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Abstract. A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting

in the morphological active layer aggregated over the width of the river. This vertical sorting is important for ana-

lyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring

and predicting bedload transport rate. We define the morphological active layer as the bed material between the

maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to

rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs

(digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain

size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morpho-

logical active layer and variation in grain size in three dimensions. By normalizing active layer thickness and

dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Oc-

currence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural

features within the active layer. For numerical modeling and bedload prediction, a morphological active layer

that is fully mixed with respect to grain size is a reliable approximation.

1 Introduction

Information about the distribution of grain sizes within a vol-

ume of an alluvial gravel river bed is sought for a variety

of reasons. The focus here is the relationship between grain

size sorting in the river bed and bed material transport rates,

which is central to explaining, modeling and predicting the

morphological development of a river. The goal of the anal-

ysis described in this paper is to characterize the grain size

sorting of the morphological active layer aggregated over an

area of the full width of a gravel-bed braided river in a non-

aggrading or degrading state.

Gravel braided rivers have intricate patterns of size sort-

ing driven by complex flow structures at confluences and in

shallow (typically the mean depth/D90 in anabranches is 10

or less) flows associated with bifurcations and sorting in low

sinuosity bends and point bars as well as in migrating bed-

load sheets and low-amplitude bars (Bluck, 1979; Ashworth

et al., 1992). The amplitude of topography, and therefore the

turnover depth for gravel, related to these local erosional and

depositional features is commonly up to 20 timesD50 (Gard-

ner and Ashmore, 2011; Wheaton et al., 2013). The surface

and near-surface sorting of grain sizes associated with the

active morphological processes of braided rivers results in

patterns of grain size related to local bed elevation and flow

structure. These patterns are preserved within the river de-

posits as the anabranches migrate and rework previously de-

posited material. Surface patchiness has been observed in

flume experiments in response to input sediment flux vari-

ations or topography control. The importance of this patchi-

ness has previously been considered mainly in relation to the

bed surface characteristics and the effect on local roughness

and bed material load (Nelson et al., 2009, 2010).

We introduce the term “morphological active layer” to re-

fer to the sediment involved in the mixing, sorting and ex-

change over the full amplitude of the developing bed to-

pography over extended time periods. The core question ad-

dressed here is whether the morphological active layer is ho-

mogeneous with respect to trends in grain size between lay-
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ers and aggregated at the scale of the braided channel. The

answer to this question is important for understanding the

morphodynamic and sedimentary processes of braided rivers

and the methods for representing these processes in com-

putational models (Viparelli et al., 2010; Sun et al., 2015).

Understanding the sedimentology of the morphological ac-

tive layer is also important for calculation of bedload trans-

port rates using morphological methods from direct river sur-

vey (Wheaton et al., 2013) that integrate transport rates over

morphologically significant events and extent (Ashmore and

Church, 1998). Refining morphological transport estimates

may require information on grain sizes encountered at differ-

ent depths below the bed or confirmation (or modification)

of the simple assumption that, during channel-forming pro-

cesses, all grain sizes of the bulk grain size distribution are

available with equal probability.

Data on three-dimensional patterns of sorting within the

bed are difficult to acquire, especially for an entire volume

of the bed in a river reach. In sedimentological analyses, de-

scriptions of braided river gravels have tended to emphasize

the sedimentary structure and sedimentological detail with

little direct analysis of grain size sorting except for limited

vertical sections, trenches or cores using direct physical grain

measurement or indirect grain size methods such as image-

based automatic sizing (Storz-Peretz and Laronne, 2013a).

Analyses have typically focused on facies patterns and sed-

imentary structure, but several have mentioned that there is

little vertical trend in grain sizes in braided river gravels (e.g.,

Bluck, 1979; Sambrook Smith, 2000; Heinz et al., 2003; Lunt

and Bridge, 2004; Guerit et al., 2014; Marren, 2005; Storz-

Peretz and Laronne, 2013b). Similarly, physical models of

aggraded braided gravel alluvium show patches and threads

of distinct facies but no clear trend in grain size (e.g., More-

ton et al., 2002). However, these generalities, while useful

indications, are based on limited sampling and quantification

of trends in particle size sorting.

