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Abstract. The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant

from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although iden-

tification of the burial dose is of primary concern, the degree of bleaching could potentially provide insights into

sediment transport processes. However, comparison of bleaching between samples is complicated by sample-

to-sample variation in aliquot size and luminescence sensitivity. Here we begin development of an age model

to account for these effects. With measurement data from multi-grain aliquots, we use Bayesian computational

statistics to estimate the burial dose and bleaching parameters of the single-grain dose distribution. We apply

the model to 46 samples taken from fluvial sediment of Rhine branches in the Netherlands, and compare the

results with environmental predictor variables (depositional environment, texture, sample depth, depth relative

to mean water level, dose rate). Although obvious correlations with predictor variables are absent, there is some

suggestion that the best-bleached samples are found close to the modern mean water level, and that the extent of

bleaching has changed over the recent past. We hypothesise that sediment deposited near the transition of chan-

nel to overbank deposits receives the most sunlight exposure, due to local reworking after deposition. However,

nearly all samples are inferred to have at least some well-bleached grains, suggesting that bleaching also occurs

during fluvial transport.

1 Introduction

The use of optically stimulated luminescence (OSL) for dat-

ing Holocene fluvial deposits is widespread. However, flu-

vial sediments are not ideal for OSL dating because the in-

tensity of sunlight under water may not be sufficient to re-

set the OSL signal in some grains prior to their deposition.

The remnant OSL signal can then cause the burial dose to

be overestimated, leading to an overestimate of the age. This

phenomenon is referred to as poor, partial or heterogeneous

bleaching (e.g. Wallinga, 2002a).

While the burial age is usually the primary consideration,

there are good reasons to quantify the degree of bleaching

too. Firstly, it may provide information on the robustness of

an OSL age. Secondly, the degree of bleaching might yield

information on the sediment source or sediment-transport

processes (e.g. Reimann et al., 2015). For instance, if a

tsunami deposit appears well bleached, it could indicate that

shallow shore-face or intertidal deposits provided the pri-
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mary sediment source (Murari et al., 2007). For fluvial de-

posits, poor bleaching might, for instance, reflect short trans-

port distances or an old deposit acting as the primary source.

To compare the bleaching between samples, it is first nec-

essary to distinguish between the part of the equivalent dose

(De) built up since the time of deposition and the poorly

bleached remnant dose. Previous studies have avoided this

issue by deliberately sampling modern or known-age sedi-

ment. Such studies have indicated that bleaching is better in

coarse sand-sized grains compared to finer grains (Olley et

al., 1998; Truelsen and Wallinga, 2003), and may be depen-

dent on depositional context (Murray et al., 1995; Schielein

and Lomax, 2013) and transport distance (Stokes et al., 2001;

Jain et al., 2004; and references therein).

Nevertheless, the inherent variability from sample to sam-

ple makes definitive conclusions hard to come by. The main

problem arises in distinguishing signal from noise: how

much of the sample-to-sample variation in bleaching is due

to physical processes, as opposed to random statistical fluc-

tuations? Studies focusing on modern or known-age deposits

seldom have enough samples for confident conclusions to be

drawn, and no study has quantified the variation between ad-

jacent samples. Moreover, the review of Jain et al. (2004)

showed a discrepancy in residual doses of modern fluvial

samples compared to young known-age samples, with mod-

ern samples yielding larger residual doses. They argued that

modern deposits may yet be remobilised, so their transport

history is not representative of deposits preserved in the

stratigraphic record.

Here we focus not on modern samples but on samples of

various ages that have already been used for age estimation.

This approach allows for more samples to be included, and

avoids the bad-modern-analogue issue, but presents the addi-

tional problem of separating out the burial dose from the rem-

nant dose. For this purpose we have designed an age model

specifically for these young, partially bleached De distribu-

tions. We define the degree of bleaching by the proportion

of grains that were well bleached upon deposition, rather

than by the remnant dose. We apply the model to a suite of

46 samples from embanked floodplains of the lower Rhine in

the Netherlands, and correlate the outcome with geomorphic

data for each sample.

2 Methods

2.1 Samples and measurements

We use a data set of OSL measurements on a suite of 46 sam-

ples from embanked floodplain deposits formed during the

past 700 years. Different parts of the data set have been pre-

sented by Hobo et al. (2010, 2014) and Wallinga et al. (2010).

