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S1 Subglacial water flow model

S1.1 Channelized drainage

The rate of channel closure is given by:

vcc(S,Nch) = ÃchS|Nch|n−1Nch, (S1)

where Ãch is the ice flow-law coefficient adapted for a semi-circular channel, S is the cross-sectional5

area of the channel, n is the flow-law exponent, Nch = φ0−φch is the effective pressure in the chan-

nel φch is the hydraulic potential in the channel and φ0 = ρwgzb + ρighi is the hydraulic potential

at the ice surface, with g the gravitational acceleration, zb the elevation of the bed, ρw and ρi the

density of water and ice respectively, and hi the ice thickness. The discharge Qch in a semi-circular

channel reads10

Qch =−kchS
αc |∇φch|βc−2∇φch, (S2)

where kch is the effective conductivity of a channel and αc and βc are constants chosen for turbulent

flow conditions (see Table S1). The dissipation of potential energy is expressed as

Ξ =

∣∣∣∣Qch
∂φch

∂x

∣∣∣∣ , (S3)

with x the coordinate along the flowline. The energy required to maintain the water at the pressure15

melting point is given by

Π =−ctcwρwQch
∂

∂x
(φch−φb), (S4)

where ct is the pressure melting coefficient for ice, cw is the heat capacity of water and φb the

hydraulic potential at the bed elevation.

S1.2 Network of linked cavities20

Cavity opening is a function of sliding speed ub and bedrock obstacle size:

vo(hca) =

 ub(hr−hca)/lr if hca < hr

0 otherwise,
(S5)

where hr and lr are respectively the maximum height and length of characteristic bedrock obstacles

and hca is the average height of the cavities. Cavity closure is caused by ice creep

vc(hca,Nca) = Ãcahca|Nca|n−1Nca, (S6)25

where Ãca is the ice flow-law coefficient adjusted for cavity geometry and Nca = φ0−φca is the

effective pressure in the cavity network, with φca the pressure in the network of cavities. The flux

through the cavity system is expressed as

qca =−Kcah
α
ca|∇φca|β−2∇φca, (S7)

S2



Table S1. Summary of hydrological model parameters.

Parameter Description Value

M Number of grid points 101

dx Cell size 500 m

dt Time step 600 s

W System width 1000 m

XL Glacier length 50 km

ρw Water density 1000 kgm−3

ρi Ice density 910 kgm−3

cw Heat capacity of water 4.22× 103 Jkg−1K−1

ct Pressure melting coefficient 7.5× 10−8KPa−1

L Latent heat of fusion 3.34× 105 Jkg−1

Ãch Flow-law coefficient for channels † 5× 10−25Pa−n s−1

Ãca Flow-law coefficient for cavity network † 5× 10−25Pa−n s−1

n Flow-law exponent 3

Kcav Conductivity of linked cavity system 1− 25× 10−3m7/4 kg−1/2

kch Channel conductivity 0.1225 (i.e. 〈n′〉= 0.321, Table S1)

kex Exchange coefficient between cavities and channel 5× 10−13m3/2 kg−1/2

〈n′〉 Manning roughness averaged 0.0321

n′i Manning roughness for ice 0.01

n′b Manning roughness for bed 0.05

ev Englacial void ratio † 1× 10−3

hr Height of bed obstacles 0.2 m

lr Length of bed obstacles † 2 m

ub Sliding speed 5 ma−1

α Flux exponent for the cavity network † 5/4

αc Flux exponent for the R-channel † 5/4

β Flux exponent for the cavity network † 3/2

βc Flux exponent for the R-channel † 3/2

γ Numerical compressibility parameter 10−9Pa−1

†Parameter values from Werder et al. (2013)

where Kca is the effective conductivity of the cavity system, and α and β are again chosen to satisfy30

turbulent flow conditions (see Table S1).
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S2 Shear stress partitioning

To compute the viscous heat dissipation in semi-circular R-channels, the roughness of the bed and

ice walls is averaged (Clarke, 2003). If u is the average flow velocity in a channel or network of

cavities, and u=Qch/S or u= qca/hca, respectively, the total shear stress on the ice walls and bed35

can be written

τtot =
1

8
〈fR〉ρwu

2. (S8)

To account for the difference in roughness between the ice and bed, the averaged Darcy-Weisbach

friction coefficient 〈fR〉 is given by (Clarke, 2003):

〈fR〉=
fiPi + fbPb

Pw
, (S9)40

where fi and fb are, respectively, the friction coefficients of the ice and bed, and Pi, Pb and Pw

are the ice, bed and total wetted perimeters, respectively. Given that fa = (8gn′a
2
)/R

