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Abstract. In this work we develop a reduced-complexity model (RCM) for river delta formation (referred to as

DeltaRCM in the following). It is a rule-based cellular morphodynamic model, in contrast to reductionist models

based on detailed computational fluid dynamics. The basic framework of this model (DeltaRCM) consists of

stochastic parcel-based cellular routing schemes for water and sediment and a set of phenomenological rules for

sediment deposition and erosion. The outputs of the model include a depth-averaged flow field, water surface

elevation and bed topography that evolve in time. Results show that DeltaRCM is able (1) to resolve a wide range

of channel dynamics – including elongation, bifurcation, avulsion and migration – and (2) to produce a variety

of deltas such as alluvial fan deltas and deltas with multiple orders of bifurcations. We also demonstrate a simple

stratigraphy recording component which tracks the distribution of coarse and fine materials and the age of the

deposits. Essential processes that must be included in reduced-complexity delta models include a depth-averaged

flow field that guides sediment transport a nontrivial water surface profile that accounts for backwater effects at

least in the main channels, both bedload and suspended sediment transport, and topographic steering of sediment

transport.

1 Introduction

Home to hundreds of millions of people, major coastal

cities and infrastructure, immensely productive wetlands,

and some of the most compelling and diverse landscapes on

Earth – yet low-lying and vulnerable to storms and rising

sea levels – deltas are emerging as among the most critical

environments in a changing world (Syvitski et al., 2009).

They are also immensely complex. The science of deltas

comprises, in roughly equal parts, geomorphology, ecology,

hydrology, organic and microbial geochemistry, and human

dynamics. The physical dynamics alone would present a

formidable challenge, even if they were restricted to just tur-

bulent flow interacting with sand; but most natural deltas in-

volve major additional complications such as fine-grained

cohesive sediment (mud) and strong, two-way interactions

with biota.

A fundamental debate is developing across the sciences

as to the best way to model and understand such complex-

ity (e.g., Murray, 2003; Overeem et al., 2005; Paola and

Leeder, 2011; Paola et al., 2011; Hajek and Wolinsky, 2012).

Should we try to capture everything, creating models that

simulate the processes in as much detail as current knowl-

edge and computing power allow, or should we simplify,

even at the risk of losing connections with reality? Mod-

eling of deltas in recent years has produced excellent ex-

amples of both approaches, which we review below. Our

aim here is to present a model that resides in the middle

ground between detailed simulation and abstract simplifica-
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tion. We use a method based on weighted random walks,

where the random walks are constrained by rules based on a

hybrid of simplified governing equations for fluid motion and

phenomenological representation of sediment transport pro-

cesses. With suitable rules, DeltaRCM (reduced-complexity

model for river delta formation) is able to produce delta mor-

phologies that compare well with those produced by more

complex models such as Delft3D and with the morphology

of deltas in the field. We believe that the availability of abun-

dant computing power strengthens rather than weakens the

case for so-called reduced-complexity models such as the

one we propose here. Understanding – as opposed to sim-

ulating – complex natural phenomena requires a spectrum of

approaches and a clear understanding of the advantages and

disadvantages of each.

The paper begins with a review (Sect. 2) of current ap-

proaches to modeling deltas, emphasizing previous reduced-

complexity models. The detailed implementation of our

model is presented in Sect.3, and results from it in Sects. 4

and 5. In Sect. 6 we discuss the meaning of the model results

to date. Conclusions are provided in Sect. 7.

2 Modeling river delta formation

As with any morphodynamic model, the most direct delta

formation model would solve the governing equations for

water flow and sediment particles based on first principles,

i.e., the conservation of mass and momentum or energy, in

detail, given all the necessary initial and boundary condi-

tions. However, this is still not practical, not only because

of limits of computational power, but also because of the

potential error accumulation in such complex “full physics”

models (Hajek and Wolinsky, 2012). Existing models for

delta formation cover a wide range of scales and complex-

ity (Fagherazzi and Overeem, 2007; Paola et al. 2011).

On the simple side, models based on spatially averaged

delta surface topography can predict average delta dynam-

ics, such as laterally averaged surface profile, position of

the shoreline, and position of the alluvial–bedrock transi-

tion (Parker et al., 2008; Kim et al., 2009; Lorenzo-Trueba et

al., 2013). These models do not attempt to provide detailed

structure, such as topography and channel networks. On the

more complex side, to date, the most inclusive physics-based

delta formation model is Delft3D, which solves a depth-

integrated version of the Reynolds-averaged Navier–Stokes

equations (shallow water equations) with a turbulence clo-

sure term for horizontal Reynolds stresses, and coupled with

empirical sediment transport formulas based on bed shear

stress (Lesser et al., 2004; Edmonds and Slingerland, 2007).

Delft3D can resolve deltaic processes from smaller, engi-

neering scales such as river mouth-bar formation and bifur-

cation (Edmonds and Slingerland, 2007) to larger, geolog-

ical scales such as the whole delta morphodynamics con-

trolled by sediment cohesion (Edmonds and Slingerland,

2009), waves, tides and antecedent stratigraphy (Geleynse

et al., 2010). Delft3D is widely considered the best high-

resolution delta model available to the research community,

and its utility is greatly enhanced by the release of an open-

source version in 2012. In the middle ground of the model

complexity spectrum are the so-called reduced-complexity

models (RCMs). These models feature descriptive construc-

tions and intuitive simplifications over the hierarchy of nat-

ural processes, in contrast to highly detailed but computa-

tionally complex models such as Delft3D, while still evolv-

ing the topography and channel network without simplifying

to the degree of spatially averaged models. The most com-

mon form of models in this category is a rule-based cellu-

lar routing scheme, such as the braided river model by Mur-

ray and Paola (1994, 1997) and some of the early erosional-

landscape models (e.g., Willgoose et al., 1991). In terms of

channel-resolving delta formation models, an excellent ex-

ample is found in Seybold et al. (2007, 2009, 2010). In their

model, the water flux field is calculated on a lattice grid via a

set of simplified hydrodynamic equations which are equiva-

lent to a diffusive-wave form of the shallow water equations

with constant diffusivity. A few other examples of delta-

related channel-resolving RCMs include an avulsive delta

building model by Sun et al. (2002) and a channel-floodplain

co-evolution delta building model, AquaTellUS, by Overeem

et al. (2005).

RCMs are less computationally intensive than CFD (com-

putational fluid dynamics)-based high-fidelity models yet

still produce morphodynamic features at system scales, such

as stream braiding and floodplain aggradation. While com-

putational efficiency is often considered the reason for devel-

oping RCMs, their most important advantage is the flexible

rule-based framework which allows for direct translation of

phenomenological observations into the model (as opposed

to hoping that they will emerge given a sufficiently detailed

description of the underlying mechanics). The challenges of

building a RCM for delta formation are the following: (i) the

low topographic slope of the majority of river deltas (10−4–

10−5) does not provide a strong guide for topographic flow

routing, which is a key component in many RCMs for geo-

morphodynamic systems; (ii) the low slope together with rel-

atively deep, slow channel flow creates a low-Froude-number

environment such that the flow senses downstream informa-

tion over relatively long distances, making it difficult to de-

sign localized rules which are essential for RCMs; (iii) the

self-organized distributary channel network includes loops

that further complicate flow routing; and (iv) many river

deltas have suspended load and wash load as a primary sed-

iment input component, which make sediment routing more

complex than in a bedload-only system. In addition, the low-

Froude-number flow condition implies, as the Froude num-

ber tends to zero, a “rigid-lid” condition in which the shape

of the free surface is nearly flat. This condition potentially

offers computational advantages as the flow depth can be es-

timated from a fixed surface elevation (usually sea level or
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a simple function using backwater equations) and bed eleva-

tion, but is almost decoupled from the bed topography.

