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Abstract. Physical processes, including anthropogenic feedbacks, sculpt planetary surfaces (e.g. Earth’s). A

fundamental tenet of geomorphology is that the shapes created, when combined with other measurements, can

be used to understand those processes. Artificial or synthetic digital elevation models (DEMs) might be vital

in progressing further with this endeavour in two ways. First, synthetic DEMs can be built (e.g. by directly

using governing equations) to encapsulate the processes, making predictions from theory. A second, arguably

underutilised, role is to perform checks on accuracy and robustness that we dub “synthetic tests”. Specifically,

synthetic DEMs can contain a priori known, idealised morphologies that numerical landscape evolution mod-

els, DEM-analysis algorithms, and even manual mapping can be assessed against. Some such tests, for instance

examining inaccuracies caused by noise, are moderately commonly employed, whilst others are much less so.

Derived morphological properties, including metrics and mapping (manual and automated), are required to es-

tablish whether or not conceptual models represent reality well, but at present their quality is typically weakly

constrained (e.g. by mapper inter-comparison). Relatively rare examples illustrate how synthetic tests can make

strong “absolute” statements about landform detection and quantification; for example, 84 % of valley heads in

the real landscape are identified correctly. From our perspective, it is vital to verify such statistics quantifying the

properties of landscapes as ultimately this is the link between physics-driven models of processes and morpho-

logical observations that allows quantitative hypotheses to be tested. As such the additional rigour possible with

this second usage of synthetic DEMs feeds directly into a problem central to the validity of much of geomorphol-

ogy. Thus, this note introduces synthetic tests and DEMs and then outlines a typology of synthetic DEMs along

with their benefits, challenges, and future potential to provide constraints and insights. The aim is to discuss how

we best proceed with uncertainty-aware landscape analysis to examine physical processes.

1 Introduction

Physical processes sculpt planetary surfaces such as the

Earth’s. A fundamental tenet of geomorphology is that the

form of the surface created, when combined with other data

or modelling, can be used to understand those processes.

This endeavour to reconcile observation and theory is, es-

sentially, model validation (e.g. Martin and Church, 2004;

Pretty, 2009, 2010) summarised by the question “Has the

right model been constructed?” (Balci, 1998). Figure 1 il-

lustrates the pathways towards reconciliation between obser-

vations of reality and models, which in geomorphology is

conducted through some properties or metrics diagnostic of

the landscape of interest; the pathways lead to this reckon-

ing from both physical reality and from conceptual models,
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Figure 1. Illustration of the pathways and stages in reconciling geomorphological models with reality in order to understand the physical

processes that sculpt planetary surfaces. Stages are in black, and tasks undertaken to move between them are in grey, with double-headed

arrows indicating possible feedbacks. Synthetic DEMs may be created through various routes, and may be employed to add rigour to both

the making of DEMs and the observing of them to derive landscape properties.

which may vary in sophistication (e.g. may even be qual-

itative). Whilst visual comparisons of landscape properties

are obviously possible, quantitative morphometrics of DEMs

(“observe” in Fig. 1) are a stronger approach, and these vary

according to the types of study being undertaken.

Discrete landforms (see Evans, 2012) (e.g. craters, cirques,

drumlins, volcanoes) can be delimited with a closed bound-

ary and then isolated in order to quantify key character-

istics such as height, H , or slope of a flank (e.g. Hillier,

2008). Linear features (e.g. rivers) can also be measured.

Equally, spatially continuous properties of digital elevation

models (DEMs) can be quantified (e.g. roughness, wetness

index) (Beven and Kirkby, 1979; Grohmann et al., 2011;

Eisank et al., 2014). Such morphology-derived observational

data, including metrics from mapping that is both manual and

automated, add to the more qualitative assessments that may

be drawn directly from geomorphological maps.

Quantifying discrete landforms can give additional in-

sights and provide constraints on models of physical pro-

cesses. For example, discrete fluvial bedforms and their vari-

ability are quantified and used to predict extremes for en-

gineering purposes (e.g. depth to place a pipeline) (van der

Mark et al., 2008). Impact crater size–frequency distribu-

tions are used to estimate the age of the surface of the Moon

and planetary bodies (e.g. Mars and Mercury) (e.g. Hart-

mann and Neukum, 2001; Ivanov et al., 2002). Similarly,

size–frequency distributions of volcanoes have been used to

examine how melt penetrates the tectonic plates (e.g. Wes-

sel, 2001; Hillier and Watts, 2007). Aeolian dunes’ forma-

tion can be constrained by their sizes (e.g. Durán, 2011; Bo

et al., 2011). In sub-glacial geomorphology “flow sets” of

proximal bedforms thought to created by the same ice mo-

tion occur exponentially less often as their size increases

(Fig. 2), which arguably indicates that substantive elements

of the ice–sediment–water system beneath ice sheets contain

randomness (Hillier et al., 2013).
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Figure 2. Semi-logarithmic frequency plot of the lengths, L, of UK