Analyses of the statistics of vertical tracer particle ex-

change for different size fractions have been used in develop-

ing observations and theories of particle kinetics for bedload

prediction based on long-term mixing and burial/exhumation

within the particle exchange layer (Haschenburger, 2011).

This relates partly to the development of bed surface armor

and the size of material available for transport at different

phases of particle mobility. These analyses are usually re-

stricted to the bedload exchange layer, which is generally

taken to extend to about 2×D90 beneath the river bed (al-

though deeper exchange is possible; Haschenburger, 2011)

and is also observationally restricted by the methods for lo-

cating tracer particles beneath the bed. These analyses pro-

vide information for particle exchange and bedload theory

for vertically stable beds with limited topographic amplitude.

In braided rivers, bed topography can change rapidly during

normal channel-forming events due to local bed scour, de-

position and channel avulsion so that exchange depths are

likely to extend through the entire range of bed elevation (of

the order of 10×D90) rather than the relatively thin grain

exchange layer of more stable river beds. This is a primary

reason to define a morphological active layer that is distinct

from the grain exchange active layer related to flood events

on a stable gravel bed with limited topographic amplitude.

The grain size characteristics of the morphological ac-

tive layer are needed for implementing numerical models of

braided river morphodynamics. Prior studies of gravel bed

stratigraphy under aggradation/degradation have used plane

beds in narrow flumes, rather than fully developed river mod-

els (Viparelli et al., 2010). In the plane bed case, with no lat-

eral or other morphological sorting, the surface layers of the

bed tend to be coarser than the lower layers (Viparelli et al.,

2010). The variety of sorting mechanisms at work in later-

ally unstable rivers with substantial depths of scour and de-

position associated with, for example, confluences and braid

bars may modify this trend (Leduc, 2013). New numerical

model results have begun to yield predictions of local grain

size sorting in braided channels (Sun et al., 2015), and phys-

ical experiments in small-scale models will be valuable in

developing and testing these numerical models.

We expect complex three-dimensional arrangements of

patches of varying grain composition in the morphologi-

cal active layer that are locally heterogeneous (Gardner and

Ashmore, 2011), but the core objective here is to establish

whether there is any systematic aggregate vertical trend in

the average grain sizes in a river reach. Braided river de-

posits and exposures in the field might provide some of this

information, but the sample requirements are Herculean and

would not, strictly, include the whole morphological active

layer because our definition of this layer (see above) makes

it distinct from the lithosome (Bluck, 1979) that is of direct

interest for sedimentology. Formation of the morphological

active layer requires a long period of active braiding and re-

working of the entire braided channel. Our solution is to use a

small-scale physical model of a gravel-bed braided river from

which digital elevation maps and grain size maps can be ex-

tracted over an extended time period. The sequence of DEMs

(digital elevation models) and grain size maps was compiled

to produce the morphological active layer characteristics, us-

ing the idea and method developed by Gardner and Ashmore

(2011) based on photogrammetry image texture analysis. Van

De Lageweg et al. (2013) used this approach to characterize

deposit geometry in a small-scale flume model of a braided

river (with topography acquired with a laser scanner), but

their models do not physically scale grain size distributions

for gravel bed rivers and so do not yield textural information.

Laser scanning and other technologies may yield equivalent

data in the field but would still potentially require years of

data acquisition, and periodically dry river bed, to reproduce

what is possible in tens of hours in a physical model.
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2 Flume procedure and data collection

The experiment described here previously formed the basis

for an analysis of the topography, grain size and formation of

the basal surface of braided river deposits (Gardner and Ash-

more, 2011). Here we expand the analysis to focus on grain

size characteristics within the entire vertical extent of DEM

data and based on refinement of the topographic and textural

data, extraction of complete grain size maps, and extension

of the time period analyzed from 20 to 40 h of model running

time.