In this work, we present a RCM delta model using the

“weighted random walk” method. The basic goal is to de-

velop a model that includes just enough of the dynamics

to tackle the main problems listed above. To be more spe-

cific, we seek complexity-reduction in the following aspects:

(i) the solution of water surface elevation, (ii) the flow mo-

mentum balance, and (iii) the criteria for sediment deposi-

tion and erosion. A detailed model description is given in the

next section, followed by results and comparisons with ex-

perimental and field deltas, along with the results of more

detailed delta models, and then a discussion of the strengths

and weaknesses of our model approach.

3 Model construction

DeltaRCM has two components: a cellular flow routing

scheme as the hydrodynamic component, and a set of sed-

iment transport rules as the morphodynamic component. The

model uses a lattice of square cells for its domain, where wa-

ter and sediment flux are routed in a cell-by-cell fashion. The

model evolves in time by updating the depth-averaged flow

field, water surface elevation, sediment flux, and bed eleva-

tion at each time step.

3.1 Model setup

The physical setting of our delta formation model is simpli-

fied to a rectangular basin of constant water depth (hB) with

a short inlet channel on one side (Fig. 1). At the inlet we as-

sume a constant water discharge Qw0 (m3 s−1) and sediment

dischargeQs0 (m3 s−1). The boundary with the inlet channel

is a wall boundary such that no water or sediment crosses.

The other three boundaries are ocean boundaries with the

boundary condition of a fixed sea level, HSL.

For water and sediment routing, we first define a set of

global parameters that remain constant for each model run:

(1) a reference water depth h0, i.e., a representative flow

depth for the system, and (2) a reference slope S0, which is a

representative overall water surface slope of the system. For

example, for a lowland river delta, a typical value of h0 is

from a few meters to tens of meters, with S0 on the order of

10−4 to 10−5, while for an experimental fan delta, a typical

value of h0 is tens of millimeters and S0 on the order of 10−2.

The values are not precise but rather represent scale values,

and may require trial and error to validate for each specific

system. The depth of the inlet channel is set at h0 and the

inlet flow velocity is calculated as U0=
Qw0

h0 W
, which will be

referred to as a reference velocity of the system. W is the

inlet channel width, specified for each model run.

The domain is shown in Fig. 2, with cell size δc, a value

that depends on the target scale of the model run; e.g., in the

results section we use 50 m for a field-scale delta and 2 cm for

a laboratory-scale fan delta. The total number of cells along

the dip direction (from the inlet, into the basin) is Nx and the

number of cells along the strike direction (perpendicular to

the inlet, across the basin) is Ny . Typically, Nx and Ny are

both on the order of a hundred, with Ny being roughly twice

as large as Nx to allow for a semicircular delta growth. The

inlet has a width of N0 cells. Typically, N0 is around 5. The

primary quantities associated with each cell include (i) water

unit discharge vector qw= (qx , qy), (ii) water surface eleva-

tion H , and (iii) bed elevation η. These primary quantities

are updated at each time step. Other useful quantities such as

velocity vector u= (ux , uy) and water depth h can be eas-

ily calculated from the primary quantities by h=H − η and

u=
qw

h
.

Two types of parcels that carry a water or sediment at-

tribute are routed through the domain. A time step is defined

by the addition of nw water parcels and ns sediment parcels.

This is done through a sequence of water parcels carrying an

equal fraction of the total input water discharge during a time

step followed by sediment parcels carrying an equal fraction

of the total input sediment discharge during a time step.

Within each model run, the size of the time step 1t is

constant. As is often the case in numerical modeling, the

choice of1t is a balance between computation efficiency and

model stability. In each time step, the total amount of sedi-

ment added to the domain is measured by 1Vs=Qs01t . A

smaller1Vs means less change to the topography and allows

the cellular routing scheme to perform better with a more

consistent terrain but, obviously it will take more steps to

build the delta to a certain size. Here we introduce a refer-

ence volume,

V0 = h0δ
2
c , (1)

which is the volume of a channel inlet cell from the bed to

water surface. If we assume that channels on the delta self-

organize in scale with the reference depth h0, this reference

volume gives a good measurement of the characteristic to-

pographic change on the growing delta. Currently we set the

time step size so that the sediment volume added in each time

step satisfies

1Vs = 0.1N2
0V0. (2)

Therefore, time step size is given by

1t =
0.1N2

0V0

Qs0

. (3)

3.2 Model operation

The operations can best be understood by describing the pro-

cesses in a single time step. There are four distinct phases:

(1) the addition and routing of the water; (2) updating of the

water surface elevation; (3) routing the sediment parcels and

updating the bed elevation through deposition and erosion;

and (4) updating of the routing direction, a vector field that

www.earth-surf-dynam.net/3/67/2015/ Earth Surf. Dynam., 3, 67–86, 2015



70 M. Liang et al.: A reduced-complexity model for river delta formation – Part 1

Figure 1. Illustration of the basin, boundaries and inlet channel.

Figure 2. Diagram of the lattice grid and the primary values at each cell (water unit discharge, water surface elevation and bed elevation).

Note that the total number of cells is reduced for the illustration.

determines the direction of flow through each cell in the do-

main. Each of these phases is described in turn.

To prepare, we divide the upstream water discharge (Qw0)

and the total sediment input volume during a time step (1Vs)

into parcels. Typically, we use nw= 2000 water parcels and

each water parcel carries an equal amount of discharge:

Qp_water =
Qw0

nw

. (4)

Likewise, we use ns= 2000 sediment parcels and each sedi-

ment parcel carries an equal amount of sediment volume:

Vp_sed =
1Vs

ns

. (5)

3.2.1 Phase 1: water routing

At the start of a time step we assume that we have a delta

with known shape and topography, i.e., at each cell we have

a value of the water surface elevationH , bed elevation η, and

water depth (difference between the water surface elevation

and the bed elevation) h. We also have, at each cell, a unit

vector F , referred to as the routing direction, which indicates

the average downstream direction of flow through that cell.

If the current time step is the first step in the model run, the

routing directions are all in line with the inlet channel.

For the purpose of routing water, we define a binary cell

state: 0 – dry, 1 – wet. This is done by doing a sweep through

the domain and marking cells with a water depth larger than

a small threshold value hdry as wet cells. This threshold value

is typically a fraction (10 %) of the characteristic depth scale
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of the environment of interest or 0.1 m, whichever is smaller.

For example, for a natural delta, hdry is typically 0.1 m, while

for an experimental delta in laboratory, hdry is typically a few

millimeters which is 10 % of the characteristic flow depth.

The process in the first part of the time step requires us to

route, in turn, each of the water parcels through the domain.

When the parcel is at a given cell, a decision is needed in-

dicating to which of the eight neighbor cells it will move to.

We achieve this by using a so-called weighted random walk

where the movement is dictated by a predefined probability

distribution between the eight neighbor cells. The specifica-

tion of the probability distribution is as follows.

