010.

Gabet, E. J., Mudd, S. M., Milodowski, D. T., Yoo, K., Hurst,

M. D., and Dosseto, A.: Local topography and erosion rate

control regolith thickness along a ridgeline in the Sierra

Nevada, California, Earth Surf. Proc. Land., 40, 1779–1790,

doi:10.1002/esp.3754, 2015.

Gilbert, G.: The convexity of hilltops, J. Geol., 17, 344–350, 1909.

Goodfellow, B. W., Chadwick, O. A., and Hilley, G. E.: Depth and

character of rock weathering across a basaltic-hosted climose-

quence on Hawai’i, Earth Surf. Proc. Land., 39, 381–398,

doi:10.1002/esp.3505, 2014a.

Goodfellow, B. W., Skelton, A., Martel, S. J., Stroeven, A. P.,

Jansson, K. N., and Hättestrand, C.: Controls of tor formation,

Cairngorm Mountains, Scotland, J. Geophys. Res.-Earth., 119,

2013JF002862, doi:10.1002/2013JF002862, 2014b.

Graham, R., Rossi, A., and Hubbert, R.: Rock to regolith conver-

sion: producing hospitable substrates for terrestrial ecosystems,

GSA Today, 20, 4–9, doi:10.1130/GSAT57A.1, 2010.

Hahm, W. J., Riebe, C. S., Lukens, C. E. and Araki, S.:

Bedrock composition regulates mountain ecosystems and land-

scape evolution, P. Natl. Acad. Sci. USA, 111, 3338–3343,

doi:10.1073/pnas.1315667111, 2014.

Hale, S. R. and Rock, B. N.: Impact of topographic normalization

on land-cover classification accuracy, Photogramm. Eng. Rem.

S., 69, 785–791, doi:10.14358/PERS.69.7.785, 2003.

Heimsath, A., Dietrich, W., Nishiizumi, K., and Finkel, R.: The

soil production function and landscape equilibrium, Nature, 388,

358–361, doi:10.1038/41056, 1997.

Heimsath, A. M., DiBiase, R. A., and Whipple, K. X.: Soil produc-

tion limits and the transition to bedrock-dominated landscapes,

Nat. Geosci., 5, 210–214, doi:10.1038/ngeo1380, 2012.

Hergarten, S., Robl, J., and Stüwe, K.: Extracting topographic swath

profiles across curved geomorphic features, Earth Surf. Dynam.,

2, 97–104, doi:10.5194/esurf-2-97-2014, 2014.

Hovius, N., Stark, C. P., Hao-Tsu, C., and Jiun-Chuan, L.: Supply

and removal of sediment in a landslide-dominated mountain belt:

Central Range, Taiwan, J. Geol., 108, 73–89, 2000.

Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., and Yoo,

K.: Using hilltop curvature to derive the spatial distribu-

tion of erosion rates, J. Geophys. Res.-Earth, 117, F02017,

doi:10.1029/2011JF002057, 2012.

Hurst, M. D., Mudd, S. M., Yoo, K., Attal, M., and Walcott, R.: In-

fluence of lithology on hillslope morphology and response to tec-

tonic forcing in the northern Sierra Nevada of California, J. Geo-

phys. Res.-Earth, 118, 832–851, doi:10.1002/jgrf.20049, 2013a.

Hurst, M. D., Mudd, S. M., Attal, M., and Hilley, G.: Hillslopes

Record the Growth and Decay of Landscapes, Science, 341, 868–

871, doi:10.1126/science.1241791, 2013b.

Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of

complex topography with terrestrial laser scanner: Application to

the Rangitikei canyon (N-Z), ISPRS J. Photogramm., 82, 10–26,

doi:10.1016/j.isprsjprs.2013.04.009, 2013.

Larsen, I. J., Almond, P. C., Eger, A., Stone, J. O., Montgomery,

D. R., and Malcolm, B.: Rapid Soil Production and Weather-

ing in the Western Alps, New Zealand, Science, 343, 637–640,

doi:10.1126/science.1244908, 2014.

Lashermes, B., Foufoula-Georgiou, E., and Dietrich, W. E.:

Channel network extraction from high resolution topog-

raphy using wavelets, Geophys. Res. Lett., 34, L23S04,

doi:10.1029/2007GL031140, 2007.

Lewis, R. S. and Stanford, L. R.: Geologic map compilation of

the western half of the Nez Perce Pass 30× 60 min quadrangle,

Idaho Geological Survey, Idaho, USA, 2002.

Lin, Y., Hyyppa, J., and Jaakkola, A.: Mini-UAV-Borne LIDAR

for Fine-Scale Mapping, IEEE Geosci. Remote S., 8, 426–430,

doi:10.1109/LGRS.2010.2079913, 2011.