2.1 Flume procedure

The data are taken from a single experiment using a Froude-

scale physical model of a gravel-bed braided river in a flume

18 m long, 3 m wide and 0.3 m deep. The grain size distri-

bution was scaled at 1/30 from measurements of the gravel

(truncated at 8 mm in the field) particle size distribution of a

pro-glacial braided reach of Sunwapta River in the Canadian

Rocky Mountains. Consequently, bed material in the model

was composed of sand with sieve sizes ranging from 0.3 to

8 mm and a median size of about 1.3 mm. The geometric sort-

ing defined by σ =
d84−d16

4
+
d95−d5

6.6
is equal to 1.3, with dX

being the xth percentile of the distribution. This grain size

distribution was designed to model the morphology and as-

sociated grain sorting mechanisms and patterns of the gravel

fraction of the sediments. The water discharge was main-

tained constant at 2.1 L s−1 throughout the experiment and

the bed slope was set at 1.5 %. These values maintain 1/30

Froude scaling of the Sunwapta River based on known high-

flow discharges, the bed material grain size distribution and

the surveyed gradient of the river (Chew and Ashmore, 2001;

Ashmore et al., 2011). The sediment system was closed to

simulate long-term equilibrium conditions; a sediment pump

transferred the output material to the upstream end of the

flume, where it was returned continuously to the model river

using a feed chute that allowed excess water to drain away.

The 40 h period analyzed in this paper began at hour 140

of the experiment. Consequently, the flume bed was fully

braided at the time of the initial DEM, some bed features

were inherited from earlier in the experiment, and the braided

pattern was maintained throughout the experiment.

2.2 Bed topography

Vertical stereo images of the dry bed were taken at 1 h in-

tervals and DEMs were derived photogrammetrically (us-

ing Leica Photogrammetry Suite software v. 9.1) with a

mean elevation error of ν =−0.02 mm, standard deviation

of σ = 0.78 mm and a cell size of 3 mm (Gardner and Ash-

more, 2011). We consider an absolute error on height of

3σ = 2.3 mm, which corresponds to a confidence interval

of 99.7 % for a normal distribution. The DEM extent in

this analysis was 10 m long and 2.5 m wide to remove pho-

togrammetric artifacts apparent near the edges and ends of

the raw DEMs while covering the full braided river width.

The final size on the DEM is 3334× 868 cells. The flow in-

crease and decrease lasted only a few minutes, and changes

induced during that period are considered as negligible at the

experiment scale.

2.3 Grain size analysis

The grain size analysis and mapping used the image texture

method developed and tested by Carbonneau (2005) and Car-

bonneau et al. (2005) for field mapping of gravel-bed rivers

but adapted for the sand texture in the physical model. The

image texture calculation was made using the co-occurrence

gray matrix level based on 64 gray level vertical bed im-

ages. The sampling window size of 7× 7 pixels was chosen

due to the median grain size (1.3 mm) and the camera res-

olution, and the best fit of the data was found using the en-

tropy index. The entropy measures the quantity of common

pattern on a picture. To calibrate the predictive relationship

between an entropy value and the real grain size, two sets

of measurements were used. Surface patches on the model

river bed were sampled using adhesive and grain size was

measured using physical sieving. The first set of 58 samples

corresponded to patches with uniform grain size covering

the range of sizes in the distribution (Gardner and Ashmore,

2011). This first set of 58 was extended with an additional

125 samples spread over an image area regardless of the sur-

face composition and covering the full range of grain sizes

and gradations. The 183 grain samples were split randomly

into two sets: the first set was used to calibrate the linear

relationship between sampled grain size and texture value

(Fig. 1a) and the second set was used to validate the rela-

tionship and estimate the measurement error (Fig. 1b). With

the validation set, we find that the mean value of the absolute

error is 0.38 mm with a standard deviation of 0.61 mm. The

relative error on the absolute value ranges from 0 to 100 %

and half of the set had error less than 20 %.

We refer to the estimated grain size from the textural cal-

ibration as the “equivalent texture” because it is a texture

value calibrated to only the median grain size (not the full

distribution) for a patch and is not strictly a grain size value

as conventionally defined in physical measurements of grain

size.

A grain size map is associated with each DEM, and for

every bed location the bed elevation and local bed texture is

known (Fig. 2).