At a given cell, first we calculate the routing weights for

the eight neighbor cells. With the local routing direction F

specified, the routing weights are determined by two factors:

(i) the angle between the relative direction of the neighbor

cell i and the routing direction, which we will estimate using

a dot product method that we describe below; and (ii) the

resistance to the flow from each neighbor cell i. In this model

we calculate the routing weight for neighbor cell i as

wi =

1
Ri

max(0,F · d i)

1i
, (6)

where resistance Ri is estimated as an inverse function of

local water depth hi ,

Ri =
1

hθi
. (7)

For the current version of flow routing, the exponent θ is set

to 1, hence, leading to the following relationship of the rout-

ing weight:

wi =
himax(0,F · d i)

1i
. (8)

The cellular direction vector, d i , is a unit vector pointing to

neighbor i from the given cell. Finally, 1i is the cellular dis-

tance: 1 for cells in main compass directions and
√

2 for cor-

ner cells (Fig. 3).

The weights above are calculated only for the wet neighbor

cells of the given channel cell. All dry neighbor cells take a

weight value of 0. At each channel cell we can then calculate

routing probabilities pi :

pi =
wi

8∑
nb=1

wnb

, i = 1,2, . . .,8. (9)

To obtain a discharge vector at each cell based on the motion

of visiting water parcels, our starting point is to construct, for

each visiting parcel, an average vector of the input and output

vectors (Fig. 4). So the result is, for each channel cell, a set

(size Nvisit) of vectors, each expressing the average path of a

visiting parcel through that cell. A summation of this set of

Figure 3. Definition of cellular direction di and cellular dis-

tance 1i . For example, d1= (1, 0), d6= (− 1√
2

, − 1√
2

), 11= 1,

16=
√

2.

vectors provides, after appropriate normalization, a represen-

tative direction for water parcels through the cell. In this way,

a vector with this direction and a magnitude ofNvisitQp_water

can be regarded as a discharge vector for the cell, Qcell.

Then, for the purpose of later sediment transport, we need

to estimate the local flow unit discharge and velocity. To do

this we take the cell discharge vector (m3 s−1) and divide it

by the cell size δc to obtain a unit water discharge vector

(m2 s−1):

qw =
Qcell

δc

. (10)

3.2.2 Phase 2: water surface calculation

Water surface elevation is essential in this model not only

because it participates in the calculation of flow depth but,

even more importantly, because the gradient of water surface

plays a major role in determining the routing probabilities,

wi (Eq. 8), of water parcels.

In this reduced-complexity model, our goal is to obtain a

sufficiently accurate surface profile without solving the full

2-D hydrodynamic equations. We propose a method that uses

a finite-difference scheme along the movement path of in-

dividual water parcels, analogous to the simplified surface

solver developed by Rinaldo et al. (1999).

To start with the simplest formulation, we assume that wa-

ter surface slope along a channel streamline can be approxi-

mated by the reference slope S0, and in the ocean the water

surface slope is always zero. With the downstream water sur-

face boundary condition H =HSL, ideally along any given

streamline, we can reconstruct the surface profile with a sim-

ple finite-difference calculation. In the model, however, in-

stead of tracing a flow streamline, we take advantage of the

walking path of water parcels, which can be considered as

an approximation to the flow streamlines. The difference be-

tween the water-parcel paths (the “zigzag” version of stream-

lines) and the real flow streamlines is illustrated in Fig. 5. In

the following we explain how to construct a water surface
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Figure 4. Calculation of the direction of the cell-representative discharge vector. The representative discharge vector takes the direction of

the summation vector of all contributions from each visiting water parcel, and for Nvisit-visiting parcels its magnitude is NvisitQp_water.

Figure 5. A diagram showing the path of one individual water par-

cel compared to smooth flow streamlines.

profile along a water-parcel path with a given reference slope

S0.

First, we need to locate the part of the path that is on the

delta surface, as the part in ocean is considered flat. In gen-

eral, a water-parcel path starts at one of the inlet cells, moves

from one cell to an adjacent cell, and ends at one of the down-

stream ocean boundary cells. We distinguish the cells along

the path on the delta surface and the cells in the open ocean

by checking two values at each cell such that either a cell is

on the delta, or a cell is in the ocean if both of the following

criteria are met:

1. local bed elevation η is lower than a threshold value

ηshore (set to ηshore=HSL− 0.9href);

2. local flow speed |u| is smaller than a threshold value

Ushore (set to Ushore= 0.5Uref).

With a given water-parcel path, the calculation starts from

the end of the path and goes backward towards the inlet. For

the kth cell in the direction of calculation,

– if cell k is in the ocean, H |k =HSL;

– if cell k is on the delta, H |k =H |k−1−1δc(qw|qw| ·

d|k)S0, where1 is the cellular distance between the kth

and (k− 1)th cell, δc is cell size, and d|k is the parcel

step vector from cell k to cell k− 1.

The purpose of the term (qw|qw| · d|k) is to take into account

the angle between the parcel path and the streamline.

This calculation gives the surface profile along the path of

an individual water parcel and is repeated for all water-parcel

paths. There are two additional situations to be taken care of.

1. If a cell is visited by multiple water parcels, all the val-

ues from each visiting path are recorded and an average

value is taken from these stored values in the end to ob-

tain a single value for water surface elevation at each

cell.

2. If a cell is not visited by any water parcels, its water

surface elevation retains the old value (from the previ-

ous time step).

This newly calculated surface profile is recorded as H temp.

We then apply a diffuser to smooth the calculated surface

profile, which is typically spiky due to the 1-D stepwise

method of calculation. The diffusion is applied as

H smooth
= (1− ε)H temp

+ 0.125ε

8∑
nb=1

Hnb. (11)

We have used a diffusivity of ε= 0.1 and applied the smooth-

ing calculation in Eq. (11) 10 times in each time step. This

number is selected by checking samples of the resulting sur-

face profile until no obvious spikes appear. We will discuss

more in detail how sensitive the results are along with other

features in calculating the free surface.

In the end, the water surface elevation is updated with an

underrelaxation scheme for numerical stability:

H new
= (1−$)H old

+$H smooth. (12)

The underrelaxation coefficient$ is set to 0.1, which allows

the surface profile to transit slowly and smoothly from one

time step to another, avoiding numerical instability.

To ensure conservation of water mass, the unit discharge

field remains the same within one time step. Therefore, as the

water surface elevation is updated, only water flow depth and

velocity are adjusted accordingly.
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3.2.3 Phase 3: sediment transport and bed topography

update

Now, both the flow field, qw, and water surface elevation,H ,

are updated. These two variables will remain constant until

the next time step. To calculate the changes to the topography

in a time step, we propose two sets of rules for the transport,

deposition and erosion of sediment. The first set describes

the routing of the sediment parcels, and the second set de-

scribes the rate of deposition and erosion as the exchange of

sediment volume between sediment parcels and the bed. The

rules are phenomenological and the goal is to build them via

our understanding of macroscopic behavior rather than via

fine-scale physical interactions between the fluid, sediment

and bed. To this end, we distinguish two types of sediment

that have different behaviors in the model:

– coarse sediment, referred to as “sand”, is noncohesive,

and transported as bedload;

– fine sediment, referred to as “mud”, is cohesive, and

transported as suspended load.

A sediment parcel is either a “sand” parcel or a “mud” par-

cel. At the beginning of each run, an input parameter fsand

gives the portion of sand in the total upstream sediment input.