1/3
H , with a

representing either the ice i or the bed b and RH being the hydraulic radius. After substitution the

averaged Manning roughness is

〈n′〉=

(
n′i

2
Pi +n′b

2
Pb

Pw

)1/2

. (S10)45

Here, n′i and n′b are the Manning roughness of the ice and the bed respectively. The partitioning of

the shear stress is obtained through the sum of the shear stresses weighted by the normalized wetted

perimeters of the respective materials:

τtot =
τiPi

Pw
+
τbPb

Pw
. (S11)

The shear stress on either the ice (τi) or bed (τb) is computed using Eq. (S8) replacing 〈fR〉 by fi or50

fb . For the shear stress on the bed this leads to

τb =
1

8
fbρwu

2. (S12)

We use a formulation of the discharge in a channel that is not a direct function of the Manning

roughness or the Darcy-Weisbach friction coefficient but rather an effective channel conductivity

kch (Table S1) which is given by55

kch =

(
ρwgn

′2
(

2

π

)2/3

(π+ 2)4/3

)−1/2

(S13)

as a function of the Manning roughness n′, or

kch =

(
8

ρwfR

(
2
π

)1/2
(π+ 2)

)1/2

(S14)

as a function of Darcy-Weisbach roughness fR.
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S3 Erosion model details60

S3.1 Saltation erosion model (SEM)

S3.1.1 Hop height Hs and length Ls

Sklar and Dietrich (2004) determined that the best empirical fit for the hop height could be written

as

Hs = 1.44D

(
τ∗

τ∗c
− 1

)0.5

, (S15)65

and the hop length as

Ls = 8.0D
(τ∗/τ∗c − 1)0.88

(1− (u∗/wf)2)
1/2

for u∗/wf < 1, (S16)

where D is the particle diameter, wf is the terminal settling velocity of a particle, τ∗ is the Shields

stress, τ∗c its critical value for sediment motion and u∗ the shear velocity. When the shear velocity

exceeds the settling velocity (u∗/wf ≥ 1) the particle is in suspension and the hop length becomes70

infinite. The settling velocity of a particle is computed following Dietrich (1982), who defines a

dimensionless fall velocity W∗ and particle diameter D∗ as:

W∗ =
ρww

3
f

(ρs− ρw)gν
(S17)

D∗ =
(ρs− ρw)gD3

ρwν
, (S18)75

where ν is the kinematic viscosity of water and ρs is the density of the particle. The dimensionless

fall velocity is found empirically to be

W∗ =R3× 10R1+R2 , (S19)

where

R1 =−3.76715 + 1.92944log(D∗)− 0.09815log(D∗)
2.0

−0.00575log(D∗)
3.0 + 0.00056log(D∗)

4.0, (S20)80

R2 = log

(
1− 1−CSF

0.85

)
− (1−CSF)2.3 tanh(log(D∗)− 4.6)

+0.3(0.5−CSF)(1−CSF)2.0(log(D∗)− 4.6) (S21)

and

R3 =

[
0.65−

(
CSF

2.83
tanh(log(D∗)− 4.6)

)]1+(3.5−Pnb)/2.5

. (S22)
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Table S2. Summary of parameter values for the SEM (Sect. 2.2.1) and TLEM (Sect. 2.2.2).

Parameter Description Value

ν Kinematic viscosity of water 10−6m2 s−1

Pnb Powers number 3.5

CSF Corey shape factor 0.8

Here Pnb is the Powers number and CSF the Corey shape factor. Together these numbers define the85

shape of the particle. The dimensional fall velocity can then be computed by inverting Eq. (S17):

wf =

(
W∗(ρs− ρw)gν

ρw

)1/3

. (S23)

S3.1.2 Impact velocity wsi

From the fall velocity, Sklar and Dietrich (2004) compute the mean particle descent velocity wsd as

wsd =
3HsUs

2Ls
= 0.4(rgD)1/2

(
τ∗

τ∗c
− 1

)0.18
(

1−
(
u∗

wf

)2
)1/2

, (S24)90

where r = ρs/ρw− 1 is the buoyant density of sediment and the along-path velocity of particles

travelling as bedload is given by

Us = 1.56(rgD)
1/2

(
τ∗

τ∗c
− 1

)0.56

. (S25)

They further estimate that the impact velocity is twice the mean descent velocity

wsi ≈ 2wsd. (S26)95

S3.2 Total load erosion model (TLEM)