drumlins adapted from Hillier et al. (2013). Black dots are data

digitised from Fig. 8 of Clark et al. (2009), with a bin width of

∼ 50 m. Red line is the exponential trend. Crosses indicate zero

counts, placed at a nominal value of 1. Aspects of the curve are

speculatively associated with processes, i.e. glacial, or related to

erosion and DEM construction.

Quantitative analysis can also provide constraints when

applied to linear features and spatially continuous measures.

Channel geometry is measured to investigate the influences

of tectonic or climatic landscape forcing (e.g. Brummer and

Montgomery, 2003; Wohl, 2004; Sofia et al., 2015), and

channel networks are identified to evaluate hydrological re-

sponses in floodplains (e.g. Cazorzi et al., 2013). Continuous

measures such as curvature can arguably distinguish dom-

inant geomorphic processes (e.g. diffusive vs. fluvial) (e.g.

Tarolli and Dalla Fontana, 2009; Lashermes et al., 2007),

and can be designed to detect the presence of anthropogenic

features (e.g. agricultural terraces) (Sofia et al., 2014). They

can also be used to estimate the probability of landsliding

during rainstorms or for (semi-)automated geomorphologi-

cal mapping (e.g. Tarolli and Tarboton, 2006; Milledge et al.,

2009; Eisank et al., 2014). Thus, such quantifications also

have value for geomorphic understanding. Importantly, these
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examples illustrate how a robust, reproducible, and quantita-

tive approach can be used to develop our understanding of

process.

Any enhanced use of landform observations, however, re-

lies on us being able to trust what we have mapped or quan-

tified. Specifically, the key question is, in terms of precision,

accuracy, and mapping completeness, to what extent is it pos-

sible to trust the metrics derived from morphometric quantifi-

cation of the landforms or surface recorded in the DEMs?

One way around this difficulty is to derive descriptive

statistics that are as robust as possible to observational short-

comings (e.g. Hillier et al., 2013; Sofia et al., 2013; Tseng et

al., 2015). Another solution is to assess the quality of the

morphological mapping and quantification, perhaps either

by an estimate of data completeness or quality (e.g. Hillier

and Watts, 2007) or by traditional inter-comparisons between

mappers (e.g. Podwysocki et al., 1975; Siegal, 1977; Smith

and Clark, 2005) or techniques (e.g. Sithole and Vosselman,

2004). The difficulty with robust statistics is that they will

still be distorted if shortcomings are substantial (e.g. Hillier

and Watts, 2004), and inter-comparisons can only ever yield

relative levels of success and even complete agreement is in-

conclusive; all techniques, mappers, or techniques calibrated

to mappers (e.g. Robb et al., 2015) may be systematically

missing things (e.g. smaller features; Eisank et al., 2014;

Hillier et al., 2014). Furthermore, it is simply not possible

to calculate or estimate the magnitude of potential system-

atic biases within these approaches. An alternative is to ver-

ify each method or result against suitable features or proper-

ties known a priori within a suitably constructed test DEM.

Thus designed landscapes, or “synthetic” DEMs, can give

strong “absolute” answers (e.g. 84 % of valley heads in the

real landscape are identified correctly), and may be vital in

allowing us to proceed better with uncertainty-aware land-

scape analysis to examine physical processes.

Synthetic DEMs built by directly using postulated govern-

ing equations that encapsulate processes, or landscape evo-

lution models (LEMs) (e.g. Chase, 1992), are another key

part of examining the form–process link. By altering their

constants (e.g. rainfall, hillslope diffusivity) and mathemat-

ical construction they can give insights into the drivers and

impacts of physical processes (e.g. Willgoose et al., 1991;

Montgomery and Dietrich, 1994; Miyamoto and Sasaki,

1997). LEMs are, however, not yet the whole solution since,

to be securely compared to reality, equivalent landforms

within both DEM types must still be robustly quantified,

sometimes making validation or calibration very difficult

(e.g. Martin and Church, 2004; DeLong et al., 2011). It is

also possible to use synthetic DEMs to test for inaccuracies

in DEMs created by LEMs or by measuring a landscape (i.e.