2.4 Dimensionless bed depth

During the 40 h of experiment time the bed elevation varied

over a range of values at each location. From the minimum

and maximum values at each point we define two specific

surfaces: the minimum surface and the maximum surface de-

noted by the lowest and highest elevations at that point over
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(a) (b)

Figure 1. Calibration (a) and validation (b) data set for the predictive relationship between the surface grain size and the picture texture

(entropy). A simple linear equation is used. The error estimation on the validation data set is 0.38 mm on the absolute mean value and

0.61 mm for standard deviation of the absolute value.

Figure 2. Summary of data acquisition. (a) Orthoimage: vertical pictures are taken at 1 h interval (note patterns of sorting of fine and coarse

material). (b) DEM: the topography is derived photogrammetrically, the cell size is 3 mm, and the flume slope is removed. (c) Equivalent

texture map: the map is derived from the texture calculation of vertical pictures, and the median grain size error is less than 20 %.

the 40 h (Gardner and Ashmore, 2011). The difference be-

tween these two surfaces over the areal extent of the data

is the morphological active layer (Fig. 3). The morphologi-

cal active layer differs from deposit thickness because it is a

virtual layer developed over time with virtual vertical extent

larger than the deposits at any time. Moreover, the deposit

thickness is time-related and changes with successive topog-

raphy, whereas for a certain time interval the morphological

active layer is constant. The morphological active layer is

also different from the active layer involved in particle ex-

change during bedload transport because it extends over a

depth related to overall scour and deposition of the river bed

over the time-scale of reworking of the bed by braiding pro-

cesses, rather than the near-surface particle exchange on a

vertically stable bed during single bed-mobilizing events.

Although the river reworked the whole flume width during

the experiment, some areas of the river bed were not active

during the 40 h. Those areas corresponded mainly to the tops

of stable braid bars developed in earlier stages of the experi-

ment. We define the areas that showed no measurable change

by setting a uniform threshold of 4.6 mm according to the

precision of the DEM. These “no-change” areas have been

removed from DEMs and grain size maps so as to retain only

the active part of the braided pattern in the analysis.

In a single set of DEM/equivalent texture maps, there is

no clear link between the surface grain size and the bed el-

evation (Fig. 4). The longitudinal bed slope or the local bed

topography might induce a complex relation even on a single

set of bed elevation and local features (bar vs. channel). Yet,

to study the grain sorting in the morphological active layer,

the layer should be scaled relative to the absolute elevation

to remove residual local topographic effects.

The raw bed topography was scaled by the local mor-

phological active layer thickness (Eq. 1), where h(x,y) is
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Figure 3. The minimum surface, the maximum surface and the

morphological active layer. The minimum surface (a) is defined at

the lowest elevation for each location throughout 40 h. The maxi-

mum surface (b) is the highest elevation for each location through-

out 40 h. The morphological active layer (c) is the difference be-

tween the maximum surface (b) and the minimum surface (a).

Whites parts are the no-change areas. The arrow indicates flow di-

rection, and the flume slope is removed.

the dimensionless bed elevation, H (x,y) the bed elevation

in meters, Hmin(x,y) the minimum elevation in meters, and

1h(x,y) the morphological active layer thickness in meters.

Dimensionless bed value ranges from 0 to 1.

h(x,y)=
H (x,y)−Hmin(x,y)

1h(x,y)
(1)

The normalization allows analysis of grain size changes in

relation to the active layer thickness and local position within

the vertical extent of the active layer.

3 Analysis and results

3.1 Natural and modeled surface grain sorting

During the period of analysis, a large proportion of the bed

area was reworked by processes typical of braided rivers,

i.e., channel avulsions, bar migration, bedload transport, con-

fluence and bifurcation evolution, and active and non-active

anabranches (e.g., Egozi and Ashmore, 2009).