Samples come from four different sites, all located in the

Rhine Delta in the Netherlands (Fig. 1). At each of the sites,

several cores (diameter 14–19 cm) were taken in a cross sec-

tion perpendicular to the river course (see Hobo et al., 2010,

Figure 1. Map showing the sample sites. The sites Brummen and

Zwolle are along the river IJssel, whereas the other two sites (Neer-

ijnen and OB1-3) are along the river Waal. Both are branches of

the river Rhine. OB1-3 refers to two cores from the Hiensche Uiter-

waarden and one core from the Gouverneursche polder.

for examples). Samples were extracted from the cores in sub-

dued orange light and prepared using methods described by

Wallinga et al. (2010). For each of the sample sites, cross

sections were constructed based on the borehole database of

Utrecht University (Berendsen and Stouthamer, 2002) and

additional hand corings. The cross sections were interpreted

to identify morphogenetic units (see also Hobo et al., 2014).

For all samples, radionuclide concentrations were deter-

mined with high-resolution gamma-ray spectroscopy, from

which dose rates were estimated using standard conversion

factors. Sand-sized quartz grains were extracted for single-

aliquot regeneration OSL measurements (Murray and Win-

tle, 2003) for equivalent-dose measurements. Details of the

procedure are described by Hobo et al. (2010) and Wallinga

et al. (2010). The grain-size fractions varied between samples

(180–212 µm, 180–250 µm or 90–180 µm), due to differences

in texture of the sampled deposit. The measurement proto-

cols were similar for all samples. The dose response was de-

fined using a single regenerative dose (Wallinga et al., 2010),

net OSL signals were defined using the early background

subtraction (Cunningham and Wallinga, 2010) and low pre-

heat temperatures were selected to avoid thermal transfer

(e.g. Truelsen and Wallinga, 2003).

We identified nine variables that could influence the

bleaching of the sample either directly or by proxy. The

choice of variables is based on our judgement of possible

relevance and data availability. With regard to sample posi-

tion, we considered the average river water level at the site

(recorded in 2001), the height of the present surface at the

sample location, the depth of the sample below the present

surface, and the depth of the sample relative to the 2001

average water level. With regards to the sample nature, we

considered the depositional environment (ordinal classes of
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distal overbank, overbank, proximal overbank, channel); the

sediment texture (clay, loam, silt, sand, coarse sand/gravel);

the dose rate; the De; and the OSL age (although De and

OSL age are derived from the model, they can also be con-

sidered as predictor variables; the dose rate may indirectly af-

fect the bleaching statistic). Table S1 (Supplement) provides

an overview of all variables that are considered.

2.2 Statistical rationale

We seek to define a poor-bleaching score based on the mea-

sured De distribution, which can then be used to compare

bleaching between samples. Previous attempts have applied

a statistical model directly to the De distribution to define a

summary statistic (e.g. the F statistic; Spencer et al., 2003

– skewness and kurtosis applied to single-grain (SG) distri-

butions; Bailey and Arnold, 2006). This type of approach

may be valid if the observed De distribution is a function

of the burial dose and remnant dose. For multi-grain (MG)

aliquots, the OSL signal comes from many grains; theDe for

an aliquot is the average of those grains, weighted by their

OSL sensitivity (e.g. Wallinga, 2002b; Duller, 2008; Cun-

ningham et al., 2011). Therefore, for MG data sets, the De

distribution is a function of the burial and remnant doses,

and also the aliquot size and the single-grain OSL sensitivity

distribution.

Aliquot size and SG sensitivity may vary between sam-

ples, so for a statistic to be useful, it must be independent of

these factors for the range of samples considered. A model

defined directly on the De distribution of young samples is

also likely to be sensitive to the burial dose, as the measure-

ment precision decreases with decreasing De. Our data set

contains many samples, measured over several years on dif-

ferent OSL readers. While the SG sensitivity distributions

are likely to be similar (as all samples are from Rhine de-

posits), the aliquot size varies both between and within sam-

ples: measurements used either 2 or 3 mm mask size, with

grain sizes of 180–212, 180–250 or 90–180 µm. A statistic

defined from the MG aliquot De distribution (such as the

burial dose, overdispersion, degree of bleaching) may not

have any real-world meaning, because the data are affected

by the confounding variables of aliquot size and SG sensi-

tivity. The meaningful parameters operate at the single-grain

level, so the approach we take here is to estimate what combi-

nation of single-grain parameters would lead to the measured

MG De distribution. There are two parts to the procedure.