“make” in Fig. 1); one example of this might be requiring that

LEMs replicate analytic solutions of the governing equations

for simple geometries and forcings. Ultimately, all synthetic

DEMs originate in a conceptual view of at least one aspect of

a landscape (e.g. drumlin shape, stream-power-based fluvial

behaviour).

This note introduces synthetic tests and DEMs and then

outlines a typology of synthetic DEMs along with their ben-

efits, challenges, and future potential to provide constraints

and insights. Note that “virtual” and “artificial” are used in-

terchangeably with “synthetic”, as they are in the literature.

2 Synthetic tests and the potential uses of synthetic

DEMs

In fields such as geophysics it is standard to verify any

method against its performance on some idealised or “syn-

thetic” data. A well-documented example is the classic “syn-

thetic checkerboard” test (e.g. Dziewonski et al., 1977; Say-

gin and Kennett, 2010) used in tomographic imaging of the

Earth’s interior. Broadly, there are four requisite stages for

such a test based upon synthetic data (e.g. Nolet et al., 2007).

1. Construct a synthetic input including any features of in-

terest (e.g. the morphology of a landform).

2. Create the synthetic data that resemble the observed

data, for instance adding suitable noise.

3. Invert the synthetic data using the same numerical ap-

proach applied to the observed data.

4. Compare the inverted result with the synthetic input to

see how well the assumed synthetic input (e.g. land-

form) is recovered.

The difficulty always lies in generating a suitable, statisti-

cally representative synthetic; in the case of geomorphology

the task is to create an “appropriate” synthetic landscape or

DEM that is realistic enough in the aspects under investiga-

tion.

DEMs containing a synthetic component have been em-

ployed in “synthetic tests” to assess approaches used to

estimate the fractal dimension of topography (Malinverno,

1989; Rodriguez-Iturbe and Rinaldo, 1997; Tate, 1998a, b),

slope and aspect (Zhou and Liu, 2004), land surface param-

eters (LSPs) (e.g. Wechsler and Kroll, 2006; Sofia et al.,

2013), and the reliability of DEMs (e.g. Fischer, 1998; Ok-

sanen and Sarjakoski, 2010). Additionally, they have been

used to evaluate how well some features (e.g. river networks,

terraces) are identified (Pelletier, 2013; Sofia et al., 2014)

and others (e.g. submarine volcanoes and drumlins) are iso-

lated in 3-D (i.e. their volumes explicitly delimited) (Wes-

sel, 1998; Hillier, 2008; Kim and Wessel, 2008; Hillier and

Smith, 2014). Synthetics have also been used to assess algo-

rithms quantifying landscape processes such as flow routing

(e.g. Pelletier, 2010) and to give a first insight into how effec-

tive the manual mapping of glacial bedforms is (Hillier et al.,

2014). Often, when including randomness (e.g. in locations

or noise) in a Monte Carlo approach, multiple realisations
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of a landscape (e.g. n= 10 or 1000) are used to understand

uncertainty and variability and more tightly constrain results

(e.g. Heuvenlink, 1998; Raaflaub and Collins, 2006; Wech-

sler and Kroll, 2006). The large (e.g. 60–66 % in Hillier et

al., 2014) and systematic trends and biases that studies so far

have uncovered indicates that the uses of synthetic tests in ge-

omorphology should be, arguably, similar in extent and func-

tion to the current use of inferential statistics; namely they are

a demonstration that the observation claimed actually exists

or the method actually works. Some potential applications of

synthetic tests in geomorphology can be categorised as fol-

lows:

– Assessing the impact of “noise” (e.g. Sofia et al., 2013;

Zhou and Liu, 2002, 2008) that could be instrumental,

anthropogenic (e.g. houses), or natural (e.g. vegetation).

This applies to making DEMs from measurement, and

making quantitative observations from any DEM.

– When observing, verifying that a geomorphic signature

is actually characteristic of a particular landform type of

interest, rather than other morphologies in a study area

(e.g. Conway et al., 2011; Sofia et al., 2014).

– Quantifying extraction of features using metrics such as

completeness and reliability (e.g. Hillier et al., 2014;

Eisank et al., 2014); in this the key advantage is that

synthetics give “absolute” measures of accuracy simply

not possible with traditional mapper inter-comparisons

(e.g. 34–40 % of drumlins can be detected).

– Assessing filtering or other techniques used to manipu-

late a DEM (e.g. Hillier and Smith, 2014), whose choice

would otherwise be subjective.

– Evaluating the sensitivity of algorithms quantifying ge-

omorphic processes to modelling assumptions, such as

DEM resolution (e.g. Pelletier, 2010).

– Determining whether or not LEMs have been correctly

constructed (i.e. “make” in Fig. 1).