Therefore, a total number of fsand ns parcels are designated

as sand parcels and a total number of (1− fsand)ns parcels

are designated as sand parcels for each time step.

3.2.4 Routing of the sediment parcels

For routing sediment parcels we use the same weighted ran-

dom walk method as for the routing of water parcels (Eq. 6)

with two modifications:

1. The routing direction F in Eq. (6) is replaced with

the newly calculated water discharge vector qw at the

given cell (from Phase 1 above), assuming that sediment

parcels move with the water flow.

2. Transport resistance for sediment maintains the inverse

function of flow depth but has different exponents. The

idea is that sediment flux tends to concentrate in the

lower portion of the water column and therefore it is

more likely to follow topographically low areas. For

now we use an exponent θ = 2 for sand parcels (bed-

load) which is twice the value for water, and θ = 1 for

mud parcels (suspended load) which is equal to the

value for water. The physical reason for the values cho-

sen is that the distribution of the concentration of coarse

material is skewed towards the lower portion of the wa-

ter column and the distribution of fine material is more

evenly distributed throughout the water column.

Thus, the routing weights for sediment parcels are

wi =
h2
imax

(
0,qw · d i

)
1i

for sand parcels, and (13)

wi =
himax

(
0,qw · d i

)
1i

for mud parcels. (14)

And routing probabilities are calculated as

pi =
wi

8∑
nb=1

wnb

, i = 1,2, . . .,8. (15)

3.2.5 The rate of deposition and erosion

Sediment parcels are routed sequentially in a weighted ran-

dom walk fashion according to the probabilities calculated

with Eqs. (13), (14) and (15). The change to the bed topogra-

phy is obtained by the exchange of sediment volume between

the moving parcel and the local bed at each cell along the

path – during deposition a sediment parcel loses part of its

volume and this volume is added to the bed, and vice versa

for erosion. We use simple phenomenological rules to decide

(i) where deposition or erosion happens and (ii) how much

volume should be exchanged between the sediment parcel

and the bed. The rules for sand and mud parcels are differ-

ent.

For convenience of description, we refer to the initial vol-

ume of each sediment parcel Vp_sed as the “reference sedi-

ment parcel volume”, and the remaining volume during the

walking process of a sediment parcel as the “residual sed-

iment parcel volume”, Vp_res. The amount of deposition at

each cell by an individual parcel is referred to as Vp_dep. The

amount of erosion at each cell by an individual parcel is re-

ferred to as Vp_ero. The detailed rules are as follows.

For the deposition from a sand parcel we do the following:

– At each cell in the domain, we calculate a “transport

capacity” for sand flux, qs_cap, as the maximum flux

per unit width, which is a nonlinear function of local

flow velocity Uloc. The scaling between sediment flux

and flow velocity takes the form of the Meyer-Peter and

Müller (1948) formula,

qs_cap = qs0

U3
loc

U3
0

, (16)

where qs0 is calculated by dividing the upstream sand

flux input by the inlet channel width:

qs0 =
fsandQs0

N0δc

. (17)

– Similar to the calculation of water discharge, as the sand

parcels are routed sequentially, we track the accumu-

lated total sand flux, qs_loc, which increases with each

visiting bedload parcel:

q ′s_loc = qs_loc+
Vp_res

δc1t
. (18)
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– Deposition occurs if a sand parcel visits a cell that has

an accumulated local sand flux exceeding the transport

capacity:

Vp_dep = Vp_res if qs_loc > qs_cap, (19a)

Vp_dep = 0 if qs_loc ≤ qs_cap. (19b)

For deposition from a mud parcel we do the following:

– Deposition occurs if a mud parcel visits a cell that has a

local flow velocity Uloc smaller than a threshold veloc-

ity, Udep. The amount of deposition is proportional to

the residual sediment volume of the mud parcel as well

as the relative difference between the squares of Uloc

and Udep, a simplified representation of standard empir-

ical laws for fine-sediment deposition (van Rijn, 1984):

Vp_dep = Vp_res

U3
dep−U

3
loc

U3
dep

if Uloc <Udep, (20a)

Vp_dep = 0 if Uloc ≥ Udep. (20b)

– Udep is set to Udep= 0.3Uref. The idea is that the finer

the grain size, the slower the flow it requires to settle.

For the erosion by both types of sediment parcels, we do the

following:

– Erosion occurs if local flow velocity magnitude is larger

than a threshold value, Uero, that differs for sand and

mud parcels (García and Parker, 1991):

Vp_ero = Vp_sed

U3
loc−U

3
ero

U3
ero

if Uloc >Uero, (21a)

Vp_ero = 0 if Uloc ≤ Uero. (21b)

– For a sand parcel, Uero= 1.05Uref.

– For a mud parcel, Uero= 1.5Uref.

For volume exchange between sediment parcel and the bed:

– At each step, the volume of the sediment parcel is up-

dated as

V ′p_res = Vp_res−Vp_dep+Vp_ero. (22)

– The elevation of the local bed is updated as:

η′ = η+
Vp_dep

δ2
c

−
Vp_ero

δ2
c

. (23)

– The local flow velocity and flow depth are updated in

accordance with each event of deposition or erosion:

h′=H − η′ and u′=
qw

h
.

Note that in this setup a parcel can only take sediment of its

own category (e.g., sand or mud), and the volume is equal

to the total volume entrained. Therefore, in the erosion pro-

cess, only the total sediment mass is preserved rather than

the individual category of sand or mud. Given that deltas are

predominantly depositional environments this method pro-

vides a reasonable conservation of sediment. We note, how-

ever, that if our approach is to be extended to model environ-

ments that involve strong erosion over mixed sand/mud beds

our treatment will need modification to allow each parcel to

carry multiple sediment categories.

The reason for updating local flow depth and velocity im-

mediately after each event of deposition and erosion is to

avoid excess change to the bed. Similarly, we add an ex-

tra control on the rate of change to the bed by limiting the

amount of deposition and erosion by a sediment parcel so

that the change to local depth is less than 25 %, so that the

change to local flow velocity is less than 33 %. For example,

if local flow depth is 4 m, then the maximum deposition or

erosion by a single sediment parcel is limited to 1 m change

to the bed.

After all sediment parcels finish their random walk, to take

into account the influence of topographical slope on sediment

flux in an approximation of the Bagnold–Ikeda expressions

(García, 2008), we apply a topographic diffuser that assumes

the diffusive flux is proportional to local sand (bedload) flux

and topographical slope:

qs_diff = α|∇η|qs_loc, (24)

where α is a scaling coefficient, by default set to 0.1, and

|∇ η| is bed slope. The total change to the bed elevation by

the topographic diffuser is obtained by summing up the in-

bound and outbound diffusive fluxes at each cell over the

time period 1t . This topographic diffusion also introduces

lateral erosion by allowing sediment on the bank to be re-

moved and added to the channels. This lateral erosion gives

channels the mobility to migrate or even to meander. Exam-

ples are shown in the results section.

3.2.6 Phase 4: update routing direction

Before moving to the next time step, we need to update the

routing direction: a unit vector at each cell indicating the

downstream direction for routing water parcels. In this last

phase of the time step, at each cell we calculate the updated

value of the unit water discharge vector qw, water surface

elevation H , bed elevation η, water depth h, etc.