For the suspended load, the sediment concentration can be written

c= cb

(
(1− ζz)/ζz
(1− ζb)/ζb

)PR

, (S27)

where we define ζz = z/H and ζb =Hs/H , H is the height of the flow and PR = wst/(κu
∗) is

the Rouse parameter while κ is von Karman’s constant. The near-bed sediment concentration cb is100

defined as:

cb =
qs

uHχ+UsHs
, (S28)

where qs is the sediment supply per unit width. The integral relating the flux of sediment to cb, H

and u is given by:

χ=
1

uH

H∫
Hs

(
(1− ζz)/ζz
(1− ζb)/ζb

)PR u∗

κ
ln

(
z

z0

)
dx, (S29)105
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and the bed load transport capacity is expressed as

qb = cbUsHs =
qsUsHs

uHχ+UsHs
. (S30)

Because the effect of turbulence on sediment concentration has been introduced, the equation for the

impact velocity (Eq. (S26)) proposed by Sklar and Dietrich (2004) is no longer valid. Instead, the

effective impact velocity is written as a function of velocity fluctuations w′ close to the bed:110

wi,eff =

 6σw∫
−ws

(w′+ws)
3
Pdw′

1/3

, (S31)

where σw =
√
w′2 is the standard deviation of velocity fluctuations (the over line denotes averaging;

as an approximation for open flows σw = u∗) and P is a probability density function of the velocity

fluctuations such that

P (w′) =
1√

2πσw

exp

(
− w′

2

2σw
2

)
. (S32)115

Note that w′ is taken as a variable such that w′ ∈ [−ws,6σw]. The velocity normal to the bed of a

falling particle ws is given by

ws = wst cos(θ)

√
1− exp

(
− 3CdρwHf

2ρsD cos(θ)

)
, (S33)

where wst is the terminal settling velocity, θ is the slope of the bed, Cd is the drag coefficient and

Hf is the particle fall distance. The terminal settling velocity is computed as120

wst =

(
4

3

rgD

Cd

)1/2

(S34)

and the drag coefficient as

Cd =
4

3

(ρs− ρw)gD

ρwwf
2

. (S35)

Finally, the fall distance is a function of the sediment concentration throughout the water column

(c):125

Hf =
1

cb

Hs∫
H

z
dc

dz
dz, (S36)

where z is the height above the bed.
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Figure S1. Comparison of the hydraulic conditions, transport stage and erosion in a network of cavities for

different sliding speeds (ub = 10− 50m/a, S_CAV10 – 50, Table S3; Sect. S4.1). (A) Water velocity u; (B)

Height of cavities hca; (C) Transport stage τ∗/τ∗c ; (D) Total erosion (Etot = ėtotW ) computed with the TLEM.

Transport stage and erosion are computed for sand particles with a diameter D = 1mm.

S4 Supplementary steady state simulations

S4.1 Linked cavities

Here we ask whether water flow through a network of linked cavities is capable of bedrock erosion,130

in tests using a fixed ice geometry and surface melt profile, but variable sliding speeds. The open-

ing term in the cavity evolution equation (Eq. (S5)) is a function of effective pressure, sliding speed

and geometry of bed obstacles. Since the latter is poorly defined and we prescribe ice geometry, we

choose to vary only the sliding speed in these tests (Table S3). We assume a sediment size corre-

sponding to coarse sand (D = 1 mm) in anticipation of much lower transport capacities than in a135

channel. We also divide the reference reach-averaged sediment supply (qs,ref ; Table 2) by the width

of the glacier (W ) such that qs,cav = qs,ref/W .

The flow velocity through the cavity network (Fig. S1A) shows similar features to the simulation

S_MOULIN (see Fig. 2B). Close to the terminus the ice thins rapidly (Fig. 1), reducing creep closure

and leading to larger cavities (Fig. S1B; Eq. (S5)). The increase in cavity size over the last 2 km of140

the bed is accentuated if sliding speeds are relatively large (largest cavities for S_CAV50 simulation,

Table S3), and the increase in cavity size drives the drop in velocity (Fig. S1B; u= qw/hcav). In turn

the larger the sliding speed, the larger the transport stage (Fig. S1C).
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Table S3. Summary of steady state simulations. For simulations in which meltwater input is a function of

ice-surface elevation zs, we compute f(zs(x)) = ḃssmax× (1− (zs(x)− zs,min)/zs,max), where ḃssmax =

8.5× 10−7ms−1 is the maximum melt water input rate to the channelized drainage system, and zs,min and

zs,max are respectively the minimum and maximum ice-surface elevations. Note that ḃssmax = 8.5×10−7ms−1

corresponds to 7.6 cm of ice melt per day assuming ρi = 910kgm−3. The reference sediment supply used for

the steady state simulations is: qs,ref = 3.6× 10−3m2 s−1.