Ultimately, the geomorphological intention is to use syn-

thetic DEMs to examine more clearly the expression of phys-

ical processes. Rigour added to geomorphological observa-

tions through testing with synthetic DEMs will, we believe,

ultimately link physics-driven models of processes to mor-

phological observations, allowing quantitative hypotheses to

be formulated and tested (e.g. see McCoy, 2015). This is il-

lustrated in Fig. 1, the crux of which is that it is necessary to

quantify landscape properties to rigorously reconcile DEMs,

with some main elements of this described in more detail be-

low.

If arguably realistic forms can be generated directly by a

physics-based model (e.g. Dunlop et al., 2008; Refice et al.,

2012; Brown, 2014) creating a synthetic DEM, these may

in principle be linked directly to reality if suitably equiva-

lent field sites can be found, measured, and recorded in a

DEM. The effects of various constants (e.g. rainfall), condi-

tions, and processes in the physical models on observables

can be viewed and compared to reality by the simple ex-

pedient of turning them off or amplifying them, of course

allowing carefully for appropriate initial and boundary con-

ditions. Comparisons have been qualitative (e.g. Kaufman,

2001), but they can provide more powerful insights if they

apply consistent mapping or quantification procedures (e.g.

Willgoose, 1994). Thus, creating a form–process link will

still depend critically upon understanding any errors or bi-

ases in landform morphometrics (e.g. in size–frequency dis-

tributions, dominant wavelength) for both the measured and

generated landscapes (i.e. “observe” in Fig. 1). The appropri-

ate metrics are better understood for some landforms than for

others, and it is only possible to adequately assess their effi-

cacy (i.e. in an absolute sense) with tests involving a priori in-

formation and a DEM to apply the morphometric extraction

method to, or by our definition using a synthetic DEM. If lab-

oratory experiment replaces LEM-derived synthetic DEMs

in the paragraph above, the same logic applies.

For a landform that it is not yet possible to create numer-

ically from first mathematical principles, other routes exist.

The challenge is to securely relate the driving process (e.g.

tectonic uplift rate) to a measure of morphology (i.e. “con-

ceptual model” to “landscape properties” in Fig. 1), perhaps

using its variability within geographical areas. For example,

drumlin sizes observed for a number of flow sets might be

compared to characteristics of flow within a modelled ice

sheet (e.g. flow velocity) representative of the area of the

flow set. Statistical models can be formulated that link size–

frequency observations to parameters in numerical ice-flow

models (Hillier et al., 2016), but even potential empirical

rules about timing (e.g. immediately before deglaciation) and

the relationships to ice flow (e.g. size directly proportional to

velocity) could be tested. Robustly determined observational

metrics would be needed for such an inversion – i.e. syn-

thetic tests are needed. Realistic models are likely to contain

stochastic elements (e.g. Tucker et al., 2001); thus a statisti-

cal understanding may help to identity more effectively ap-

propriate parameterisations for size observations than testing

a variety of established distributions (e.g. the Weibull dis-

tribution; van der Mark, 2008). Observational robustness is

desirable in this case, but also for approaches that make pre-

dictions about landscape properties directly from conceptual

models, for instance dominant wavelengths (e.g. Anderson,

1953; Venditti, 2012).

A final use of synthetic DEMs is examining “what if” engi-

neering scenarios as they affect behaviours such as hydrolog-

ical processes (e.g. Tarolli et al., 2015). This may be some-

what tangential, but imposing a proposed artificial geometry

onto a measured DEM as a way of testing an artificial geom-

etry to be created on the part of the Earth’s surface is clearly

a legitimate pursuit.
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Figure 3. (a) HiRISE image of Zumba crater on Mars coloured according to elevation; HiRISE image

DT2EA_002118_1510_003608_1510_A01 and DEM DTEEC_002118_1510_003608_1510_A01, credit NASA/JPL/UofA. (b) Ra-

dial elevation profile; blue shading illustrates the data distribution, black dots are averages within 50 m distance bins, and the red line is a

parabolic fit to those points. (c) A synthetic crater created by rotating the parabolic equation, overlain by uncorrelated Gaussian noise and

displayed as in (a).

3 Synthetic DEM typology

Synthetic DEMs are only useful if they can be constructed,

and their construction must be from or clearly identify “com-

ponents” (e.g. a landforms layer). In contrast to viewing a

landscape as plan-view regions, height in DEMs can be de-

scribed at any location (x, y) as the sum of n “components”

(Eq. 1) (e.g. Wren, 1973; Wessel, 1998; Hillier and Smith,

2008), namely HDEM =H1+H2+. . .Hn. Conceptually, these

components lie on top of each other, like geological strata,

and extend across the entire DEM although they may have

zero thickness for few or many parts of it.