To achieve this, we combine two physical processes dic-

tating the flow direction: (i) at an instant in time flow has a

tendency to continue in the same direction as the direction at

the previous instant due to inertia, and (ii) in the absence of

any other drivers the flow goes downslope which in our case

is indicated by the water-surface slope rather than bed slope.
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Table 1. List of model constants and parameters.

Parameter Values and rationale

α Coefficient of topographic diffusion, set to 0.1. This parameter controls

the cross-slope sediment flux as well as bank erosion. The magnitude of

10−1 comes from the portion of bedload that is steered by bed slope.

γ Partitioning coefficient between routing direction by inertia and routing

direction by water surface gradient. This parameter essentially controls

how much water spread laterally (caused by cross-channel component of

water surface gradient) and is usually a small value (on the order of 10−2).

ε Coefficient for water surface diffusion, set to a small value of 0.1 to

ensure stability.

θ Depth dependence in routing water and sediment parcels. The value is set

to 1 for water parcels and mud parcels, and 2 for sand parcels. The higher this

value is the more skewed in the routing probabilities towards cells with

larger depth value.

Udep Threshold velocity for sediment deposition. Currently, it only applies to mud

parcels and is set to 30 % of the reference velocity U0. The smaller this value

is the longer a mud parcel can travel before losing all its mud volume.

Uero Threshold velocity for sediment erosion. The value is set to 1.05 ·U0 for

sand parcels and 1.5 ·U0 for mud parcels. The higher this value is the

more difficult to erode the bed.

hdry Threshold depth for a cell to be considered “dry” and turned off from flow

routing. The value is user defined and should be estimated depending on the

physical environment. We suggest 1–10 % of the characteristic flow depth.

In the model runs presented in this paper a value of 0.1 m is used for

field scale, which comes from the observation in Wax Lake Delta, LA;

and 0.002 m for experimental scale, which comes from the observation of

delta basin experiments in the lab.

First, we calculate a unit vector from the downstream di-

rection based on the previous time step:

F int =
qw,old

|qw,old|
. (25)

Then, we calculate a unit vector from the water surface gra-

dient (from the previous time step):

F sfc =
∇Hold

|∇Hold|
. (26)

Then, a linear combination of the two vectors is taken with a

partitioning coefficient γ :

F ∗ = γF sfc+ (1− γ )F int and F =
F ∗

|F ∗|
. (27)

The value of γ is set to a small number, typically 0.05 in the

runs reported here.

By implementing the method described in this section, we

have achieved our goal of complexity reduction: (i) the con-

struction of the water surface via 1-D profiles captures the

overall trend of water surface gradients without solving the

full hydrodynamic equations; (ii) the flow momentum bal-

ance is relaxed, e.g., the effect of flow inertia is considered

only in the form of direction rather than magnitude; and

(iii) the criteria for sediment deposition and erosion are in

the very basic form of a nonlinear relation between sediment

carrying capacity and flow velocity. Key constants and pa-

rameters that do not vary in our tests are listed in Table 1.

In the next section, we will show that when implemented

in our DeltaRCM model these reduced-complexity construc-

tions predict delta growth characteristics and channel dynam-

ics that are comparable to those of high-fidelity modeling and

field observations.

4 Model results

In this section we present various morphological features

produced by DeltaRCM with different domain setup and in-

put parameters. All simulations assume no effects from wave

or tidal energy, i.e., the delta is a classic river-dominated delta

(Galloway, 1975). We investigate (1) the effects of input sed-

iment composition and (2) the model’s ability to simulate

deltas at field and laboratory scales. The former has been
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studied via field observation (Orton and Reading, 1993) and

numerical simulation (Edmonds and Slingerland, 2009). The

latter is based on the availability of data from experimental

deltas; also, we believe that if a model can handle both field

and experimental scales, it could potentially inform the inter-

pretations and connections of both. Furthermore, we demon-

strate DeltaRCM as a tool for hypothesis testing through

study of the effects of the receiving basin depth.

As discussed above, two types of sediment are routed

through the system: coarse (sand) and fine (mud). The ra-

tio of the numbers of these two types of parcels at the inlet

gives the ratio of sand and mud coming into the system. To

set the physical scale of the simulation, domain and grid size

are adjusted by changing cell size and physical input param-

eters, such as total input water and sediment discharge, and

also global parameters such as the reference energy slope.

The input parameters (Table 2) include

1. the portion of sand in the upstream sediment input,

fsand;

2. global parameters; i.e., the reference flow depth h0,

basin depth hB, and the reference slope, S0;

3. total discharge Qw0 and Qs0.

Strictly speaking, the choice of the reference slope S0 is de-

pendent on the sand : mud ratio as well as the scale of the

physical setting. In our model runs for field scale we use

3× 10−4 for purely sandy deltas, 1× 10−4 on purely muddy

deltas and a linear combination of the two for mixed deltas;

for laboratory scale, we use values on the order of 10−2 for

S0. The magnitude of the reference slope is scaled with the

ratio of bedload and water fluxes that come from the inlet

channel, such that S0∼Qs0_bed/Qw0.

4.1 Effects of input coarse/fine sediment ratio

In this group, the domain is a lattice grid of 120 by 60 square

cells. Cell size is taken to be 50 m. The channel inlet is five-

cells wide (250 m), with a reference flow depth of h0= 5 m.

The total water discharge is 1250 m3 s−1. The total sediment

discharge is 0.1 % by volume, which is 1.25 m3 s−1. We use

a time step calculated from Eq. (3) of 25 000 s (∼ 7 h). Both

water and sediment discharge stay constant and we assume

they represent channel-forming conditions.

We show three model runs in Fig. 6 with the portion of

sand in the upstream sediment discharge set to 25, 50, and

75 %. The resultant deltas differ systematically based on the

input mud fraction in the following characteristics, which are

consistent with those found in the investigation on the effects

of sediment cohesion by Edmonds and Slingerland (2009).

– On a sandy delta the channels are relatively shallow and

mobile, without well-defined levees. Flow is less con-

fined. There are large areas of sheet flow. The shoreline

is smooth and the delta grows roughly in a semicircular

shape.

Table 2. List of delta model runs and parameter values.

Run fsand S0 Qw0 h0 hB

(m3 s−1) (m) (m)

1 0.9 2.8× 10−4 1250 5 5

2 0.5 2.0× 10−4 1250 5 5

3 0.1 1.2× 10−4 1250 5 5

4 0.3 1.6× 10−4 1250 5 5

5 1.0 1.0× 10−2 0.0006 0.02 0.02

6 0.3 1.6× 10−4 1250 5 2.5

7 0.3 1.6× 10−4 1250 5 10

8 1.0 2.0× 10−2 0.0006 0.02 0.02

– On a muddy delta, channels are deeper and stable, with

well-defined levees. Channels tend to elongate. The

shoreline is rugose, and deltas build in different direc-

tions by switching lobes.

– The contrast in the model-predicted roughness between

a sandy and muddy delta is illustrated in Fig. 7, where

plots of the time variation of the ratio of number of

cells on the shoreline to average delta radius (measured

in number of cells) is presented. In these calculations,

the shoreline is defined using the opening-angle method

(OAM) developed by Shaw et al. (2008), employing

an elevation threshold of −1 m and an opening-angle

threshold of 30◦. Also note that the calculation of the

roughness ratio in Fig. 7 is made across the range of

time intervals where the predicted delta consists of sev-

eral lobes but has not yet filled the calculation domain.