Lin, C.-W., Tseng, C.-M., Tseng, Y.-H., Fei, L.-Y., Hsieh, Y.-C., and

Tarolli, P.: Recognition of large scale deep-seated landslides in

forest areas of Taiwan using high resolution topography, J. Asian

Earth Sci., 62, 389–400, doi:10.1016/j.jseaes.2012.10.022, 2013.

Marshall, J. A. and Roering, J. J.: Diagenetic variation in the Ore-

gon Coast Range: Implications for rock strength, soil production,

hillslope form, and landscape evolution, J. Geophys. Res.-Earth,

119, 1395–1417, doi:10.1002/2013JF003004, 2014.

McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R., and

Caffee, M. W.: Quantification of soil production and downs-

lope creep rates from cosmogenic 10Be accumulations on

a hillslope profile, Geology, 21, 343–346, doi:10.1130/0091-

7613(1993)021<0343:QOSPAD>2.3.CO;2, 1993.

McKean, J. and Roering, J.: Objective landslide detection and sur-

face morphology mapping using high-resolution airborne laser

altimetry, Geomorphology, 57, 331–351, doi:10.1016/S0169-

555X(03)00164-8, 2004.

Migon, P.: Granite Landscapes of the World, Oxford University

Press, Oxford, UK, 2006.

Milodowski, D. T., Mudd, S. M., and Mitchard, E. T. A.: Erosion

rates as a potential bottom-up control of forest structural char-

acteristics in the Sierra Nevada Mountains, Ecology, 96, 31–38,

doi:10.1890/14-0649.1, 2015.

Moody, J. A. and Martin, D. A.: Initial hydrologic and geomorphic

response following a wildfire in the Colorado Front Range, Earth

Surf. Proc. Land., 26, 1049–1070, doi:10.1002/esp.253, 2001.

Norton, K. P., von Blanckenburg, F., Schlunegger, F., Schwab,

M., and Kubik, P. W.: Cosmogenic nuclide-based investigation

of spatial erosion and hillslope channel coupling in the tran-

sient foreland of the Swiss Alps, Geomorphology, 95, 474–486,

doi:10.1016/j.geomorph.2007.07.013, 2008.

Passalacqua, P., Trung, T. D., Foufoula-Georgiou, E., Sapiro, G.,

and Dietrich, W. E.: A geometric framework for channel network

extraction from lidar: Nonlinear diffusion and geodesic paths, J.

Geophys. Res., 115, F01002, doi:201010.1029/2009JF001254,

2010.

Pelletier, J. D.: A robust, two-parameter method for the extraction of

drainage networks from high-resolution digital elevation models

Earth Surf. Dynam., 3, 483–499, 2015 www.earth-surf-dynam.net/3/483/2015/

http://dx.doi.org/10.1002/jgrf.20071
http://dx.doi.org/10.1029/2001JB001686
http://dx.doi.org/10.1029/2009JF001526
http://dx.doi.org/10.1002/esp.3754
http://dx.doi.org/10.1002/esp.3505
http://dx.doi.org/10.1002/2013JF002862
http://dx.doi.org/10.1130/GSAT57A.1
http://dx.doi.org/10.1073/pnas.1315667111
http://dx.doi.org/10.14358/PERS.69.7.785
http://dx.doi.org/10.1038/41056
http://dx.doi.org/10.1038/ngeo1380
http://dx.doi.org/10.5194/esurf-2-97-2014
http://dx.doi.org/10.1029/2011JF002057
http://dx.doi.org/10.1002/jgrf.20049
http://dx.doi.org/10.1126/science.1241791
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.009
http://dx.doi.org/10.1126/science.1244908
http://dx.doi.org/10.1029/2007GL031140
http://dx.doi.org/10.1109/LGRS.2010.2079913
http://dx.doi.org/10.1016/j.jseaes.2012.10.022
http://dx.doi.org/10.1002/2013JF003004
http://dx.doi.org/10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2
http://dx.doi.org/10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2
http://dx.doi.org/10.1016/S0169-555X(03)00164-8
http://dx.doi.org/10.1016/S0169-555X(03)00164-8
http://dx.doi.org/10.1890/14-0649.1
http://dx.doi.org/10.1002/esp.253
http://dx.doi.org/10.1016/j.geomorph.2007.07.013


D. T. Milodowski et al.: The emergence of bedrock in eroding landscapes 499

(DEMs): Evaluation using synthetic and real-world DEMs, Wa-

ter Resour. Res., 49, 75–89, doi:10.1029/2012WR012452, 2013.

Pelletier, J. D. and Rasmussen, C.: Quantifying the climatic and

tectonic controls on hillslope steepness and erosion rate, Litho-

sphere, 1, 73–80, doi:10.1130/L3.1, 2009.

Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Spectral sig-

natures of characteristic spatial scales and nonfractal struc-

ture in landscapes, J. Geophys. Res.-Earth, 113, F04003,

doi:10.1029/2007JF000866, 2008.

Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Formation

of evenly spaced ridges and valleys, Nature, 460, 502–505,

doi:10.1038/nature08174, 2009.

Phillips, J. D. and Marion, D. A.: Pedological memory in for-

est soil development, Forest Ecol. Manag., 188, 363–380,

doi:10.1016/j.foreco.2003.08.007, 2004.

Pirotti, F. and Tarolli, P.: Suitability of LiDAR point density and

derived landform curvature maps for channel network extraction,

Hydrol. Process., 24, 1187–1197, doi:10.1002/hyp.7582, 2010.

Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.:

Erosional equilibrium and disequilibrium in the Sierra Nevada,

inferred from cosmogenic 26Al and 10Be in alluvial sediment,

Geology, 28, 803–806, 2000.

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for

nonlinear, diffusive sediment transport on hillslopes and impli-

cations for landscape morphology, Water Resour. Res., 35, 853–

870, doi:10.1029/1998WR900090, 1999.

Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and

Jin, Q.: Evidence for biotic controls on topography and

soil production, Earth Planet. Sc. Lett., 298, 183–190,

doi:10.1016/j.epsl.2010.07.040, 2010.

Ruleman, C. A., Bohannon, R. G., Bryant, B., Shroba, R. R., and

Premo, W. R.: Geologic Map of the Bailey 30′× 60′ Quadrangle,

North-Central Colorado, US Geological Survey, Denver, Col-

orado, USA, 2011.

Saucedo, G. J. and Wagner, D. L.: Geologic Map of the Chico

Quadrangle, California Department of Conservation, Division of

Mines and Geology, Sacramento, California, USA, 1992.

Sheffer, E., von Hardenberg, J., Yizhaq, H., Shachak, M., and

Meron, E.: Emerged or imposed: a theory on the role of physical

templates and self-organisation for vegetation patchiness, Ecol.

Lett., 16, 127–139, doi:10.1111/ele.12027, 2013.

Smith, T. B., Wayne, R. K., Girman, D. J., and Bruford, M.

W.: A Role for Ecotones in Generating Rainforest Biodiversity,

Science, 276, 1855–1857, doi:10.1126/science.276.5320.1855,

1997.

Sofia, G., Tarolli, P., Cazorzi, F., and Dalla Fontana, G.: An

objective approach for feature extraction: distribution analy-

sis and statistical descriptors for scale choice and channel net-

work identification, Hydrol. Earth Syst. Sci., 15, 1387–1402,

doi:10.5194/hess-15-1387-2011, 2011.

Sofia, G., Pirotti, F., and Tarolli, P.: Variations in multiscale cur-

vature distribution and signatures of LiDAR DTM errors, Earth

Surf. Proc. Land., 38, 1116–1134, doi:10.1002/esp.3363, 2013.

Sofia, G., Fontana, G. D., and Tarolli, P.: High-resolution topogra-

phy and anthropogenic feature extraction: testing geomorphome-

tric parameters in floodplains, Hydrol. Process., 28, 2046–2061,

doi:10.1002/hyp.9727, 2014.

Strudley, M. W., Murray, A. B., and Haff, P. K.: Emergence

of pediments, tors, and piedmont junctions from a bedrock

weathering–regolith thickness feedback, Geology, 34, 805–808,

doi:10.1130/G22482.1, 2006a.

Strudley, M. W., Murray, A. B., and Haff, P. K.: Regolith thick-

ness instability and the formation of tors in arid environments, J.

Geophys. Res.-Earth, 111, F03010, doi:10.1029/2005JF000405,

2006b.

Sweetkind, D. S. and Blackwell, D. D.: Fission-track evidence of

the Cenozoic thermal history of the Idaho batholith, Tectono-

physics, 157, 241–250, doi:10.1016/0040-1951(89)90142-X,

1989.

Tarolli, P. and Dalla Fontana, G.: Hillslope-to-valley transition mor-

phology: New opportunities from high resolution DTMs, Geo-

morphology, 113, 47–56, doi:10.1016/j.geomorph.2009.02.006,

2009.

Tarolli, P., Sofia, G., and Fontana, G. D.: Geomorphic features ex-

traction from high-resolution topography: landslide crowns and

bank erosion, Nat. Hazards, 61, 65–83, doi:10.1007/s11069-010-

9695-2, 2010.

Teillet, P. M., Guindon, B., and Goodenough, D. G.: On the slope-

aspect correction of multispectral scanner data, Can. J. Remote

Sens., 8, 84–106, 1982.