For landform analysis the first component would typically

be “noise” (e.g. DEM error, or surface “clutter” such as

trees), the small-scale height variations not genetically re-

lated to the landform. A second component would be the

landforms themselves, perhaps overlying a third component

of larger-scale trends (e.g. 10 km wide smoothly undulating

hills). However, in the limit, only one component is actually

required, and how the components are constructed will vary

depending upon the purpose of the synthetic DEM. Further-

more, the synthetic DEM might mix idealised, created com-

ponents with real ones. Typically randomness is involved in

the creation of statistical synthetics, and multiple realisations

of landscapes may be created. The broad approaches to con-

structing synthetic DEMs are outlined in the typology below.

3.1 Simple and statistical

Perhaps the simplest synthetic DEMs are those constructed

by using basic geometries as building blocks such as cones,

Gaussian functions, and planes or other surfaces defined by

simple equations (e.g. Hodgson, 1995; Wessel, 1997; Jones,

1998; Kim and Wessel, 2008; Hillier, 2008; Pelletier, 2010;

Qin et al., 2012); admittedly, some functions may be less

simple (e.g. Pelletier, 2013; Minár et al., 2013). Typically,

generalised shapes (e.g. 2-D Gaussian, rotated parabola) are

formulated based upon visual or statistical fitting of the func-

tions to measured morphologies (e.g. Conway et al., 2011;

Hillier and Smith, 2012; Pelletier, 2013) (Fig. 3); fits may

not be perfect (Fig. 3b), highlighting that all synthetic DEMs

are simplifications of reality.

These synthetics do not contain the complexity in the

observed landscape, or necessarily have realistic statistical

properties, but they have the advantages of being simple to

construct and understand, and noise can be entirely omitted

or modified with certainty in order to investigate data errors.

They contain the key morphologies under investigation and

are perfectly sufficient for some tests; for example, are ap-

proximately conical submarine volcanoes of variable size ef-

fectively isolated even when upon a slope? (Fig. 4). Statis-

tically generated “noise” can be added to simple synthetic

DEMs to assess the degradation caused (e.g. Zhou and Liu,

2004; Jordan and Watts, 2005), but for results to be meaning-

ful, its statistical distribution (e.g. Gaussian, uniform), length

scale of correlation, and any non-stationarity must be correct

(e.g. Fischer, 1998, Sofia et al., 2013).

Whole landscapes can be generated statistically using frac-

tals (e.g. Mandelbrot, 1983) or multi-fractals (Fig. 5a) (e.g.

Gilbert, 1989; Schertzer and Lovejoy, 1989; Weissel et al.,

1994; Cheng and Agterbeg, 1996), and these can be use-

ful if the construction matches closely the element of real-

ity being considered (e.g. uncorrelated, fractal in Swain and

Kirby, 2003). Even multi-fractal landscapes, however, may

not be an adequate representation without considering prop-

erties such as anisotropy (e.g. Evans and McClean, 1995;

Gagon et al., 2006) and characteristic scales (e.g. Perron et

al., 2008) if they are important in a particular circumstance.

A limitation of these purely statistically generated, or statis-

tically altered, DEMs for landform analysis is that they do
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Figure 4. (a) A simple 2-D (i.e. distance–height profile) synthetic

seamount (grey shading) (Hillier, 2008), which following Kim and

Wessel (2008) is conical with a radius of 3 km and summit height of

3 km above the surrounding seafloor. The thin black line is the syn-

thetic topography, and the thick black line the filter’s output. (b) A

more demanding test of two variably sized seamounts upon a slop-

ing surface.

not explicitly contain spatially distinct, isolated features (i.e.

landforms are not labelled as such during generation).

3.2 Landscape evolution models

DEMs resembling real landscapes can also be created by

the application of mathematical characterisations of physi-

cal processes in numerical models typically known as “land-

scape evolution models” (LEMs) (Fig. 5b) (e.g. Chase, 1992;

Braun and Sambridge, 1997); implementation approaches

can vary (see Griffin, 1987). These now incorporate numer-

ous processes (e.g. Tucker and Hancock, 2010; Refice et al.,

2012); for example, bedrock landslides (e.g. Densmore et al.,

1998), flexure of the lithosphere (e.g. Lane et al., 2008), and

erosion by ice flow within valleys (e.g. Harbor, 1992; Brock-

lehurst and Wipple, 2004; Amundson and Iverson, 2006;

Tomkin, 2009), including when this is thermo-mechanically

coupled to ice sheets (e.g. Jamieson et al., 2008). Models of

the evolution of single classes of a feature (e.g. bedforms)

and simpler 2-D configurations (i.e. x–z profiles) fall within

this class of model (cf. Dunlop et al., 2008; Zhang et al.,

2010; Brown et al., 2014). Simple geometries or measured

landscapes may be used as an input (e.g. DeLong et al., 2011;

Refice et al., 2012; Baartman et al., 2013; Hancock et al.,

2015).