4.2 Experimental fan deltas

Laboratory experiments, numerical modeling and field obser-

vation are three important approaches of understanding the

formation of deltas. Because we would like to test our model

across as wide a scale range as possible, we include experi-

mental deltas at laboratory scales. To do this, we change the

domain to a lattice grid of 90 by 180 cells with a cell size of

0.02 m. The inlet channel is still five-cells wide but has a flow

depth of 0.02 m and a water discharge of 0.6 L s−1. Basin wa-

ter depth is 0.02 m. The reference slope is set at 0.02. The

time step is estimated at 1.67 s. Sediment input is considered

to be coarse-grained only. These conditions are representa-

tive of laboratory experiments such as those reported by Re-

itz and Jerolmack (2012).

In Fig. 8a–f we show a time series of the resultant deltas

during one avulsion cycle. These plots reveal the key charac-

teristics of an alluvial fan delta, in which a few active chan-

nels quickly switch (avulse) to build a semicircular shape

with a relatively smooth shoreline (Reitz and Jerolmack,

2012). To evaluate the details of this channel-switching pro-

cess, we calculate the wet fraction of delta surface that is

covered by active channels (defined by cells that have a flow
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Figure 6. Time series of delta formation with different ratios of sand and mud flux (runs 1, 2 and 3). The time interval between rows is

roughly 200 days of delta building time with continuous bank-full discharge.

Figure 7. Comparing shoreline roughness between simulated deltas

with input sand fractions of 25, 50, and 75 %. Shoreline roughness

here is measured by the ratio between (i) the number of cells in the

domain that contain a piece of shoreline of the simulated delta, and

(ii) the average radius of the delta toposet in number of cells.

velocity greater than 50 % of the characteristic flow velocity)

and plot it against time (Fig. 8g). Each avulsion event can be

identified by a sudden drop of the wet fraction followed by

a relatively slow rise caused by backfilling and flooding. An

avulsion timescale estimated from this plot is in the range of

5–10 min, a value that is of the same order as the laboratory

observations made by Reitz and Jerolmack (2012).

4.3 Effects of basin depth

It has been suggested that the accommodation – the space

that a delta can grow into – plays an important role in the ar-

chitecture and behavior of a growing delta (e.g., Paola, 2000;

Heller et al., 2001). However, for the case of river deltas

with very low-Froude-number flow, it is still unclear how the

depth of the basin affects the overall morphology of the delta.

Storms et al. (2007) use Delft3D to model initial delta forma-

tion from a river effluent discharging constant flow and sedi-

ment loads into shallow and deep receiving basins under ho-

mopycnal conditions; they show that the shallow basin delta

is dominated by mouth-bar bifurcations and a shoaling chan-

nel network, and exhibits significant stratigraphic complex-

ity and subaerial development, while the deep basin delta is

dominated by unstable bifurcations, levee breaches and avul-

sions (Storms et al., 2007). The authors suggest that the shal-

low basin case resembles the Wax Lake Delta. In our model

runs 6 and 7, we test scenarios with the same inlet channel

conditions and discharge, but different basin depths. In run 6,

the receiving basin depth is half of the reference depth (de-

fined by the inlet channel which is supposed to be at equi-

librium state in terms of sediment transport), while in run 7,

the receiving basin depth is double the reference depth. In

Fig. 9 we show that our results yield similar behaviors to the

ones modeled by Storms et al. (2007) using Delft3D. For the

shallow basin the morphological development is very close
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Figure 8. The series of images matches the avulsion cycles

observed in physical experiments (Reitz and Jerolmack, 2012):

(a) channelizes, (b) pushes out the shoreline (only deposits at the

channel mouth), (c) flares out locally to establish a semicircular

lobe (deposits minilobes around original channel mouth by local

avulsions and sheet flow), (d) backfills (channel widens), (e) floods,

and (f) channelizes again. Note that the time interval between (d)

and (e) is about 4 times longer than any other pair of consecutive

frames.

to the description of Storms et al., while the deep basin delta

has similar outcomes but the middle ground bar and avulsion

over the levee are not as clear in the RCM results.

The differences between a shallow and deep receiving

basin, according to our model results, are the following:

– Channels will still try to maintain the same unit power

of transporting sediment by maintaining a certain cross-

sectional geometry with levees on the side and erosion

or deposition on the bottom.

– In general, a distributary channel network shoals up and

channels are stable at shallower depths going seaward.

With a shallow basin the amount of work is reduced.

Also, the narrow space promotes the splitting of flow

which enhances the growth of a distributary network.

– A deep basin increases the timescale of establishing a

stable channel and, therefore, introduces stronger com-

Figure 9. Two model runs (runs 6 and 7) with different basin depths

and everything else the same. The shallow basin delta is dominated

by more frequent bifurcations while the deep basin delta is domi-

nated by few channels with more avulsions.

petition among channels by allowing larger differences

to develop.

– The total number of active channels is higher in the shal-

low basin case, with about 5–6 channels, as compared to

1–3 channels in the deep-basin case.

Finally, we note two interesting emergent features from our

model that have also been observed in the field at Wax Lake

Delta by Shaw (2013) and Shaw et al. (2013) (Fig. 10). First,

the channels in the shallow basin delta are initially erosional,

and carve into the basin bottom. This is consistent with the

observations at the Wax Lake Delta (Shaw et al., 2013). Sec-

ond, the channel network on this delta develops “tributary”

subnetworks on islands (highlighted in Fig. 10), which col-

lect flow both from tie channels directly connected to the

main channel network and from sheet flow topping the levees

into the islands. As to whether this subnetwork is erosional

or depositional, Shaw (2013) points out that at least the chan-

nels comprising it are likely not favorable for deposition. In

our model results, we notice the following process that might

explain the situation.

1. The subnetwork mainly collects fine sediment from the

main channel network, which requires a much slower

flow to settle.

2. As the tributary subnetwork joins into bigger trunk

channels, the ability of the flow to carry sediment in-

creases.

3. Finally, at the downstream end of the network, where

the trunk channel collecting water coming out of the is-

land meets the open water, the sorting of the sediment
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Figure 10. Flow features on the island of a delta formed in a shal-

low basin. (a) Model result from run 6, where basin depth (2.5 m)

is only half of the inlet channel depth (5 m); (b) Wax Lake Delta,

where basin depth (< 5 m) is much lower than the inlet channel

depth (> 20 m); (c) schematic drawing showing the “tributary” flow

feature on the island (Shaw et al., 2013) observed both in the field

(Shaw, 2013) and in our numerical model results.

deposited is very similar to a normal channel that has a

coarser bar-like structure at the mouth.

5 Recording of stratigraphy

A delta writes (and rewrites) its own autobiography by build-

ing a sedimentary record from deposition and erosion. These

sedimentary records allow us understand the past and to use

delta deposits to reconstruct their range of natural behavior.

Therefore, the ability to record stratigraphy in a delta for-

mation model enables us to directly investigate the connec-

tion between surface and subsurface processes. In this model,

we have two methods that track the stratigraphy of model-

produced deltas: the first method tracks the distribution of

coarse and fine sediment by recording the percentage of sand

in each deposition event; and the second method tracks the

age of the deposit by labeling each deposition event with the

time that its sediment enters the domain from the inlet chan-

nel.