Simulation Purpose Forcing Difference from reference run Section

S_MOULIN R-channel only Qch(x= 0, t) = 4.25m3 s−1 Localized input upstream boundary 4.1.1

S_CAV10–50 Cavities only ḃcav(x,t) = f(zs(x))
Network of cavities only with

ub = 10− 50, D = 1mm
S4.1

S_REF Reference ḃch,ref(x,t) = f(zs(x)) 4.1.2

S_CST Water input ḃch(x,t) = 4.25× 10−7ms−1 ḃch constant in space S4.2

S_CSTx2 Water input ḃch(x,t) = 8.5× 10−7ms−1 2× ḃch from S_CST S4.2

S_SURFx2 Water input ḃch(x,t) = ḃch,ref × 2 2× ḃch from REF S4.2

S_SSZ Sediment size ḃch(x,t) = ḃch,ref D = 1–550 mm S4.3

S_MR23 Manning roughness ḃch(x,t) = ḃch,ref n′i = 0.010, n′b = 0.035, < n′ >= 0.023 S4.4

S_MR35 Manning roughness ḃch(x,t) = ḃch,ref n′i = 0.020, n′b = 0.050, < n′ >= 0.035 S4.4

S_MR38 Manning roughness ḃch(x,t) = ḃch,ref n′i = 0.010, n′b = 0.060, < n′ >= 0.038 S4.4

S_MR46 Manning roughness ḃch(x,t) = ḃch,ref n′i = 0.020, n′b = 0.070, < n′ >= 0.046 S4.4

Particle motion is initiated over most of the bed (τ∗/τ∗c > 1; Fig. S1C) and transport stages are

particularly high (τ∗/τ∗c > 2; Fig. S1C), hence erosion rates are limited by the decrease in relative145

sediment supply (qs/qtc). As a result, erosion peaks between km 4 and 5 (Fig. S1D) and decreases

thereafter until near the terminus. Close to the terminus, transport stage drops while remaining above

5, thus erosion increases again. In simulation S_CAV10, the local peak in erosion at km 48 (Fig. S1D)

occurs due to the peak in transport stage (Fig. S1C) that allows the high impact velocity to offset the

low relative sediment supply rate.150

S4.2 Water input

Subglacial discharge is largely controlled by the amount and distribution of melt water reaching the

bed. Alley et al. (1997) suggest that the transport capacity of a subglacial channel is an exponential

function of discharge (Qtc ∝Q9/2
ch ). We compare the effect of (1) feeding the system through a

single moulin at the upstream domain boundary (S_MOULIN, Table S3), (2) a constant water input155

throughout the profile (S_CST and S_CSTx2, Table S3) and (3) water input varying inversely with

ice-surface elevation (S_REF and S_SURFx2, Table S3). In tests S_CSTx2 and S_SURFx2 the water

input rate is doubled compared to S_CST and S_REF, respectively.

S9



Q
ch
(m

3
s−

1
)

0

10

20

30

40
A

S_MOULIN
S_CST

S_CSTx2
S_REF

S_SURFx2

S
(m

2
)

0

5

10

15
B

τ
∗
/τ

∗ c

0

2

4

6

8

10

12

14
C

Distance from divide (km)
0 10 20 30 40 50

E
to
t
(m

2
a−

1
)

0

0.3

0.6

0.9

1.2 F

Distance from divide (km)
0 10 20 30 40 50
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Figure S2. Comparison of steady state results for varying surface melt scenarios, reference ice geometry (Fig. 1)

and drainage through one R-channel (Table 3, reference and water input; Sect. 4.1.2). The legend applies to all

panels. (A) Discharge in the R-channel, Qch; (B) Cross-sectional area of the channel, S; (C) Transport stage,

τ∗/τ∗c ; (D) Total transport capacity in the channel, Qtc = qtc×Wch; (E) Erosion rate per unit width calculated

with the TLEM, ėtot; Total erosion computed with the TLEM, Etot = ėtot×Wch.

Water velocity in a channel is dependent on channel discharge and cross-sectional area. The lat-

ter is controlled by the ratio of melt opening to creep closure and is thus sensitive to ice thickness160

(Eqs (1)–(S2)). As expected, the larger the water input, and hence the discharge (Fig. S2A), the larger

the cross-sectional area of the channel (Fig. S2B). Peaks in transport stage (τ∗/τ∗c ; Fig. S2C) coin-

cide with the kink in the channel size profile (between km 46 and 47) similarly to what is seen in

Fig. 2.