First, we define how the MG De distribution is derived from

single-grain parameters. Second, we use Bayesian compu-

tational statistics to estimate the value each parameter must

take to reproduce the observed MG De distribution.

2.3 From single-grain parameters to the

multi-grain-aliquot distribution

2.3.1 The single-grain sensitivity distribution

The magnitude of the OSL signal induced by a given radia-

tion dose varies from grain to grain. The sensitivity distribu-

tion also varies between samples (Duller et al., 2000). Quan-

tifying the SG sensitivity is important for dating partially

bleached samples, because it governs the extent of averag-

ing across multi-grain aliquots (Cunningham et al., 2011).

We therefore need to define the SG sensitivity distribution

in order to simulate an MG De distribution. While this can

be done using a single-grain measurement system, there are

practical difficulties: some grain holes may be empty and

some may contain more than one grain, and with many sen-

sitivity values clustered around zero, it is difficult to distin-

guish signal from noise.

Here we use computational Bayesian statistics to estimate

the SG sensitivity distribution from the MG sensitivity data.

The first step is to parameterise the SG sensitivity, for which

we use the gamma distribution. The gamma distribution can

be formatted with two parameters: a shape parameter a and a

scale parameter b. By altering these parameters, the gamma

distribution can comfortably fit a range of measured SG sen-

sitivity distributions (Fig. 2a). Moreover, when a MG aliquot

is simulated from SG sensitivity data, the MG sensitivity

distribution can also be fitted with a gamma distribution

(Fig. 2b). For measured data, we already know the MG sen-

sitivity distribution (from the regenerative-dose signal) and

the approximate number of grains in the aliquot (from the

grain size and mask size); we can therefore estimate the pa-

rameters a and b of the SG sensitivity distribution using a

computational Bayesian procedure similar to that described

below.

2.3.2 Modelling the De distribution

The single-grain parameters are as follows:

a. SG sensitivity, drawn from the gamma distribution with

parameters:

– a describes the shape (i.e. skewness);

– b describes the scale.

b. The burial dose, drawn from a normal distribution with

parameters:

– γ : mean, in Gy;

– σ SG
b : relative standard deviation of the burial dose

(fixed as 0.20 for this work).

c. The remnant dose, drawn from the positive part of a nor-

mal distribution with mean of 0 and:

– σ : standard deviation;
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Figure 2. (a) Three SG sensitivity distributions presented by Duller

et al. (2000) from SG measurements (dotted lines). Each has been

approximated using the gamma distribution, with sample name and

shape parameter a indicated. (b) Simple stochastic simulation of

a multi-grain-aliquot sensitivity distribution. The simulation uses

the measured SG sensitivity data set RBM2 (from Duller et al.,

2000), with parameters ng= 200 and na= 1000. The MG sensitiv-

ity distribution can also be fitted using the gamma distribution, with

a= 5.70. The shape of the gamma distribution is indicated in the

figure, with the y scale normalised to the peak of the histogram.

– p: proportion of well-bleached grains.

d. Additional parameters:

– ng: number of grains in each aliquot;

– na: number of aliquots.

The simulated natural OSL signal from na aliquots is the

sum of the signal from ng grains, with Poisson noise added.

Each grain is assigned a sensitivity value (per Gy) drawn

from the gamma distribution with parameters a and b, and

an indicative dose. The indicative dose combines the burial

dose, drawn from a normal distribution, and a remnant dose,

drawn from a half-normal distribution. The number of grains

in each aliquot that have a remnant dose is drawn from the

binomial distribution with parameters ng and 1−p. The De

Figure 3. Posterior distribution of the burial dose γ for simulated

data of aliquots of (a) 80 grains and (b) 300 grains. The “given”

burial dose is 1 Gy; other parameters are specified in Table 1. The

simulated De distributions are visualised with probability density

functions (PDFs).

is determined by constructing a dose-response curve in the

same way as measured data, i.e. one regenerative point of

3 Gy, sensitivity-corrected (although no sensitivity change is

added), and subject to the same rejection criteria. Where dif-

ferent aliquot sizes are used in the measured data, these are

replicated in the simulation. The number of grains per aliquot

(ng) is approximated using the known mask size and grain

size, assuming spherical grains and a 0.7 packing density

(i.e. quartz grains cover 70 % of the mask surface).