To track stratigraphy each cell in the domain is viewed

as a storage column (shown in Fig. 2), and the volume be-

low the bed surface is further divided into thin layers of an

equal thickness (these layers are visible especially in Figs. 11

and 12). The thickness is chosen to be about a thousandth of

the reference depth, although it can be set to different val-

ues to allow for different vertical resolutions. Each layer is

recorded with a value associated with it – at present it is ei-

ther the percentage of sand (a value between 0 and 1) or the

age of the deposit (represented by the number of time step).

For example, if a cell has net deposition, the volume it re-

ceived from passing parcels will fill up as many layers as

needed above the previous bed surface, and all values associ-

ated with these layers are set to the ratio between the volume

of sand deposited and the total volume of sediment deposited

during this time step. If a cell has net erosion, the bed sur-

face will be lowered and all values associated with the layers

above the new bed surface will be erased (by resetting these

values to −1 in the code).

Here we present two examples. (1) We take a sample run of

a field-scale delta and 30 % sediment input (run 4). In Fig. 11,

we show a stratigraphic slice in the dip direction along the

center line of the inlet channel. In Fig. 12, we show the time

series of the stratigraphic slice in the strike direction about

20 cells (1 km in this case) away from the inlet channel. In

both figures white represents pure sand and dark blue rep-

resents pure mud, with mixed deposits represented by linear

combinations of the two endmembers. Generally speaking,

coarse sediment (sand) can be found in channel belts and

mouth bars, while fine sediment (mud) can be found in distal

regions such as the bottom set of the delta, on the floodplain

or in abandoned channels. (2) In Fig. 13 we show a sample

model run for laboratory conditions (run 8). Note the evolu-

tion of the area pointed to by the yellow arrow. The series

of images shows the deposition sequence from an individual

avulsion event.

6 Discussion

One of the themes running through this paper is that even in

the framework of a reduced-complexity delta model there are

a number of important details that must be modeled fairly ac-

curately to achieve even qualitatively correct model results.

These include a reasonably accurate representation of the wa-

ter surface and the inclusion of suspended sediment deposi-

tion and entrainment. To demonstrate the importance of the

water surface we switch off this component in routing water

parcels, i.e., we set the partitioning coefficient (γ ) to zero.

In this case, the delta is completely dominated by inertia and

as a result a single elongated channel extends without avul-

sion or bifurcation (Fig. 14a). (Note that this is not the same

behavior as setting the input sediment to contain 0 % sand

which exhibits multiple elongated channels – see Fig. 14b.)

By contrast, the effect of deposition and entrainment of fine-

grained sediment in DeltaRCM is illustrated by removing the

suspended sediment load from the calculation. In such a case,

the predicted channels are highly mobile and levees separat-

ing channels and floodplains are absent; i.e., we arrive at a

delta formation with no stable channel networks, the charac-

teristics of an alluvial fan (Fig. 14c). The importance of the

water surface and suspended sediment is also well illustrated

in the previous RCM delta model developed by Seybold et

al. (2007, 2009), where a reduced-complexity water surface

and depth calculation, along with a treatment of cohesive and
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Figure 11. Stratigraphy slice in the dip direction of run 4 (30 % sand input). Note the layering of coarse and fine grains over time. Yellow

arrow points to the bottom layer that accumulates fine grains at the bottom set of the delta; orange arrow points to the coarse grain layer

deposited by channels that used to be active at that location; the two together show the classic “coarsening-up” pattern in stratigraphy. The

red arrow points to the fine grains deposited after the channels are abandoned.

Figure 12. Time series of the stratigraphic slice in the strike direction about 20 cells (1 km) away from the inlet channel. Note that be-

tween (b), (c) and (d), in the yellow box, the abandoned channel belts are covered by muddy floodplain deposits. Also note that between (e)

and (f), in the light gray box, a mouth bar quickly deposits a significant amount of sand.

noncohesive sediment behaviors through a flow strength and

flow velocity terms, respectively, was able to build both elon-

gated bird-foot and multichannel fan deltas. Part 2 of this

work further explores the hydrodynamic mechanism of the

water surface and investigates the feedback between the flow

solver and the sediment transport processes in determining

channel bifurcations.

The need for accurate representation of some of the phys-

ical details in DeltaRCM is quite striking compared to the

success of even fairly radical reduced-complexity approaches

in modeling other morphodynamic environments such as ero-

sional landscapes (e.g., Willgoose et al., 1991), braided rivers

(e.g., Murray and Paola, 1994) and eolian bedforms (e.g.,

Werner, 1995). So why is it that deltas seem to require more

attention to detail? Can we learn anything from this experi-

ence that might help us better understand what systems are

most and least amenable to reduced-complexity approaches?

Since deltas and drainage basins share dendritic channel

patterns – one is a distributary network while the other is a

tributary network – we first look at the differences between

these two systems. In modeling the evolution of drainage

tributary networks, even highly simplified relations for water

flux and sediment transport yield quite reasonable drainage

networks and elevation changes in the long-term evolution

of catchments (e.g., Willgoose et al., 1991). The equation

describing the evolution of land elevation in Willgoose et

al. (1991) includes two transport processes: fluvial transport

and diffusive transport. The former is dependent on the dis-

charge and the slope in the steepest downhill direction, and

the latter is dependent on slope and diffusivity. Relations

of similar simplicity cannot be easily applied to modeling
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Figure 13. Time series of a delta produced by DeltaRCM with laboratory settings, and stratigraphy slices in the strike direction about 20 cells

(0.4 m) away from channel inlet. Note the evolution of the area pointed to by the yellow arrow. (a) A concave shoreline – empty space in

stratigraphy; (b) channel begins to receive water and sediment – deposition begins; (c) more water and sediment switch to the channel –

space is filled-up quickly; (d) full avulsion completed – a channel is established by water eroding existing deposits; (e) backfilling causes

flooding and the channel loses its advantage – the channel is refilled and there is a discontinuity in deposition age (yellowish green in the

upper portion and bluish green in the lower portion).

Figure 14. Effects of model parameters. (a) An elongated channel is formed with 50 % sand input by switching off the influence of water

surface in routing water flow (i.e., setting parameter γ to zero). (b) Multiple elongated channels are formed with 0 % sand (100 % mud) input

without modifying any parameter values. (c) A fan delta is formed with 100 % sand input which shows that a stable channel network with

levees cannot be achieved with only bedload.
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deltas because deltas are low-gradient environments where

the transport direction and capacity are to some extent de-

coupled from bed elevation and slope. To be more specific,

(1) bed slope in low-gradient environments is often uncor-

related with flow direction and strength; for example, bed

slope points opposite to the direction of flow where channels

shoal up towards the shoreline; (2) the water surface, which

dominates local flow routing, is largely independent of bed

topography; (3) the typical low-Froude-number flow in low-

gradient deltaic environments creates strong backwater ef-

fects that imply strong nonlocality in flow and sediment flux

control (Lamb et al., 2012; Nittrouer et al., 2011) – meaning

that downstream conditions control upstream flow dynamics

(Hoyal and Sheets, 2009); and (4) river mouth and shore pro-

cesses such as waves and tides also control the overall mor-

phology of deltas, providing additional process complexity.

According to Werner (1995), for a nonlinear and dissipa-

tive system, considerable simplification can be applied if the

system exhibits the following two properties: (1) it has a fi-

nite number of steady states as “attractors”, and (2) it has

macroscopic emergent behaviors that are self-organized and

consistent with, but decoupled, from microscopic physics. If

we compare drainage networks with deltas, the former ex-

hibits a strong generic pattern and scale-invariant properties

expressed in generalizations such as Horton’s laws (Horton,

1945). In contrast, the networks on deltas have many vari-

eties, responding to a wide range of processes; no universal

geometry applies to them all. Regarding model complexity,

the lack of universality in the system pattern indicates the re-

quirement for a more detailed, system-specific approach in

modeling them.