Several difficulties prevent these models from, as yet, be-

ing ideal solutions. In terms of testing observational methods,

the first difficulty is that the method of generating some land-

forms, such as drumlins, from first principles is often con-

tested (cf. Hindmarsh, 1998; Schoof, 2007; Pelletier, 2008),

and it is not computationally practical to include certain pro-

cesses, such as impact crater formation in the MARSSIM

model (Howard, 2007). The simulation of rivers illustrates

an area where there is progress, but also much to do (cf.

Coulthard et al., 2013; Brown et al., 2014). In general, a

highly accurate and widely accepted unified model is still

some way off. The second difficulty is that these models do

not currently associate processes with a type of landform.

For instance, a bedrock failure process is a bedrock failure

process, not a bedrock failure process explicitly making a

V-shaped valley. Equally, sediment is not tagged as making a

floodplain. Thus, the number and location of defined features

are not known a priori. This can be seen as a strength of the

models, but means that creating a secure link from process

to landforms as observed in reality requires a step in which

consistent mapping or quantification procedures are applied

to both measured and simulated DEMs. This is not easy (e.g.

DeLong, 2011). The lack of a priori features may also be

the reason that, although LEMs have great potential to create

DEMs for synthetic tests of landform mapping or extraction

methodologies, we are not aware of this being done. Like

simple or statistical synthetic DEMs, synthetics created by a

LEM have the advantage of being free from errors associated

with DEM measurement (e.g. instrumental, processing).

3.3 Laboratory-derived

If LEM-derived DEMs can be considered as synthetic DEMs,

then laboratory-derived ones (e.g. Hancock and Willgoose,

2001; Lague et al., 2003; Graveleau and Dominguez, 2008;

Sweeny et al., 2015) could also be considered so. Such ex-

periments can control variables such as rainfall and uplift that

are impossible to precisely control in nature (e.g. Sweeny et

al., 2015), but limitations in realism exist particularly in scal-

ing (see Paola et al., 2009).

3.4 Complex geometrical

A possible class of synthetic DEM is one that uses simple or

statistical building blocks, but constructed in a more complex

fashion. For instance, multiple idealised shapes can be given

additional observed attributes (e.g. spatial clustering, size–

frequency realism) (e.g. Howard, 2007; Hillier and Smith,

2012), but such DEMs have so far contained other elements

of realism as well, perhaps making them better described as

hybrids.
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Figure 5. Comparison of simulated DEMs in (a) and (b) with lidar measurement of a real landscape in the south of Italy in (c). (a) Fractional

Brownian motion (Mandelbrot, 1983); initial roughness of the surface= 0.2, initial elevation of the surface= 0.0, and change of roughness

over change of terrain= 0.005. Output is dimensionless, but is effectively given the same scale and resolution as (c) by assigning each pixel

a 2× 2 m size. (b) A landscape model (Refice et al., 2012) that evolves through time a southward-dipping initial topography containing

small-scale randomness, with all four boundaries closed except the lower right corner. Simulated time is ∼ 30 kyr and the run parameters are

tectonic uplift uf = 1 mm yr−1; diffusivity constant kd = 0.2 m2 yr−1; with channelling parameters of Kc = 10−4 m(1−2 m) yr−1, m= 0.5,

and n= 1. The spatial dimensions of (b) are as in (c). Centroid in (c) is 14◦37′59.46′′ E, 40◦43′25.80′′ N.

10
s 

of
 m

100 m

(a) (b)Original Synthetic

inserted
removed

fewX Z
Y

Process of creating 
the synthetic DEM

Figure 6. Idealised distance–height profiles to illustrate the process used by Hillier and Smith (2012) to create synthetic DEMs. There are

three “components”. Drumlins, which are shaded dark grey, rise above a regional trend indicated by a dotted line. These are overprinted by

“clutter” or “noise” shown in light grey. (a) In the process the upper and lower surfaces of the drumlin (X) are estimated to define it, and its

height is subtracted from the measured DEM. (b) Two Gaussian-shaped drumlins (Y and Z) are then inserted by adding their height to create

the synthetic DEM.