2.4 Computational Bayesian solution

With the De distribution simulated by single-grain parame-

ters, we seek to identify which values the parameters must

take to result in the best match between the simulated MG

distribution and the measured MG distribution. In Bayesian

terms, we seek the posterior distribution, which measures

how plausible we consider each possible value of the param-

eters after we have observed the data. For complex models

such as this, the posterior density cannot be calculated di-

rectly. Instead, inferences are based on random sampling of
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the posterior distribution, which requires intensive computa-

tion.

In our model, the posterior is sampled using a Markov

chain Monte Carlo (MCMC) process. Single-grain param-

eters for four Markov chains are drawn from a starting dis-

tribution, and these parameters are then corrected to better

approximate the target posterior. The approximate distribu-

tions are improved at each step using the Metropolis algo-

rithm. When the simulation has run long enough, each step

can be considered a random draw from the target distribution.

The length of the sequence is determined by the convergence

of the Markov chains; this is monitored by comparing the

within-chain and between-chain variance, following the pro-

cedure of Gelman et al. (2004). The first half of each Markov

chain is discarded to ensure that the choice of starting values

does not influence the result.

2.4.1 Priors

Five parameters are determined in the computational pro-

cessing: γ , σ , p, a and b. Each of these is assigned a prior

distribution, which represents our knowledge of these param-

eters before any measurements are undertaken. The priors

could in future be determined from previous measurement

data or, in the case of γ , from the stratigraphic order of the

samples. For a and b, the priors are given by the posteri-

ors obtained from the SG sensitivity model. For γ we use

a uniform-positive prior, as we have no information on the

burial dose and do not want to restrict it. The situation is dif-

ferent when it comes to p and σ . There is an unavoidable

conflict when estimating these two parameters: as the resid-

ual dose gets smaller, at some point the De values cannot be

distinguished from well-bleached De values. This problem,

not unique to our model, could erroneously assign a low p

to a well-bleached sample, or high p to a poorly bleached

sample (if σ is very small). To prevent this error, we spec-

ify arbitrary cut-offs in the priors: the lower limit for σ is

0.25 Gy, and for p it is 0.05. As such, any sample that is

poorly bleached to a very small extent (σ < 0.25 Gy) will be

inferred to be well bleached (high p). Very few samples are

affected by the low-cut priors. In future, it will be useful to

find an objective value for the low cut-off, probably varying

with measurement precision.

2.4.2 Density evaluation

Parameters with positive values (γ , σ , a, b) are estimated on

the log scale; p must lie between 0 and 1, and is therefore

estimated on the logit scale (logit p= log(p/(1−p); this

transforms the unit interval to the real number line). The sim-

ulated MG De distribution is compared to the measured dis-

tribution using the models of Galbraith et al. (1999) as sum-

mary statistics. This provides four summary statistics to com-

pare with the measured data (three from the three-component

minimum-age model (MAM3), and one from the central-age

Table 1. Results of the simulation recovery: “recovered” values are

defined by the mean and standard deviation of the posterior distri-

bution. na= 40.

Given ng= 80 ng= 300

γ 1 1.03± 0.08 0.88± 0.20

σ 2.5 2.81± 1.66 2.96± 1.32

p 0.7 0.77± 0.13 0.59± 0.21

a 0.03 0.042± 0.011 0.025± 0.008

b 600 604± 196 539± 188

model (CAM)). The likelihood term is defined by projecting

these values onto the bootstrap likelihood distribution for the

measured data (see Cunningham and Wallinga, 2012).

The model is run in two phases. The first is a short run, giv-

ing an approximate range of the parameter space. The output

of the first run is summarised by a multivariate normal dis-

tribution, which is used to define the starting distribution and

jumping distributions for phase two. The second phase is run

until convergence.

2.5 Model validation

Here we perform a simulation-recovery test to check that the

model is performing as expected. Single-grain parameters are

chosen, and then used to simulate De data for two different

aliquot sizes (80 and 300 grains). Each data set is used as

input for the model, and the SG parameters are then recon-

structed. The results are given in Table 1, and plotted in Fig. 3

for the burial dose γ .