Natural grain sorting is observed over the entire bed sur-

face; fine and coarse sediments are organized in relation to

local topography, flow bifurcation, bed roughness or flow

constriction, which lead to a complex pattern of different sur-

face grain size (e.g., Carson and Griffiths, 1987). Figure 5

shows a bar located at the downstream end of a confluence

from a field site (Fig. 5a) and on the 1/30 downscaled flume

model (Fig. 5b). In both pictures, small uniform fine grain

Figure 4. Example of equivalent texture as a function of bed ele-

vation for a part of a single DEM: there is no clear trend between

the equivalent texture and the local elevation for one set of measure-

ments.

units are observed on the bar surface, with a longitudinal

shape in bar length direction. The longitudinal shape of bars

on the edge define a developed sorting pattern, as also de-

scribed in Nelson et al. (2010). The braided channel in the

flume also showed complex and diverse grain sorting pat-

terns of the kind seen in full-scale braided rivers, including

lateral sorting at confluences, coarse deposits on bar heads

at bifurcations, fine-grained lateral bars on the downstream

margins of braid bars, and lateral fining in bends and on bars

(see also Moreton et al., 2002; Gardner and Ashmore, 2011).

3.2 Bed layer construction

From the normalized bed topography, 10 classes of dimen-

sionless bed depth (Eq. 1 and Fig. 6a and b) are considered:

]0,0.1], ]0.1,0.2] ...]0.9,1[. Values 0 and 1, which corre-

spond respectively to the minimum surface and the maxi-

mum surface, are not included in the sublayer division to

avoid imbalance in the amount of data within each layer –

the maximum and the minimum values always exist for each

cell, whereas the intermediate values do not necessarily.

To create the texture map of layers, normalized bed to-

pography of each DEM is distributed into the 10 classes of

dimensionless bed depth (Figs. 7b and 6b). For each class,

within each DEM, cells corresponding to the layer are as-

sociated with their equivalent texture value (Fig. 6c). From

this process we get, for each class of normalized bed topog-

raphy, 40 partial equivalent texture maps corresponding to

each DEM (Fig. 6d). The resulting map is created by calcu-

lating the median value for each cell throughout the 40 partial

maps (Figs. 6e and 8a–j).
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Figure 5. Grain sorting and natural pattern. (a) Vertical view of the Sunwapta River in the Canadian Rockies and (b) on the 1/30 model.

Flow is from left to right in both bar pictures. Fine sediments are lighter gray than coarse sediments.

40 DEMs  (m), 1 hour apart

40 normalized bed topographies (-), 
1 hour apart

Dimensionless equation, eq. 1

40 normalized bed topographies (-),
 1 hour apart. 

Depth sorted within 10 depth layers

40 *10 equivalent texture maps. 
At each time and depth step

Depth sorting

For each normalized bed topography and 
each depth layer, the equivalent 
texture value is associated with the cell

10 equivalent texture map, at each depth step

For each depth, median value 
of the 40 equivalent texture maps

(a)

(b)

(c)

(d)

(e)

Figure 6. Construction of the texture maps: (a) the bed topogra-

phy derived from the photogrammetry process, (b) the normalized

bed topography using Eq. (1), (c) normalized bed topography sorted

in 10 layers (the minimum and maximum surface are not included

in the layers), (d) 400 equivalent texture maps, and (e) 10 median

equivalent texture maps for each normalized bed depth.

3.3 Equivalent texture distribution

The equivalent textures of the different layers all cover the

same range of values. Within the morphological active layer

each equivalent texture can be found in every layer, every

layer has the full range of equivalent texture values, and the

proportion of equivalent textures is almost identical for all

layers (Fig. 9).

The shift of the equivalent texture distribution for the first

two layers just above the minimum surface indicates that

the average equivalent texture is slightly coarser for layers

near the minimum surface (Fig. 9). The total number of data

points is small compared to other layers due to the slight lo-

cal aggradation in part of the flume during the experiment.

Figure 7. The bed elevation is normalized by the morphological

active layer thickness. On initial topography (a), local topographic

gradients affect local elevation of features. On normalized topog-

raphy (b), equivalent features all have elevation shown by the same

range of color over the model extent; for example, channels are blue

and high bar tops dark red. The flume slope is removed.

Nevertheless, among those points, this small coarse shift re-

flects the increased presence of coarse patches in the lower

parts of the morphological active layer.