3.5 Hybrid

A “hybrid” class of synthetic DEM contains, for reasons of

practicality, elements of the other classes. Typically, either a

morphology whose key properties cannot currently be read-

ily simulated is retained (e.g. most or all of a measured DEM)

or an idealised but observationally constrained component is

added (e.g. terraces; Sofia et al., 2014), or both. The spec-

trum of what is possible is illustrated by the, relatively rare,

studies using hybrid synthetic DEMs in geomorphology.

A first example of a hybrid synthetic DEM is impact crater

formation in the MARSSIM model (Howard, 2007). This

evolution model does not dynamically model crater forma-

tion. Instead, randomly located craters are assigned shapes

from a catalogue of measurements of individual fresh craters

on Mars and given sizes from a power-law distribution. This

introduces certain assumptions, such as the fresh craters be-

ing representative, but avoids complexity. A second example

deals with the quantification of glacial bedforms, illustrated

with drumlins (Hillier and Smith, 2012, 2014; Hillier et al.,

2014). It is the association of the bedforms with underly-

ing trends (i.e. “hills”) and complex and spatially structured

“noise” (e.g. trees, roads, houses) that makes the quantifi-

cation difficult; in particular, this noise is problematic, and

geomorphological analyses have yet to attempt simulating it.

The approach taken was therefore to circumvent this issue

entirely by leaving the hills and noise as they were, and mov-

ing the drumlins such that they were randomly positioned

with respect to these problems for identification (Fig. 6).

Orientations and spatial density distribution (i.e. number per

km2) were preserved, as were the geometries (i.e. height–

width–length triplets) of the 173 drumlins shuffled around.

In these synthetics (Fig. 7), the number and location of de-

fined features are known a priori such that sizes and loca-

tions of mapped discrete landforms can be compared to syn-

thetic ones directly. Similarly, but by assuming the highest-

quality measured lidar DEMs were perfect, even if this is

debatable, it is possible to circumvent the need to generate

statistically realistic landscapes when investigating DEM er-

rors (Raaflaub and Collins, 2006; Sofia et al., 2013). Anthro-

pogenic elements (e.g. open-cast mines, terraces) visually de-
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Figure 7. Illustration of a real DEM in (a) and a “hybrid” synthetic generated from (b). Method used is as in Fig. 6 (Hillier and Smith, 2012),

adapted to locally align drumlins with each other (Hillier et al., 2014). Map coordinates are of the British National Grid (5 m grid). Synthetic

drumlins were orientated at 90◦ to the original ones to avoid any possible confusion with any incompletely removed original ice-flow fabric

during the mapping exercise.

termined to be reasonable can also be added (e.g. Baartman

et al., 2015), for instance, to a 2-D multi-fractal statistical

landscape (Sofia et al., 2104; Chen et al., 2015).

4 Discussion

By providing an a priori known answer to test against, syn-

thetic DEMs or DEMs containing a synthetic component

have some clear and powerful advantages in geomorphologi-

cal analyses. They can be used to test errors and systematic or

random biases and to unpick potential sources of misinterpre-

tation. Furthermore, they give absolute answers (e.g. 47 % of

all actual drumlins H > 3 m are mapped) to questions about

accuracy that are simply not obtainable by other means, and

are often considered “objective”. Through this they provide

a route to answering key questions about geomorphic pro-

cesses (e.g. Fig. 1). There are, however, complexities sur-

rounding these statements, which are less commonly recog-

nised. There are issues of objectivity, realism, circularity, and

the cost in time and effort of constructing synthetics.

Whilst the conclusions reached through the use of synthet-

ics may be simplistically thought of as objective, it is more

accurate to say that they are quantitative and reproducible,

and that they are likely to be significantly less subjective.

Without perfect, all-purpose synthetics an element of subjec-

tivity will remain in the choices made when designing the test

DEM. Hillier and Smith (2012) illustrate some choices and a

logical justification for them. Manually selecting data to test

against (e.g. Sithole and Vosselman, 2004; Hillier and Watts,

2004) is faster in some circumstances, if more subjective. Re-

producibility makes testing using synthetic DEMs superior to

subjective visual verification, even if synthetic tests later in-

dicate the visual estimate was a reasonable solution (Hillier

and Smith, 2012, 2014). Pre-existing synthetic DEMs, how-

ever, are entirely objective means for inter-comparison for

future studies (e.g. Eisank et al., 2014).