For both aliquot sizes, the SG parameters can be recon-

structed (Table 1). Reconstruction of the 1 Gy burial dose is

reasonably precise (8 %) for the 80-grain aliquots, and very

close to the bootstrapped MAM3 estimate of the burial dose

on the MG aliquot data set (1.03± 0.08 Gy, using σb of 0.16.

σb is used in the MAM3 to allow for the expected disper-

sion in De from well-bleached samples, and it changes with

aliquot size). For the 300-grain aliquots, the estimate of the

burial dose is imprecise but accurate, and lies mostly out-

side the range of the MG aliquot De distribution. For multi-

grain aliquots, it is quite possible that none of the aliquots

are indicating the burial dose, if at least one grain contribut-

ing to the OSL signal on each aliquot is poorly bleached.

The model is able to explore this possibility by making use

of the MG sensitivity distribution and aliquots size. In con-

trast, the bootstrap MAM3 applied to the MG data assumes

some “well-bleached” aliquots exist, and therefore gives an

overestimated burial dose of 1.15± 0.03 Gy for this data set

(σb= 0.08).

As a further step, it would be interesting to see how the age

model applied to multi-grain aliquot data compares to single-

grain data from the same sample. However, this comparison

is not as simple as it sounds. Our model uses multi-grain

aliquot data to estimate the assumed parameters of the SGDe
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A                     NCL-1110008 B                     NCL-1107146 C                     NCL-4110020

Figure 4. Example model output for three samples that are (a) relatively well bleached, (b) moderately bleached and (c) poorly bleached. For

each sample the posterior draws are indicated by the blue histograms, showing the burial dose γ (along with the bootstrap likelihoods of the

MAM3 (bootlik MAM3) and a probability density function of the De distribution), the residual dose σ , and the proportion of well-bleached

grains p. Two sensitivity parameters, a and b, are also estimated in the model, but not shown here. All data sets are normalised to their

maximum value.

distribution; it does not reconstruct the SG distribution itself.

Testing the model against SG data for a real sample would

not distinguish between the performance of the model and

validity of the assumptions about SG parameters. The way

around this would be to construct an artificial sample with a

known dose distribution, like Roberts et al. (2000) and Sivia

et al. (2004), but such an elaborate approach is outside the

scope of this paper. Also, the mode of optical stimulation in

single-grain measurement systems (green laser) differs from

that used for MG aliquots for our study (blue LEDs). This

prevents direct comparison between SG and MG, as com-

ponent separation is wavelength-dependent (e.g. Singarayer

and Bailey, 2003).

3 Results

The reconstructed SG sensitivity distribution is similar for all

samples measured here, not surprising as they are all from

recent Rhine deposits. The shape parameter a has a mean

of 0.008 and standard deviation 0.003, indicating a highly

skewed sensitivity distribution (more so than all of the ex-

ample distributions in Fig. 2). The averaging effect on multi-

grain aliquots is therefore very weak. The scale parameter b

has a mean of 400 and standard deviation of 220. The es-

timates of p are evenly spread between 0.2 and 0.95 (not

shown). The uncertainty on p is typically large, except for

those values close to 1.

The distribution of σ is positively skewed; the mean is

2 Gy, and most values are below 8 Gy. However, high values

of σ have very poor precision, coming from samples with

high p in which σ has little influence on the De distribution.

The susceptibility of σ to outliers and to p makes it unsuit-

able as an indicator of bleaching. The degree of bleaching is

best defined by p, the proportion of well-bleached grains.

Three examples of the model output are shown in Fig. 4,

each indicating a different degree of bleaching. For each sam-

ple, the histograms indicate the posterior density of the burial

dose γ and the two bleaching parameters σ and p. The two

sensitivity parameters a and b are of lesser interest for this

study, and are not shown. In Fig. 4a, the sample is inferred to

be well bleached, and the burial-dose posterior is similar to

the MAM3 bootstrap likelihood. This sample is affected by

the problematic low-σ /high-p distinction alluded to earlier;

the posterior σ is being influenced by the low-cut prior, caus-

ing a low tail in the burial-dose posterior. Figure 4b shows a

moderately bleached sample, with mean p= 0.56. The pos-

terior σ is well clear of the low-cut prior, and the burial dose

is less precise but potentially more accurate than the MAM3

burial-dose estimate. A poorly bleached sample is shown in

Fig. 4c (mean p= 0.25, but affected by the prior). The burial-

dose estimate is much less precise than the MAM3 estimate,

but is permitted to be smaller than any of the measured MG

De.