Since the channel cross-sectional area increases by about an order of magnitude along the profile165

(except for S_MOULIN sinceQch = cst), the amplitude of total transport capacity (Qtc, Fig. S2D) is

enhanced by about an order of magnitude compared to that of the reach-averaged transport capacity

(qtc, not shown). Despite the large increase in channel size close to the terminus, the decrease in

transport stage (τ∗/τ∗c ; Fig. S2C) is large enough that the total transport capacity still declines by a

factor of two to three (Qtc, Fig. S2D).170

All simulations in Fig. S2 but S_MOULIN show a sharp increase in erosion rate per unit width

(ėtot, Fig. S2E) and total erosion (Etot, Fig. S2F) commensurate with the increase of total transport

capacityQtc from zero near the divide (km 3 for S_CSTx2 and km 12 for S_REF). A local maximum

in erosion rates (ėtot, Fig. S2E) occurs when the fraction exposed Fe reaches 0.7 (not shown); for

higher transport stages, due to the constant sediment supply, the lack of tools (cb < 9× 10−3 and175

qs/qtc < 0.3, not shown; see Fig. 2) drives erosion rates down until km 47 (Fig. S2E). Closer to

the terminus, the transport stage drops (τ∗/τ∗c , Fig. S2C), the number of tools increases and so
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Figure S3. Influence of sediment size D (S_SSZ, Table S3) on total erosion with the TLEM for the same

hydrology as in the reference simulation (S_REF, Table S3). (A) Total erosion rate computed with the TLEM

(Etot); (B) Relative sediment supply (qs/qtc).

does erosion. Because of the feedback by which the number of tools in the vicinity of the bed and

the erosion rates decrease with increasing transport stage, the erosion per unit width is highest for

S_REF (Table 3) and lowest for S_CSTx2 and S_MOULIN (Table S3).180

Profiles of total erosion (Etot, Fig. S2F) are very similar to profiles of erosion rate per unit width

(Fig. S2E). For a given ice geometry, increased steady state discharge leads to larger channels thus

larger peaks in total erosion. The doubling in surface melt between S_REF and S_SURFx2 (Ta-

ble S3) leads to an increase of only ∼ 33% in total erosion integrated over the glacier length.

S4.3 Sediment size185

Increasing the particle size is equivalent to a reduction in transport capacity (Eqs. (13) and (12))

and will affect rates and patterns of erosion (Fig. 15 in Sklar and Dietrich (2004); Fig. 7 in Lamb

et al. (2008)). We show in Fig. S3 that varying the particle diameter from sand- to boulder-sized

leads to similar patterns as variations in sediment supply rate (Fig. S3). When explained in terms

of the relative sediment supply (qs/qtc), the feedbacks are those described in Fig. 4. In the case of190

particle size it is the decrease in transport capacity, rather that the increase in sediment supply, that

yields larger relative sediment supply. We do not display the results of the SEM since the patterns

are similar, despite the fact that little to no erosion occurs for the smallest particles (D= 1–2 mm)

which travel mostly in suspension.
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Figure S4. Influence of bed and channel wall roughness on erosion and transport capacity. (A) Channel cross-

sectional area S; (B) Transport stage τ∗/τ∗c ; (C) Total transport capacity Qtc; (D) Total erosion computed with

the TLEM Etot.

S4.4 R-channel roughness and steady state conditions195

We discuss here the effect of the roughness of the ice walls and of the bed material (Clarke, 2003)

since these parameters are poorly constrained. A smaller roughness would lead to less viscous heat

dissipation and less melt of the channel, but also to a lower shear stress on the bed. We test different

roughness combinations (see Table S3; Eqs. (S8)–(6); Fig. S4) while the discharge is kept constant

(see Fig. S2A, solid black), to differentiate the effect of bed and ice wall roughness.200

As expected, the larger the average roughness, the larger the channel (Fig. S4A). The transport

stage (Fig. S4B), on the other hand, is dependent on bed roughness (Eq. (6)). When we only increase

the ice wall roughness (S_MR35) the channel grows larger, but the transport stage remains lower

than in the reference simulation (S_REF) because the average water flow velocity is lower. The total

transport capacity (Fig. S4C) follows the same general hierarchy between simulations as the trans-205

port stage. In terms of the total erosion rates (Fig. S4D), simulations with larger averaged Manning

roughness (e.g. S_MR23 vs. S_MR46) produce more erosion.
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