A thorny question regarding synthetics is, how realistic is

realistic enough? At one limit, it is notable that even extreme

simplifications such as conical volcanoes can give significant

and useful first-order insights (e.g. Kim and Wessel, 2008;

Tarolli et al., 2015). At the other limit, synthetic DEMs are

not used on the basis that their applicability to real data sets

is questioned (e.g. Robb et al., 2015). Lacking a perfect set

of properties, however, should not be taken to invalidate tests

using a synthetic DEM; in statistics, for instance, Student’s

t test, underpinned by its idealised Gaussian distribution, is

widely used, although observations are rarely perfectly nor-

mal. A challenge then is to determine a generalised objective

framework or workflow to assess the sufficiency of the real-

ism of synthetic DEMs, but in its absence, what can be done?

Deficiencies can be visually identified. For instance, if spa-

tial resolution is raised as an issue, it can either be matched to

the observed data or varied for a sensitivity test. If a particular

statistical property and its variation with scale is key, it can

be measured to ensure it is realistic in the synthetic. There-

fore, if a clearly stated set of properties argued to be most

relevant to any given research task are faithfully reproduced

in synthetics, we believe they will provide useful insights.

Ultimately, however, practitioners within a peer group must

decide what is convincing, performing additional tests if nec-

essary. For example, Hillier and Smith (2012) did not locally

align neighbouring drumlins with each other, but participants

of the GMapping workshop (Hillier et al., 2014) felt that

this was critical. Modified DEMs with this property included

were therefore provided, although in the end this proved to

be a minor effect. Similarly, what must be captured well in a

synthetic DEM may critically vary between studies. This is

exemplified by the impact of life (e.g. buildings, earthworks,

trees, eco-geomorphic work by worms), which may either

be inconvenient “noise” (e.g. Hillier and Smith, 2012) or the

morphology of interest (e.g. Dietrich and Perron, 2006).

A more subtle potential issue is circularity. It is important

to avoid basing aspects of a synthetic DEM on an assump-

tion and then using it to support the assumption. This is eas-

ily avoided in simple synthetic DEMs, but a synthetic DEM

based on a landscape evolution model, for instance, should

not later be justified because a search algorithm trained on it

finds only similar features in a real landscape; the algorithm
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might just be missing things in the real landscape that differ

from what it has been trained to detect. A similar issue was

faced by Hillier and Smith (2012), but this was demonstrably

avoided as the filter later found to be optimal was not the one

initially assumed (Hillier and Smith, 2014).

Thus, subjectivity is reduced, even synthetic tests using

basic DEMs can give some insight, and circularity can be

avoided. On balance we argue that, if designed appropriately

and used with appropriate care, tests using synthetic DEMs

are worth the cost in time as they can be used to access re-

sults and insights of real significance and power. Exactly the

same can be said for the application of statistical techniques,

and so it seems reasonable to advocate the use of synthetic

tests with similar strength.

By making observations more robust, synthetic tests using

synthetic DEMs containing a priori known landforms have

the potential to strengthen the insights that can be gained

through synthetic DEMs generated using physics-based nu-

merical models, i.e. LEMs. LEMs can provide useful in-

sights, but they are not the entire solution; firstly, they cannot

model all processes yet, and secondly they are insufficient

without synthetic tests to secure the observational part of the

linkage between measured and generated DEMs. It is also

worth noting that LEMs are not the only route to creating a

from-process link since the other routes described (e.g. sta-

tistical) also provide a quantitative means of establishing a

form–process link even without a LEM. Thus, there are a

number of valid types and specific uses of synthetic DEMs,

but in combination we believe that they form a vital under-

pinning for the quantitative future of landform analysis (e.g.

see McCoy, 2015).

5 Conclusions

From this discussion on the uses of synthetic digital land-

scapes (i.e. DEMs), or synthetic elements within them, the

following overarching points can be drawn.

Synthetic DEMs can help to link physics-based models of

processes to morphological observations, allowing quantita-

tive hypotheses to be formulated and tested; importantly, this

is not only through the use of landscape evolution models.

– By establishing “absolute” answers, tests using syn-

thetic DEMs containing a priori known landforms are

a powerful tool with which to test and add rigour to ge-

omorphological observations, and arguably should be-

come as standard as statistical tests in geomorphology

or synthetic test data in other arenas (e.g. geophysics).

– A “perfect” synthetic DEM faithfully representing all

aspects of an environment is likely impractical or im-

possible to create at present, but is not necessary.

– Synthetic DEMs for tests may be easy and simple to

construct, yet still provide valuable insights.

– Synthetic tests using DEMs should be tailored to each

research question, and their appropriateness to the key

aspects of each inquiry (e.g. resolution, biases, and sen-

sitivities) should be set out clearly and logically.
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