When the burial dose is very close to zero, the posterior

distribution is shaped like an exponential decay (not shown
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here). Such distributions are not well described by the mean

and standard deviation, and thus may need to be summarised

differently. We will not dwell on the issue here, but will leave

it for future consideration.

The mean (and standard deviation) of the p posterior pro-

vides a useful summary statistic for between-sample com-

parison. In Fig. 5, p is plotted against the potential geomor-

phic variables (Fig. 5a–g), the other model-derived statis-

tics (Fig. 5h–k), and finally the dose rate and model-derived

age (Fig. 5l, m). A crude table of correlations is provided

in the Supplement (Table S2), but is of limited use because

it treats the ordinal variables of “depositional environment”

and “texture” as if they are interval types. Nevertheless, there

are some correlations among the predictor variables. For ex-

ample, deeper samples are older and coarser (being channel

deposits), and thus they have lower dose rates than the silty

overbank samples. There are also significant correlations be-

tween the sensitivity parameters a and b and several predictor

variables; these are probably due to inadequate aliquot-size

estimates, as discussed in Sect. 4.

While there are no clear relationships between p and pre-

dictor variables, some of the plots appear to indicate struc-

ture beyond that expected through chance. Figure 5g shows

that most of the best-bleached samples were located close to

the modern mean water level. Figure 5k and m show a trend

in p for the relatively young samples. In Fig. 6, the burial-

dose estimate is compared directly to the original MAM3.

The weighted mean ratio of γ to MAM3 minimum age is

0.97± 0.025. Samples inferred to be relatively well bleached

return very similar burial doses in both models, with com-

parable precision. For poorly bleached samples, our model

provides a smaller and less precise burial-dose estimate.

4 Discussion

4.1 Influences on bleaching

There appear to be significant relationships between the sen-

sitivity parameters a and b, and several predictor variables:

both a and b are correlated with sample depth/elevation (Ta-

ble S1). These relationships are difficult to explain in geo-

morphic terms, but may be a manifestation of subtle differ-

ences in grain size. Most measurements were carried out on

grain-size range of 180–250 µm, with the aliquot size ng es-

timated from the grain size and mask size. This grain-size

range still allows differences in the grain-size distribution

of the natural sediment to be reflected on the disc. For fine

sediments, the selected grain-size range will be at the upper

tail of the grain-size distribution, resulting in a prepared frac-

tion with many grains at the lower end of the sieved fraction

(i.e. 180 µm or just larger). In contrast, for coarse sediments

the prepared fraction will be dominated by grains at the up-

per end of the sieved fraction (i.e. 250 µm and somewhat

smaller). The aliquots prepared from overbank sediment will

therefore contain more grains than assumed in the model, and

aliquots prepared from channel sediments will contain fewer.

These biases lead to an error in the model’s estimate of the

SG sensitivity. The error would also feed through into the

estimate of bleaching parameters. We should therefore ig-

nore the correlations involving the sensitivity parameters for

this data set, and be cautious about any relationship between

bleaching parameters and depositional environment or depth,

as both are correlated with sediment texture.

The large degree of uncertainty in our model results pre-

vents convincing conclusions from being drawn. This uncer-

tainty is again down to aliquot size. Firstly, the aliquot sizes

used were often too large. Second, our post hoc estimates

of the aliquot size were not sufficiently accurate (as noted by

Heer et al., 2012). These issues affected model efficiency and

outcome by amplifying the difficulty of distinguishing high

p and low σ . By contrast, recent measurements by Cunning-

ham et al. (2015) included a grain-counting step, and allowed

more emphatic conclusions to be drawn. Here, we do not feel

confident in claiming either the existence or absence of geo-

morphic controls on the basis of our results.