So, is the low gradient the main cause of the modeling

difficulty, making deltas more “unforgiving” than erosional

landscapes in terms of the accuracy of hydrodynamic cal-

culation? For cellular models that use explicit flow routing

schemes, the complexity level rises as factors other than to-

pographic slope alone determine water and sediment routing.

It also increases with nonlocality in the broad sense of the

sensitivity of dynamics at one point to conditions far away in

the system. Other contributing factors such as water surface

gradient and flow inertia weigh in as the overall topographic

gradient decreases. For example, dune fields may have very

low to zero average topographic slope, but they have lo-

cally high steepness meaning that, as in erosional landscapes,

the sediment dynamics are dominated by bed topography. In

deltas, however, the controlling factor is the relatively sub-

tle water surface topography, therefore simple descriptions

relating sediment deposition and erosion to e.g., local eleva-

tion and slope give realistic dune field dynamics but do not

work in deltas.

Can we be more systematic about evaluating the amount of

detail needed to model a geomorphodynamic system? This is

an important fundamental question in morphodynamic mod-

eling, and we do not pretend to resolve it here. But our expe-

rience with DeltaRCM suggests the following guidelines as

a starting point.

– For gravity-driven systems, the overall gradient of the

landform is one important index in the sense that in

high-gradient systems the gradient alone is enough to

route the flow.

– A closely related indicator is the wetted area fraction in

the sense that a combination of low wetted fraction and

high topographic gradient is the limit in which steepest-

path methods (Passalacqua et al., 2010) are sufficient to

determine the flow path, without the need for simulation

of the flow details.

– Froude number (Fr): as Fr tends to unity, the backwater

length tends to zero (Cui and Parker, 1997), so the sim-

plification of a local normal-flow assumption provides

a satisfactory means of accounting for momentum bal-

ance in the flow.

– For systematic behaviors on scales greater than the

backwater length scale, in-channel-scale hydrodynamic

details can be resolved at much lower complexity; this

applies for example to avulsion models that use single-

cell-wide threads to represent channel belts (Jerolmack

and Paola, 2007).

– Whether the system to be modeled exhibits a strong

generic pattern or scale-invariant (e.g., fractal) proper-

ties, the lack of universal patterns in a dynamic system

is an indicator of sensitivity to local detail.

We see the potential of this type of modeling as analogous to

that of laboratory experiments, which can also provide useful

insight despite not capturing all the details of complex natu-

ral systems (Paola et al., 2009). The strength of RCMs is to

serve as (1) exploratory models that allow for direct represen-

tation of phenomenological observation; (2) a tool to iden-

tify those aspects of large-scale system behavior that are not

sensitive to the details of smaller-scale processes; and (3) a

framework for hybrid modeling in which higher-resolution

model results can be integrated where precise description of

smaller-scale processes is needed even for larger-scale dy-

namics.

7 Conclusions

In this paper we have introduced a new reduced-complexity

model (RCM) for river delta formation. Key techniques in-

clude that (1) water and sediment fluxes are represented as

parcels and routed through the domain in a Lagrangian point

of view; (2) the movements of parcels are based on a prob-

ability field calculated from rules abstracting the governing

physics; (3) deposition and erosion are achieved by exchang-

ing the volume of passing sediment parcels and bed sedi-

ment columns, and the condition for this exchange depends
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on a set of rules that distinguish bedload and suspended load;

(4) bed sediment columns record the composition of coarse

and fine material in layers; (5) a topographic diffusion pro-

cess takes into account cross-slope sediment transport and

bank erosion. By varying input conditions such as the ratio

of coarse and fine sediment, reference slope, and dimensions

of the domain, the simulated deltas yield a range of different

behaviors that compare well to higher-fidelity model results

and observations of field and experiment deltas.

We find that the relatively simple cellular representation

of water and sediment transport is able to replicate delta

morphology at the scale of channel dynamics, including the

emergent channel network with channel extension, bifurca-

tion and avulsion. Here, we summarize the basic components

needed for a RCM to produce major static and dynamic fea-

tures of river deltas:

– a depth-averaged flow field that guides sediment trans-

port

– a nontrivial water surface profile that accounts for back-

water effects at least in the main channels

– representation of both bedload and suspended load

– topographic steering of sediment transport.

Even at the RCM level of modeling, the following items still

require a physically consistent treatment:

– the instability at channel mouths that creates bars and

subsequent bifurcation

– the variation in water surface profile associated with

lobe extension that causes channel avulsion

– water surface slope along channel sides which creates

flooding onto the floodplain.
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Appendix A

Table A1. List of notations.

Symbol Definition and unit Symbol Definition and unit

α Topographic diffusion ns Number of sediment parcels

coefficient (m2 s−1) (–)

γ Partitioning parameter for Pi Routing probability (–)

routing by inertia and by free

surface (–)

1i Cellular distance (–) Qcell Total discharge at a cell (m3 s−1)

δc Grid size (m) Qw0 Total water discharge from

inlet channel (m3 s−1)

ε Diffusion coefficient for water Qs0 Total sediment discharge

surface smoothing (–) from inlet channel (m3 s−1)

η Bed/land elevation (m) Qp_water Discharge represented by a

water parcel (m3 s−1)

ηshore Threshold bed elevation for qs_cap Sediment flux capacity at a

marking shoreline (m) cell (m2 s−1)

θ Exponent of depth dependence qs_diff Diffusive sediment flux at a

(–) cell (m2 s−1)

$ Underrelaxation coefficient for qs_loc Local coarse sediment flux at

water surface (–) a cell (m2 s−1)

di Cellular unit direction (–) qw= (qx , qy ) Water unit discharge vector

(m2 s−1)

F Routing direction (–) Ri Flow resistance (–)

F int Routing direction by inertia (–) S0 Reference slope (–)

F sfc Routing direction by water 1t Time step (s)

surface (–)

fsand Fraction of sand (–) U0 Reference velocity (m s−1)

H Water surface elevation (m) Udep, Uero Threshold velocity for

deposition and erosion (m s−1)

HSL Sea level (m) Uloc Local velocity at a cell (m s−1)

H smooth Smoothed water surface Ushore Threshold velocity for marking

elevation (m) shoreline (m s−1)

H temp Temporary water surface u= (ux , uy ) Flow velocity vector (m s−1)

solution (m)

h Water depth (m) Vp_sed Initial volume of a sediment

parcel (m3)

h0 Reference water depth (m) Vp_dep Volume removed from a

sediment parcel by deposition

(m3)

hB Basin water depth (m) Vp_ero Volume added to a sediment

parcel by erosion (m3)

hdry Threshold water depth for dry Vp_res Remaining volume of a

land (m) sediment parcel (m3)

Nvisit Number of water-parcel visits at V0 Reference volume (m3)

a cell (–)

Nx , Ny Number of cells in the x and 1Vs Total volume of sediment

y directions of the input at each time step (m3)

computational domain (–)

N0 Number of cells across inlet W Width of inlet channel (m)

channel (–)

nw Number of water parcels (–) wi Routing weights (–)
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