In this study we assessed the grain size variation vertically

within the morphological active layer of a physical model

of a gravel-bed braided river. To avoid slope and topogra-

phy bias, the bed topography was normalized and the results

demonstrate that, aggregated at the scale of the major mor-

phological units of a braided channel, there is no strong verti-

cal trend in the median size. Every equivalent texture occurs

in each layer with approximately equal frequency. However,

focusing on the coarse end of the equivalent texture distri-

bution, there is a slight tendency for more coarse patches in

the lower part of the morphological active layer. The pres-

ence of these coarse patches may relate to particular mor-

phological features inherited from morpho-textural patterns

on the river bed. For example, Fig. 10 shows the localization

of the coarse patches (regardless of bed depth) and anabranch
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Figure 8. Equivalent texture maps: layer 1 (a), layer 2 (b), layer 3 (c), layer 4 (d), layer 5 (e), layer 6 (f), layer 7 (g), layer 8 (h), layer 9 (i),

and layer 10 (j). The white part of the color scale is centered around the median value (2.7) of the distribution combined.

Figure 9. Equivalent texture histogram. The dashed lines represent

the lower layers: layers 1 and 2. The shift of the equivalent distribu-

tion of those two layers indicates that the median equivalent texture

is slightly higher close to the minimum surface.

confluences. Confluences were identified manually (Gardner,

2009), and the map (Fig. 10) shows time-integrated conflu-

ence positions. The majority of coarse patches are located

on the confluence area or in the downstream channel. These

coarse patches may correspond to “fixed” grain patches be-

cause of their location close to confluences (Nelson et al.,

2009, 2010). Further analysis of these and other features is

needed to understand the relationship between texture and

Figure 10. Confluence and coarse patches map. Black lines are

the boundaries of confluence areas over 40 h. Gray dots are coarse

patches.

channel morphology at the reach scale to explain details of

size sorting within the morphological active layer.

4 Discussion

Overall the results indicate that, while local sorting patterns

are complex, the morphological active layer can be consid-

ered, on aggregate at reach scale, to be homogeneous with re-

spect to median grain size between sedimentary layers of the

bed. In other words, there is nearly equal probability of en-

countering any texture value at any relative elevation within

the morphological active layer. This is consistent with some

www.earth-surf-dynam.net/3/577/2015/ Earth Surf. Dynam., 3, 577–585, 2015
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observations suggesting very little general vertical sorting

trends within gravelly braided alluvium (Lunt and Bridge,

2004; Guerit et al., 2014). In morphological approaches to

computing bedload transport in braided rivers (Ashmore and

Church, 1998) it is implicit that transport involves the en-

tire morphological active layer. From our results a good first-

order approximation of grain sizes available for transport is

that all grain sizes are equally available at all elevations in

the morphological active layer over relevant morphodynamic

timescales.

Therefore, available sediments at any location and time

match the bulk size distribution of the morphological active

layer. This also provides both an initial basis for numerical

modeling of bedload transport in braided rivers with mixed

sediment sizes (e.g., Sun et al., 2015) and a means for mu-

tual testing of grain size sorting in physical and numerical

models, for which limited and strategic field sampling could

provide validation.

5 Conclusions

A physical model of a gravel braided river provided data on

the range of elevation values from a sequence of photogram-

metric DEMs covering 40 h of model time. From these data

the vertical extent of the morphological active layer of the

river can be defined at any location. Textural analysis of the

photogrammetric images yields equivalent texture (median

grain size) at any location on each DEM and therefore a com-

plete three-dimensional picture of grain size variation in the

morphological active layer during active development of the

braided river. Analysis of the bed elevation layers normal-

ized by active layer depth shows that the morphological ac-

tive layer is approximately homogeneously mixed except for

some slightly higher proportions of coarse texture in the low-

ermost layers. Further analysis of the distributions is needed

to understand how this mixing develops in relation to bed

scour and deposition in braided rivers. The result provides

an initial approximation of grain size variation for numerical

modeling of morphodynamics of braided rivers with mixed

size sediment incorporating local size sorting and tracking

the grain sizes at any location within the morphological ac-

tive layer.
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