With these caveats established, it is worth considering two

structures in the modelled data that might, possibly, have ge-

omorphic significance. These concern the relationship be-

tween p and mean water level, and between p and model

age, which are enlarged for clarity in Fig. 7. Figure 7a shows

a cluster of relatively well-bleached samples coming from

sediment deposited close to, or just above, the modern mean

water level. This cluster might be telling something about

the comparative strengths of bleaching during transport and

deposition. The attenuation of light (especially UV/blue) un-

derwater is well established (Berger, 1990), and if light in-

tensity at deposition was the main control on bleaching,

we might expect shallower sediments to be better bleached

(Wallinga, 2002a). The clustering of high p values around

the mean water level may therefore reflect a period of bleach-

ing that occurs at deposition. However, close examination of

the samples that are best bleached (NCL-111004, -5, -7, -8;

NCL-2107157, -59, -61; NCL-4110018) shows that some of

these are sandy channel deposits, whereas others are sand

beds within silty overbank deposits, or silty overbank de-

posits with sand admixtures. All these samples are indeed

within a metre from the transition of channel to overbank de-

posits. For the samples classified as channel deposits, depo-

sition likely occurred on top of point bars, potentially with

swash backwash operating and sub-aerial exposure likely

(analogous to coastal beaches, which produce well-bleached

quartz; e.g. Ballarini et al., 2003). For the well-bleached sam-

ples from overbank deposits, we hypothesise that sand grains

may have experienced aeolian reworking prior to final de-

position and burial. Such aeolian reworking of sandy flood

deposits has been documented following sand deposition on

overbanks during high-discharge events of the Waal and Lek

(Isarin et al., 1995; illustrated in Fig. 8).

There is also structure in Fig. 7b, which shows p in rela-

tion to modelled age. Highest p values, indicative of best-
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Figure 5. The bleaching statistic p (proportion of grains well bleached) plotted against possible predictor variables (a–g), and other model-

derived statistics and the dose rate (h–m). (a) Depositional environment on a scale of distal overbank (1) to channel (4). (b) Sediment

texture is classed from clay (1) to coarse sand (5). Site classification in (d) is nominal. NAP is Dutch ordnance datum (≈mean sea level in

Amsterdam). For classification details see Table S1.

bleached deposits, are obtained for samples with model ages

around ∼ 0.10 ka. The youngest samples appear to be less

well bleached (i.e. low p), and p varies a lot for the samples

older than ∼ 0.10 ka. The same trends are observed when

burial dose (Fig. 6k) or MAM3 age (not shown) is used in-

stead of modelled age.

There are three possible reasons for the structure. It could

be an artefact of the model through the high-p/low-σ prob-

lem, but examination of the model output for these sam-

ples does not confirm this. Alternatively, it might be a sam-

pling effect caused by coring from the floodplain down to-

wards the high-p cluster at mean water level, but most of

the high-p samples are older. A more intriguing explanation

involves changes in river management over the last few hun-

dred years. Major changes occurred with dike construction

from AD 1000–1300, and river normalisation and groyne

emplacement after AD 1850 (Middelkoop, 1997; Hesselink,

2002). Dike construction forced river bends to migrate down-

stream rather than laterally (see also Hobo et al., 2014), caus-

ing the river to rework some of its recent deposits. The lower

residual dose in these deposits means that less light expo-

sure would be required for an acceptable degree of bleaching

to take place. During this period, sand bars were exposed in

the river during low flow, enhancing bleaching conditions for

river-transported sediments. Bleaching conditions may have

been reduced following the construction of groynes (after

AD 1850), for a number of reasons. Firstly, the groynes pre-

vented bend migration and thus reworking of recent river sed-
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Figure 6. Comparison of burial-dose estimates. The modelled dose

is defined by the mean and standard deviation of the posterior, and is

compared to the original MAM3 minimum dose (using σb of 12 %;

Galbraith et al., 1999). Squares indicate where the unlogged MAM3

was used (Arnold et al., 2009). The best-bleached samples are filled

black (p> 0.8), and the worst-bleached samples in red (p< 0.3).
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Figure 7. Two possible structures in the proportion of well-

bleached grains p versus predictor variables of Fig. 5, enlarged here

for clarity. (a) Plotted against the sample elevation with respect to

mean water level at each sampling site. A cluster of well-bleached

samples appears at about the (modern) mean water level. (b) Plotted

against model-derived age, showing a trend for the youngest sam-

ples (age< 0.10 ka). The onset of groyne construction is indicated

at 0.15 ka.