Todd, V. R., Alvarez, R. M., and Techni Graphic Systems, Inc.:

Preliminary geologic map of the El Cajon 30′× 60′ quadrangle,

southern California, US Geological Survey, Menlo Park, Califor-

nia, USA, 2004.

Watson, G. S.: Statistics of orientation data, J. Geol., 74, 786–797,

1966.

Whelley, P. L., Glaze, L. S., Calder, E. S., and Harding,

D. J.: LiDAR-Derived Surface Roughness Texture Map-

ping: Application to Mount St. Helens Pumice Plain De-

posit Analysis, IEEE T. Geosci. Remote, 52, 426–438,

doi:10.1109/TGRS.2013.2241443, 2014.

Whittaker, A. C., Attal, M., and Allenn, P. A.: Characterising

the origin, nature and fate of sediment exported from catch-

ments perturbed by active tectonics, Basin Res., 22, 809–828,

doi:10.1111/j.1365-2117.2009.00447.x, 2010.

Wilkinson, M. T., Chappell, J., Humphreys, G. S., Fifield, K., Smith,

B., and Hesse, P.: Soil production in heath and forest, Blue

Mountains, Australia: influence of lithology and palaeoclimate,

Earth Surf. Proc. Land., 30, 923–934, doi:10.1002/esp.1254,

2005.

Woodcock, N. H.: Specification of Fabric Shapes Using an

Eigenvalue Method, Geol. Soc. Am. Bull., 88, 1231–1236,

doi:10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2,

1977.

Wood, R.: Transient hillslope response to an incision wave sweep-

ing up a watershed: a case study from the Salmon River, Mas-

ters Theses, available at: http://scholarworks.sjsu.edu/etd_theses/

4322 (last access: 14 October 2015), 2013.

Wu, T. F., Lin, C. J., and Weng, R. C.: Probability estimates for

multi-class classification by pairwise coupling, J. Mach. Learn.

Res., 5, 975–1005, 2004.

Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.:

Process-based model linking pocket gopher (Thomomys bottae)

activity to sediment transport and soil thickness, Geology, 33,

917–920, doi:10.1130/G21831.1, 2005.

Yoo, K., Weinman, B., Mudd, S. M., Hurst, M., Attal, M., and Ma-

her, K.: Evolution of hillslope soils: The geomorphic theater and

the geochemical play, Appl. Geochem., 26, S149–S153, 2011.

www.earth-surf-dynam.net/3/483/2015/ Earth Surf. Dynam., 3, 483–499, 2015

http://dx.doi.org/10.1029/2012WR012452
http://dx.doi.org/10.1130/L3.1
http://dx.doi.org/10.1029/2007JF000866
http://dx.doi.org/10.1038/nature08174
http://dx.doi.org/10.1016/j.foreco.2003.08.007
http://dx.doi.org/10.1002/hyp.7582
http://dx.doi.org/10.1029/1998WR900090
http://dx.doi.org/10.1016/j.epsl.2010.07.040
http://dx.doi.org/10.1111/ele.12027
http://dx.doi.org/10.1126/science.276.5320.1855
http://dx.doi.org/10.5194/hess-15-1387-2011
http://dx.doi.org/10.1002/esp.3363
http://dx.doi.org/10.1002/hyp.9727
http://dx.doi.org/10.1130/G22482.1
http://dx.doi.org/10.1029/2005JF000405
http://dx.doi.org/10.1016/0040-1951(89)90142-X
http://dx.doi.org/10.1016/j.geomorph.2009.02.006
http://dx.doi.org/10.1007/s11069-010-9695-2
http://dx.doi.org/10.1007/s11069-010-9695-2
http://dx.doi.org/10.1109/TGRS.2013.2241443
http://dx.doi.org/10.1111/j.1365-2117.2009.00447.x
http://dx.doi.org/10.1002/esp.1254
http://dx.doi.org/10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2
http://scholarworks.sjsu.edu/etd_theses/4322
http://scholarworks.sjsu.edu/etd_theses/4322
http://dx.doi.org/10.1130/G21831.1

	Abstract
	Introduction
	Methods -- quantifying surface roughness
	Validation of the surface roughness algorithm
	Validation sites
	Rayleigh Peak, Colorado
	Poway Creek, California

	Objective identification of rock exposure from high-resolution orthophotographs
	Validation procedure
	Validation results
	Implications for use of topographic roughness in other settings

	Application of the roughness algorithm to transient landscapes -- investigating the soil-bedrock transition in Bald Rock Basin, California, and Harrington Creek, Idaho
	Study sites
	Bald Rock Basin, California
	Harrington Creek, Idaho

	Topographic analysis
	Results
	Discussion

	Overall discussion and conclusions
	Author contributions
	Acknowledgements
	References