Figure 8. A sand bar deposited close to the river Waal during high

discharge (photo by Gilbert Maas, Alterra). Due to the absence of

vegetation, such deposits may be reworked through aeolian pro-

cesses, which may enhance bleaching for deposits formed above

the mean water level.

iments. Secondly, sand bars within the channel disappeared,

perhaps reducing light exposure of channel deposits during

low flow. Thirdly, the groynes caused deepening of the chan-

nel through bottom scour, enhancing the reworking of the

underlying, high-residual-dose Pleistocene deposits.

4.2 Modelling the burial dose

The requirements of this project led us to develop a spe-

cific “age model” for partially bleached, multi-grain-aliquot

data. It uses Bayesian computational methods to estimate

the parameters of the single-grain dose distribution, without

the need for any single-grain measurements. Along the way,

the parameters of the single-grain sensitivity distribution are

estimated from multi-grain aliquot sensitivity data. Our ap-

proach has significant advantages over existing models:

– The interaction of aliquot size and SG sensitivity is in-

corporated, meaning that prior quantification of the av-

eraging effect is not necessary.

– It includes uncertainty deriving from the number of

aliquots consistent with the burial dose.

– It should provide an unbiased estimate of the burial

dose, even when no aliquots are “well bleached”. Poorly

bleached samples give a very imprecise, but still accu-

rate, estimate of the burial dose.

– The degree of bleaching is quantified, and is potentially

independent of the SG sensitivity, aliquot size and burial

dose.

– Different data sets from the same sample (i.e. different

aliquot sizes) can be combined to produce a single esti-

mate of the burial dose.
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Of course, the validity of the outcome rests on a number

of assumptions. The parameterisation of the SG dose and

sensitivity distributions must be appropriate and, crucially,

the estimate of aliquot size should be reasonable. This paper

uses archive data, so aliquot size was estimated only roughly.

When applied in future, careful grain counting should take

place; this could be performed manually, or with a digital

camera plus image-recognition software.

Compared to familiar and well-used age models in OSL

dating (e.g. CAM and MAM3), this model is a different beast

altogether. It requires more data to be input per sample, and

careful consideration and specification of model parameters

and priors. It includes the MAM3 (Galbraith et al., 1999) and

bootstrap likelihoods (Cunningham and Wallinga, 2012) as a

small part of it, and requires ∼ 1 h of computer time to run

per sample, provided no errors arise. We provide the code in

the Supplement in order to spur further development in this

field; we do not present a refined model for general applica-

tion.

The model could be immediately improved by treating

σ SG
b as an unknown parameter. At present, the model as-

sumes that scatter in the single-grain burial-dose population

is exactly 20 %. If it becomes possible to create a sample-

specific estimate of σ SG
b (e.g. through radiation transport

modelling; Cunningham et al., 2012; Guerin et al., 2012), it

could be incorporated as a prior. The posterior σ SG
b would

then be estimated along with γ , σ and p. A further step

would be to incorporate stratigraphic information on sample

order and/or age (e.g. Rhodes et al., 2003; Cunningham and

Wallinga, 2012), although this would significantly increase

computational time.

5 Conclusions

There are a particular set of challenges in estimating the de-

gree of bleaching for unknown-age OSL samples, and these

problems relate closely to the burial-dose calculation. We

have begun to refashion the burial-dose calculation by using

Bayesian computational statistics to reduce the De distribu-

tion into meaningful statistics. There are many novel aspects

to our approach, such as parameterising the OSL sensitivity

distribution and inferring single-grain statistics from small-

aliquot measurements. We found that a good aliquot-size es-

timate is particularly important for the model, and that our

poor knowledge of aliquot size hampered our application of

the model to archive data.

Nevertheless, the results do show some interesting fea-

tures that may point to geomorphic controls on sediment

bleaching. We found a concentration of well-bleached sam-

ples around the modern mean water level, indicating to us

that sediment receives a “kick” of bleaching upon deposition,

through local reworking, in addition to the bleaching that oc-

curs during transport. We also speculate on whether changes

in the degree of bleaching over time could relate to river man-

agement changes, especially the construction of groynes in

the lower Rhine around AD 1850.

Despite the limitations of this study, it seems clear that

processes of sediment provenance, transport and deposition

can influence the measured OSL signal. The challenge lies in

extracting meaningful information from the OSL data. The

computational approach explored in this study has real po-

tential, and we hope aspects of our model will be taken for-

ward.

The Supplement related to this article is available online

at doi:10.5194/-15-55-2015-supplement.
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